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Abstract

Fluctuation-dissipation relations (FDRs) and time-reversal symmetry (TRS),
two pillars of statistical mechanics, are both broken in generic driven-dissipative
systems. These systems rather lead to non-equilibrium steady states far
from thermal equilibrium. Driven-dissipative Ising-type models, however, are
widely believed to exhibit effective thermal critical behavior near their phase
transitions. Contrary to this picture, we show that both the FDR and TRS are
broken even macroscopically at, or near, criticality. This is shown by inspect-
ing different observables, both even and odd operators under time-reversal
transformation, that overlap with the order parameter. Remarkably, however,
a modified form of the FDR as well as TRS still holds, but with drastic con-
sequences for the correlation and response functions as well as the Onsager
reciprocity relations. Finally, we find that, at criticality, TRS remains broken
even in the weakly-dissipative limit.
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1 Introduction

Quantum systems in or near equilibrium define a paradigm of modern physics. The past
two decades, however, have witnessed a surge of interest in non-equilibrium systems thanks
to the advent of novel experimental techniques where quantum matter is observed far from
equilibrium. An immediate challenge is that general guiding principles of equilibrium sta-
tistical mechanics are not directly applicable in this new domain. One such general feature
is the principle of detailed balance in equilibrium [1]. Extensions of this principle to the
quantum domain have been studied extensively for both closed and open systems [2–5]. In
all such settings, detailed balance is directly tied to time-reversal symmetry (TRS) under
reversing the direction of time (in two-time correlators, e.g.). A second defining charac-
teristic of equilibrium systems is the fluctuation-dissipation relations (FDRs) relating the
dynamical response of the system to their inherent fluctuations. Importantly, these two
principles are not independent: a proper formulation of the TRS leads to the FDRs [6].

A generic non-equilibrium setting is defined by driven-dissipative systems characterized
by the competition of an external drive and dissipation due to coupling to the environ-
ment. This competition leads the system towards a non-equilibrium steady state far from
thermal equilibrium [7, 8]. Due to the non-equilibrium dissipative dynamics, both TRS
and FDR are generally broken in these steady states [9]; the guiding principles of equi-
librium physics are thus absent in their driven-dissipative counterparts. Nonetheless, it
has become increasingly clear that the critical properties of a large class of many-body
driven-dissipative systems (yet not all [10–14]) are described by an effective equilibrium
behavior near their respective phase transitions [15–27]. This is particularly the case for
Ising-like phase transitions where the order parameter takes a relatively simple form and
the dynamics is rather constrained. Thermal critical behavior is even observed in the
driven-dissipative Dicke phase transition [28].

In this work, we consider driven-dissipative Ising-type models, but, contrary to what
is generally believed, we show that both FDR and TRS are broken even macroscopi-
cally at or near criticality. This is shown by inspecting different observables that overlap
with the order parameter and crucially encompass both even and odd operators under
time-reversal transformation. We show that these observables satisfy emergent FDR-like
relations but with effective temperatures that are opposite in sign; we dub such relations
FDR*. Moreover, while TRS is broken macroscopically, we show that a modified form
of the time-reversal symmetry of two-time correlators, dubbed TRS*, emerges at or near
criticality where correlation and response functions exhibit definite, but possibly opposite,
parities under time-reversal transformation. This is in sharp contrast with equilibrium
where correlation and response functions exhibit the same parity.

We showcase our results in the context of two relatively simple models, enabling exact
analytical and numerical calculations. The main model considered here is an infinite-range
driven-dissipative Ising model, a descendant of the paradigmatic open Dicke model [29,30].
We also consider a short-range quadratic model of driven-dissipative bosons with the Ising
symmetry. These models provide an ideal testbed for the general questions about the fate
of the FDR and TRS in driven-dissipative systems, the role of the time-reversal symmetry
(breaking), and the emergence of modified fluctuation-dissipation relations.
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We begin by summarizing our main results in Section 2. Building on the techniques
developed in a recent work [31], we set up a non-equilibrium field theory and calculate
the exact correlation and response functions in Section 3. In Section 4, we determine the
effective temperatures and provide evidence for the modified FDR* and TRS* via exact
analytics and numerics. We further show that, even in the limit of vanishing dissipation,
the TRS breaking or restoring depends on a certain order of limits. In Section 5, we present
an effective field theory from which we prove the FDR* and TRS* and furthermore derive
the modified Onsager reciprocity relations. Finally, in Section 6, we make the case for the
broader application of our conclusions in the setting of a short-range driven-dissipative
model of coupled bosons.

2 Main Results

Characteristic information about a given system and a set of observables Ôi can be ob-
tained from the two-point functions

COiOj (t) = 〈{Ôi(t), Ôj}〉, χOiOj (t) = −iΘ(t)〈[Ôi(t), Ôj ]〉, (1)

which define the correlation function and the causal response function, respectively; the
former captures fluctuations (e.g., at equal times), while the latter describes the response
of the system to a perturbation at an earlier time. Fluctuation-dissipation theorem, a
pillar of statistical mechanics, relates these two at equilibrium. For our purposes, we write
the fluctuation-dissipation relation (FDR) as [32]

FDR : χOiOj (t) =
1

2T
Θ(t)∂tCOiOj , (2)

valid for classical systems as well as quantum systems at finite temperature and at long
times [32]. Furthermore, if the system satisfies microreversiblity, or (quantum) detailed
balance, two-time correlators exhibit a time-reversal symmetry [3, 4]. Assuming that the
operator Ôi has a definite parity εi under time-reversal (in the absence of magnetic fields),
the correlation and response functions then satisfy [33]

COiOj (t) = εiεjCOjOi(t) , (3a)

χOiOj (t) = εiεjχOjOi(t) . (3b)

In this work, we shall refer to such relations as TRS of two-time correlators, or just TRS.
Notice that these set of equations are also consistent with the FDR in Eq. (2). The above
equations form the origin of the Onsager reciprocity relations [34].

FDR and TRS are both broken in driven-dissipative systems as they give rise to a
non-equilibrium steady states at long times. Extensive effort has gone into identifying the
steady states of many-body driven-dissipative systems as well as their phase transitions.
A large body of work, however, has shown that a variety of driven-dissipative many-
body systems exhibit critical behavior that is effectively equilibrium [15–28]. Specifically,
an effective temperature Teff emerges that governs the critical properties (e.g., critical
exponents) near their phase transitions at long times/wavelengths. An effective TRS may
be then expected to emerge as well given that TRS and FDR are intimately tied [6].

In this work, we consider driven-dissipative systems whose Hamiltonian—in the rotat-
ing frame—is itself time-reversal symmetric: T̂ ĤT̂−1 = Ĥ with T̂ the antiunitary operator
associated with the time-reversal transformation; here, T̂ = K is simply complex conjuga-
tion. Dissipative coupling to the environment, however, explicitly breaks TRS and exposes
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the non-equilibrium nature of the system. Additionally, we assume that the full dynamics
under the Liouvillian L comes with an Ising Z2 symmetry that defines the order parame-
ter at the phase transition. Non-equilibrium systems with the Z2 symmetry are generally
expected to fall under the familiar Ising universality class at their phase transitions. In
fact, it is known that the Ising universality class is robust against non-equilibrium pertur-
bations [35]. In harmony with this picture, previous work on driven-dissipative Ising-type
systems has reported an emergent FDR governing the order-parameter dynamics for some
Teff [17, 20,28,36–38].

Notwithstanding the evidence for emergent equilibrium, here we report that FDR
and TRS are both macroscopically broken in driven-dissipative Ising-type systems. This
becomes manifest by considering other observables that overlap with the order parameter,
i.e., observables that share the same Z2 symmetry. In the Ising model, for example, beside
Ŝx typically signifying the order parameter, we will also consider Ŝy (with the transverse
field along the z direction). This expanded set of observables exhibit critical scaling, but
they do not obey an effective FDR. Interestingly, however, we show that a modified form
of the FDR emerges as

FDR* : χOiO∗j
(t) ' 1

2Teff
Θ(t)∂tCOiOj , (4)

up to noncritical corrections; we dub this modified relation FDR*. Here, we have assumed
that the Ôi’s are Hermitian operators1, and defined Ô∗j = T̂ Ôj T̂

−1 (recall that T̂ = K). In

the example of the Ising model, Ŝ∗x = Ŝx while Ŝ∗y = −Ŝy. The FDR* is radically different
from its equilibrium counterpart, and has important consequences. To see this, let us again
assume that the operator Ôi has a definite parity εi under time-reversal transformation.
In this case, the FDR can be written as

χOiOj (t) '
εj

2Teff
Θ(t)∂tCOiOj . (5)

This means that an emergent FDR is satisfied with χOiOj = (1/2Tij)∂tCOiOj but with
different temperatures for different observables, Tij = εjTeff , same in magnitude but pos-
sibly with opposite signs depending on the observables. For example, if Ô1 is even under
time-reversal (ε1 = 1) and Ô2 is odd (ε2 = −1), we find T11 = −T12 = T21 = −T22 = Teff .

We further show that an unusual form of TRS holds at or near criticality:

COiOj (t) ' COjOi(t), (6a)

χOiOj (t) ' εiεjχOjOi(t). (6b)

In parallel with FDR*, the above relations will be referred to as TRS*. Notice that the
above equations are consistent with the FDR* in Eq. (5). Interestingly, the correlation
and response functions transform differently under time-reversal transformation, in sharp
contrast with equilibrium; cf. Eq. (3). While violating TRS, these functions still have a
definite parity under time-reversal transformation. Moreover, combining Eqs. (5) and (6),
we further show that the Onsager reciprocity relation finds a modified form with the
opposite parity. This is surprising in light of the broken TRS, but is a direct consequence
of the emergent TRS*.

We derive these results via a simple field-theoretical analysis that identifies a slow
mode in the vicinity of the phase transition. We show that the FDR* and TRS* are a
consequence of the non-Hermitian form of the dynamics generator, due to the TRS of the
Hamiltonian, T̂ ĤT̂−1 = Ĥ, combined with the Ising Z2 symmetry of the Liouvillian L.

1Unlike the standard FDR, the FDR* is sensitive to the operators being Hermitian or not; see Sec-
tion 6.2.
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3 Driven-Dissipative Ising Model

Here, we briefly introduce the infinite-ranged driven-dissipative Ising model with sponta-
neous emission (DDIM) [31]. The DDIM describes a system of N driven, fully-connected
2-level atoms under a transverse field, and subject to individual atomic spontaneous emis-
sion. In the rotating frame of the drive, the Hamiltonian is given by

Ĥ = − J
N
Ŝ2
x + ∆Ŝz , (7)

with J an effective Ising coupling and ∆ the transverse field. For clarity, we use the total
spin operators Ŝα =

∑
i σ̂

α
i , with σ̂α the usual Pauli matrices. The Markovian dynamics

of the system is given by the quantum master equation [39]

dρ̂

dt
= L[ρ̂] = −i[Ĥ, ρ̂] + Γ

∑
i

σ̂−i ρ̂σ̂
+
i −

1

2
{σ̂+

i σ̂
−
i , ρ̂} . (8)

Here, ρ̂ is the reduced density matrix of the system and the (curly) brackets represents the
(anti)commutator. The first term on the RHS generates the usual quantum coherent dy-
namics, while the remaining terms describe the spontaneous emission of individual atoms
at a rate Γ. While there is no time dependence in the rotating frame, detailed balance
is directly broken, and the model is indeed non-equilibrium [40]. Equation (8) exhibits a
Z2 symmetry (σ̂x,yi → −σ̂x,yi ), which is spontaneously broken in the phase transition from

the normal phase (〈Ŝx,y〉 = 0) to the ordered phase (〈Ŝx,y〉 6= 0). Due to the collective
interaction, the DDIM phase diagram is exactly obtained via mean field theory in the
thermodynamic limit. However, it is also a physically relevant model, realized experimen-
tally either in the large-detuning limit of the celebrated open Dicke model [31, 41–46], or
directly through trapped-ions [47]. At the same time, this model allows for exact analyti-
cal and numerical calculations, and provides an ideal testbed for our conclusions. We will
also consider a short-range model in Section 6 where we arrive at the same conclusions.

In the models considered in this paper, the operator T̂ = K is simply complex conju-
gation. The Hamiltonian in Eq. (7) is time-reversal symmetric because it is real. Time-
reversal transformation (i.e., acting with the anti-unitary operator T̂ together with sending
t→ −t) leaves the von Neumann equation ∂tρ̂ = −i[Ĥ, ρ̂] invariant. In the ground state,
this symmetry enforces 〈Ŝy〉 = 0 as T̂ ŜyT̂

−1 = −Ŝy; this is true even in the ordered
phase where 〈Ŝy〉 = 0 while 〈Ŝx〉 6= 0 [38]. Furthermore, correlators such as 〈{Ŝx, Ŝy}〉
that are odd under time-reversal must be zero. More generally, these symmetry consid-
erations can be extended to thermal states under unitary dynamics as they satisfy the
KMS condition and exhibit an equilibrium symmetry that involves time-reversal [48, 49].
Two time-correlators then satisfy the symmetry relations in Eq. (6). However, the driven-
dissipative model in Eq. (8) breaks such symmetries. This is because Eq. (8) is derived
in the rotating frame of the drive, hence breaking detailed balance. The resulting steady
state is then not a thermal state, and TRS of two-time correlators no longer holds [50].
Specifically, this allows for nonzero expectation values of odd observables such as 〈Ŝy〉 (in
the ordered phase) and correlators such as 〈{Ŝx, Ŝy}〉.

Despite the infinite-range nature of the model, individual atomic dissipation makes the
problem nontrivial since the total spin is no longer conserved. To make analytical progress,
we adopt the approach that we have developed in Ref. [31]. We provide the technical steps
in the following subsections; a non-technical reader may wish to skip ahead to Section 4
for the relevant results.
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3.1 Non-equilibrium field theory

Using a non-equilibrium quantum-to-classical mapping introduced in Ref. [31,38], we can
map exactly the non-equilibrium partition function (normalized to unity)

Z = Tr (ρ̂ss) = lim
t→∞

Tr
(
etLρ̂(0)

)
= 1, (9)

to a Keldysh path-integral over a pair of real scalar fields, representing the order parameter
of the phase transition. We have introduced the steady state density matrix ρss, defined
as the long-time limit of the Liouvillian dynamics governed by Eq. (8). The process is
done by vectorizing the density matrix, such that the non-equilibrium partition function
takes the form

Z = 〈〈I| etL |ρss〉〉 , (10)

where we have performed the transformation |i〉〈j| → |i〉⊗ |j〉 on the basis elements of the
density matrix. The matrix L is given by

L = −i
(
Ĥ ⊗ Î − Î ⊗ Ĥ

)
+ Γ

∑
i

[
σ̂−i ⊗ σ̂

−
i −

1

2

(
σ̂+
i σ̂
−
i ⊗ Î + Î ⊗ σ̂+

i σ̂
−
i

)]
. (11)

Following the vectorization procedure, we perform a quantum-to-classical mapping via
a Suzuki-Trotter decomposition in the basis that diagonlizes the Ising interaction, and
then utilize the Hubbard-Stratonovich transformation on the (now classical) collective
Ising term [31, 38]. Tracing out the leftover spin degrees of freedom leaves us with a
path-integral representation of the partition function:

Z =

∫
D[mc(t),mq(t)]e

iS[mc/q(t)] , (12)

with the Keldysh action

S = −2JN

∫
t
mc(t)mq(t)− iN ln Tr

[
T e

∫
t T(mc/q(t))

]
, (13)

where T is the time-ordering operator. For convenience, we have introduced the classical
and quantum Hubbard-Stratonovich fields mc/q in the usual Keldysh basis [19, 51]. The

order parameter 〈Ŝx〉 is given by the average of mc which takes a non-zero expectation
value in the ordered phase; correlators involving the operator Ŝx too can be directly written
in terms of the fields mc/q [31]. The matrix T in Eq. (13) in the basis defined by σ̂x ⊗ Î
and Î ⊗ σ̂x, where

σ̂x =

(
1 0
0 −1

)
, σ̂y =

(
0 i
−i 0

)
, σ̂z =

(
0 1
1 0

)
, (14)

is given by

T =


−Γ

4 + i2
√

2Jmq i∆ −i∆ Γ
4

i∆− Γ
2 −3Γ

4 + i2
√

2Jmc −Γ
4 −i∆− Γ

2

−i∆− Γ
2 −Γ

4 −3Γ
4 − i2

√
2Jmc i∆− Γ

2

Γ
4 −i∆ i∆ −Γ

4 − i2
√

2Jmq

 . (15)

Note the overall factor of N in Eq. (13) due to the collective nature of the Ising interaction,
meaning that the saddle-point approximation is exact in the limit that N → ∞. We
mention here that Eq. (13) indeed describes the steady state of the quantum master
equation in Eq. (8), arising due to the competition between drive and dissipation.
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3.2 Correlation and response functions

This action is only in terms of the scalar fields mc/q, which are related to the observable

Ŝx [31]. To obtain the correlation and response functions for Ŝy and the cross-correlations
with Ŝx, we introduce source fields α(u/l) and β(u/l) to Eq. (11) which couple to Ŝx and
Ŝy respectively:

L′(t) = L+ iα(u)(t)
Ŝx√
N
⊗ Î − iα(l)(t)Î ⊗ Ŝx√

N
+ iβ(u)(t)

Ŝy√
N
⊗ Î + iβ(l)(t)Î ⊗ Ŝy√

N
, (16)

and perform the non-equilibrium quantum-to-classical mapping as usual. The absence of
a minus sign on the last term stems from the vectorization transformation in the mapping.
Introducing the sources does not affect the quadratic term in m in Eq. (13), but changes
the T matrix to the new matrix T′ = T + Tα + Tβ where

Tα = i

√
2

N


αq 0 0 0
0 αc 0 0
0 0 −αc 0
0 0 0 −αq

 , (17)

and

Tβ =
1√
2N


0 −βc + βq −βc − βq 0

βc − βq 0 0 −βc − βq
−βc − βq 0 0 −βc + βq

0 −βc − βq βc − βq 0

 . (18)

We have performed the Keldysh rotation αc/q = (α(u) ± α(l))/
√

2, βc/q = (β(u) ± β(l))/
√

2
for convenience. Next, we expand the action to quadratic order in both xc/q and the source
fields around mc/q = αc/q = βc/q = 0,

S =
1

2

∫
t,t′



mc

mq

αc
αq
βc
βq



T

t


P 0 0

4JPαα Pαα 0

4JPβα 2Pβα Pββ


t−t′



mc

mq

αc
αq
βc
βq


t′

, (19)

where the kernel becomes a lower triangular block matrix. The block matrices take the
usual Keldysh structure

P =

(
0 PA

PR PK

)
, Pαα =

1

4J2

[
P +

(
0 2Jδ(t)

2Jδ(t) 0

)]
,

Pβα =

(
0 PAβα
PRβα PKβα

)
, Pββ = Pαα,

and the matrix elements for each block matrix are

PR(t) = PA(−t) = −2Jδ(t) + Θ(t)8J2e−
Γ
2
t sin (2∆t) , (20a)

PK(t) = i8J2e−
Γ
2
|t| cos (2∆t) , (20b)

PRβα(t) = −PAβα(−t) = −Θ(t)2e−
Γ
2
|t| cos(2∆t) , (20c)
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PKβα(t) = −i2e−
Γ
2
|t| sin(2∆t) , (20d)

Equation (19) is exact in the thermodynamic limit, as higher-order terms in the expansion
are at least of the order O(1/N).

After Fourier transformation, defined as m(t) =
∫
ω e
−iωtm(ω) with the integration

measure
∫
ω =

∫∞
−∞ dω/2π, we integrate out the mc/q fields to obtain the generating func-

tional W [αc/q, βc/q] = −i lnZ as

W = −1

2

∫
ω


αq
βq
αc
βc


†

ω

GK GR

GA 0


ω


αq
βq
αc
βc


ω

. (21)

The Green’s function block matrices are given by

GK =

(
GKxx GKxy
GKyx GKyy

)
, GR =

(
GRxx GRxy
GRyx GRyy

)
, (22)

and satisfy GK(ω) = −[GK ]†(ω) and GR(ω) = [GA]†(ω). In terms of the original ob-
servables Ŝx, Ŝy, the Green’s functions become GKjj′(ω) = −iFω〈{Ŝj(t), Ŝj′(0)}〉/N and

GRjj′(ω) = −iFωΘ(t)〈[Ŝj(t), Ŝj′(0)]〉/N . The elements of Eq. (22) are given by

GKxx(ω) =
−iΓ[Γ2 + 4(4∆2 + ω2)]

2(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
, (23a)

GKxy(ω) =
4Γ(iJΓ + 2Jω − 2∆ω)

(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
, (23b)

GKyy(ω) =
−iΓ[Γ2 + 16(2J −∆)2 + 4ω2]

2(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
, (23c)

GRxx(ω) =
4∆

(ω − ω1)(ω − ω2)
, (23d)

GRxy(ω) =
Γ− 2iω

(ω − ω1)(ω − ω2)
, (23e)

GRyx(ω) =
−Γ + 2iω

(ω − ω1)(ω − ω2)
, (23f)

GRyy(ω) =
−4(2J −∆)

(ω − ω1)(ω − ω2)
, (23g)

where ω1/2 = − i
2(Γ∓ Γc), Γc = 4

√
∆(2J −∆).

4 Non-Equilibrium Signatures

In this section, we discuss the macroscopic, critical behavior of the driven-dissipative
Ising model introduced in Eq. (8). It is generally believed that such Ising models find
an emergent equilibrium behavior near their phase transition. This is often argued by
considering a single observable such as the order parameter and showing that it satisfies an
effective FDR [17,20,36–38]. In contrast, we consider different observables and show that

8
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the associated FDR and TRS are both violated even macroscopically. However, we show
that a modified form of these relations emerge, dubbed as the FDR* and TRS*, which
govern the critical behavior of this system. In the following subsections, we derive the
effective temperatures for different set of observables, discuss the breaking and emergence
of (modified) TRS, and finally discuss our results in the limit of vanishing dissipation.

4.1 Effective temperature

At thermal equilibrium and at low frequencies, the FDR in frequency space can be written
as

GRij(ω)−GAij(ω) =
ω

2T
GKij (ω) . (24)

To compare against the FDR in the time domain, we identify COiOj (t) ≡ iGKij (t) and
χOiOj (t) ≡ GRij(t).

2 The above equation follows from another version of the FDR given
by [32]

−iχ′′OiOj
(t) =

1

4T
∂tCOiOj (t) , (25)

where χ′′OiOj
(t) ≡ 1

2〈[Ôi(t), Ôj ]〉 = 1
2i

(
GRij(t) − GAij(t)

)
; the retarded and advanced Green

functions are defined directly from the operators as G
R/A
ij (t) ≡ ∓iΘ(±t)〈[Ôi(t), Ôj ]〉.

While Eq. (2) is restricted to t > 0, the above equation is valid at all t, making it more
suitable for the transition to Fourier space, i.e., Eq. (24). Of course, the two (causal and
non-causal) versions of the FDR are equivalent in equilibrium.

Equation (24) has been extensively used to identify an effective temperature even for
non-equilibrium systems [31,36,37]. In the non-equilibrium setting of our model, however,
we would immediately run into a problem for i 6= j when the corresponding operators have
different parities under time-reversal transformation (e.g., Teff becomes infinite or complex
valued). To see why, let us anticipate that the TRS* relations reported in Eq. (5) indeed
hold, a fact that we will later justify near criticality and at long times. It is then easy to see
that COiOj (t) = COjOi(−t) ' COiOj (−t) while χ′′OiOj

(t) = −χ′′OjOi
(−t) ' −εiεjχOiOj (−t).

Now for two distinct operators Ôi and Ôj where εi = −εj , we find that both COiOj (t) and
χOiOj (t) are even in time (for a fixed set of operators). However, this is not compatible
with Eq. (25) as it requires COiOj (t) and χOiOj (t) to have opposite parities. Postulating
an effective FDR in this case, valid for all t, forces us to include a sign function, sgn(t),
that is, we should substitute χ′′OiOj

(t) =
(
GRij(t)−GAij(t)

)
/2i→ sgn(t)χ′′OiOj

(t) =
(
GRij(t)+

GAij(t)
)
/2i on the left hand side of Eq. (25) when εi = −εj . Notice that the extended FDR

is consistent with the causal FDR in Eq. (2) when t > 0, but is now conveniently valid at
all times. This extension is informed by the anticipated form of the TRS* which we will
justify later. The fluctuation-dissipation relation is now conveniently cast in frequency
space: for arbitrary operators Ôi and Ôj (with i and j being the same or distinct), the
updated FDR takes the form

GRij(ω)− εiεjGAij(ω) =
ω

2Tij(ω)
GKij (ω) , (26)

where we have now allowed for a frequency- and operator-dependent effective temperature
Tij(ω). It is now clear that, while for εi = εj the above equation recovers the structure
of the FDR (cf. Eq. (24)), a different combination, GRij(ω) + GAij(ω), appears on the left
hand side when εi = −εj . The above equation can be brought into a more compact version
again by anticipating the TRS* in Eq. (6b) to write εiεjG

A
ij(ω) ' GAji(ω). Utilizing the

2We are including a normalization factor 1/N in the definition of correlation and response functions for
convenience.
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relation GAji(ω) = GRij(ω)
∗
, we are finally in a position to write an equation for the effective

temperature in the low-frequency limit:

Tij = lim
ω→0

ω

2

GKij

GRij(ω)−GAji(ω)
= lim

ω→0

ω

4

−iGKij
ImGRij(ω)

. (27)

We have taken the low-frequency limit appropriate near criticality. Again we stress that
the above equation is consistent with the standard form of the effective FDR for i = j,
and it correctly incorporates the TRS* for i 6= j with opposite parities.

A shorter, but perhaps less physically motivated, route to the above equation is to
start directly from the causal form of the FDR in Eq. (2). The Fourier transform of this
equation is given by [33]

χOiOj (ω) =
1

2T

[
P

∫
dω′

2π

ω′

ω − ω′
COiOj (ω

′)− iω

2
COiOj (ω)

]
, (28)

where P stands for the principal part. Here too, we shall assume the TRS* in Eq. (6a):
with COiOj (t) ' COjOi(t) = COiOj (−t) regardless of the operators’ parities, the correlation
function Cij(t) is even in time, hence its Fourier transform, COiOj (ω), is purely real. Taking
the imaginary part of the above equation then yields ImχOiOj (ω) = −(ω/4T )COiOj (ω)
where T has to be identified with the effective temperature Tij(ω). Therefore, we arrive
at the same definition of the effective temperature in Eq. (27).

Using Eq. (27), we can now identify the effective temperature in the driven-dissipative
Ising model (defining i, j ∈ {x, y})

Txx =
Γ2 + 16∆2

32∆
, (29a)

Tyy =
Γ2 + 16(∆− 2J)2

32(∆− 2J)
, (29b)

Txy = −Tyx =
−2JΓ2

Γ2 + 16∆(2J −∆)
. (29c)

These expressions are calculated everywhere in the normal phase and generally take dif-
ferent values (see also [37]), underscoring the non-equilibrium nature of the model at the
microscopic level. Equations (29a) and (29b) display non-analytic behaviour, though in
different regions of the phase diagram. Txx diverges when ∆ → 0, in agreement with
Ref. [52] that reports an infinite temperature in the σ̂x basis. In contrast, Tyy diverges
when ∆ = 2J for any finite value of Γ. This divergence coincides with the change in the
dynamical behaviour from overdamped to underdamped dynamics as pointed out in [31].
Finally, Txy = −Tyx are everywhere finite but opposite for the opposite order of the
observables; this is tied to the TRS* as we will discuss later.

The definition of the low-frequency effective temperature is particularly motivated near
the phase boundary where there exists a soft mode [31]. Interestingly, at (or near) the
phase transition, we find

Txx = −Txy = Tyx = −Tyy = J. (30)

Remarkably, these effective temperatures find the same magnitude, but possibly with
different signs. While focusing on a single observable (say Ŝx) and its dynamics, one
might be led to conclude that the system is in effective equilibrium. However, a different
observable (say Ŝy) exhibits the opposite effective temperature. Notice that all correlation
functions (involving Ŝx and/or Ŝy) are divergent at the phase transition, i.e., they are all

10
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Figure 1: (a) Effective temperatures Txx, Txy, Tyx and Tyy as a function of ∆ at or away
from the phase boundary; we choose the parameters J = 1,Γ = 4 with the point ∆ = 1
representing the critical point at the tip of the phase boundary (see the red dot in panel
(b)). The effective temperatures become equal up to a sign at the critical point. The same
pattern emerges on any point along the phase boundary and away from Γ = 0. (b) The
phase diagram of the DDIM. The shaded region is the ordered phase where 〈Ŝx,y〉 6= 0.

sensitive to the soft mode; we will make this more precise in Section 5 where we develop
an effective field theory. This suggests that although the critical behavior is governed
by a single (soft) mode at the transition, the system is genuinely non-equilibrium even
macroscopically.

To support these analytical results, we have numerically simulated [38] the FDR in the
time domain (cf. Eq. (2)) and at a representative critical point on the phase boundary
for a finite, yet large, system with N = 100 spins. Correlation and response functions at
criticality and at a finite system size require an analysis beyond the quadratic treatment
presented here and thus serves as a nontrivial check of our results. Also, working in the
time domain and restricting to t > 0, we circumvent the issues that arise in the frequency
domain; see the discussion in the beginning of this subsection. Indeed, we find an excellent
agreement in Fig. 2 between the analytical results (in frequency space) and the numerical
results (in the time domain) with the exception of short time differences; the contrast at
short times is a consequence of the fact that the (observable-dependent) effective temper-
ature is defined in the zero-frequency limit relevant to the long-time dynamics.

4.2 TRS breaking

As discussed in Section 3, broken TRS allows for nonzero correlators such as 〈{Ŝx, Ŝy}〉
that are otherwise odd under the time-reversal transformation. Indeed, we find that this
correlator is nonzero and is even critical. More precisely, we find from Eq. (23b) that

Cxy(t) ≡ iGKxy(t) =
4

Γc

[
−JΓ + sgn(t)(J −∆)(Γ− Γc)

Γ− Γc
e−

Γ−Γc
2
|t|

− −JΓ + sgn(t)(J −∆)(Γ + Γc)

Γ + Γc
e−

Γ+Γc
2
|t|
]
.

(31)

(For ease of notation, we have replaced CSiSj by Cij ; similarly for χij .) Specifically,
at equal times, we have Cxy(t = 0) = −8JΓ/(Γ2 − Γ2

c) . Indeed, the equal-time cross
correlation diverges as ∼ 1/(Γ − Γc) upon approaching the critical point Γ → Γc. This
is a stark manifestation of broken TRS at a macroscopic level. We also note that both
Cxx, Cyy ∼ 1/(Γ−Γc) diverge in a similar fashion. Again, this is because Ŝx and Ŝy share
the same soft mode, as will be shown in Section 5.

11
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Figure 2: Numerical plots of correlation and response functions at a representative critical
point with J = 1,∆ = 1,Γ = 4 and the system size N = 100. A modified fluctuation-
dissipation relation, χOiOj (t) = Θ(t)COiOj (t)/2Tij , emerges at long times. The effective
temperatures take the same value up to a sign: Txx = −Txy = Tyx = −Tyy = J .

The macroscopic breaking of TRS alters the Onsager symmetry relations in an exotic
fashion that is distinct for the correlation and response functions. Indeed, the analytical
expression in Eq. (31) shows that, near criticality and at sufficiently long times,

Cxy(t) ' −
4JΓ

Γc(Γ− Γc)
e−

Γ−Γc
2
|t|, (32)

hence, Cxy(t) ' Cxy(−t), or equivalently, Cxy(t) ' Cyx(t) up to noncritical corrections; far
from criticality, the correlation functions do not generally satisfy this symmetry relation.
Furthermore, the analytical expressions for the response functions in Eqs. (23e) and (23f)
show that χxy(t) = −χyx(t). Interestingly, the cross-correlation and -response functions
exhibit opposite parities. These analytical considerations are further supported by the
numerical simulation shown in Fig. 3 at criticality confirming

Cxy(t) ' Cyx(t) , (33a)

χxy(t) ' −χyx(t) , (33b)

consistent with the TRS* in Eq. (6). Despite the broken TRS, the correlation and response
functions retain definite, though distinct, parities under time-reversal.

4.3 Weakly-dissipative limit

In this section, we briefly consider a special limit of the driven-dissipative Ising model,
namely a weakly-dissipative critical point at at ∆ → 2J and Γ → 0; see Fig. 1(b). It
was shown in previous work that this limit leads to a different critical dynamics than a
generic critical point at finite Γ [31,38]. Here, we are interested in the TRS breaking and
its possible emergence in the limit of vanishing dissipation. Interestingly, we find that
the fate of the TRS depends on the way that this critical point is approached. We shall
consider two different scenarios below.
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Figure 3: Cross-correlation and -response functions at criticality (J = 1,∆ = 1,Γ =
4, N = 100). A modified form of TRS emerges at criticality where correlation (panel a) and
response (panel b) functions exhibit opposite parities under time-reversal transformation.

In the first scenario, let us set ∆ = 2J and take the limit Γ→ 0. Fourier transforming
Eq. (23c) to the time domain gives

Cyy(t) = lim
∆→2J

iGKyy(t) = 2e−
1
2

Γ|t| . (34)

We thus see that Ŝy correlator is finite at the weakly-dissipative critical point, indicating
that Ŝy has become “gapped”. This appears to suggest a return to the equilibrium scenario
where Ŝy plays no role in critical behaviour. However, the cross-correlation given by Eq.
(31) remains nonzero and even critical at the weakly-dissipative point: Cxy(t = 0) ∼ 1/Γ.
Therefore, even in the limit of vanishing dissipation, TRS is macroscopically broken.

In the second scenario, we consider ∆ > 2J and first take the limit Γ → 0. In this
case, we have Γc = i

√
∆(∆− 2J) ≡ iωc, which then leads to

lim
Γ→0

Cxy(t) =
−4(∆− J)

ωc
sin

ωct

2
. (35)

This expression goes to zero at t = 0 for any value of ∆ including the weakly dissipative
critical point as ∆→ 2J+, recovering the equilibrium result.

The different behavior in the two scenarios lies in the fact that the system has a finite
dissipative gap when we send Γ → 0 before sending ∆ → 2J but not vice versa. It has
been shown that the steady state of a system with a finite dissipative gap becomes purely
a function of the Hamiltonian in the limit of vanishing dissipation, i.e., ρ̂ss = f(Ĥ) [53];
see also [54]. In this case, the steady state for our model can be written as a function
of the Hamiltonian in Eq. (7), and thus respects TRS. This argument however fails in a
gapless system corresponding to the first scenario considered above. Indeed, we find that
in this case the TRS is macroscopically broken even in the limit of vanishing dissipation.

One can also determine the behavior of the effective temperature at the weakly-
dissipative critical point. However, since the operator Ŝy is gapped, the definition of
the low-frequency effective temperature doesn’t seem appropriate. In fact, one finds that
the effective temperatures involving this operator take different values (and even diverge)
depending on the order of limits. Therefore, we will not report the effective temperature
in this limit.

5 Effective Field Theory

In this section, we develop a simple, generic field-theory analysis that elucidates the origin
of the effective temperatures and their signs as well as FDR* and TRS*. We first need
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to construct an action that maps the spin operators Ŝx and Ŝy to the fields x(t) and y(t),
respectively. This is achieved by starting from the generating functional W in Eq. (21)
and constructing a quadratic action in terms of x and y fields that exactly reproduces
the correlations of the corresponding operators. This is simply done via a Hubbard-
Stratonovich transformation on exp(iW [αc/q, βc/q]) as

eiW =

∫
D[xc/q, yc/q]e

iSeff[xc/q ,yc/q ]+i
∫
ω j

T (−ω)v(ω) , (36)

where we have absorbed an unimportant normalization factor into the measure, and we
have defined the source and field vectors j = (αq, βq, αc, βc)

T and v = (xc, yc, xq, yq)
T . The

resulting action is given by

Seff =
1

2

∫
ω
v†(ω)

(
0 DA

DR DK

)
ω

v(ω) , (37)

where we have written the kernel in terms of 2× 2 block matrices:

DR(ω) = [DA]T (−ω) =

(
2J −∆ 1

4(Γ− 2iω)
1
4(−Γ + 2iω) −∆

)
, DK(ω) = i

Γ

2

(
1 0
0 1

)
. (38)

By inspecting the form of DR, we can identify the soft mode. At the critical point
(Γ→ Γc ≡ 4

√
∆(2J −∆)), this matrix takes the form

DR
cr(ω = 0) =

(
2J −∆

√
∆(2J −∆)

−
√

∆(2J −∆) −∆

)
. (39)

A convenient decomposition of DR
cr(ω = 0) is given by DR

cr(ω = 0) = UΛU where

U =
1√

2J∆

(
∆ −1

4Γc
1
4Γc ∆

)
, Λ =

(
0 0
0 −2J

)
, (40)

valid for 0 < ∆ < 2J ; the regime ∆ > 2J needs to be dealt with separately. The matrix
U is orthogonal, i.e., UUT = I. Notice that this decomposition can be viewed as an
SVD where DR

cr(ω = 0) = UΛVT , where V = UT with both U and V being orthogonal
matrices. In this sense, the left and right vectors are rotated with respect to the original
directions in opposite directions; see Fig. 4(a). As we shall see, this is the reason behind
the new FDR* and TRS*. This decomposition allows us to express both classical and
quantum components of φ, ζ in terms of x, y as(

φc
ζc

)
= U

(
xc
yc

)
=

1√
2J∆

(
∆xc − 1

4Γc yc
1
4Γc xc + ∆yc

)
, (41a)(

φq
ζq

)
= UT

(
xq
yq

)
=

1√
2J∆

(
∆xq + 1

4Γc yq
−1

4Γc xq + ∆yq

)
. (41b)

We note that the diagonal elements of Λ define the masses of the fields φ and ζ on the
phase boundary. Therefore, we can identify φ as the soft mode and ζ as the gapped field.
In addition, the Keldysh element of the kernel remains unchanged, UTDKU = DK .

5.1 FDR* and TRS*

The field-theory representation makes the origin of the results shown in Section 4 clear.
The effective temperatures corresponding to different set of operators can be expressed in
terms of φ and ζ. At the phase boundary, the effective temperature is captured purely by
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Figure 4: Schematic representation of the massless and massive fields φ and ζ in terms of
the x and y fields that represent Ŝx and Ŝy. (a) The gapped/gapless fields are shown at
a generic critical point. The classical and quantum fields are rotated with respect to the
x-y axes, but in opposite directions, a fact that leads to the opposite signs of the effective
temperatures. (b) At the weakly-dissipative critical point, ∆ = 2J , Γ → 0, the gapless
and gapped fields align with the x and y axes, respectively, similar to thermal equilibrium.

the soft mode φ. Therefore, in the low-frequency limit, the dominant contribution to the
effective temperature is dictated by the correlation and response functions of φ, while ζ
gives a noncritical correction. We have, up to noncritical corrections,

Txx ' Tφ, (42a)

Txy '
U12

U21
Tφ = −Tφ, (42b)

Tyx ' Tφ, (42c)

Tyy '
U12

U21
Tφ = −Tφ, (42d)

where

Tφ ≡ lim
ω→0

ω

2

〈φc(ω)φc(−ω)〉
〈φc(ω)φq(−ω)〉 − 〈φq(ω)φc(−ω)〉

, (42e)

can be viewed as the effective temperature of the soft mode. This interesting result is
purely a consequence of the non-Hermitian structure of Eq. (39). Technically, one can
see that the same pattern of effective temperatures emerges whenever the inverse retarded
Green’s function D0 ≡ DR

cr(ω = 0) obeys the relation

τ zD0 τ
z = DT

0 , with τ z =

(
1 0
0 −1

)
, (43)

which simply states that the off-diagonal part of the matrix D0 is antisymmetric. Note
that D0 is real, but non-Hermitian. The fact that the kernel D0 satisfies the above
property can be argued solely on the grounds that the Hamiltonian itself is time-reversal
symmetric. To show this, let us assume the contrary, namely that the off-diagonal part of
the matrix D0 has a symmetric component. This would give rise to a coupling∼ xcyq+xqyc
where the fields’ time dependence is implicit. Breaking the classical and quantum fields
in terms of the fields on the forward and backward branches of the Keldysh contour [51],
such coupling becomes ∼ x+y+ − x−y−. This term takes the structure of a Hamiltonian
contribution to the action (S+ − S−); however, the Hamiltonian does not couple x and y
since it is time-reversal invariant. We should then conclude that the off-diagonal part of
D0 is antisymmetric. In equilibrium, the off-diagonal terms are simply zero (at ω = 0);
however, in a driven-dissipative system, dissipation naturally gives rise to nonzero (though
antisymmetric) off-diagonal matrix elements.
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We remark that a generalized version of the FDR,

GK(ω) = GR(ω)F(ω)− F(ω)GA(ω) ,

is also utilized in the literature [17,19] to determine the distribution function matrix F(ω).
While in thermal equilibrium F(ω) = coth(ω/2T )I is proportional to the identity, the
distribution function is allowed to become a nontrivial matrix in driven-dissipative systems,
specifically in the context of the open Dicke model (possessing the same symmetries as
those considered here). For the the cavity mode, it was shown that this matrix finds
two eigenvalues, ±λ(ω), whose low-frequency behaviour is given by λ(ω) ∼ 2Teff/ω [17].
The positive eigenvalue was then identified as the effective temperature. In contrast, our
analysis clarifies the interpretation of the negative effective temperature in the form of the
FDR* in Eq. (4) and its origin due to time-reversal symmetry breaking.

Next, we derive the TRS* relations for the correlation and response functions in Eq. (6),
namely Cxy(t) ' Cyx(t) while χxy(t) ' −χyx(t) up to noncritical corrections. Again, the
key is to keep only the critical contributions in terms of φc/q. The symmetry of the
correlation function follows in a simple fashion as

Cxy(t) = 2〈xc(t)yc(0)〉 ' 2U11U12〈φc(t)φc(0)〉 ' 2〈yc(t)xc(0)〉 = Cyx(t). (44)

For the response function, we have

χxy(t) = 〈xc(t)yq(0)〉 ' U11U21〈φc(t)φq(0)〉 ,
χyx(t) = 〈yc(t)xq(0)〉 ' U12U11〈φc(t)φq(0)〉 .

(45)

Again using the fact that U12 = −U21, one can see that χxy(t) ' −χyx(t).
Finally, we remark that the field y becomes gapped at the weakly dissipative point

as one can see from Eq. (41) (see also Fig. 4(b)), which leads to the noncritical 〈Ŝ2
y〉

fluctuations. One thus recovers the equilibrium behavior although one should take the
limit Γ→ 0 with care due to the order of limits discussed in Section 4.3.

5.2 Onsager reciprocity relations

In this section, we derive the modified form of the Onsager reciprocity relations. As a
starting point, consider the saddle-point solution of Eq. (37): DR(i∂t) · x(t) = 0 where
we have replaced ω → i∂t and defined x = (x, y); we have dropped the subscript c for
convenience. By rearranging the time derivatives, we find the equation

d

dt
x(t) = −M · x(t) , with M =

(
Γ/2 2∆

4J − 2∆ Γ/2

)
. (46)

This equation describes the average dynamics of x(t) (i.e., 〈Ŝx,y〉) near the steady state
and governs its decay to zero.

Adopting a slightly more general notation, the dynamics near the steady state can be
written as

d

dt
〈xi〉t = −

∑
Mik〈xk〉t, (47)

where {xi} denote a set of macroscopic variables, and 〈·〉t represents the statistical (and,
the quantum) average at time t; we later specialize to the variable x by setting x1 ≡ x and
x2 ≡ y. Now defining Lij =

∑
kMik〈xkxj〉, Onsager reciprocity relations in equilibrium

take the form
Lij = εiεjLji , (48)
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where εi denotes the parity of the corresponding field under time-reversal transofrmation.
These relations are a direct consequence of the equilibrium FDR—in the form of Onsager’s
regression hypothesis—together with the TRS. The Onsager reciprocity relations are of
great importance for their fundamental significance as well as practical applications. We
shall refer the interested reader to Ref. [33] for the proof of the reciprocity relations in a
classical setting.

In the non-equilibrium context of our model with both FDR and TRS broken, the
Onsager reciprocity relations do not generally hold; however, given the modified form of
the FDR* and TRS* in Eqs. (5) and (6), one may expect a modified form of the Onsager
relations perhaps with a different parity than the one expected in equilibrium. Here, we
show that this is indeed the case. To this end, we first note that the Onsager’s regression
hypothesis is modified in a straightforward fashion as

〈xi〉t = εj
λ

kBT
〈xi(t)xj(0)〉, (49)

assuming that a “magnetic” field λ has been applied along the i direction before it is turned
off at time t = 0. The only difference from the standard Onsager regression hypothesis
is the prefactor εj appearing out in front, a factor that simply carries over from Eq. (5).
Combining with Eq. (47), we have

d

dt
〈xi(t)xj(0)〉 = −

∑
Mik〈xk(t)xj(0)〉. (50)

Notice that the factors of εj cancel out on both sides. Finally, using the TRS* of the
correlation function, Cij(t) = Cji(t) regardless of the corresponding parities, and setting
t = 0, we find3

Lij ' Lji . (51)

Notice the absence of the TRS parity factors εiεj ; cf. the equilibrium Onsager reciprocity
relation in Eq. (48).

To verify that this relation holds in our non-equilibrium setting, it is important to
distinguish the contribution of the soft mode, responsible for the critical behavior, from
the gapped mode. Therefore, we shall consider the dynamics at a coarse-grained level
where the gapped mode is “integrated out”. To this end, let’s write

M = mφRφL +MζRζL, (52)

where we have used a dyadic notation. Here, φR/L and ζR/L define the right/left eigen-
vectors of the matrix M. These vectors are biorthogonal, that is, φL · φR = ζL · ζR = 1
while φL · ζR = ζL ·φR = 0. Furthermore, m and M represent the two eigenvalues of the
matrix M: the eigenvalue m vanishes at the critical point defining the soft mode, while
M remains finite (at the order of J) and defines the gapped mode. The notation for the
soft and gapped modes mirror our conventions for the effective field theory. In fact, the
above diagonalization is a similar decomposition to that of the previous section but in a
different basis (notice that M is “rotated” with respect to DR). While we do not need
the explicit form of the eigenvalues and the (right and left) eigenvectors, here we provide

3Since the modified FDR doesn’t hold at short times, setting t = 0 might seem problematic. However,
the error incurred in the process only amounts to a noncritical correction.
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them for completeness:

φR =

(
−
√

∆

2J −∆
, 1

)
, φL =

1

2

(
−
√

2J −∆

∆
, 1

)
, m = Γ− 4

√
(2J −∆)∆ ,

ζR =

(√
∆

2J −∆
, 1

)
, ζL =

1

2

(√
2J −∆

∆
, 1

)
, M = Γ + 4

√
(2J −∆)∆ .

(53)
Now, the coarse-grained dynamics at sufficiently long times is governed solely by the

soft mode, while the gapped field quickly decays to zero (ζL · x = 0). Therefore, the slow
dynamics is given by

d

dt
x = −M · x , (54)

where we have defined M = mφRφL keeping only the critical component. We are finally
in a position to study the relation between Lxy and Lyx explicitly defined by

Lxy = Mxx〈xy〉+Mxy〈yy〉 ,
Lyx = Myx〈xx〉+Myy〈yx〉 .

(55)

Now notice that the fluctuations 〈xixj〉 ∼ φRi φ
R
j 〈φ2〉 where 〈φ2〉 represents the critical

fluctuations (to be identified with 〈φ2
c〉 in the previous section); this simply means that

the dominant contribution to fluctuations is given by the overlap of dynamical variables
with the critical field. Additionally, using the biorthogonality ζL · φR = 0, we have(
ζL1 , ζ

L
2

)
∝
(
−φR2 , φR1

)
. We can then write

Lxy − Lyx ∝ ζL ·M · φR = 0 , (56)

where the last equality follows from ζL ·M ∝ ζL ·φR = 0.4 We thus arrive at the relation
Lyx ' Lxy in harmony with our modified version of the Onsager reciprocity relation. This
should be contrasted with the reciprocity relation in equilibrium: Lxy = −Lyx with x (y)
even (odd) under time-reversal transformation.

6 Driven-Dissipative Coupled Bosons

In this section, we go beyond the infinite-range model discussed so far and consider a
quadratic model of driven-dissipative bosons. The model being quadratic can be solved
exactly using any number of techniques. For a coherent presentation, we will adopt a
simple (Keldysh) field-theoretical analysis. Our main point is however that the conclusions
of this work apply to a wider range of models. To be specific, consider a bosonic model
on a cubic lattice in d dimensions with the Hamiltonian

Ĥ = − J

2d

∑
〈ij〉

(âi + â†i )(âj + â†j ) + 2∆
∑
i

â†i âi , (57)

and subject to the dissipation
L̂i =

√
Γ âi . (58)

The coefficients in the Hamiltonian are chosen for later convenience. Notice that the
Hamiltonian is time-reversal symmetric. This follows from either writing the operator â

4While one might be tempted to conclude that M ∝ m → 0 at the critical point, the product m〈φ2〉
remains finite due to the diverging fluctuations and thus Lxy assumes a nonzero value at the critical point.
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in terms of two quadratures that are even and odd under time-reversal (see below), or
directly by noting that T̂ âT̂−1 = â and similarly for â† (site index suppressed) although
T̂ is antiunitary (T̂ iT̂−1 = −i) [55]. The above bosonic Hamiltonian is therefore real and
time-reversal symmetric.

The Keldysh action for this model can be constructed in a straightforward fashion
using a coherent-state representation mapping operators to c-valued fields as âi → ai(t)

and â†i → a∗i (t). A path-integral formalism can be straightforwardly constructed in terms
of these bosonic fields on a closed contour with the Keldysh action given by [20]

SK = SH + SD , (59)

where SH,D represent the coherent and dissipative terms, respectively. The coherent term
in the action is given by

SH =
∑

σ=+,−
σ

∫
t

[∑
i

a∗iσi∂taiσ −H[aiσ, a
∗
iσ]
]
, (60)

with σ = ± representing the forward and backward branches of the contour. The last
term represents the (normal-ordered) Hamiltonian in the coherent-state representation.
The relative sign of the forward and backward branches has its origin in the commutator
[Ĥ, ρ̂]. The dissipative term in the action takes the form

SD = −iΓ
∑
i

∫
t

[
ai+a

∗
i− −

1

2

(
a∗i+ai+ + a∗i−ai−

) ]
. (61)

Upon a Keldysh rotation acl/q ≡ (a+ ± a−)/
√

2 (site index i being implicit), the Keldysh
action is then written in terms of classical and quantum fields. Here, it is more convenient
to cast the bosonic field in terms of its real and imaginary parts (the two quadratures)
as ai(t) = (Φi(t) − iΠi(t))/2 where the factor of 1/2 is chosen for later convenience. The
corresponding operators can be viewed as a scalar field and the conjugate momentum.
These Hermitian operators obey the same symmetry relations as x and y in the DDIM,
where Φ is even under TRS while Π is odd. The anti-unitary nature of the time-reversal
transformation makes the bosonic fields real and invariant under TRS. The Lagrangian
LK defined via the Keldysh action SK =

∫
dtLK then takes the form [20]

LK =
∑
i

1

2
Φiq∂tΠic −

1

2
Πiq∂tΦic −∆(ΦicΦiq + ΠicΠiq) +

Γ

4
(ΦiqΠic − ΦicΠiq + iΦ2

iq + iΠ2
iq)

+
∑
〈ij〉

J

2d
(ΦicΦjq + ΦiqΦjc) , (62)

in terms of classical and quantum fields Φic/q and Πic/q. In momentum space, the Keldysh
action takes almost an identical form to Eq. (37) with the substitution v → (Φc,Πc,Φq,Πq)
where the frequency and momentum (ω,k) are implicit and J → Jk = J

d (cos k1 + · · · +
cos kd). This implies that this model too exhibits a phase transition at the same set of
parameters. While a nonlinear term is needed to regulate things on the ordered side, we
shall only consider the critical behavior.

6.1 Green’s functions

Since Eq. (62) is identical to Eq. (37) upon the above substitutions, we can immediately
write the correlation and response functions of Φ and Π. They are simply given by Eq. (23)
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once with J is substituted by Jk. Using the definitions of the bosonic variables in terms
of the real fields, we can easily determine the form of the bosonic Green’s functions:

GK =

GK
aa†

GKaa

GK
a†a†

GK
a†a

 , GR =

GR
aa†

GRaa

GR
a†a†

GR
a†a

 , (63)

where

GKaa†(ω,k) =
[
GKa†a(−ω,k)

]
=
−iΓ

(
3Γ2 + 4(32J2

k + 12∆2 + 8∆ω + 3ω2 − 8Jk(4∆ + ω))
)

8(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
,

(64a)

GKaa(ω,k) = −
[
GKa†a†(ω,k)

]∗
=
iΓ
(
128J2

k + Γ2 − 16iJk(Γ− 8i∆) + 4(4∆2 + ω2)
)

8(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
,

(64b)

GRaa†(ω,k) =
[
GRa†a(−ω,k)

]∗
=
−4Jk + 4∆ + 2ω + iΓ

2(ω − ω1)(ω − ω2)
, (64c)

GRaa(ω,k) =
[
GRa†a†(ω,k)

]∗
=

−2(Jk −∆)

(ω − ω1)(ω − ω2)
, (64d)

and GR(ω,k) = [GA(ω,k)]†, GK(ω,k) = −[GK(ω,k)]†. In a slight abuse of notation, we
have defined the modes ω1/2 = −i(Γ ∓ Γc(Jk))/2 (introduced earlier in Section 3.2) and

defined the function Γc(J) ≡ 4
√

∆(2J −∆).
For comparison with the FDR in the time-domain, we quote the long-wavelength (k→

0) limit of the correlation and response functions at criticality:

GKaa†(t,k) = GKa†a(−t,k) ∼ −i4dJ
∆k2

e−Ak
2|t| , (65a)

GKaa(t,k) = −
[
GKa†a†(t,k)

]∗ ∼ 4d

k2

[
−i(J + ∆)

∆
+

4(2J −∆)

Γc

]
e−Ak

2|t| , (65b)

GRaa†(t,k) =
[
GRa†a(t,k)

]∗ ∼ Θ(t)

(
8(J −∆)

Γc
− 2i

)
e−Ak

2t , (65c)

GRaa(t,k) =
[
GRa†a†(t,k)

]∗ ∼ Θ(t)
−8J

Γc
e−Ak

2t , (65d)

where we have defined A = −JΓc/4d(2J −∆) and Γc = Γc(J). The expressions above are
obtained by first setting Γ = Γc and then taking the limit k→ 0 while keeping k2t = const.
These expressions are valid all along the phase boundary except at the weakly-dissipative
critical point since we have assumed k2 � 2J −∆ in our derivation.

6.2 FDR* for non-Hermitian operators

The Green’s functions of Φ and Π of the short-range model considered here are identical
to those of the DDIM once we substitute J → Jk. Therefore, the low-frequency effective
temperatures of this model in the long-wavelength limit k→ 0 are identical to those of the
DDIM in Eq. (29). In other words, at criticality and at long wavelengths this short-ranged

model obeys the FDR*. The latter can be extended to the bosonic operators âk and â†k
too. Taking the linear combination of the FDR* for the two quadratures, we find

χ
a†kak

' 1

2Teff
Θ(t)∂tCa†−ka

†
k
, χaka−k

' 1

2Teff
Θ(t)∂tCaka†k

. (66)
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These relations can be explicitly verified by plugging in Eq. (65) with the effective tem-
perature identified as Teff = J . Interestingly, the set of operators on the two sides of these
FDR-like equations are different, namely the first operator (appearing at the earlier time)
transforms into its adjoint between the two sides of these equations.

The above equation suggests a more general form of the FDR*, also applicable to
non-Hermitian operators, as

χ
OiOT

j
(t) ' 1

2Teff
Θ(t)∂tCOiOj , (67)

where Ôis are not necessarily Hermitian. The transpose T arises due to the combined
action of taking the adjoint as well as conjugation due to the time-reversal transformation.
This equation reduces to the FDR* for Hermitian operator in Eq. (4), while reproducing
Eq. (66) for non-Hermitian (but real) bosonic operators.

6.3 Weakly-dissipative limit

Finally, we investigate the bosonic Green’s functions at the weakly-dissipative point; this
parallels our discussion of the weakly-dissipative DDIM in Section 4.3. Again we must be
careful in taking the order of limits. We shall first Fourier transform Eq. (64) to the time
domain, send ∆ → 2J , and then take the long-wavelength limit k → 0 in which case we
have Jk ∼ J(1−k2/2d) and Γc(Jk) ∼ i4

√
2J |k|/d. Finally, we take the weakly-dissipative

limit Γ→ 0 and report only the critical contribution at long wavelengths:

GKαβ(t,k) ∼ −i2d
2

k2
cos

(
2
√

2J

d
|k|t

)
, (68a)

GRαβ(t,k) ∼ −Θ(t)
2
√

2d

|k|
sin

(
2
√

2J

d
|k|t

)
, (68b)

for α, β ∈ {a, a†}. Note that the dynamical exponent (z) is now different as the scaling
variable is |k|t compared to k2t in Eq. (65), i.e., we find ballistic (z = 1) rather than
diffusive dynamics (z = 2). Fluctuations diverge in the same fashion, GKαβ ∼ 1/k2,
regardless of the dissipation, while the dynamical behavior undergoes a crossover; for a
similar behavior of the DDIM, see Ref. [38]. As we kept k finite while taking Γ → 0, the
system remains gapped. Therefore, the density matrix commutes with the Hamiltonian,
in parallel with our discussion in Section 4.3. The TRS is then restored and the correlation
and response functions satisfy the equilibrium FDR as one can directly see from Eq. (68).
If we instead take k→ 0 before sending Γ→ 0, we find that the cross-correlation GKΦΠ(t =
0,k = 0) ∼ 1/Γ diverges even at the weakly-dissipative critical point, while this quantity
remains zero in equilibrium as it is odd under the time-reversal transformation.

7 Conclusion and Outlook

In this work, we have considered Ising-like driven-dissipative systems where the Hamilto-
nian itself is time-reversal symmetric although dissipation breaks this symmetry. We have
shown that, despite an emergent effective temperature, the FDR and TRS are macroscopi-
cally violated when one considers multiple operators that overlap with the order parameter
and are even or odd under time-reversal transformation. Nevertheless, we have argued that
a modified form of the fluctuation-dissipation relation (dubbed FDR*) governs the critical
behavior. Similarly, a modified form of time-reversal symmetry (dubbed TRS*) arises
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where correlation and response functions find definite, but possibly opposite, parities un-
der time-reversal transformation; in sharp contrast with TRS in equilibrium, one cannot
assign a well-defined parity to a given operator while correlation and response functions
exhibit definite parities. Additionally, we have derived a modified form of the Onsager
reciprocity relation in harmony with the TRS* while violating the TRS. These conclusions
are based on the underlying symmetries (time-reversal symmetry of the Hamiltonian and
the Ising symmetry of the full Liouvillian) and the existence of a single soft mode at the
phase transition. They follow from a generic field-theoretical analysis that leads to a non-
Hermitian kernel for the dynamics. We have presented our results in the context of two
relatively simple Ising-like driven-dissipative systems. Finally, we have shown that even
in the limit of vanishing dissipation, TRS is not necessarily restored.

We distinguish our results from recent interesting works where quantum detailed bal-
ance, microreversibility and time-reversal symmetry [56–58] or extensions thereof [59] are
an exact property of a special class of open quantum systems. On the other hand, the
modified time-reversal symmetry of two-time correlators introduced here arises near crit-
icality, but is expected to hold for a large class of driven-dissipative systems near their
phase transitions. More generally, the fundamental nature of time-reversal and its far-
reaching consequences has brought it to the center stage of research on open quantum
systems.

An natural extension of the models considered here is the full Dicke model with both
bosonic and spin operators in a single- or multi-mode cavity [30, 41, 60]. The two com-
ponents of the the spin operators as well as the two quadratures of the cavity mode(s)
constitute a larger space of operators that overlap with the order parameter and are
even/odd under time-reversal transformation, but similar results should be expected. An-
other interesting direction is to go beyond mean-field or quadratic models and consider
nonlinear interactions and their effect on the modified fluctuation-dissipation relations and
time-reversal symmetry. An important future direction is to investigate if similar FDR*
and TRS* emerge for phase transitions governed by different symmetries. It is possible
that a generalization of the results reported in this work would depend on the underlying
symmetries, as well as the weak or strong nature of such symmetries [61]. Similarly, one
may consider models where the time-reversal transformation takes a more complicated
form than complex conjugation. More generally, it is desired to identify emergent forms
of time-reversal symmetry governing the the macroscopic behavior of driven-dissipative
systems although this symmetry is generically broken microscopically.
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