
last updated on 5th Nov, 2021, 15:43:37 CERN-TH-2020-208

Charged Eigenstate Thermalization, Euclidean

Wormholes

and Global Symmetries in Quantum Gravity

Alexandre Belin,a Jan de Boer,b Pranjal Nayak,c Julian Sonnerc

aCERN, Theory Division,

1 Esplanade des Particules, Genève 23, CH-1211, Suisse
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Abstract

We generalize the eigenstate thermalization hypothesis to systems with global symmetries.

We present two versions, one with microscopic charge conservation and one with exponentially

suppressed violations. They agree for correlation functions of simple operators, but differ in the

variance of charged one-point functions at finite temperature. We then apply these ideas to holog-

raphy and to gravitational low-energy effective theories with a global symmetry. We show that

Euclidean wormholes predict a non-zero variance for charged one-point functions, which is incom-

patible with microscopic charge conservation. This implies that global symmetries in quantum

gravity must either be gauged or explicitly broken by non-perturbative effects.
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1 Introduction

The thermal behavior of quantum many-body systems is well understood in terms of statistical

mechanics. However, developing a microscopic understanding of thermalization is a difficult problem

of sustained interest. The eigenstate thermalization hypothesis (ETH) [1, 2] is a powerful framework

to understand how a pure state can give rise to thermal behavior after sufficiently long times. The

crux lies in the fact that individual eigenstates behave like a statistical ensemble for a large class

of observables, with pseudo-random corrections that are exponentially small in the entropy. The

ETH states that for simple (few-qubit) operators Oa, we have

〈Ei|Oa |Ej〉 = fa(Ē)δi,j + ga(Ē, ω)e−S(Ē)/2Rij , (1.1)

where Ē and ω are the mean energy and energy difference of the states i and j, respectively. The

matrix Rij is comprised of erratic order one numbers which statistically have zero mean and unit

variance. In any given quantum system with fixed Hamiltonian, they are definite numbers that

could be obtained by diagonalizing the Hamiltonian. However, for the purpose of computing few-

point correlation functions of simple operators in high energy states, these microscopic details are

irrelevant and it suffices to treat the Rij as true random variables. This randomness is tightly

linked to the connection between quantum chaotic systems and random matrix theory (see [3] for

a review).

New insights into the randomness of chaotic quantum systems have emerged from gravitational

physics, through holographic duality [4]. If the chaotic quantum system at hand is a large N ,

strongly coupled conformal field theory (i.e. a holographic CFT), thermalization of the boundary

quantum system is connected to black hole formation in the gravitational dual [5–8]. In fact, the

apparent loss of unitarity in both these processes is closely related and understanding one will help

in the understanding of the other. Indeed quantum thermalization has been discussed in the context

of holography for precisely this reason (see for example [9–20]).

1.1 Randomness in Holography

It has recently become clear that the low energy effective theory on the gravity side (i.e. semi-

classical general relativity and its Euclidean path integral) has the potential to know quite a lot

about the structure of eigenstates of the CFT Hamiltonian, perhaps much more than we had hoped

for. While it has long been known that the Bekenstein-Hawking formula computes the (coarse-

grained) entropy of black hole micro-states, recent progress has established that the low energy

effective theory also knows something about fine structure of the microstates and their discrete

nature, for example the level-repulsion of nearby eigenvalues of the Hamiltonian [21]. New field

configurations known as Euclidean wormholes contributing to the gravitational path integral play

a crucial role in these developments. These may or may not be saddle-points [22–24].

Precisely quantifying the amount of CFT information that the gravitational path integral has

access to has become one of the most pressing questions in holography. Interestingly, it has given a

new perspective on the ETH: rather than viewing semi-classical general relativity as a traditional low

energy effective theory that computes scattering amplitudes around the vacuum, it can be viewed

as an effective theory in the sense of ETH, namely a framework for computing the correlators of

simple operators on black hole microstates. In this context, simple operators should be understood

as operators dual to supergravity fields. Multi-trace operators are also simple as long as ∆O � N .

While there are many erratic signals in such observables that cannot be accessed through the

effective theory, the moments of these signals can. This led [25] to propose a framework to describe

these moments in terms of the statistics of OPE coefficients. The OPE randomness hypothesis is

a generalization of ETH that states that any index of an OPE coefficient labelling a black-hole
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microstate can effectively be treated as a random variable. A similar approach for Haar-typical

states was studied in [26].

While ensemble-averaging over quantum systems has played a prominent role in two-dimensional

gravity, for example in [21], this effective description is also applicable in individual quantum sys-

tems with a fixed Hamiltonian (at least for self-averaging quantities), which will be the focus of

this work. A general framework explaining this mechanism and connecting it to random matrix

theory was developed in [27] (see also [28, 29]). This framework leads to random fluctuations in

OPE coefficients [30].

1.2 Summary of results

In this Letter, we will discuss how global symmetries interact with the ETH, wormholes and erratic

signals of quantum chaos. We start by generalizing the ETH in the presence of global symmetries.

For neutral operators, we can simply apply the ETH charge sector by charge sector. This is expected

from a Hamiltonian decomposed into blocks corresponding to the different charge sectors, and each

individual block approximates an independent random matrix [31].

Charged operators on the other hand make different charge sectors talk to one another. We dis-

cuss two possible variants of a charged ETH, one that preserves the symmetry microscopically, the

other that allows for exponentially small violations of charge conservation in the random variables.1

This second version of ETH is more relevant when viewing the ansatz as an effective theory for

the simple operators, where one is agnostic about whether or not the symmetry is realized micro-

scopically. Viewed statistically, these two ansätze give equivalent answers for low-point correlators

of the simple operators in any given background. However, they differ for products of correlation

functions. Most notably, we have

〈Oq〉β 〈O
†
q〉β
∣∣
c.p. ETH

= 0

〈Oq〉β 〈O
†
q〉β
∣∣
c.v. ETH

∝ e−S , (1.2)

where c.p. and c.v. denote the charge preserving and charge violating versions of ETH, respectively.

We will show that this resonates strongly with the gravitational perspective. In the bulk,

multi-boundary Euclidean wormholes can give non-zero answers for the product of charged one-

point functions. Whether the answer is non-zero depends on whether the symmetry is gauged in the

bulk or not. If the symmetry is gauged, then we find a vanishing answer compatible with a charge

preserving ETH, where the symmetry is realized microscopically. If on the contrary the symmetry

is only a global symmetry of the bulk theory, the wormhole yields a non-zero answer. This implies

that charged one-point functions have a non-zero variance and thus that OPE coefficients Cīiq are

not exactly zero, but rather fluctuate with exponentially small variance. We show that provided

that the wormhole accurately captures the variance of observables, this is inconsistent with exact

global symmetries in quantum gravity. To summarize, either the symmetry is gauged in the bulk,

or it is broken by non-perturbative effects in GN . This provides additional evidence that global

symmetries cannot exist in quantum gravity [32, 33], and extends the more recent discussion in the

context of AdS/CFT using entanglement wedge reconstruction [34, 35]. Note that the violation

of global symmetries due to the presence of wormholes in a gravitational theory is a long studied

subject, [36–39]. The present work offers a different perspective based on ETH and quantum chaos,

which is particularly relevant in light of recent developments.

This paper is organized as follows. In section 2, we present a charged version of the ETH.

We turn to gravitational computations in section 3 and discuss correlation function on wormhole

backgrounds. In section 4, we discuss the implication of our findings for global symmetries in

quantum gravity. We end with a discussion of open questions in section 5.

1While inessential in what follows, note that these violations affect neutral operators as well.
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Note added: while this paper was in preparation, [40, 41] appeared which contain related

results in the context of replica wormholes.

2 The ETH with global symmetries

In this section, we will present the form of the ETH which holds in the presence of global symmetries.

For concreteness, we will take the global symmetry group to be U(1), but it is straightforward

to generalize to other groups. In the presence of a symmetry, the charge commutes with the

Hamiltonian and we can simultaneously diagonalize both operators. It is thus natural to organize

the Hilbert space in different charge sectors labelled by the eigenvalue Q of the charge operator.

Consider now a simple operator which is neutral under the global symmetry. For such operators,

the generalization of the ETH is straightforward and we have

〈Ei, Qi| Oaq=0 |Ej , Qj〉 = δQi,Qj

(
fa(Ē,Qi)δEi,Ej + ga(Ē, ω,Qi)e

−S(Ē,Qi)/2Rij

)
, (2.1)

where fa
2 and ga are smooth functions of Ē ≡ (Ei + Ej)/2, ω ≡ Ei − Ej and Qi; Rij are random

numbers with zero mean and unit variance; and, S(Ē,Qi) is the microcanonical entropy in a definite

charge sector Qi. Note that this is just the usual form of the ETH charge sector by charge sector.

An astute reader might point out that in a system with quantized energy and charge, the functions

fa, ga can’t really be continuous. However, for states with macroscopic charge and energy, when

the differences in these quantum numbers are much smaller than their values, we can treat them

as continuous variables. This is equivalent to considering microcanonical ensembles at fixed energy

and charge, and presents an immediate generalization of how these functions are defined in the

conventional eigenstate thermalisation hypothesis.

The above proposal, (2.1), is intuitively consistent with expectations from random matrix theory

and quantum chaos, where one treats the different blocks of the Hamiltonian corresponding to each

charge sector as independent random matrices [31] (see also [43]).

The story becomes more interesting when we discuss (simple) charged operators, since they

automatically make different charge sectors talk to one another. In this case, the following ansatz

should hold:

〈Ei, Qi|Oaq |Ej , Qj〉 = δEi,EjδQi,Qjδq,0f
a(Ē, Q̄) +

δQi,q+Qjg
a(Ē, ω,Qi, Qj)e

−(S(Ē,Qi)+S(Ē,Qj))/4Rij . (2.2)

It is worthwhile to note that unlike the case of neutral operators, there is no diagonal term for

operators that carry charge. This is in fact expected: the one-point function of a charged operator

vanishes in the thermal (or grand-canonical) ensemble, which only leaves room for small off-diagonal

contributions in the ETH ansatz. The function ga is related to the (Fourier transform of the) two-

point function for the operator Oq, as we now show.

Let us consider the expectation value of O†qOq in an energy eigenstate and we would like to

show that this quantity has a diagonal part compatible with ETH, using only (2.2). To do so, we

insert a resolution of the identity

〈Ei, Qi|O†qOq |Ei, Qi〉 =
∑
j

〈Ei, Qi|O†q |Ej , Qj〉 〈Ej , Qj |Oq |Ei, Qi〉

=
∑

{|j〉;Qj=Qi+q}

e−(S(Ei+
ω
2 ,Qi)+S(Ei+

ω
2 ,Qi+q))/2 × |g(Ei +

ω

2
, ω,Qi + q,Qi)|2|Rij |2 . (2.3)

2An expression for f in two-dimesional CFTs is given in [42].
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The random variables Rij will average out to unity upon taking the sum over j since they have

unit variance. Moreover, we can replace the dense sum over states with varying energies, Ej , by an

integral, namely
∑
j

→
∫
dωeS(Ei+ω,Qi+q), which gives

〈Ei, Qi|O†qOq |Ei, Qi〉 =

∫
dω eS(Ei+ω,Qi+q)−(S(Ei+

ω
2 ,Qi)+S(Ei+

ω
2 ,Qi+q))/2

×|g(Ei +
ω

2
, ω,Qi + q,Qi)|2 . (2.4)

All remaining functions are smooth and rapidly decaying functions of ω and q, so we can Taylor

expand them to obtain to leading order

〈Ei, Qi|O†qOq |Ei, Qi〉 ≈
∫
dω e

β
2 (ω−µq)|g(Ei, ω,Qi, Qi)|2 , (2.5)

where we defined β ≡ ∂S
∂E and µ ≡ − 1

β
∂S
∂Q . The result (2.5) should be given by the microcanonical

average for the operator O†qOq if it is to satisfy ETH, which fixes the function g and its relation to

the microcanonical expectation value of O†qOq.

Before moving on to discuss the implications for gravitational theories, we would like to discuss

another type of charged ETH ansatz, which will mildly break charge conservation. Instead of (2.2),

consider the ansatz

〈Ei, Qi|Oaq |Ej , Qj〉 = δEi,EjδQi,Qjδq,0f
a(Ē, Q̄) + g̃a(Ē, ω, Q̄, δQ, q)e−S(Ē,Q̄)/2Rij . (2.6)

The main difference between (2.2) and (2.6) is that this second version replaces the exact charge

conservation by a smooth function of δQ = Qi − Qj which is rapidly decaying as a function of

δQ − q. From this ansatz, one could also relate the function g̃ to the microcanonical two-point

function as in (2.5) (see the supplemental material for details). We would like to emphasize that

the two ansätze only differ up to exponentially small corrections and are therefore indistinguishable

for simple operators.

A reason to consider such a charge-breaking ansatz is the following: if we have a set of simple

operators that preserve some global symmetry but we are unsure whether the microscopic Hamil-

tonian truly preserves this symmetry, it is perhaps more cautious to only enforce an approximate

global symmetry. This would be useful for example if one wanted to formulate an effective theory

for the simple operators in high energy states.

3 Euclidean Wormholes

In this section, we compute correlation functions of charged operators in gravitational theories. We

are interested in the simplest possible setup with a wormhole solution connecting two asymptotic

boundaries. The simplest solution of this type arises in AdS3 when the two boundaries have negative

constant curvature, hence we consider two genus-2 surfaces at the boundary.3

The relevant gravitational low energy effective theory is given by the Euclidean action

S = − 1

16πGN

∫
d3x
√
g

(
R+

2

`2AdS

)
+ Smatter

Smatter =
1

2

∫
d3x
√
g(|∂φ|2 +m2|φ|2) . (3.1)

3Note that because we are considering genus-2 boundaries, we are not computing thermal one-point functions

and their variance but rather genus-2 one-point functions. Instead of probing the variance of Cīiq , we instead probe

Cl̄qkCijlCijk. This does not affect our conclusion for global symmetries.
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Note that this action has a global U(1) symmetry. The metric of this genus-2 wormhole reads

ds2 = `2AdS(dτ2 + cosh2 τ dΣ2
2) , (3.2)

where dΣ2 is a constant curvature metric on the genus-2 surface. This geometry is locally AdS3

and can be obtained from the hyperbolic ball H3 by taking a quotient with respect to a Fuchsian

group Γ which is a discrete subgroup of the AdS isometries.

Because the scalar theory is a free field theory and the geometry (3.2) is a quotient of AdS3,

the two-point function on the wormhole is obtained by the sum over images. For two operators

inserted on opposite boundaries (see Fig. 1), the correlation function reads [22]

〈Oq〉g=2 〈O
†
q〉g=2

∣∣∣
gravity

∼
∑
h∈Γ

1

[cosh(h(s))]
2∆

, (3.3)

where s is the distance between the 2 points on the boundary Riemann surface and ∆ is the

conformal dimension of the CFT operator dual to φ. Here, h ∈ Γ is an element of the Fuchsian

discrete subgroup of the hyperbolic symmetry group, SL(2, R). Correspondingly, the sum over h(s)

denotes the sum over all images generated under the action of this subgroup on the geodesic.4 For

sufficiently large ∆, this sum converges which is related to the wormhole being (perturbatively)

stable. The fact that this correlation function doesn’t vanish has an interpretation in terms of the

variance of the genus-2 one-point function of the operator O, which carries global charge. As we

will discuss in the next section, this has drastic consequences for global symmetries in quantum

gravity.

X

X

X

X

Figure 1. A genus-2 wormhole on which we compute correlation functions. On the left, the situation

where the symmetry in the bulk is not gauged. This yields a non-zero correlation function. On the

right, the situation where the symmetry is gauged in the bulk. In this case the field theory operators

can be interpreted, using the extrapolate AdS/CFT dictionary, as the boundary limit of the bulk operator

insertions which are attached to Wilson lines that end on the respective boundary. This correlation function

vanishes.

Before moving on to the consequences of such non-vanishing correlation functions for quantum

gravity, we will first discuss the situation where the U(1) global symmetry of the field φ is gauged.

4In the above expression we aren’t carefully keeping track of the overall normalisation factor of the correlation

function. which are not critical for our discussion and therefore we use ‘∼’ to remind us of this fact.
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In this case, the boundary-to-boundary correlation function in the bulk is not gauge-invariant unless

the two operators are connected by a Wilson line that propagates through the wormhole. This is

depicted on the right hand side of Fig. 1. In this case, the correlation function vanishes, as already

noted in [22].

The simplest way to see this is to note that in the presence of multiple boundaries, the asymp-

totic symmetry due to the bulk gauge field becomes one copy of the global symmetry per discon-

nected Euclidean boundary. In the case of our genus-2 wormhole, the boundary global symmetry is

U(1)× U(1) and the correlation function 〈Oq〉g=2 〈O
†
q〉g=2

is charged under it (even if it is neutral

under the diagonal subgroup). It must hence vanish. We therefore have5

〈Oq〉g=2 〈O
†
q〉g=2

∣∣∣
gauged

= 0 . (3.4)

As demonstrated in Figure 1 the corresponding bulk object one needs to compute is a pair of

insertions, φ(x)†W (x,∞top) and W (∞bottom, y)φ(y), of charged operators attached to Wilson lines

extending to the respective boundaries.6 It is worthwhile to note that this does not imply that

the correlation function 〈φ(x)†W (x, y)φ(y)〉, corresponding to the insertion of charged operators,

φ†, φ, connected by a Wilson line, W (x, y), vanishes for bulk points. Such correlation functions are

perfectly fine gauge-invariant objects of the bulk theory, even if they are separated in Euclidean

time (in particular, they are neutral under the U(1)× U(1) global symmetry of the boundary).

It is worthwhile mentioning a peculiarity of the Euclidean setup. Clearly, one can have a non-

zero correlation function 〈φ(x)†W (x, y)φ(y)〉 when x and y lie on the same time-slice. In a Euclidean

setup however, one can also move one of the operators in time, as long as there is a Euclidean ball

surrounding both charges. In such a setup, the correlation function again is non-zero. There is

therefore an interesting limit where we connect the two operators by a Wilson line and send the

operators to the boundary, which now is no longer forced to vanish. We return to this question in

the discussion section.

4 No Global Symmetries in Quantum Gravity

We will now show that the existence of multi-boundary Euclidean wormholes prevents the existence

of exact global symmetries in quantum gravity. First, we need to discuss the difference between an

exact global symmetry of quantum gravity and one that is gauged. From the CFT standpoint, both

involve a graded operator algebra and exact selection rules for correlation functions: a correlation

function is non-zero only if the sum of the charges of all operators vanishes. In particular, this

applies to all OPE coefficient which must satisfy charge conservation

COq1Oq2Oq3 ∝ δq1+q2+q3,0 . (4.1)

The difference between a situation where the symmetry is gauged in the bulk involves the dual of

the bulk gauge field: a CFT current which implements the action of the global symmetry.

It is currently unknown whether a consistent CFT with a local stress-tensor can have an exact

symmetry for all its correlation functions without having a current (see [34] for a detailed discussion

on such issues).7 Here, we will show that the low-energy gravitational effective theory is smart

5The same argument applies to other types of symmetries, even spacetime ones. For example, a finite temperature

one-point function is independent of Euclidean time. Therefore 〈O(τ1)〉β 〈O(τ2)〉β must be independent of τ1 and τ2.

A given wormhole solution may naively look like it gives a non-trivial τ1 − τ2 dependence, but this will be destroyed

by integrating over a family of wormhole solutions that restore time translation symmetry on both boundaries. In

our situation, this integral is over the gauge field.
6The left and the right boundaries are symbolically denoted here by ∞L,R here.
7In the absence of a local stress-tensor, such CFTs clearly exist: the canonical example is generalized free fields.

In fact any QFT in AdS with a global symmetry will generate such a CFT.
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enough to know that exact global symmetries are not allowed. Note that independently of whether

the symmetry is gauged in the bulk, the one-point function of a charged operator must vanish on

any compact Euclidean surface. In particular, we have

〈Oq〉g=2 = 0 . (4.2)

This is an exact statement, and follows from the selection rule (4.1). We will now see that this is

in conflict with the wormhole answer.

The existence of wormhole solutions in the bulk and the correlations they imply may seem

puzzling at first sight, but such wormhole correlation functions have been interpreted as encoding

the variance of microscopic CFT observables as the result of some coarse-graining. For one-point

functions, we have

〈O〉 〈O〉
∣∣∣
gravity

= | 〈O〉CFT |2 , (4.3)

where the · notation refers to some coarse-graining involving averaging over an energy band which

we will not aim to make precise here. In general, when quantities like OPE coefficients or spectral

phases are erratically varying, wormhole contributions can give us the mean and variance of such

signals. The central assumption that we will make is that the wormhole contribution in gravity

accurately captures the CFT variance for this type of signal.

Hence, we seem to arrive at a contradiction, reductio ad impossibile. The wormhole correlation

function (3.3) is non-vanishing, implying that the charged one-point function has some variance.

But this is in direct contradiction with (4.2) which asserts that charged one-point functions are

exactly zero. What this shows us is that if we try to enforce an exact global symmetry in quantum

gravity, the existence of Euclidean wormholes tells us that this symmetry cannot be exact, and must

necessarily be broken by non-perturbative effects. It is remarkable that the low-energy gravitational

effective theory and its Euclidean path integral are smart enough to know this. On the other hand,

if the symmetry is gauged in the bulk, the exact microscopic selection rule is enforced by the gauge

symmetry and the variance (i.e. wormhole contribution) exactly vanishes.

Let us now make contact with the ETH ansatz in the presence of a global symmetry. We

proposed two ansätze for ETH, (1.2), one that exactly preserves the global symmetry and one that

only approximately does. Recall that for one-boundary correlators, charge conservation was not

violated by large amounts for either ansatz and the two agreed up to exponentially small corrections.

We conclude that the two different ansätze correspond to gravitational theories in which global

symmetry is either gauged or broken by some non-perturbative phenomenon, respectively. We also

learn that the multi-boundary correlation functions are the apt observables that can distinguish

these effects.

5 Discussion

In this paper, we have presented the generalization of the ETH when there are additional global

symmetries, and discussed two possible version of the ansatz: one that manifestly preserves the

symmetry microscopically, and another that only preserves it for simple operators, but allows ex-

ponentially small violations of charge conservation. We then discussed a manifestation of these two

scenarios for CFTs with a holographic dual in terms of Euclidean wormholes. Assuming that Eu-

clidean wormhole computations done with the low-energy gravitational theory accurately captures

moments of certain pseudo-random signals of quantum chaos in the dual CFT, we have shown that

global symmetries cannot exist in quantum gravity (at least for quantum gravity in Anti-de Sitter

space).

There are two possible outcomes for the fate of a global symmetry present in the low energy

effective theory: it can be explicitly broken by non-perturbative effects, and we can give a lower
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bound on the scale of such a breaking from the gravitational action of the wormhole, namely

e−`AdS/GN [25]. This is compatible with previous findings (see for example [44]). Alternatively, it

can be gauged in which case the Euclidean wormhole computation vanishes and the symmetry is

exact in the microscopic CFT description. In such a case, we cannot bound the magnitude of the

gauge coupling.

It is interesting to observe that the absence of global symmetries in quantum gravity is tightly

connected to the fact that low-energy observers can accurately resolve charges, in contrast with

energy levels which are exponentially dense. Appearance of approximate global symmetries itself is

not a new phenomenon in quantum theories. It is well known that both both baryon number and

lepton number are approximately conserved at low energies but these global symmetries are broken

at higher energies and only the difference of baryon and lepton numbers (B-L) is a preserved

symmetry. In fact, in a quantum theory beyond standard model of particle physics, B-L itself

might be broken. Our work provides a holographic signature of whether such global symmetries

are preserved or broken.

We conclude with some open questions. The existence of Euclidean wormholes prevents the

factorization of products of CFTs on disconnected manifolds, which is inconsistent with any micro-

scopic CFT computation. While this can sometimes originate from taking ensemble averages over

microscopic theories, one would also like to understand the role of wormholes in definite unitary

CFTs, and how factorization is restored. There is evidence that factorization can be restored by

considering certain UV ingredients like branes, which account for “non-diagonal” elements of the

quasi-random variables [45–47]. One may wonder if UV ingredients could resolve the wormhole con-

tribution (3.3) and the associated tension with global symmetries in quantum gravity. The point

we are making here is that in the presence of an exact global symmetry, all moments of charged

one-point functions must vanish, which is not what we observe for the variance. This is irrespective

of how factorization is restored.

Another avenue to consider is to understand the interplay between our results concerning energy

eigenstates and typical states obtained from Haar averaging in the microcanonical window [26]. It

is worth pointing out that the charge violating version of ETH is very similar to formulas one would

obtain when Haar-averaging over an ensemble of states that contain several different charge sectors.

It would thus naturally arise in such a context.

In this paper, we came across various type of correlation functions on wormhole background.

One such correlation function is 〈φ(x)†W (x, y)φ(y)〉, with x and y arbitrary bulk points. On a

Euclidean wormhole, this correlation function need not vanish for points on different time slices,

and in particular we can take the operators all the way to the boundary. One may now ask what

this correlation function computes, and pushing on our intuition, this must be some variance. But

the variance of what? The problem is that there is no one-sided correlation function with a single

operator insertion, even connected to a Wilson line. This is because the Wilson line has nowhere

to go. This should connect to discussions for the TFD state, where it is known that this Wilson

line is a complicated CFT operator [48, 49]. Perhaps thinking about eternal traversable wormholes

would help, since in Euclidean signature they look like Euclidean wormholes. We hope to return to

this question in the future.

Taking a step back, we are proposing that a CFT framework that can encode all observables the

low energy gravitational theory has access to, is a theory of OPE coefficients treated statistically.

Gravitational computations give us access to (arbitrary) moments of the statistical distribution of

microscopic data.8 In this work, we have shown that this line of thought leads to a novel argument

against global symmetries in theories of quantum gravity. It would be very interesting to connect

8 An interesting challenge for this program is that the gravitational theory has access to data coming from putting

CFTs on arbitrary manifolds, which in d > 2 does not manifestly connect to the local data of the CFT (see [50]).
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our reasoning to the standard arguments against global symmetries coming from black hole physics.

We hope to return to these questions in the future.
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A Comparing ETH ansatze

In this appendix we compare the physical predictions of the two ETH ansatze discussed in the main

paper. For this purpose we look at the two point function, 〈Ei, Qi|O†qOq|Ei, Qi〉. In the main text,

we have discussed how this two point function is related to the subleading component, g, of the

ETH ansatz (4). Here we demonstrate the same for the function g̃ and the second ETH ansatz, (8).

To do so, we insert a resolution of the identity

〈Ei, Qi|O†qOq |Ei, Qi〉 (A.1)

=
∑
Ej ,Qj

〈Ei, Qi|O†q |Ej , Qj〉 〈Ej , Qj |Oq |Ei, Qi〉

=
∑
ω,δQ

e−S(Ei+
ω
2 ,Qi+

δQ
2 )

× |g̃a(Ei +
ω

2
, ω,Qi +

δQ

2
, δQ, q)|2|Rij |2 .

The random variables Rij will average out to unity upon taking the sum over j since they have

unit variance. Once again, we can replace the dense sum over Ej , Qj by an integral, namely∑
ω,δQ

→
∫
dω dδQ eS(Ei+ω,Qi+δQ), which gives

〈Ei, Qi|O†qOq |Ei, Qi〉 =∫
dω dδQ eS(Ei+ω,Qi+δQ)−S(Ei+

ω
2 ,Qi+

δQ
2 )

×|g̃a(Ei +
ω

2
, ω,Qi +

δQ

2
, δQ, q)|2 . (A.2)

All remaining functions are smooth and rapidly decaying functions of ω and δQ, so we can Taylor

expand them to obtain to leading order

〈Ei, Qi| O† qOq |Ei, Qi〉 (A.3)

≈
∫
dωdδQe

β
2 (ω−µδQ)|g̃a(Ei, ω,Qi, δQ, q)|2 ,

where we defined β ≡ ∂S
∂E and µ ≡ − 1

β
∂S
∂Q . It is important to note that the function g̃ is really a

rapidly decaying function of δQ−q, rather than just δQ. Physically, this means that the integral will

– 10 –



be sharply peaked at δQ = q, as one would expect. For this reason, we have kept the q dependence

explicit in the function g̃.

Similarly to the charge preserving ETH, the result (2.5) should be given by the microcanonical

average for the operator O†qOq if it is to satisfy ETH, which fixes the function g̃ and its relation to

the microcanonical expectation value of O†qOq. This also establishes a relation between the function

g that appears in equation (7) and the function g̃.
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