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Abstract

Entanglement entropy satisfies a first law-like relation, which equates the
first order perturbation of the entanglement entropy for the region A to the
first order perturbation of the expectation value of the modular Hamiltoni-
an, δSA = δ〈KA〉. We propose that this relation has a finer version which
states that, the first order perturbation of the entanglement contour equals to
the first order perturbation of the contour of the modular Hamiltonian, i.e.
δsA(x) = δ〈kA(x)〉. Here the contour functions sA(x) and kA(x) capture the con-
tribution from the degrees of freedom at x to SA and KA respectively. In some
simple cases kA(x) is determined by the stress tensor. We also evaluate the
quantum correction to the entanglement contour using the fine structure of the
entanglement wedge and the additive linear combination (ALC) proposal for
partial entanglement entropy (PEE) respectively. The fine structure picture
shows that, the quantum correction to the boundary PEE can be identified as
a bulk PEE of certain bulk region. While the ALC proposal shows that the
quantum correction to the boundary PEE comes from the linear combination
of bulk entanglement entropy. We focus on holographic theories with local
modular Hamiltonian and configurations of quantum field theories where the
ALC proposal applies.
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1 Introduction

The entanglement entropy captures the quantum entanglement in a pure state between
A and B for a bipartite system A ∪ B. The study of entanglement entropy has played
an essential role in our understanding of the emergence of spacetime and holography.
These progresses begin with the Ryu-Takayanagi (RT) proposal [1,2] that reveals the deep
connection between the spacetime geometry and quantum entanglement. In AdS/CFT
[3–5], consider a static region A in the boundary field theory and the minimal surface EA
that is in the dual AdS bulk and anchored to ∂A, the RT formula relates the entanglement
entropy of A to the area of EA in Planck units, i.e.

SA =
Area(EA)

4G
. (1)

This relation between the quantum entanglement and geometry has recently been extended
to holographic theories beyond AdS/CFT, for example the (warped) AdS/(warped) CFT
correspondence [6–9] and 3-dimensional flat holography [10–12], whose dual field theory is
non-Lorentz invariant. These new relations are derived firstly via the Rindler method [13],
which constructs a Rindler transformation that maps the entanglement wedge to a Rindler
spacetime with infinitely far away boundaries, then calculates the entanglement entropy
via the thermal entropy in the Rindler spacetime. Later they are also derived in [14] via
the Lewkowycz-Maldacena prescription [15,16], which directly applies the replica trick in
the bulk to calculate the entanglement entropy. However, in these cases, there exists a
subtle issue about the cut-off in the bulk causing the RT surfaces not anchored on the
boundary1. This issue can be solved at least in 2+1 dimensions by introducing certain
null geodesics emanating from the boundary of A. Indeed the analogue of the RT surface
EA is the extremal geodesic whose length is at the saddle among all the geodesics that
anchored on the null geodesics, then the holographic entanglement entropy is given by the
length of the extremal geodesic.

These novel null geodesics in holographic theories with non-Lorentz invariant duals
are indeed ingredients of the entanglement wedge’s fine structure based on the bulk and
boundary modular flows [17]. The fine structure also largely inspires the following study on
the entanglement contour or the partial entanglement entropy [17–21]. For a given region
A and a subset Ai of A, the partial entanglement entropy (PEE), denoted by sA(Ai),
is defined to capture the contribution from Ai to the entanglement entropy SA. The
key property featured by the PEE is the additivity, which is not possessed by any other
entanglement measures. When the subsets reduce to single points in A, the PEE reduces
to a function fA(x) called the entanglement contour [18]. fA(x) gives the contribution
from the site at the position x in A to SA, in other words, it is the density function of the
entanglement entropy SA,

SA =

∫
A
fA(x)ddx , (2)

1When the boundary field theory is non-Lorentz invariant, the causal development of an interval becomes
an infinitely long strip instead of a causal diamond. In order to keep the consistency between the bulk
and boundary causal structure, the extremal surface should not be anchored on the boundary. See [14] for
more details.
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where d is the dimension of A. The PEE sA(Ai) can also be written as

sA(Ai) =

∫
Ai

fA(x)ddx , (3)

hence, only collect the contribution in the subset Ai.
Though the definition of PEE based on the reduced density matrix is still missing, the

physical meaning as the density function for the entanglement entropy requires the PEE
to satisfy the following physical requirements 2:

1. Additivity : If Aai ∪Abi = Ai and Aai ∩Abi = ∅, by definition we have

sA(Ai) = sA(Aai ) + sA(Abi) . (4)

2. Invariance under local unitary transformations: sA(Ai) is invariant by any local
unitary transformation inside Ai or Ā.

3. Symmetry : For any symmetry transformation T under which T A = A′ and T Ai =
A′i, we have

sA(Ai) = sA′(A′i). (5)

4. Normalization: SA = sA(Ai)|Ai→A .

5. Positivity : sA(Ai) ≥ 0.

6. Upper bound : sA(Ai) ≤ SAi .

7. Symmetry under the permutation: I(Ā, Ai) = sA(Ai) = sĀi
(Ā) = I(Ai, Ā) .

There have been four PEE (or entanglement contour) proposals that satisfies the above
requirements. The first one is the Gaussian formula [18,22–28] that applies to the Gaussian
states in free theories. The second proposal is a geometric construction [14,17,29] in holo-
graphic theories, based on the fine structure analysis of the entanglement wedge following
the boundary and bulk modular flows. The third one, previously given by the author
in [17,20], claims that the PEE is given by an additive linear combination of subset entan-
glement entropies. Later we will call this proposal the ALC (additive linear combination)
proposal for short3. The fourth proposal [21] follows the construction of the extensive (or
additive) mutual information (EMI) [31] (see also [32] for a similar construction), which
tried to solve the above seven requirements in CFT. The entanglement contour can also
be studied under the picture of the bit threads [33] in holographic theories, see for exam-
ple [19,34–36]. The PEE calculated by different approaches are highly consistent with one
another [14,17,21,28,29], suggesting that the PEE should be well-defined and unique. The
uniqueness of the PEE has been confirmed for Poincaré invariant theories [21], by showing
that the above seven requirements in these theories have unique solution. The PEE is also
useful to study the entanglement structure in condensed matter theories4. Recently, the
entanglement contour is used to give the entanglement structure of the Hawking Radiation

2The requirements 1-6 are firstly given in [18], while the requirement 7 is recently given in [21]
3Previously in [20,21,30], this proposal was call the “partial entanglement entropy proposal”. This is a

bit misleading since we defined the PEE as (3) rather than the linear combination (6).
4The entanglement contour gives a finer description for the entanglement structure. In condense matter

theories it can be used to discriminate between gapped systems and gapless systems with a finite number
of zero modes in d = 3 [18]. It has been shown to be particularly useful to characterize the spreading
of entanglement when studying dynamical situations [18, 19, 27]. The entanglement contour is also a
useful probe of slowly scrambling and non-thermalizing dynamics for some interacting many-body systems
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which shows non-trivial behavior [41, 42] due to an island phase transition (see [43] for a
review on this topic). The above progresses suggest that the new concept of entanglement
contour in quantum information should play an important role in our understanding of
the gauge/gravity duality and the entanglement structure in quantum field theories (or
many-body system).

Figure 1: A typical region A with a definite order is shown by the red interval. When an
arbitrary subset α is chosen, a natural decomposition of A = αL ∪ α ∪ αR is determined.
All the degrees of freedom in A lines in a definite order. When A is a circle, the definition
of αL and αR become ambiguous.

In this paper, we mainly use the fine structure of the entanglement wedge and the
ALC proposal to construct the PEE. The ALC proposal [17, 20] claims that, the PEE
is given by a linear combination of certain subset entanglement entropies. The ALC
proposal is proven to satisfy all the seven requirements using only the general properties
of entanglement entropy. It can be applied to generic theories, but a definite order is
required for all the degrees of freedom in A for satisfying the additivity.

• The ALC proposal : Given a region A and an arbitrary subset α, when there is a def-
inite order inside A, it can be unambiguously partitioned into three non-overlapping
subregions A = αL ∪ α ∪ αR (see for example Fig.1), where αL (αR) denotes the
subset on the left (right) hand side of α. In this configuration, the ALC proposal
claims that

sA(α) =
1

2
(SαL∪α + Sα∪αR − SαL − SαR) . (6)

The ALC proposal can be used to calculate the entanglement contour for one dimensional
regions in general theories with a definite order [17,20]. It also works for highly symmet-
ric regions in higher dimensions, which can be characterized by a single coordinate [29].
Furthermore, this linear combination can be understood as a conditional mutual informa-
tion [42]

sA(α) =
1

2
I(α : Ā|αL) =

1

2
I(α : Ā|αR) . (7)

We will briefly introduce the fine structure approach in section 3 later.
By an infinitesimal variation of the state, the perturbation of entanglement entropy SA

satisfies a first law-like relation δSA = δ〈KA〉, where 〈KA〉 is the expectation value of the
modular Hamiltonian KA [44, 45]. In holographic theories where the RT formula applies,
δSA affects the dynamics of the bulk geometry: The first law of entanglement entropy

[37] and holographic states dual to Bañados geometries, and general excited states in the small interval
limit [38]. Holographically, the correspondence between PEE and bulk geodesic chords [14, 17] is a finer
correspondence between the quantum entanglement and bulk geometry [14, 39]. Under some balanced
condition the PEE also gives the area of the entanglement wedge cross section [30]. The balanced PEE can
be considered to be an generalization of the reflected entropy [40] to generic purifications of the bipartite
system [30].
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has been used to derive the linearized Einstein’s equations in the bulk spacetime [45, 46].
The first law and linearized Einstein’s equations have also been discussed in holographies
beyond AdS/CFT [12,47,48]. In this paper we propose that the first law of entanglement
entropy has a finer description: in a given region A, the first order perturbation of the
entanglement contour at each site equals the first order variation of the expectation value
of the modular Hamiltonian’s contour, which is a similar density function for the modular
Hamiltonian.

Another important topic of holographic entanglement entropy is the quantum correc-
tion. The RT formula only concerns the leading order contribution to the entanglement
entropy SA. It is shown in [49] that the quantum correction to SA is just the bulk entan-
glement entropy of the homology surface ΣA in the entanglement wedge. The evaluation
of the quantum correction plays an essential role in our understanding of holography and
spacetime beyond the classical level, see for example [50–55]. For holographic theories, the
entanglement contour derived [14,17,29] via the fine structure of the entanglement wedge
is also only at the leading order. Then it is very interesting to explore the finer description
of the quantum correction. More explicitly, for a give subset Ai of A, we want to evaluate
the quantum correction to the PEE sA(Ai). Furthermore, for the cases that the modular
Hamiltonian is local, we identify a bulk sub-region ai of the homology surface ΣA, such
that the contribution from ai to the bulk entanglement entropy SΣA

gives the quantum
correction to sA(Ai).

2 The first law of entanglement contour and the contour of
modular Hamiltonian

The state of a generic quantum system can be described by the density matrix ρtotal.
Let us consider an arbitrary subsystem A and its complement Ā, the state of A is then
described by the reduced density matrix ρA = TrĀρtotal. If the total system is in a pure
state, the entanglement between A and Ā is captured by the entanglement entropy that
is the von Neumann entropy SA of ρA

SA = −TrρA log ρA . (8)

The modular Hamiltonian KA is a state-dependent operator defined by

ρA ≡ e−KA . (9)

One may multiply a constant to the right hand side of the above equation to ensure
TrρA = 1. Usually the modular Hamiltonian is non-local. For the cases where KA is local,
usually it can be written as KA = −H/T , where H is the ordinary Hamiltonian measured
by the local observer (or Rindler observer) confined in the causal development of A.

Let us consider any infinitesimal perturbation to the density matrix ρtotal, the first
order perturbation of the entanglement entropy is given by

δSA =− Tr(δρA log ρA)− Tr(ρAρ
−1
A δρA)

=Tr(δρAKA)− TrδρA .

=δ〈KA〉 (10)

Here we have used the fact the TrδρA = 0, since TrρA = 1 always holds and KA is defined
by the unperturbed state. The above equality between variations of the entanglement
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entropy and the modular Hamiltonian’s expectation value is called the first law of en-
tanglement entropy. For thermal states where KA = −H/T , this relation becomes the
quantum version of the first law of thermodynamics, δ〈H〉 = TδSA.

It is very interesting to explore a finer version of the above first law, i.e. the relation
between variations of the entanglement contour and certain local properties of modular
Hamiltonian. Here we focus on the configurations where the ALC proposal applies. This
includes single intervals in 2-dimensional theories and spherical (or strip) regions in higher
dimensions with a definite order. Again, let us consider a region A and its non-overlapping
connected subsets {A1, A2, A3}, the PEE is given by the ALC proposal

sA(A2) =
1

2
(S12 + S23 − S1 − S3) . (11)

Here we write, for example, SA1∪A2 = S12. Similarly the modular Hamiltonian of A1 ∪A2

is denoted by KA1∪A2 = K12.
Let us perform an infinitesimal perturbation on both sides of (11), then apply the first

law to all the subset entanglement entropies on the right hand side, we get

δsA(A2) =
1

2
(δ〈K12〉+ δ〈K23〉 − δ〈K1〉 − δ〈K3〉)

=
1

2
(Tr(δρ12K12) + Tr(δρ23K23)− Tr(δρ1K1)− Tr(δρ3K3)) (12)

We assume that the Hilbert spaceHA of A factorizesHA = HA1⊗HA2⊗HA3 . The modular
Hamiltonian acts trivially outside the region where it is defined. So it is convenient to
extend it to an operator acting on the whole region A, for example

K12 ≡ K12 ⊗ I3, (13)

where I3 is the identity operator on HA3 . This is crucial to write

Tr(δρ12K12) = Tr(δρAK12) , (14)

where the trace on the left hand side is over HA1 ⊗HA2 , while on the right hand side the
trace is over HA. We rewrite other terms similarly to obtain,

δsA(A2) =
1

2
Tr[δρA (K12 +K23 −K1 −K3)] . (15)

Similarly we may express the PEE in terms of the modular Hamiltonians,

sA(A2) =
1

2
TrρA (K12 +K23 −K1 −K3) . (16)

It is easy to see that, the linear combination of the modular Hamiltonians in the above
equation is exactly the same as the subset entanglement entropies in the ALC proposal. It
has been proven that this linear combination was additive. More explicitly, let us define
a new non-local operator on A,

kA(A2) ≡ 1

2
(K12 +K23 −K1 −K3) . (17)

If A2 is divided into two non-overlapping connected subregions A = Aa2 ∪Ab2, we have

kA(A2) = kA(Aa2) + kA(Ab2) . (18)
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It is natural to take KA → 0 when A vanishes, hence when we take the limit A2 →
A, A1 → ∅, A3 → ∅, we get the normalization property,

kA(A2)|A2→A = KA. (19)

Due to the additivity and normalization of the operator kA(A2), we call kA(A2) the
partial modular Hamiltonian. Furthermore, if we know the modular Hamiltonian for all
the subregions inside A, we can determine the contour function kA(x)5 for KA by taking
A2 to be a single site at the position x = {t, ~x}, hence

KA =

∫
A
kA(x)d~x . (20)

Similar to the entanglement contour, kA(x) is understood as a density function for the
modular Hamiltonian KA. The partial modular Hamiltonian kA(A2) gives the contribution
from the subregion A2, i.e.

kA(A2) =

∫
A2

kA(x)d~x , (21)

where the domain of the integration is confined in A2. Note that both the contour function
kA(x) and the partial modular Hamiltonian kA(A2) are operators defined on A rather than
the point x or the subregion A2.

As a result, the equation (12) can be written as

δsA(A2) = δ〈kA(A2)〉 , (22)

which we call the first law of partial entanglement entropy. If we know all the partial
modular Hamiltonians, we can determine the contour function hence get a finer version of
the above relation

δsA(x) = δ〈kA(x)〉 , (23)

which we call the first law of entanglement contour. For any site x in A, the first law of
entanglement contour states that the perturbation of the contribution to SA at x equals
the perturbation of the expectation value of kA(x), which is the contribution to KA at x.
Though it is derived for the special cases where the ALC proposal applies, we conjecture it
to be valid for more general configurations. We hope this can be confirmed in the future.

This finer version of the first law is useful, because the modular Hamiltonian has been
extensively explored in many configurations, especially when the modular Hamiltonian is
local. More importantly, the modular Hamiltonian KA is usually written as an integration
over the region A, hence perfectly match with our introduction of the contour of the
modular Hamiltonian. One simple and renowned case is the modular Hamiltonians for
ball-shaped regions A in d-dimensional CFTs. If we consider the vacuum state of the CFT
and a static and ball-shaped region with radius R and center position x0 = {t0, ~x0}, then
the modular Hamiltonian takes the simple form [13,56],

KA = 2π

∫
A

R2 − |~x− ~x0|2

2R
Ttt(t0, ~x)d~x , (24)

5Note that, one should not take the contour function kA(x) as a local function of x since it also depend
on the region A. Also it is an operator in the sense of (17) rather than a number.
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where Tµν is the stress tensor and ~x is the coordinates on A. More generally, the modular
Hamiltonian can be written in a covariant way,

KA =

∫
A
dΣ ηµ(x) Tµν(x) ξν(x), (25)

where dΣ is an infinitesimal volume on the spacelike co-dimension-one region A with the
normal vector ηµ, while the vector field ξµ describes the modular flow (or geometric flow)
which is generated by the modular Hamiltonian.

There are two ways to derive the modular flow. The first one relies on the construction
of the Rindler transformation R, which is a symmetry transformation that maps the
causal development DA of A to a Rindler spacetime with infinitely far away boundaries.
The normal Hamiltonian, which generates the Rindler time translation ∂τ in the Rindler
spacetime, is mapped to the modular Hamiltonian of A. In other words, ∂τ maps to the
modular flow ξu in DA by the inverse Rindler transformation. However the construction
of the Rindler mapping is highly non-trivial. The Rindler transformation for static balls
in CFTs are constructed in [13]. While the Rindler transformation for covariant intervals
in warped CFTs and BMSFTs (theories with BMS3 symmetries) are constructed in [6, 8]
and [10]. See also [48] for a related construction of the modular Hamiltonian. The Rindler
transformation can be extended into the bulk in the context of holography, hence plays
an essential role to derive the geometric picture of the entanglement entropy [8, 10].

Recently another way to generate the modular flow is proposed in [20] base on the
properties of the PEE. The key of this approach is that the PEE should be invariant under
the modular flow. The property is observed in the entanglement wedge’s fine structure,
which we will introduce later. Using the ALC proposal, it is easy to derive the orbit of the
modular flow in DA, if we know all the entanglement entropies for sub-intervals inside DA.
This approach reproduces the previous results quite easily. More importantly, it does not
rely on the Rindler transformations.

In the Rindler spacetime, the modular Hamiltonian is just the energy. Since the Rindler
spacetime is invariant under the translation along the spacial directions, the contour func-
tion for the modular Hamiltonian should respect this symmetry, thus is a constant. Ap-
plying the inverse Rindler transformation, this flat contour maps to the contour function
of the modular Hamiltonian KA in A. This contour function is nothing but the integrand
of (24) and (25), i.e.

kA(x) = ηµ(x) Tµν(x) ξν(x) . (26)

According to the first law of the entanglement contour, we have

δsA(x) = ηµ(x) ξν(x) δ〈Tµν(x)〉 , (27)

which states that, the first order variation of the entanglement contour relates to the first
order variation of the stress tensor. Note that in the above equation we used the relation
δ (ηµ(x)ξν(x)) = 0 because the geometry is at the saddle hence the first order perturbation
of geometry vanishes. The above relation is also in some sense applied in [42] to evaluate
the entanglement contour for low energy excited states of CFT near the vacuum.

However, in more generic configurations the modular Hamiltonian cannot be written
as an integration like (25), hence one may worry about the validity of (20). We stress that,
the reason we can write KA as an integral of kA(x) is the additivity of the partial modular
Hamiltonian, which is always true when the ALC proposal applies. The ALC proposal
does not select theories. For example, let us consider an interval A in a 2-dimension
theory which is not conformal invariant, where KA can not be written as (25). Since in
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this case the ALC proposal applies thus the partial modular Hamiltonian is additive, KA

can still be written as (20) with kA(x) not directly related to the stress tensor. So (25) is
not necessary for the validity of (20).

3 Quantum correction to holographic entanglement contour

3.1 Quantum correction to holographic entanglement entropy

The RT formula only gives the leading order contribution for the holographic entangle-
ment entropy, i.e. at the order O(1/GN ) ∼ O(N2). The Faulkner-Lewkowycz-Maldacena
(FLM) formula [45] corrects the RT formula to the next order O(1),

SA =
Area(EA)

4GN
+ Sbulk(ΣA) , (28)

where Sbulk(ΣA) is the bulk entanglement entropy for the homology surface ΣA, which is
any Cauchy surface with its boundary satisfying ∂ΣA = A∪EA. Later in this paper we use
the short-hand notation ΣA ≡ a. The entanglement wedge WA is the causal development
of ΣA. Note that, compared with the full expression for the quantum correction to the
holographic entanglement entropy [45], Eq. (28) omitted the terms that are given by
local integrals on the original minimal surface, including the terms that cancel the UV
divergences of the bulk entanglement entropy.

Since the quantum correction is taken into account, the minimization on the area of the
RT surface should be adjusted to the minimization of the quantum extremal surface [51],

SA = min

(
Area(ẼA)

4GN
+ Sbulk(Σ̃A)

)
. (29)

Accordingly the surface satisfying the minimization changes from EA to ẼA, and ΣA

changes to Σ̃A. However, this difference usually only affect SA at the order O(GN ) 6,
hence we will directly apply (28) instead of (29) to avoid unnecessary complications. Our
discussion focuses on the configurations where the quantum correction is much smaller
than the leading contribution from the RT formula.

The relation (28) implies an important relation between the bulk and boundary mod-
ular Hamiltonian [53],

KA =
ÊA

4GN
+Ka , (30)

where Ka is the modular Hamiltonian of the bulk region ΣA, and ÊA is the bulk area
operator whose expectation value gives the area of the RT surface.

Then it is quite interesting to discuss the quantum corrections to the entanglement
contour. Firstly we will explore the spatial distribution of the bulk entanglement entropy
on the homology surface ΣA, i.e. the entanglement contour or PEE of the bulk degrees of
freedom. The essential entanglement contour that we study is the contour on the boundary
region A, so the PEE from any bulk degrees of freedom will be assigned to the PEE of a
boundary degrees of freedom as the quantum correction to the entanglement contour of
A. Secondly, we will explore how to assign the bulk PEE to the boundary PEE. We will
study the quantum correction of the contour using both the fine structure analysis with
the modular slices and the ALC proposal.

6The difference only gives significant corrections when we approach a phase transition, where the RT
surface jumps discontinuously or when the bulk entanglement entropy is comparable to the area term.
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3.2 Quantum correction to entanglement contour from the fine struc-
ture

Fine structure of the entanglement wedge

In holography, when the modular Hamiltonian is local, the entanglement contour can be
described by a geometric picture 7, which is constructed in a series of papers [14,17,20,29].
Since the modular Hamiltonian is local thus generates a geometric modular flow, there
exists a natural slicing of the entanglement wedge. More explicitly, from any point P in
A, the boundary modular flow generates an orbit, which we call the boundary modular
flow curve. Then we let the points on the boundary modular flow curve flow under the
bulk modular flow. Trajectories of this flow form a two dimensional bulk surface, which
we call a modular slice. The causal development DA is a slicing of the boundary modular
flow curves. Similarly the entanglement wedge WA is a slicing of the modular slices. Note
that, since the boundary modular flow is also a bulk modular flow, when the boundary
modular flow curve is settled exactly at the boundary, i.e. z = 0, its trajectory under
the bulk modular flow is just itself. Here by the trajectory of the boundary modular flow
curve, we mean the trajectory of the curve settled at the limit z → 0 but z 6= 0, hence
points on the curve can flow into the bulk. More explicitly, points on the curve flow into
the bulk, then get to a turning point, and eventually flow back to some points on exactly
the same boundary modular flow curve.

See Fig.2 for an explicit example in AdS3/CFT2. In the right figure the black curve is
the boundary modular flow curve that passes the point P , the orange curves are orbits of
points on the black curve under the bulk modular flow. The modular slice intersects with
the RT surface EA at the partner point P̃ of P . The outermost straight orange lines are the
normal null geodesics emanated from EA, and are also bulk modular flow curves that end
on the future and past tips of the causal development DA. τm denotes the Rindler time
in different causal wedges, which can be covered by a single complex “time” coordinate,

τm = τ +
m− 1

2
πi . (31)

In this coordinate, the thermal circle in the entanglement wedgeWA is just the imaginary
circle τ ∼ τ + 2πi of the Rindler time. The dashed line γP is where the modular slice
intersect with the homology surface ΣA.

The holographic entanglement contour from the fine structure

The relation between the fine structure and the entanglement contour appears as we
consider the replica story of a single point P in A. When applying the replica trick, we
prepare n copies of the system and cut the region A open for all the copies, then we glue
them cyclically to form a n-manifold. Correspondingly, in the gravity side we cut the
entanglement wedge open along any homology surface ΣA, then glue all the copies of the
bulk spacetime cyclically [15,16].

While applying replica trick on A, let us focus on the replica story of a single point
P , and see how it affects the boundary and bulk modular flow. Firstly we cut P open for
each copy. This cuts the modular flow curve open at P . Then we glue all the open curves
cyclically at P in each copy, hence the modular flow in the ith copy will flow into the

7This picture works also for holographic theories beyond AdS/CFT [14], for example, the (warped)
AdS/ (warped) CFT correspondence and the flat holography. However, similar construction cannot be
straitforwardly generalized to the cases of multi-intervals and a large enough boundary interval in the BTZ
background with disconnected RT surface, since the modular flow becomes nonlocal. This is an important
problem we hope to understand further in the future.
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Figure 2: A typical example of the modular slice in AdS3/CFT2. In the left figure, the
modular slice at the point P is embedded in the entanglement wedge. The right figure
shows how the boundary modular flow curve flows in the bulk under the bulk modular
flow. The dashed curve γP is where is modular slice intersect with the homology surface.
τm denotes the modular flow in different causal wedges in the bulk. The modular flow
curves become null at the boundary of the entanglement wedge, and are just the null
geodesic congruence emanating from the RT surface EA vertically.

(i + 1)th copy of the curve through P . See Fig.3 for a simple example with n = 2. Here
the boundary modular flow curve along τ1 contains the lower half line in the first copy and
the upper half line in the second copy. Then we prepare two copies of the modular slices
and see how the bulk modular flow is affected. Note that, the bulk modular flow lines
emanating from the τ1 boundary modular flow curve should return to the same boundary
modular flow curve. The fact that the τ1 boundary curve now contains two parts in
different copies implies that, the τ1 bulk modular flow curves should also be cut open and
glued cyclically, thus can flow back to the second part of the τ1 boundary curve in the
second copy. The place where we cut the bulk modular flow curves open is just the curves
γP , which are the purple lines in Fig.3.

Figure 3: The replica trick applied to the modular slice when n = 2. Each slice is cut
open at γP then glued cyclically. The dashed lines show the gluing boundary conditions.

In summary, the replica story of a single point in A induces the replica story of the
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corresponding modular slice. Since the modular flows are local, it will not affect the mod-
ular slices in the neighborhood. The replica story on all the modular slices are relatively
independent and together form the replica story of the entanglement wedge. Following the
calculation of [15,16], if we evaluate the partition functions at the classical level, the cyclic
gluing at the region A turns on the extensive contribution at the bulk fixed points of the
replica symmetry, i.e. the RT surface. Accordingly, the cyclic gluing of any point P ex-
actly turns on the contribution to the entanglement entropy at the partner point P̃ . This
is the original statement of [17]. In the same sense this relation implies a correspondence
between the geodesic chords Ei on EA and the PEE of certain subset Ai in A,

sA(Ai) =
Length (Ei)

4G
, (32)

where Ei is the set of partner points of Ai. The one-to-one correspondence between all the
points on A and EA gives the entanglement contour of A.

In the context of AdS/CFT, given a static region A (spheres or intervals) and a static
homology surface ΣA, γP for any point P is just a static geodesic normal to EA [29] 8. See
the purple dashed lines in the left figure of Fig.4. The correspondence between the PEE
of the subsets Ai and geodesic chords Ei in the sense of (32) is shown in the right figure
of Fig.4. Accordingly the homology surface is also decomposed by two γP curves for two
points that decomposes A,

ΣA ≡ a = a1 ∪ a2 ∪ a3 . (33)

Figure 4: The above two figures show a time slice of the entanglement wedge. The purple
dashed lines are the γP curves, which are static geodesics normal to EA. In the right figure,
the decomposition of A induces a decomposition of the homology surface ΣA and the RT
surface EA.

Quantum correction to the holographic entanglement contour

In the above discussion the partition functions are only evaluated at the classical level,
hence the entanglement contour from the slicing of the entanglement wedge by the modular
slices is only at the leading order. When including the quantum corrections to the partition
functions, i.e. computing the partition function of all bulk quantum fluctuations around

8The curves γP coincide with a special bit-thread configuration constructed in [57] following the bulk
geodesics.
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the classical geometry, the entanglement entropy and entanglement contour should receive
quantum corrections. As we previously pointed out in section 3.1, the first order quantum
correction to the entanglement entropy comes from the entanglement entropy of the bulk
region in the entanglement wedge Sa. Studying the correction to the entanglement contour
relates to the following question: how do we distribute the bulk entanglement entropy to
the degrees of freedom in A?

The answer is indeed hidden in the fine structure of the entanglement wedge. Now
we introduce the entanglement contour sa(x), which represent the contribution from the
site x to the bulk entanglement entropy Sa. The cyclic gluing of the single point P not
only turns on the leading contribution to SA at its partner point P̃ , but also induces the
cyclic gluing of the bulk points on the curve γP . Note that the cyclic gluing of all the
points in the homology surface ΣA coincides with the replica trick in the bulk for the bulk
entanglement entropy Sa. This indicates that, the quantum correction to the PEE of the
point P comes from the bulk PEE of the curve γP , which we denote as sa(γP ).

It is more convenient to consider the quantum correction to the PEE sA(A2) of a
subregion A2. For example, see the left figure in Fig.5, where A is a static interval which
is divided into three non-overlapping parts A = A1 ∪ A2 ∪ A3. According to the fine
correspondence, the geodesic chord E2 gives the PEE sA(A2) at the leading order. The
curves γP for all the points in A2 form the bulk region enclosed by A2, E2 and the γP
curves for the two endpoints of A2. This region is denoted as a2, which is the yellow region
in Fig.5. In other words, we have

sA(A2) =
Area(E2)

4G
+ sa(a2) , (34)

where the bulk PEE sa(a2) is the quantum correction to the PEE sA(A2).
The above statement can be easily understood in the Rindler bulk spacetime. The

Rindler transformations map WA to the Rindler bulk spacetime, which is an AdS black
brane with translation symmetries along the directions, say ~x = {xi}, that are extensive
on the horizon or boundary. The regions Ai, ai and Ei are mapped to A′i, a

′
i and E ′i

respectively. See the right figure in Fig.5 for a time slice of the Rindler bulk. Note that,
due to the translation symmetry a′i and E ′i are the regions projected to A′i along the r
direction.

The quantum correction to the entanglement entropy (thermal entropy in this case)
of A′ = A′1 ∪ A′2 ∪ A′3 is just the bulk entanglement entropy for the region a′, which is
the exterior region of the Rindler horizon. Since the entanglement contour respects the
symmetries, it only depends on the radial coordinate and is flat along the xi directions,
i.e.

sa′(~x, r) = sa′(r) . (35)

It is convenient to define the constant

C =

∫
sa′(r)dr , (36)

where the domain of the integration is from the horizon to the boundary. Thus C is the
density function for bulk entanglement entropy after integration over the radius direction.

On the boundary A′, let us denote the leading order and quantum correction of SA′ by

S
(0)
A′ and S

(1)
A′ respectively. Due to translation symmetries, S

(1)
A′ and S

(0)
A′ should be equally

distributed to all degrees of freedom on A′ hence present a volume law. Accordingly, the
contour function is a constant given by,

sA′(~x) =
1

4GN
+ C , (37)

13



SciPost Physics Submission

where the first term come from the RT (or Bekenstein-Hawking) formula while the second
term come from quantum correction. For a subregion A′2 with length l′2, the PEE sA′(A′2)
is just given by

sA′(A′2) = l′2

(
1

4GN
+ C

)
. (38)

Figure 5: The homology surface a at a time slice is mapped to the time slice of the Rindler
bulk under the Rindler transformation. γP curves are mapped to the curves along the r
direction. The bulk region a2 is just mapped to the bulk region a′2, which is the projection
region of A′2 along the r direction.

It is easy to see the length of E ′2 equals to l′2, and sa′(a
′
2) = l′2 C. Then we can write

the PEE (38) in the following way,

sA′(A′2) =
Area(E ′2)

4G
+ sa′(a

′
2) , (39)

The modular slices in WA are just mapped to the AdS2 slices with fixed ~x in the Rindler
bulk. Note that the Rindler transformation is also a symmetry of the theory, according to
the symmetry property of the PEE we have

sa(ai) = sa′(a
′
i) , sA(Ai) = sA′(A′i) . (40)

The length of the geodesic chords is also invariant under the Rindler transformation,

Area(Ei) = Area(E ′i) . (41)

Following (39),(40) and (41), we immediately recover (34).
Our discussion shows that, the quantum correction to the entanglement entropies,

PEE or entanglement contour in holographic CFTs are indeed proportional the leading
contribution. This is consistent with the quantum result of entanglement contour given
in [21].

3.3 Quantum correction from the additive linear combination proposal
for PEE

Unlike the geometric construction, the ALC proposal is not limited to the leading order.
In holographic field theories, we can expand the entanglement entropy with respect to GN ,
i.e.

SA = S
(0)
A + S

(1)
A + S

(2)
A + · · · , (42)
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where S
(i)
A is of order O(Gi−1

N ). Similarly we can expand the PEE in the same way and
the ALC proposal should hold at all orders, i.e.

s
(i)
A (A2) =

1

2

(
S

(i)
12 + S

(i)
23 − S

(i)
1 − S

(i)
3

)
. (43)

All properties of the PEE should be satisfied respectively at all orders. In the following,
we only consider the first order correction, which are the bulk entanglement entropies of
ΣAi ,

S
(1)
Ai

= SΣAi
. (44)

So we get another formula for the quantum correction to the PEE

s
(1)
A (A2) =

1

2
(SΣ12 + SΣ23 − SΣ1 − SΣ3) , (45)

where Σi means ΣAi and Σij means ΣAi ∪ ΣAj .
This looks quite confusing. On the one hand, the linear combination (45) are exactly

the same as the ALC proposal, hence looks like a bulk PEE sΣA
(Σ2). On the other hand the

ALC proposal requires ΣA = Σ1∪Σ2∪Σ3 where Σi are non-overlapping, and furthermore

Σ12 ∩ Σ23 = Σ2 , Σ12 = Σ1 ∪ Σ2 , Σ23 = Σ2 ∪ Σ3 . (46)

Obviously, these requirements are satisfied by the regions ai rather than the regions Σi

or Σij in the bulk. So the linear combination in (45) is not a PEE defined by the ALC
proposal and is not guaranteed to be additive. However, previously we get the result

s
(1)
A (A2) = sa(a2) using the fine structure analysis of the entanglement wedge. This implies

that the left hand side of (45) is a PEE in the bulk thus should be additive.
The confusion can be resolved if one associate the bulk entanglement entropies to their

corresponding boundary regions Ai and Aij rather than the bulk regions Σi and Σij . In
other words, the left hand side of (45) can be understand as a PEE on the boundary
following the ALC proposal. Thus, the additivity immediately follows.

Now we show the additivity of (45) from a more intuitive perspective in the Rindler
spacetime. Again we consider the simple case of AdS3/CFT2 which is shown in Fig.6.
Though the RT surfaces for A1, A3, A1 ∪ A2 and A2 ∪ A3 look quite different from one
another (see the blue solid lines in the upper figure of Fig.6), their images in the Rindler
bulk are indeed the same curve up to a translation or reflection (see the solid blue lines in
the lower figure of Fig.6), because A′1, A

′
3, A

′
1 ∪A′2 and A′2 ∪A′3 are all infinitely long half

lines. For example, consider the RT surface emanating from x = x0 and moving along the
+x direction, it approaches the horizon in the following way r(x) = rh(1 − e−(x−x0))−1,
where r = rh is the horizon. In the large |x| region, the RT surfaces just move along the
horizon, thus the translation symmetry emerges and the entanglement contour is flat at
the large |x| limit. It is obvious that if we translate E ′12 by l′2, it exactly matches with E ′1.
The only difference is that E ′12 is longer by l′2 near the cut off region, where the volume law
applies. Also the bulk region Σ′12 is only larger than Σ′1 by a region that exactly matches
with a′2 under a translation. Then we have

S
(0)
A′

1∪A′
2
− S(0)

A′
1

=
l′2

4GN
, S

(0)
A′

2∪A′
3
− S(0)

A′
3

=
l′2

4GN
. (47)

and

SΣ′
12
− SΣ′

1
= l′2C , SΣ′

23
− SΣ′

3
= l′2C . (48)
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Plugging the above equations to the ALC proposal, as expected at the leading order, we
find the PEE is just given by,

s
(0)
A′ (A′2) =

l′2
4GN

, (49)

While the quantum correction (45) can also be calculated by

s
(1)
A (A2) =

1

2
(SΣ12 + SΣ23 − SΣ1 − SΣ3)

=
1

2

(
SΣ′

12
+ SΣ′

23
− SΣ′

1
− SΣ′

3

)
=l′2C (50)

The result recovers the previous result of sa′(a
′
2) or sa(a2) using the fine structure of

the entanglement wedge, so the additivity of the right hand side of (45) is justified in
this case. This is also a consistency check between the two approaches to evaluate the
quantum corrections.

Figure 6: The upper figure shows the RT curves (solid blue curves) for the subregions in
the linear combination in the ALC proposal. The lower figure shows the images of the
above RT curves in the Rindler spacetime. Since A′1, A

′
3, A

′
1 ∪ A′2 and A′2 ∪ A′3 are all

infinite half lines, their RT surfaces are the same up to a translation or reflection.

4 Discussion

In this paper, we explore two important aspects about entanglement contour. Firstly
we explore the “first law” of entanglement contour. For a given region, the first law
tells us that first order variation of the contour (or density) function of the entanglement
entropy equals the first order variation of the expectation value of the contour (or density)
function of the modular Hamiltonian, i.e. δsA(x) = δ〈kA(x)〉. This gives a much stronger
and finer description of the variation of the entanglement structure under the variation of

16



SciPost Physics Submission

the state. Note that, this relation is only derived for the configurations where the ALC
proposal applies. However this relation seems to be a quite natural extension of the first
law of entanglement entropy δSA = δ〈KA〉. We conjecture it to be true for more generic
configurations. It may be quite useful to calculate the entanglement contour for low energy
exited states (see for example [42]).

The second aspect is the quantum correction to the holographic entanglement contour.
Firstly, using the fine structure picture, we find that the quantum correction to the PEE
of a subset is captured by the bulk PEE of a certain bulk subregion inside the homology

surface, i.e. s
(1)
A (A2) = sa(a2). This observation gives a fine relation between the PEE of

the bulk degrees of freedom and the PEE of the boundary degrees of freedom. Secondly,
for the configurations where the ALC proposal applies, the quantum corrections to the
PEE computed by the ALC proposal is a linear combination of the bulk entanglement
entropies of certain bulk regions. For example, see the right hand side of (45). The results
of the two approaches are confirmed to be consistent in the Rindler bulk spacetime. Note
also that, the additivity of the linear combination (45) is not manifest. It comes from the
additivity of the boundary PEE and the fact that the bulk entanglement entropies are
quantum corrections to the entanglement entropies of certain boundary regions.

One can test the first law of the entanglement contour at the leading order using a
perturbed geometry around the pure AdS space. On one hand, the perturbation of the
geometry perturbs the stress tensor of the boundary CFT, which furthermore perturbs
the entanglement contour according to the first law. On the other hand, the perturbation
of the geometry perturbs the fine correspondence between points in A and EA which also
gives a perturbation of the entanglement contour. The first law can be confirmed if the
two perturbations of the entanglement contour coincide with each other.

Explicit configurations of bit threads is a good way to describe the entanglement con-
tour. However, the entanglement contour is assumed to be unique while the bit thread
configuration is highly non-unique even when the state and region are determined. So far,
it is not well undertood how we can impose physical requirements to determine the bit
thread configuration for a given entanglment wedge. We propose that, reproducing the
right entanglement contour should be a reasonable physical requirement. This is recently
explored in [36] by applying the locking theorems [58, 59] of bit threads to construct a
concrete locking scheme for the RT surfaces in the entanglement wedge. In [60] two per-
turbations of the bit threads configurations are explicitly considered. One of them is for
the geodesic bit threads normal to the RT surface [57], consistent with our fine structure
analysis [29]9. The other is the canonical perturbation of the bit threads configuration fol-
lowing the Iyer-Wald formalism [63]. These perturbations of bit threads give perturbations
of the entanglement contour, hence is useful to test the first law.

We do not explicitly discuss the dependence of the coordinates of the bulk entanglement
contour sa(x). It is interesting since it gives a fine description of the entanglement structure
in the bulk and affects the boundary entanglement contour at the quantum level. The bulk
entanglement contour is also mentioned recently in [34, 35], which extend the concept of
bit threads to the quantum bit threads by allowing the bit threads to start and terminate
in the bulk. In such a way they can use the quantum bit threads to describe the quantum
correction of the holographic entanglement entropy. However an explicate configuration
of the quantum bit threads is necessary to give a contour function.

We propose that the entanglement contour sa(x) should be evaluated by applying the
first law of entanglement contour in the bulk. More explicitly let us consider the low energy
excitations (for example the Hawking Radiation) in the bulk which induce a perturbation of

9See also [61,62] for another related flow picture based on a fracton model which satisfies several major
properties of AdS/CFT.
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the stress tensor, while the backreaction to the geometry can be omitted. According to the
first law of entanglement contour, the perturbation of the contour function is proportional
to the perturbation of the stress tensor. This approach may be valid at the early age
of a black hole. Together with the picture we give in section 3.2, the time evolution or
perturbation of the bulk entanglement contour is furthermore related to the evolution
or perturbation of the boundary entanglement contour at the quantum level using the
relation between the bulk PEE and boundary PEE. See Fig.7 for example.

Another important relevant question that we come up with is what the first law of the
entanglement contour at the quantum level can tell us about the dynamics in the bulk.
The linearized Einstein’s equations in the bulk have already been derived by the first law
of the entanglement entropy at the classical level. According to our discussion on both of
the first law and quantum correction of the entanglement contour, the perturbation of the
boundary entanglement contour at the quantum level should relate to the perturbation
of the energy-momentum tensor in the bulk, and further relate to the perturbation of the
bulk geometry. We hope this can give us further understanding about the dynamics of
geometry beyond the linearized Einstein’s equations or quantum excitations of gravity.

Figure 7: Here the homology surface ΣA is divided into a1 ∪ a2 ∪ a3 as in Fig.4. The
background state is the vacuum of the boundary CFT, and the stars are low energy
excitations of the stress tensor inside a2. The red curve on the boundary is the perturbation
of the entanglement contour at the quantum level caused by the bulk excitations, which
is only non-zero on A2.
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