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Abstract

The WZW models describe the dynamics of the edge modes of Chern-Simons
theories in three dimensions. We explore the WZW models which can be
mapped to supersymmetric theories via the generalized Jordan-Wigner trans-
formation. Some of such models have supersymmetric Ramond vacua, but the
others break the supersymmetry spontaneously. We also make a comment on
recent proposals that the Read-Rezayi states at filling fraction ν = 1/2, 2/3
are able to support supersymmetry.
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1 Introduction and Conclusion

Ever since its discovery, space-time supersymmetry [1] has been widely utilized in
high-energy physics and cosmology. Despite its theoretical attraction, the presence
of supersymmetry in nature has not been observed in high-energy experiments yet.
Instead, the series of recent works suggested interesting ideas of realizing space-time
supersymmetry in the condensed matter systems [2–7].

Of particular interest are the integer and fractional quantum Hall systems. The
fractional quantum Hall states are shown to have topological order [8, 9] which is
beyond the Landau theory of symmetry breaking. Those topologically ordered states
are known to possess gapless edge excitations with fractional charges.

The plateaus of fractional quantum Hall effect are characterized by filling frac-
tion ν, the parameter associated with Hall conductivity σ = e2

2π~ν. The theoretical
approach to the observed filling fractions was pioneered by Laughlin [10], and ideas
such as hierarchy states [11, 12] and the composite fermion [13] were proposed to
explain the fractional quantum Hall states with Abelian anyonic statistics. Soon af-
terwards, it was shown in [14,15] that the Pfaffian wave function provides theoretical
understanding of the non-Abelian fractional quantum Hall effect.

The Chern-Simons theories in the 2+1 space-time dimensions provide low-energy
effective theories capturing the response of the quantum Hall ground state to low-
energy fluctuations. Especially, the non-Abelian braiding statistics of the anyon can
be understood essentially from the computation of Wilson lines of Chern-Simons
theories on S3 [16]. The quantization of the Chern-Simons theory on a manifold
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with boundaries leads to a chiral rational conformal field theory(RCFT) [16,17] that
describes the edge excitations of quantum Hall states. A prominent example is a
correspondence between Laughlin states of ν = 1/k and RCFT with u(1)k affine
algebra. For more details, see the discussion in [18,19].

The goal of this paper is to explore the emergent supersymmetry on the edges of
the 2 + 1-dimensional gapped phases. By the superymmetry on the edges, we mean
that a chiral RCFT has a chiral primary G(z) of conformal weight h = 3/2 satisfying
the operator product expansion(OPE) below,

T (z)G(0) ∼ 3

z2
G(0) +

1

z
∂G(0),

G(z)G(0) ∼ 2c

3z3
+

1

z
T (0), (1.1)

where T (z) is the stress-energy tensor with the central charge c. Then the primary
G(z) plays a role of the supersymmetry current.

In the present work, we mainly pay attention to the non-chiral Wess-Zumino-
Witten(WZW) models that has a chiral primary of h = 3/2 obeying (1.1). Once such
a model exists, its chiral sector that can arise on the edges is then able to support
a supersymmetry current. The above problem is also equivalent to another problem
searching for non-chiral WZW models associated with supersymmetric theories via
the so-called the Jordan-Wigner transformation [20, 21] where the chiral primary of
h = 3/2 of the WZW model becomes the superymmetry current.

To understand the equivalence, let us consider an well-known example, the tri-
critical Ising model. The tricritical Ising model is the Virasoro minimal model with
central charge c = 7/10, and has six chiral primaries of h = 0, 1/10, 3/5, 3/2, 3/80
and 7/16 whose characters are denoted by χh(τ). The model is a bosonic CFT by
itself and thus has no supersymmetry current, which is clearly understood from its
torus partition function

ZB =
∣∣χh=0(τ)

∣∣2 +
∣∣χh= 1

10
(τ)
∣∣2 +

∣∣χh= 3
5
(τ)
∣∣2 +

∣∣χh= 3
2
(τ)
∣∣2 +

∣∣χh= 3
80

(τ)
∣∣2 +

∣∣χh= 7
16

(τ)
∣∣2.

It is known that the model has a primary operator ε′′(z, z̄) of (h, h̄) = (3/2, 3/2) that
satisfies the OPE

ε′′(z, z̄)ε′′(0) ∼
(

7

15

)2
1

(zz̄)3
+

7

15

(
T (0)

zz̄3
+
T̄ (0)

z3z̄

)
+
T (0)T̄ (0)

zz̄
. (1.2)

Note that the above OPE involves only the identity operator and its descendants,
consistent with the fusion algebra of the tricritical Ising model. The OPE (1.2) implies
that the chiral part of ε′′(z, z̄), denoted by ε′′(z), would satisfy (1.1) with c = 7/10,
namely the chiral part of the model has the supersymmetry current. On the other
hand, the generalized Jordan-Wigner transformation maps the (non-chiral) tricritical
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Ising model to the N = 1 supesymmetric minimal model with c = 7/10 [21] where
the chiral primary ε′′(z) becomes the supersymmetry current. From the partition
function of the N = 1 supersymmetric minimal model with c = 7/10 in the Neveu-
Schwarz(NS) sector,

ZNS ≡ trHNS

[
qL0−c/24q̄L̄0−c/24

]
,

=
∣∣χh=0(τ) + χh= 3

2
(τ)
∣∣2 +

∣∣χh= 1
10

(τ) + χh= 3
5
(τ)
∣∣2.

= χh=0(τ)χ̄h̄= 3
2
(τ̄) + χh= 3

2
(τ)χ̄h̄=0(τ̄) + · · · , (1.3)

where χh(τ) are the characters of the tricritical Ising model, one can see that the
chiral primary ε′′(z) of h = 3/2 indeed appears as the descendant of the vacuum and
becomes the holomorphic supersymmtry current.

A fermionic CFT refers to a conformal field theory which has primaries of half-
integer spin. We need to choose a spin structure to define such a fermionic CFT. On
a two-torus, there exist four different spin structures denoted by (NS,NS), (R,NS),
(NS,R) and (R,R) where the former in the parenthesis specifies either the Neveu-
Schwarz(NS) or the Ramond(R) boundary condition along the temporal circle while

the latter along the spatial circle. We use a shorthand notation NS, ÑS, R and R̃ for
those spin structures in what follows.

Of course, the WZW models themselves cannot be a supersymmetric theory due
to their bosonic nature. Instead, we will apply the fermionization, a.k.a. the gen-
eralized Jordan-Wigner transformation, to convert them to candidates of interest.
A modern understanding of the fermionization is to couple a bosonic theory having
non-anomalous Z2 symmetry with the low-energy limit of the topological phase of
the Kitaev Majorana chain followed by the Z2 quotient [20, 22]. This idea has been
applied in recent works [21, 23–27]. The fermionization also provides a theoretical
ground to the well-known fact that the tricritical Ising model is supersymmetric [28],
as explained above. The target of our analysis is to search for supersymmetric RCFTs
with c ≥ 1 and we fermionize the WZW models that has no more than 60 primaries
to achieve the goal.

Although there are many known constructions for the unitary supersymmetric
RCFTs such as the supersymmetric minimal models [28–30], N = 1 extremal su-
persymmetric conformal field theory(SCFT) [31], N = 1 “Beauty and the Beast”
SCFT [32], the full classification is still far-fetched. The classification program of
fermionic RCFTs with a few number of primaries has been studied only recently. For
instance, see [33, 34]. Instead of explicit construction or full classification, we rather
focus on the essential features of the supersymmetric RCFTs for the exploration.
First, the NS-sector has to contain spin-3/2 currents as the vacuum descendants that
play a role of the supersymmetry currents. Second, the torus partition function of
R̃-sector becomes an index and thus take a constant value. Finally, the R-sector
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Type Gk

A-type SU(12)1, SU(4)3, SU(6)2, SU(2)6

A′-type SU(4)4/Z2

C-type Sp(4)3, Sp(6)2, Sp(12)1

D-type SO(8)3, SO(12)2, SO(24)1

SO(N)3 SO(3)3(= SU(2)6), SO(4)3(= (SU(2)6)2),

SO(5)3(= Sp(4)3), SO(6)3 = SU(4)3, SO(7)3, · · ·

Table 1: List of WZW models that allows fermionization to supersymmetric models
with supersymmetric vacua.

Type Gk

E-type (E7)2, (E8)2

Orbifold SO(16)2/Z2, SU(16)1/Z2, SU(8)2/Z2

Table 2: List of WZW models whose Z2 orbifold allows fermionization to supersym-
metric models. However their Ramond vacua do not saturate the supersymmetric
unitarity bound.

primaries satisfy the supersymmetric unitarity constraint hR ≥ c
24

. Whenever a
fermionic RCFT fulfills the above necessary conditions, we regard it as an unitary
supersymmetric RCFT. We also check if the candidate partition functions allow the
super Virasoro character decomposition. For later convenience, we refer to the above
four conditions as SUSY conditions.

The main results of this paper are summarized in table 1 and 2. The WZW models
listed in table 1 can be fermionized to satisfy the aforementioned SUSY conditions.
Moreover, their Ramond vacua saturate the supersymmetric unitarity bound hR ≥ c

24
.

This implies that supersymmetry in the Ramond sector remains unbroken. We also
remark that those WZW models in table 1 are shown in the recent work [35] to have
N = 1 supersymmetric vertex operator algebra.

On the one hand, table 2 presents the WZW models that can be mapped to
fermionic theories satisfying the SUSY condition via the Jordan-Wigner transfor-
mation. However, those model have none of the R-sector primaries saturating the
unitarity bound hR ≥ c

24
. In other words, supersymmetry is spontaneously broken in

the Ramond sector.
We also investigate the emergence of supersymmetry in certain chiral RCFTs

proposed to describe the Read-Rezayi states at filling fraction ν = k
kM+2

for k =
2, 3, 4, · · · and nonnegative M [15]. We observe that the fermionized RCFTs for
(k = 2,M = 1) and (k = 4,M = 1) can be identified with the N = 2 unitary
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supersymmetric minimal models, consistent with the recent work of [36,37].
This paper is organized as follows. Section 2 is for brief reviews on the modern

perspective on the fermionization, the WZW models and their center symmetry,
and the Chern-Simons theories with emphasis on one-form global symmetries and
their gauging. We also summarize SUSY conditions that has to be obeyed by any
supersymmetric RCFTs. In Sections 3 and 4, we present detailed analyses that
show the emergence of supersymmetry for the WZW models in table 1 and 2. We
examine in Section 5 if the RCFTs for the Read-Rezayi states at ν = 1/2, 2/3 preserve
supersymmetry. In appendix A, we argue that supersymmetry can emerge only for
the Z6 and Z8 parafermion CFTs via the Jordan-Wigner transformation.

2 Preliminaries

2.1 Z2 Orbifold and Fermionization

We briefly review on the generalized Jordan-Wigner transformation that maps a given
bosonic theory to a fermionic theory and vice versa in two dimensions [20,22].

Let us start with a bosonic theory with non-anomalous Z2 symmetry, denoted by
B. Gauging the discrete Z2 symmetry leads to an orbifold B̃ = B/Z2. The partition
functions of B and B̃ on a genus g Riemann surface Σg satisfy the relation below

ZB̃
[
T
]

=
1

2g

∑
s∈H1(Σg ,Z2)

ZB
[
s
]

exp
[
iπ

∫
s ∪ T

]
, (2.1)

where the sum s is over all possible discrete gauge fields for the Z2 symmetry. It
is known that the orbifold B̃ has an emergent Z2 quantum symmetry, and T ∈
H1(Σg,Z2) is the background gauge field for the quantum symmetry. Here the cup
product ‘∪’ is a product on cohomology classes which becomes the wedge product of
differential forms in the case of de Rham cohomology.

One can also utilize the Z2 symmetry to obtain a fermionic theory F ‘dual’ to B.
To do so, one needs a non-trivial two-dimensional invertible spin topological theory,
known as the Kitaev Majorana chain. Note that the theory of the Majorana chain
has the Z2 global symmetry. The fermionization can be described as coupling B to
the Kitaev Majorana chain, and then taking the diagonal Z2 orbifold. The partition
functions of F on a genus g Riemann surface with spin structure ρ is related to that
of B as follows,

ZF
[
T + ρ

]
=

1

2g

∑
s∈H1(Σg ,Z2)

ZB
[
s
]

exp
[
iπ

(
Arf[s+ ρ] + Arf[ρ] +

∫
s ∪ T

)]
, (2.2)

where T ∈ H1(Σg,Z2) is the background gauge field for the fermion parity (−1)F .
Here Arf[ρ] is the so-called Arf invariant which accounts for the contribution from
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the Kitaev Majorana chain. The Arf invariant is a mod 2 index and becomes 1 when
ρ is even and 0 otherwise. For instance, when Σg = T 2, a choice of periodic (R) or
anti-periodic (NS) boundary condition around each of the two cycles specifies a spin
structure ρ. The Arf invariant is then given by

Arf
[
ρ
]

=

{
1 (R,R)
0 (NS,R), (R,NS), (NS,NS)

(2.3)

On the other hand, we can make use of the quantum Z2 symmetry to obtain a
fermionic theory F̃ from B̃:

ZF̃
[
T + ρ

]
=

1

2g

∑
s∈H1(Σg ,Z2)

ZB̃
[
s
]
exp
[
iπ

(
Arf[s+ ρ] + Arf[ρ] +

∫
s ∪ T

)]
. (2.4)

Note that the map (2.1) further relates ZF̃ to ZB,

ZF̃
[
T + ρ

]
=

1

22g

∑
s,t∈H1(Σg ,Z2)

ZB
[
t
]
exp
[
iπ

(
Arf[s+ ρ] + Arf[ρ] +

∫
s ∪ (T + t)

)]
=

1

2g

∑
t∈H1(Σg ,Z2)

ZB
[
t
]
exp
[
iπArf[(T + t+ ρ)]

]
, (2.5)

where we applied an identity below for the last equality,

1

2g

∑
s∈H1(Σg ,Z2)

exp
[
iπ

(
Arf[s+ ρ] + Arf[ρ] +

∫
s ∪ t

)]
= exp

[
iπArf[t+ ρ]

]
. (2.6)

Using another identity for the Arf invarint,

exp
[
iπArf[s+ t+ ρ]

]
= exp

[
iπ

(
Arf[s+ ρ] + Arf[t+ ρ] + Arf[ρ] +

∫
s ∪ t

)]
,

one can show that the fermionic theory F̃ can be obtained by coupling F to the
Kitaev Majorana chain

ZF̃
[
ρ
]

= ZF
[
ρ
]
exp
[
iπArf[ρ]

]
. (2.7)

For proofs of identities, see [20,38]. The equation (2.7) implies that ZF is the same as
ZF̃ in any choice of the spin structure except the symmetric ρ where the sign would
be flipped. One can learn from the maps (2.1) and (2.2) how the Hilbert spaces of

B, B̃, F , and F̃ are shuffled to each other, summarized in table 3
In the present work, bosonic CFTs B mainly refers to the WZW models on simple

Lie groups. Most of WZW models have a natural Z2 symmetry, which is a part of
the center symmetry. We utilize the Z2 symmetry to construct either the orbifold
B̃ or the fermionic partner F in what follows. In Appendix A, we consider the Zk
parafermion theories as an excursion beyond the WZW models.
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B untwisted twisted
even He

u He
t

odd Ho
u Ho

t

B̃ untwisted twisted
even He

u Ho
u

odd He
t Ho

t

F NS sector R sector
even He

u Ho
u

odd Ho
t He

t

F̃ NS sector R sector
even He

u He
t

odd Ho
t Ho

u

Table 3: A bosonic theory B on S1 has either the untwisted or the twisted Hilbert
space, depending on whether a nontrivial Z2 holonomy along the circle is turned off or
not. Each Hilbert space can be further decomposed into the Z2 even and odd sectors.
On the other hand, a fermionic theory F on a circle has either the Neveu-Schwarz or
the Ramond sector, depending on the periodic condition along S1. One can divide
each sector into the (−1)F even and odd sectors where F denotes the fermion number
operator.

2.2 Supersymmetry Conditions

We define a superconformal theory as a conformal theory having a conserved current
G(z) of weight h = 3/2 satisfying the OPEs below,

T (z)G(0) ∼ 3

z2
G(0) +

1

z
∂G(0),

G(z)G(0) ∼ 2c

3z3
+

1

z
T (0),

(2.8)

where T (z) denotes the stress-energy tensor and c is the central charge. The conserved
current G(z) is then called supersymmetry current. To search for a bosonic CFT
which can be fermionized to a superconformal theory, one needs to find such an
h = 3/2 supersymmetry current. Once we find such a bosonic theory, as explained in
introduction, its chiral part has the supersymmetry current. It is rather nontrivial to
show if a candidate primary of h = 3/2 obeys the supersymmetry current OPE (2.8)
for an interacting theory. Instead, we discuss necessary conditions for a given bosonic
RCFT to be mapped to a supersymmetric theory via the generalized Jordan-Wigner
transformation (2.2):

1. We first require a bosonic theory B to have an h = 3/2 primary operator. This
primary will play a role as a supersymmetry current after the fermionization.
We also note that the NS vacuum character of the supersymemtric theory dual
to B can be obtained by combining the vacuum character with the character
for the primary of h = 3/2.

2. For a supersymmetric theory F , the torus partition function in the Ramond-
Ramond sector, denoted by ZR̃

F , becomes an index and thus constant. As a
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consequence, the difference between torus partition functions of B and B̃ also
takes the constant value,

ZB(τ, τ̄)− ZB̃(τ, τ̄) = ZR̃
F (τ, τ̄) = const. (2.9)

When the index ZR̃
F (τ, τ̄) does not vanish, the corresponding theory has super-

symemtric vacua. On the other hand, the index vanishes when the supersym-
metry is spontaneously broken unless the the supersymmetric unitarity bound
below is saturated. The ZR̃

F also vanishes whenever a given theory has a free
fermion regardless of whether the superymmetry is preserved. In the present
work, we focus on a model having no free fermion.

3. The supersymmetric unitarity bound hR ≥ c/24 has to be obeyed. This is
because, in the Ramond sector where G(z) =

∑
r∈1/2+ZGr/z

r+3/2, each Laurent
mode Gr satisfies the anti-commutation relations below,{

Gr, Gs

}
= 2Lr+s +

1

2

(
r2 − c

24

)
δr+s. (2.10)

4. Finally, the fermionic partition function in each spin structure should allow the
super Virasoro character decomposition.

As an illustration, let us choose the U(1)12 WZW model for B. This model is the
theory of a compact boson on S1 with radius 2

√
3 and has twelve primaries of con-

formal weights h = n2/24 for n = 0,±1, ..,±5, 6. Note that the U(1)12 WZW model
has a primary of h = 3/2 which could potentially play a role as a supersymmetry
current. The model has a Z2 symmetry which acts on each primary as follows,

Z2 :
∣∣h =

n2

24

〉
−→ (−1)n ·

∣∣h =
n2

24

〉
. (2.11)

The torus partition functions of B = U(1)12 and the orbifold B̃ = B/Z2 are given by

ZB =
∣∣χ0

∣∣2 +
∣∣χ6

∣∣2 +
5∑

n=1

(∣∣χn∣∣2 +
∣∣χ−n∣∣2) , (2.12)

ZB̃ =
∣∣χ0

∣∣2 +
∣∣χ6

∣∣2 +
∑

n=2,3,4

(∣∣χn∣∣2 +
∣∣χ−n∣∣2)+

(
χ1χ̄5 + χ−1χ̄−5 + χ5χ̄1 + χ−5χ̄−1

)
,

which implies that their difference is constant,

ZB − ZB̃ =
∣∣χ1 − χ5

∣∣2 +
∣∣χ−1 − χ−5

∣∣2 = 12 + 12. (2.13)

We see that the U(1)12 WZW model satisfies the aforementioned first and second
necessary conditions, and thus it is likely that the corresponding fermionic theory is
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supersymmetric. To see this, we apply (2.2) to obtain the torus partition function of
the fermionic theory F for each spin structure given by,

ZNS
F =

∣∣χ0 + χ6

∣∣2 +
∣∣χ2 + χ4

∣∣2 +
∣∣χ−2 + χ−4

∣∣2,
ZÑS
F =

∣∣χ0 − χ6

∣∣2 +
∣∣χ2 − χ4

∣∣2 +
∣∣χ−2 − χ−4

∣∣2,
ZR
F =

∣∣χ1 + χ5

∣∣2 +
∣∣χ−1 + χ−5

∣∣2 + 2
∣∣χ3

∣∣2 + 2
∣∣χ−3

∣∣2,
ZR̃
F =

∣∣χ1 − χ5

∣∣2 +
∣∣χ−1 − χ−5

∣∣2 = 12 + 12,

(2.14)

It is straightforward to show that (2.14) perfectly agrees with the partition function of
theN = 1 supersymmetric minimal model with c = 1, which confirms our expectation
that F preserves the supersymmetry. Indeed we can express (2.14) in terms of the
N = 1 super-Virasoro characters of c = 1.

We make a remark that U(1)12 and its fermionic partner in the NS sector can arise
as the theories of gapless edges of three-dimensional U(1) Chern-Simons theories with
level k = 12 and k = 3, which will be discussed in more detail later in this section.

2.3 Wess-Zumino-Witten Models

Wess-Zumino-Witten(WZW) models are non-linear sigma models with the group
manifold G as target space. The current algebra of WZW models is known to be
described by the affine Lie algebra Ĝ. In this subsection, we briefly review the WZW
models and present the prime consequences.

Let us take the bosonic field g(z, z̄) which is valued in the unitary representation
of the semi-simple group G. The action of the WZW model has a form of

S =
|k|
4π

∫
S2

d2zTr
[
g−1∂µgg

−1∂µg
]

+
k

12πi

∫
B

d3yεαβγTr
[
g̃−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃

]
,

(2.15)

where B denote the three-dimensional manifold whose boundary is the two-sphere S2

and g̃ is an extension of the bosonic field g(z, z̄) to the three-dimensional manifold
B. For the path integral to be well-defined, the level k should be quantized. Having
constructed an action (2.15), one can show that the holomorphic current J(z) =
−k∂gg−1 and the anti-holomorphic current J̄(z̄) = kg−1∂̄g are conserved separately.

The primary states of the WZW models are associated with the affine weights
of Ĝ, which are labeled by non-negative integers referred to as affine Dynkin labels
µ̂ = (µ0, µ1, · · · , µr). Here, r denote the rank of Ĝ. More precisely, the primary fields
are in correspondence with the weights in the integrable representation P k

+ defined as

P k
+ =

{
µ̂
∣∣∣µj ≥ 0, 0 ≤

r∑
j=1

a∨j µj ≤ k

}
. (2.16)
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The comarks a∨j are combined with the Dynkin labels µj to produce the level k as
follows.

k = µ0 +
r∑
j=1

a∨j µj (2.17)

Because the physically relevant fields ought to be in the P k
+, the level k is given by a

positive integer. WZW models possess a finite number of primary fields for a given
k, therefore one can consider them as rational conformal field theory(RCFT).

The central charge of a given WZW model and the conformal weights of primary
states can be computed via the Sugawara construction. Their explicit forms are given
by

c =
kdim(Ĝ)

k + h∨
, hµ̂ =

(µ̂, µ̂+ 2ρ̂)

2(k + h∨)
, (2.18)

where h∨ and ρ̂ are the dual Coxeter number and affine Weyl vector, respectively.
The torus partition function of a given WZW model takes the form of

Z(τ, τ̄) =
∑

µ̂,ν̂∈Pk+

χµ̂(τ)Mµ̂ν̂χ̄ν̂(τ̄). (2.19)

WhenMµ̂ν̂ = δµ̂ν̂ , we call Z(τ, τ̄) as a diagonal partition function, otherwise we refer
it as the non-diagonal partition function in what follows. The character χµ̂(τ) of
irreducible representation with the highest weight state µ̂ can be computed by the
Weyl-Kac formula. An explicit expression for the character is given by

χµ̂(τ) =

∑
w∈W ε(w)ew(ρ̂+µ̂)−ρ̂∑
w∈W ε(w)ew(ρ̂)−ρ̂ , (2.20)

where ε(w) denote the sign of an element w of the Weyl group W . The computation
of the q-series of characters is done in SageMath [39].

The modular properties of characters are known as

χµ̂(τ + 1) =
∑
ν̂∈Pk+

Tµ̂ν̂χν̂(τ), χµ̂(−1/τ) =
∑
ν̂∈Pk+

Sµ̂ν̂χν̂(τ),
(2.21)

where the modular matrices have the expressions of

Tµ̂ν̂ = δµ̂ν̂e
2πi(hµ̂− c

24
),

Sµ̂ν̂ = N
∑
w∈W

ε(w)exp

[
− 2πi

k + h∨
(w(µ̂+ ρ̂), ν̂ + ρ̂)

]
.

(2.22)

The normalization constant N can be fixed by the unitary constraint of the S-matrix.
The data of WZW models, including the list of primary and the numerical value of
S-matrix elements, are accessible via the program kac [40].

10



Âr : B̂r :

Ĉr : D̂2r+1 :

D̂2r : and

Ê6 : Ê7 :

Figure 1: Affine Dynkin diagrams and their outer automorphism are presented. The
white node and black node denote long root and short root respectively.

Let us move our attention to the outer automorphism of the WZW models. We
wish to construct the orbifold theory of the WZW models by employing (2.1). In
this paper, we mostly focus on the non-anomalous Z2 symmetry that arise from the
outer automorphism of the affine Lie algebra. More precisely, we focus on the Z2

subgroup of the outer automorphism. The outer automorphism O(Ĝ) is defined as
the quotient of symmetry groups of Lie algebra G and affine algebra Ĝ which will be
denoted as D(Ĝ) and D(G) respectively. Here, the symmetry group means the set of
transformations preserving Cartan matrices. The symmetry transformation of O(Ĝ)
and the action of O(Ĝ) to an arbitrary weight λ̂ = (λ0, λ1, · · · , λN) are presented in

11



G O(Ĝ) Action of O(Ĝ)

AN ZN+1 A(λ0, λ1, · · · , λN−1, λN) = (λN , λ0, · · · , λN−2, λN−1)

BN Z2 A(λ0, λ1, · · · , λN−1, λN) = (λ1, λ0, · · · , λN−1, λN)

CN Z2 A(λ0, λ1, · · · , λN−1, λN) = (λN , λN−1, · · · , λ1, λ0)

D2k Z2 × Z2
A(λ0, λ1, · · · , λ2k−1, λ2k) = (λ1, λ0, λ2, · · · , λ2k, λ2k−1)

Ã(λ0, λ1, · · · , λ2k−1, λ2k) = (λ2k, λ2k−1, λ2k−2, · · · , λ1, λ0)

D2k+1 Z4 A(λ0, λ1, · · · , λ2k, λ2k+1) = (λ2k, λ2k+1, λ2k−1, · · · , λ1, λ0)

E6 Z3 A(λ0, λ1, · · · , λ5, λ6) = (λ1, λ5, λ4, λ3, λ6, λ0, λ2)

E7 Z2 A(λ0, λ1, · · · , λ6, λ7) = (λ6, λ5, λ4, λ3, λ2, λ1, λ0, λ7)

Table 4: Outer automorphism of the affine Lie algebras are listed in this table.

figure 1 and table 4.
It has been known that the outer automorphism O(Ĝ) is isomorphic to the center

of Lie group G. To see this, let us define a subgroup B(G) of G with elements:

b = e−2πiAω̂0·H , (2.23)

where the fundamental weight Aω̂0 can be obtained by the action of the outer au-
tomorphism A on the zeroth fundamental weight ω̂0 = (1, 0, · · · , 0) (see table 4).
One can show that the group element b of B(G) indeed commutes with the arbitrary
group element of G [41]. The action of b to the arbitrary state

∣∣Λ〉 is given by

b
∣∣Λ〉 = e−2πi(Aω̂0,Λ)

∣∣Λ〉. (2.24)

Let us now take the Z2 subgroup of the outer automorphism O(Ĝ). Note that not
every O(Ĝ) of the affine Lie algebra admit the Z2 subgroup. Specifically, the outer

automorphism of ÂN with N odd and Ê6 cannot have the Z2 subgroup. Except such
cases, one can utilize the Z2 subgroup of center symmetry to construct the orbifold
partition function.

As an illustrative example, let us consider the SU(2)6 WZW model. This model
involves seven primaries. Denoting the SU(2) fundamental weight by ω1, the SU(2)
representations of the seven primaries are Λj = jω1 for j = 0, 1, .., 6. Since the outer

automorphism O(Ĝ) sends ω̂0 to ω̂1, the phase factor of (2.24) becomes (−1)j. In
general, one can read the Z2 action in a similar manner for the Gk WZW model as
long as the outer automorphism of Ĝ has a Z2 subgroup.

2.4 Chern-Simons Theories : Bulk Descriptions

We discuss here the connection between two and three dimensional theories, often
referred to as the bulk-boundary correspondence, established for two-dimensional

12



rational CFTs and three-dimensional Chern-Simons theories#1. We mainly consider
the WZW models as two-dimensional theories in what follows.

The Chern-Simons theory provides a macroscopic approach to understand the
physics of the both integer and fractional quantum Hall states. When a given sys-
tem in such a topological phase is defined on a manifold with boundaries, a certain
two-dimensional chiral RCFT describes the modes that live at the edges. To be more
precise, all the states of the current algebra and its representations can be recov-
ered by quantizing the three-dimensional Chern-Simons theory on the manifold with
boundaries.

It was further shown recently in [42] that each character of the current algebra can
be computed by direct evaluation of the Chern-Simon path-integral in the presence of
a Wilson line. This implies that one can describe the chiral primary on the boundary
as the non-trivial Wilson lines allowed in the bulk. A global symmetry which acts
on the edge modes can then be elevated to a one-form global symmetry under which
the Wilson lines transform. We can also show that the conformal weight of a chiral
primary is the same with the spin of the corresponding Wilson line.

Sometimes a global symmetry of a boundary CFT has a ’t Hooft anomaly which
prevents us from the gauging the symmetry in a consistent manner. For instance,
let us consider an orbifold B̃ from gauging an anomalous discrete symmetry. The
modular invariance of the partition function ZB̃ could determine the spectrum in the
twisted sector. However the anomalous behavior of the discrete symmetry is then
reflected on the fact that such twisted sector is incompatible with the action of the
symmetry.

We will explain below what the consequence of the above two-dimensional ’t Hooft
anomaly could be in the bulk, and discuss the conditions for non-anomalous symmetry
necessary to define either an orbifold B̃ or a fermionic theory F on the boundary and
their bulk descriptions as well.

U(1)k Chern-Simons theory Let us start with the U(1) Chern-Simons theory
with level k,

S =
k

4π

∫
A ∧ dA . (2.25)

For even k one can define the theory on any manifold. The Chern-Simons theory
corresponds to the theory of a free compact chiral boson φ of radius R =

√
k. This is

not the case for odd k where the theory is defined only on spin manifolds and depends
on the choice of spin structure.

When the Chern-Simons theories are applied to the fractional quantum Hall sys-
tems, one can describe the world-lines of quasi-particles as the Wilson lines.

#1We focus on the gauge interactions but bear in mind the presence of the gravitational interactions
in the correspondence.
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For even k, we have k distinct Wilson lines labelled by the U(1) charge n,

Wn(C) = exp
[
in

∫
C

A
]
, (2.26)

for n = 0,±1,±2, ..,±(k−2)/2, k/2. This is because the Wilson line Wk has a trivial
vacuum expectation value, and thus the lines with n and n + k are identical. One
can also show that Wn(C) has spin

s =
n2

2k
. (2.27)

The spin of Wn(C) is defined modulo one, which is reflected on the fact that the
trivial Wilson line Wk(C) carries integer spin k/2. Note that the Wilson line Wn

corresponds to the two-dimensional chiral primary of weight h = n2/(2k) via the
bulk-boundary correspondence.

On the other hand, (2.27) says the Wilson line Wk(C) carries half-integer spin for
odd k. This implies that, although Wn(C) and Wn+k(C) induce the same holonomy,
their spins differ by 1/2. For odd k, the Wilson line labelled by n can thus be
identified with that by n+ 2k, namely, there are 2k distinct Wilson lines Wn(C) for
n = 0,±1,±2, ..,±(k − 1), k.

The U(1)k Chern-Simons theory has a Zk global one-form symmetry which acts
on the U(1) gauge field as follows

A −→ A+
1

k
ε, (2.28)

where the transformation parameter ε is closed and has integral periods∫
ε ∈ 2πZ. (2.29)

It is useful to describe the symmetry transformation as an operator Ug associated
with a group element of the symmetry. In the case of the Chern-Simons theory, Ug
for the Zk one-form symmetry is now associated with a one-cycle, and is given by the
Wilson line

Ug=e2πin/k(C) = Wn(C). (2.30)

The Wilson lines Wn(C ′) also provide operators charged under the one-form symme-
try. More precisely, the line Wn(C) rotates under (2.28) as follows

Wm(C) −→ eim
∫
C ε/kWm(C) = e

2πinm
k Wm(C), (2.31)
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where
∫
C
ε = 2πn with an integer n. One can also express the above transformation

rule in terms of operators as

Ug=e2πin/k(C)Wm(C ′) = e
2πinm
k Wm(C ′), (2.32)

where C is a circle around the loop C ′. Note also from the operator relation (2.32)
that the generators Ug=e2πin/k(C) themselves are charged under the Zk symmetry. As
explained in [43], this implies that the Zk symmetry is anomalous.

Let us now discuss how to gauge the one-form global symmetry. To this end,
we restrict our attention on a non-anomalous subgroup of the Zk symmetry. The
generators Ug of a non-anomalous symmetry are required to be neutral under the
symmetry. In general, one can show from (2.32) that the Wilson line Wn(C) satisfies

Wn(C)Wn(C ′) = e2πi(2s)Wn(C ′) , (2.33)

where s = n2/2k is the spin of the line and the phase can be understood as the
statistical phase. Therefore, the symmetry generators Ug(C) have to be chosen as
the Wilson lines of either half-integer spin or integer spin. For k = 4p (p ∈ Z), we
see the U(1)4p Chern-Simons theory has the non-anomalous Z2 one-form symmetry,
which is generated by the Wilson line Wn=2p(C) of spin p/2

Ug=−1(C) = Wn=2p(C) = exp
[
i(2p)

∫
C

A
]
,

(Ug=−1(C))2 = 1. (2.34)

The Z2 one-form global symmetry acts on various Wilson lines as

Ug=−1(C)Wn(C ′) =
(
− 1
)n
Wn(C ′), (2.35)

which is nothing but the three-dimensional uplifting of the Z2 action (2.11). Summing
over all possible insertions of Ug=−1(C) accounts for gauging the Z2 symmetry. A
typical insertion is

〈Ug=−1(C)〉 =

∫
DA ei

4p
4π

∫
A∧dA+i(2p)

∫
A∧δ(C)

=

∫
DB ei

p
4π

∫
B∧dB+(background terms), (2.36)

where dB = 2dA+ 2πδ(C). We should stress that the field redefinition B is allowed
because its first Chern number takes an integer value. As a consequence, the Z2

gauging results in the U(1) Chern-Simons theory with level k = p.
When p is odd, the U(1)p Chern-Simons theory is a spin topological field theory

and depends on the choice of the spin structure. From the Z2 gauging approach, this
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fact can be explained by the vacuum expectation value of the Wilson line Ug=−1(C)
that carries h = p/2 half-integer spin.

As a prominent example, one can take the bosonic theory B as the U(1)12 Chern-
Simons theory. As discussed above, the corresponding fermionic theory F is the
N = 1 supersymmetric minimal model. Once the Z2 one-form symmetry is gauged,
we end up with the U(1)3 Chern-Simons theory. The U(1)3 Chern-Simons theory has
6 inequivalent lines labeled by

n = 0,±1,±2, 3, (2.37)

whose spins are 0, 1/6, 1/6, 2/3, 2/3 and 3/2. Interestingly, these lines correspond
to the primaries involved in the NS partition function (2.14) of the N = 1 SUSY
minimal model. This is not a coincident but the U(1)p with odd p is closely related
to a fermionic model associated with the U(1)4p Chern-Simons model in general.

K-matrices One obvious generalization of the Abelian quantum Hall state is a
theory of N U(1) gauge fields characterized by a K matrix,

S =
Kij

4π

∫
Ai ∧ dAj . (2.38)

The gauge invariance of the action requires that all elements of the matrix K have
to be integers. When the diagonal elements of K are even, the theory becomes
independent of the spin structure. Otherwise, the theory is a spin topological field
theory.

The Wilson line labeled by an N -vector ni can be expressed as

W~n(C) = exp
[
ini

∫
C

Ai
]
, (2.39)

and carries a spin s = (Kijninj)/2 where Kij is the inverse matrix of Kij. However,
not all Wilson lines are independent. This is because certain Wilson lines become
trivial, and any Wilson line dressed by trivial Wilson lines can be identified with
itself. For instance, when the diagonal elements of Kij are all even integers, there
exist N trivial Wilson lines,

W ~Kj
(C) ≡ exp

[
iKij

∫
C

Ai
]
, j = 1, 2, · · · , N, (2.40)

each of which induces a trivial holonomy and has an integer spin s = Kjj/2. Then
each line W~n(C) can be identified with the Wilson lines W~n′(C) with n′i = ni +Kijpj
where pj are arbitrary integers. If a certain diagonal element of Kij is an odd integer,
some of W ~Kj

have half-integral spins and cannot be ignored. Then, some of pj are
constrained by even integers accordingly.

16



When the K-matrix is chosen as the Cartan matrix of the Lie algebra of a simple
Lie group G, the Abelian Chern-Simons theory (2.38) can describe anyons of the non-
Abelian Chern-Simons theory with the gauge group G and level one k = 1. A typical
example is the “equivalence” bewteen U(1)2 and SU(2)1 Chern-Simons theories. In
fact, it can be viewed as the bulk realization of the Frenkel-Kac construction where
the level-one WZW model on G can be described as free bosons on the root-lattice
of g [44, 45].

Non-Abelian Chern-Simons theory The non-Abelian Chern-Simons theories in
turn give rise to the non-Abelian anyons. A prominent example is the SU(2) Chern-
Simons theory with k = 2 which describes the bosonic Moore-Read states [46]. It is
thus plausible that the non-Abelian Chern-Simons theories provide low-energy effec-
tive theories for the non-Abelian quantum Hall states, although the full description
needs more sophisticated elaborations [19, 36]. When a non-Abelian Chern-Simons
theory with gauge group G and level k is placed on a manifold with boundaries, the
modes on edges can be described by the WZW model on G with level k.

Although it is fun to review various features of the non-Abelian Chern-Simons
theories to some extent, we mainly focus on the discussion about some aspects of
discrete symmetries in what follows.

As a demonstration, let us consider the SU(2) Chern-Simons theory with level k.
The Wilson lines Wj(C) are now characterized by the SU(2) representation j, and
their spins s = j(j + 1)/(k + 2). This model has the one-form Z2 center symmetry,
generated by the Wilson line Ug=−1(C) associated with the SU(2) representation of
j = k/2,

Ug=−1(C) ≡ Wj=k/2(C). (2.41)

The above generator has spin s = k/4, and it implies that

Ug=−1(C)Ug=−1(C ′) = (−1)kUg=−1(C ′), (2.42)

where the loop C is around the loop C ′. The Z2 one-form symmetry is thus free from
the ’t Hooft anomaly only when k is even. Otherwise, Ug=−1(C) is charged under Z2

and generate an anomalous Z2 symmetry. On the other hand, a charged operator
Wj(C) rotates under Z2 as

Ug=−1(C)Wj(C
′) = (−1)2jWj(C

′). (2.43)

The transformation rule (2.43) can be also understood from the expectation value of
the two linked loops in the j and j′ representations given by

Sjj′ =

√
2

k + 2
sin
[ π

k + 2
(2j + 1)(2j′ + 1)

]
. (2.44)
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The matrix S coincides with the modular S-matrix of the corresponding SU(2) WZW
model with level k [16]. From (2.44), we can see that

S k
2
j = (−1)2jS0j, (2.45)

which is consistent with (2.43).
In general, the generator of non-anomalous Z2 center symmetry of a WZW model

on G is given by Wilson line of a representation R whose spin takes either an integer
or a half-integer value.#2 One can then readily determine the Z2 action by computing
the ratio of two modular S-matrix elements,

Ug=−1(C)WR′(C
′) =

SRR′

S0R′
WR′(C

′), (2.46)

which is in perfect agreement with the action of automorphism group (2.24).
From the boundary point of view, a symmetry operator Ug(C) of spin s is related

to a Verlinde line Lh associated with a primary of conformal weight h = s. The
Verlinde line is a topological defect line that preserves the left and right chiral algebra
[48]. It acts on a primary state

∣∣φk〉 by

Lh′
∣∣φk〉 =

Si,k
S0,k

∣∣φk〉. (2.47)

Here, Si,k denote the (i, k) entry of S-matrix where the conformal weight of i-th
primary is given by h = h′. The vacuum representation is labeled by i = 0.

3 Models with Unbroken SUSY

We propose that the WZW models listed in the table 1 can be fermionized to super-
symmetric theories having supersymmetric Ramond vacua. There are four different
types of such WZW models. We choose one illustrative example of each type, and
demonstrate explicitly that they satisfy the SUSY conditions. We put emphasis that
the SU(12)1, Sp(12)1 and SO(24)1 WZW models can be described as theories of
compact bosons on the root lattices of the Lie groups G.

All of those models except the SU(4)4 WZW model are recently shown to have
N = 1 supersymmetric vertex operator algebras [35], which supports our proposal.

A-type We define the A-type models as the WZW models on the special unitary
groups having the primary of h = 3/2. The A-type involves SU(12)1, SU(6)2, SU(4)3

and SU(2)6 WZW models, as listed in table 5. Note that the models in A-type
obeying the constraint kN = 12.
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Gk c ZB̃ Gk c ZB̃ Gk c ZB̃ Gk c ZB̃
SU(12)1 11 ZB − 288 SU(4)3

45
7

ZB − 32 SU(6)2
35
4

ZB − 72 SU(2)6
9
4

ZB − 4

Table 5: List of A-type WZW models satisfying the supersymmetry conditions af-
ter the fermionization. The four theories in this table have the non-anomalous Z2

symmetry, a subgroup of the center symmetry. The difference between ZB and ZB̃ is
given by a constant for each model. It suggests that their fermionic theories in the
correspondence have supersymmetric Ramond vacua.

i h Rep Z2 i h Rep Z2

0 0 (1;0,0,0,0,0,0,0,0,0,0,0) + 6 3
2

(0;0,0,0,0,0,1,0,0,0,0,0) +

1 11
24

(0;1,0,0,0,0,0,0,0,0,0,0) - 7 35
24

(0;0,0,0,0,0,0,1,0,0,0,0) -

2 5
6

(0;0,1,0,0,0,0,0,0,0,0,0) + 8 4
3

(0;0,0,0,0,0,0,0,1,0,0,0) +

3 9
8

(0;0,0,1,0,0,0,0,0,0,0,0) - 9 9
8

(0;0,0,0,0,0,0,0,0,1,0,0) -

4 4
3

(0;0,0,0,1,0,0,0,0,0,0,0) + 10 5
6

(0;0,0,0,0,0,0,0,0,0,1,0) +

5 35
24

(0;0,0,0,0,1,0,0,0,0,0,0) - 11 11
24

(0;0,0,0,0,0,0,0,0,0,0,1) -

Table 6: SU(12)1: primaries labeled by i are characterized by weights h and SU(12)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the Z2 subgroup of center symmetry Z12.

As an illustration, let us choose the SU(12) WZW model with level one. We start
with the diagonal modular invariant partition function of the model

ZB(τ, τ̄) =
11∑
i=0

∣∣∣χi(τ)
∣∣∣2. (3.1)

Here χi (i = 0, 1, .., 11) denote the characters for the primaries whose SU(12) rep-
resentations and conformal weights hi are summarized in table 6. The Z12 center
symmetry of the model is known to be anomalous, but has the non-anomalous Z2

subgroup. The Z2 center symmetry is generated by the Verlinde line defect Lh=3/2

associated with the primary of h = 3/2. This implies that the Z2 action on each
primary of hi is given by

Z2 :
∣∣hi〉 −→ Lh=3/2

∣∣hi〉 =
S3/2,hi

S0,hi

∣∣hi〉 = (−1)i
∣∣hi〉, (3.2)

which is consistent with (2.24). Here Shi,hj denotes (i, j)-entry of the modular S-
matrix where the conformal weights of i and j-th primaries are given by hi and hj.

#2The possible anomalies of Z2 symmetry in bosonic CFTs are carefully discussed in [47]. In
particular, Z2 symmetry becomes anomalous when the generator has spin either 1

4 , or 3
4 modulo 1.
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We should stress here that the primary of h = 3/2 is even under Z2, and thus the Z2

center symmetry is non-anomalous.
The partition function of B̃ = B/Z2 is given by summing over the discrete Z2

gauge backgrounds (2.1),

ZB̃(τ, τ̄) =
1

2

[
Z(1,1)(τ, τ̄) + Z(g,1)(τ, τ̄) + Z(1,g)(τ, τ̄) + Z(g,g)(τ, τ̄)

]
, (3.3)

where

Z(1,1)(τ, τ̄) ≡ ZB(τ, τ̄) = TrHu

[
qL0−c/24q̄L̄0−c/24

]
,

Z(g,1)(τ, τ̄) ≡ TrHu

[
L 3

2
qL0−c/24q̄L̄0−c/24

]
,

Z(1,g)(τ, τ̄) ≡ TrHt

[
qL0−c/24q̄L̄0−c/24

]
,

Z(g,g)(τ, τ̄) ≡ TrHt

[
L 3

2
qL0−c/24q̄L̄0−c/24

]
.

(3.4)

Here, Hu (Ht) stands for the Hilbert space of B on S1 in the untwisted (twisted)
sector and g is a group element of Z2. It is straightforward from the Z2 action (3.2)
to determine Z(g,1)(τ, τ̄),

Z(g,1)(τ, τ̄) =
∑
i even

∣∣χi(τ)
∣∣2 −∑

i odd

∣∣χi(τ)
∣∣2, (3.5)

and the rests of (3.4) can be also readily obtained by performing modular transfor-
mations on Z(g,1)(τ, τ̄). To be more precise,

Z(1,g)(τ, τ̄) = Z(g,1)(−1/τ,−1/τ̄) (3.6)

=
{(
χ0χ̄6 + χ1χ̄5 + χ2χ̄4 + χ7χ̄11 + χ8χ̄10

)
+
(
c.c
)}

+
∣∣χ3

∣∣2 +
∣∣χ9

∣∣2,
and

Z(g,g)(τ, τ̄) = Z(1,g)(τ + 1, τ̄ + 1) (3.7)

=
{(
− χ0χ̄6 + χ1χ̄5 − χ2χ̄4 + χ7χ̄11 − χ8χ̄10

)
+
(
c.c
)}

+
∣∣χ3

∣∣2 +
∣∣χ9

∣∣2,
where we used the modular S- and T -matrix (2.22) for the last equality of each
equation. The orbifold partition function thus becomes

ZB̃(τ, τ̄) =
∑
i even

∣∣χi(τ)
∣∣2 +

{(
χ1χ̄5 + χ7χ̄11

)
+
(
c.c
)}

+
∣∣χ3

∣∣2 +
∣∣χ9

∣∣2 (3.8)

Since χ1 − χ5 = 12 and χ11 − χ7 = 12, we finally see that the difference between ZB
and ZB̃ is constant

ZB̃(τ, τ̄) = ZB(τ, τ̄)− 288. (3.9)

20



It strongly suggests that the generalized Jordan-Wigner transformation could map B
to a supersymmetric theory F with supersymmetric vacua.

To see this, let us apply (2.2) to construct the partition functions of the corre-
sponding fermionic theory F . One can first express the NS partition function as

ZNS
F (τ, τ̄) =

1

2

[
Z(1,1)(τ, τ̄) + Z(g,1)(τ, τ̄) + Z(1,g)(τ, τ̄)− Z(g,g)(τ, τ̄)

]
. (3.10)

Plugging (3.1), (3.5), (3.6), and (3.7) into (3.10), one obtains

ZNS
F (τ, τ̄) =

∣∣χ0 + χ6

∣∣2 +
∣∣χ2 + χ4

∣∣2 +
∣∣χ8 + χ10

∣∣2
=
∣∣fNS

0 (τ)
∣∣2 + 2

∣∣fNS
1 (τ)

∣∣2, (3.11)

where the NS-sector characters are given as

fNS
0 (τ) = χ0(τ) + χ6(τ) = q−

11
24

(
1 + 143q + 924q

3
2 + · · ·

)
,

fNS
1 (τ) = χ2(τ) + χ4(τ) = χ8(τ) + χ10(τ)

= q
5
6
− 11

24

(
66 + 495q

1
2 + 2718q + · · ·

)
.

(3.12)

The above two characters (3.12) has appeared in [34] as the solutions of the second-
order modular linear differential equation for Γθ. Similarly, one can obtain the par-
tition functions in other sectors as follows,

ZÑS
F (τ, τ̄) =

1

2

[
Z(1,1)(τ, τ̄) + Z(g,1)(τ, τ̄)− Z(1,g)(τ, τ̄) + Z(g,g)(τ, τ̄)

]
,

=
∣∣χ0 − χ6

∣∣2 +
∣∣χ2 − χ4

∣∣2 +
∣∣χ8 − χ10

∣∣2,
ZR
F (τ, τ̄) =

1

2

[
Z(1,1)(τ, τ̄)− Z(g,1)(τ, τ̄) + Z(1,g)(τ, τ̄) + Z(g,g)(τ, τ̄)

]
,

=
∣∣χ1 + χ5

∣∣2 +
∣∣χ7 + χ11

∣∣2 +
∣∣√2χ3

∣∣2 +
∣∣√2χ9

∣∣2
ZR̃
F (τ, τ̄) =

1

2

[
Z(1,1)(τ, τ̄)− Z(g,1)(τ, τ̄)− Z(1,g)(τ, τ̄)− Z(g,g)(τ, τ̄)

]
=
∣∣χ1 − χ5

∣∣2 +
∣∣χ7 − χ11

∣∣2 = 122 + 122.

(3.13)

Based on the facts that the Virasoro primary of h = 3/2 appears as the NS vac-

uum descendant and ZR̃
F becomes constant, it is likely that the fermionic theory

constructed from the SU(12)1 WZW model is supersymmetric.
We notice that the SU(12)1 WZW model can describe the Abelian quantum Hall

state at filling fraction ν = 11
12

discussed in [49]. To see this, we consider an action
below

S =
1

4π
Kij

∫
Ai ∧ dAj +

1

2π

∫
qiB ∧ dAi (3.14)

21



i h Rep Z2 i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (6;0) + 2 3
32

(5;1) - 4 1
4

(4;2) + 6 15
32

(3;3) -

1 3
2

(0;6) + 3 35
32

(1;5) - 5 3
4

(2;4) +

ZNS
F =

∣∣∣∣χ0 + χ1

∣∣∣∣2+ ∣∣∣∣χ4 + χ5

∣∣∣∣2, ZR
F =

∣∣∣∣χ2 + χ3

∣∣∣∣2+ ∣∣∣∣
√

2χ6

∣∣∣∣2

Table 7: SU(2)6: primaries labeled by i are characterized by weights h and SU(2)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the Z2 center symmetry. The partition functions for F in the NS and R
sectors are also presented.

i h Rep Z2 i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (3;0,0,0) + 5 71
56

(0;1,2,0) - 10 9
14

(1;0,0,2) + 15 55
56

(0;1,0,2) -

1 9
8

(0;0,0,3) - 6 9
14

(1;2,0,0) + 11 71
56

(0;0,2,1) - 16 4
7

(1;1,0,1) +

2 3
2

(0;0,3,0) + 7 15
56

(2;0,0,1) - 12 6
7

(1;0,2,0) + 17 39
56

(1;0,1,1) -

3 9
8

(0;3,0,0) - 8 8
7

(0;2,1,0) + 13 55
56

(0;2,0,1) - 18 15
14

(0;1,1,1) +

4 8
7

(0;0,1,2) + 9 15
56

(2;1,0,0) - 14 5
14

(2;0,1,0) + 19 39
56

(1;1,1,0) -

ZNS
F =

∣∣∣∣χ0 + χ2

∣∣∣∣2+ ∣∣∣∣χ4 + χ10

∣∣∣∣2+ ∣∣∣∣χ6 + χ8

∣∣∣∣2+ ∣∣∣∣χ12 + χ14

∣∣∣∣2+ ∣∣∣∣χ16 + χ18

∣∣∣∣2

ZR
F =

∣∣∣∣χ5 + χ9

∣∣∣∣2+ ∣∣∣∣χ7 + χ11

∣∣∣∣2+ ∣∣∣∣
√

2χ1

∣∣∣∣2+ ∣∣∣∣
√

2χ3

∣∣∣∣2+ ∣∣∣∣
√

2χ13

∣∣∣∣2+ ∣∣∣∣
√

2χ15

∣∣∣∣2+ ∣∣∣∣
√

2χ17

∣∣∣∣2+ ∣∣∣∣
√

2χ19

∣∣∣∣2

Table 8: SU(4)3: primaries labeled by i are characterized by weights h and SU(4)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the Z2 subgroup of center symmetry Z4. The partition functions for F in
the NS and R sectors are also presented.

where B is the U(1) electromagnetic background field. Here the K-matrix Kij is
the Cartan matrix of su(12) and ~q = (1, 0, 0, · · · , 0). The filling fraction is then
determined by

ν = (K−1)ijqiqj =
11

12
. (3.15)

To make the discussion concise, we skip analyzing the other examples in the A-
type models in details, but rather provide a few essential facts in tables 7, 8 and 9
from which one can easily construct the partition function of F in each spin structure.

A′-type Among the WZW models on SU(N), we pay special attention to the
SU(4)4 WZW model. This model contains three h = 3/2 primaries of the Dynkin
labels (0; 0, 0, 4), (0; 4, 0, 0) and (0; 1, 2, 1). The Verlinde line associated with the rep-
resentation (0; 1, 2, 1) does not generate a discrete symmetry. Moreover, the lines for
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i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (2;0,0,0,0,0) + 7 33
32

(0;0,0,0,1,1) - 14 7
12

(1;0,1,0,0,0) +

1 5
6

(0;0,0,0,0,2) + 8 131
96

(0;0,0,1,1,0) - 15 3
4

(0;1,0,0,0,1) +

2 4
3

(0;0,0,0,2,0) + 9 131
96

(0;0,1,1,0,0) - 16 7
12

(1;0,0,0,1,0) +

3 3
2

(0;0,0,2,0,0) + 10 33
32

(0;1,1,0,0,0) - 17 13
12

(0;0,0,1,0,1) +

4 4
3

(0;0,2,0,0,0) + 11 35
96

(1;1,0,0,0,0) - 18 95
96

(0;1,0,0,1,0) -

5 5
6

(0;2,0,0,0,0) + 12 5
4

(0;0,1,0,1,0) + 19 21
32

(1;0,0,1,0,0) -

6 35
96

(1;0,0,0,0,1) - 13 13
12

(0;1,0,1,0,0) + 20 95
96

(0;0,1,0,0,1) -

ZNS
F =

∣∣∣∣χ0 + χ3

∣∣∣∣2+ ∣∣∣∣χ1 + χ2

∣∣∣∣2+ ∣∣∣∣χ4 + χ5

∣∣∣∣2+ ∣∣∣∣χ12 + χ15

∣∣∣∣2+ ∣∣∣∣χ13 + χ14

∣∣∣∣2+ ∣∣∣∣χ16 + χ17

∣∣∣∣2

ZR
F =

∣∣χ6 + χ8

∣∣2 +
∣∣χ9 + χ11

∣∣2 +
∣∣χ18 + χ20

∣∣2 +
∣∣√2χ7

∣∣2 +
∣∣√2χ19

∣∣2
Table 9: SU(6)2: primaries labeled by i are characterized by weights h and SU(6)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the Z2 subgroup of center symmetry Z6. The partition functions for F in
the NS and R sectors are also presented.

the representations (0; 0, 0, 4) and (0; 4, 0, 0) generate the Z4 center symmetry rather
than the Z2 symmetry. It is the line defect Lh=1 that realizes the non-anomalous Z2

symmetry of our interest, which is a subgroup of the center symmetry.
Let us then gauge the above Z2 symmetry. Although the orbifold theory B̃ =

SU(4)4/Z2 has the modular invariant partition function disobeying (2.9), it has not

only a primary of h = 3/2 again but also a new quantum Z̃2 symmetry generated by
the Verlinde line L̃h=3/2 associated with the primary of h = 3/2. To be more precise,
we present the orbifold partition function below,

ZB̃(τ, τ̄) =
7∑
i=0

∣∣χ̃i∣∣2 + 2
∣∣χ̃8

∣∣2 + 2
∣∣χ̃9

∣∣2 + 2
∣∣χ̃10

∣∣2, (3.16)

where the conformal characters χ̃(τ) for B̃ are defined in table 10. In addition, table

10 summarize the Z̃2 action on the primaries of orbifold theory B̃.
Since Z̃2 is non-anomalous, we can further gauge the symmetry which leads to

the orbifold partition function,

ZB̃/Z̃2
(τ, τ̄) =

∑
i=0,1,6,7

∣∣χ̃i∣∣2 + 2
∑

j=8,9,10

∣∣χ̃j∣∣2 +
(
(χ̃2

¯̃χ3 + χ̃4
¯̃χ5) + (c.c)

)
, (3.17)

that finally differs to ZB̃(τ, τ̄) by the constant

ZB̃(τ, τ̄)− ZB̃/Z̃2
(τ, τ̄) = 36. (3.18)
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i h χ̃i Z̃2 i h χ̃i Z̃2 i h χ̃i Z̃2

0 0 χ(4;0,0,0) + χ(0;0,4,0) + 4 5
16

χ(3;0,1,0) + χ(1;0,3,0) - 8 3
4

χ(2;0,2,0) +

1 3
2

χ(0;0,0,4) + χ(0;4,0,0) + 5 21
16

χ(0;1,0,3) + χ(0;3,0,1) - 9 5
4

χ(0;2,0,2) +

2 9
16

χ(2;0,0,2) + χ(0;2,2,0) - 6 1 χ(1;0,1,2) + χ(1;2,1,0) + 10 15
16

χ(1;1,1,1) -

3 25
16

χ(0;0,2,2) + χ(2;2,0,0) - 7 3
2

χ(0;1,2,1) + χ(2;1,0,1) +

Table 10: SU(4)4/Z2: primaries labeled by i are characterized by weights h. Their
characters χ̃i are expressed by the characters of SU(4)4 WZW model. We highlight
the primary related to the Z̃2 symmetry.

Gk c ZB̃ Gk c ZB̃ Gk c ZB̃
Sp(4)3 5 ZB − 16 Sp(6)2 7 ZB − 36 Sp(12)1

39
4

ZB − 144

Table 11: List of C-type WZW models satisfying the supersymmetry conditions after
the fermionization. Each of three models in this table has a Z2 center symmetry.
Based on the fact that (ZB −ZB̃) is constant, their fermionic models are expected to
have supersymmetric Ramond vacua.

It is then natural to expect that the orbifold SU(4)4/Z2 can be fermionized to a
supersymmetric theory.

Indeed (2.2) gives the fermionic partition functions below

ZNS
F =

∣∣χ̃0 + χ̃1

∣∣2 +
∣∣χ̃6 + χ̃7

∣∣2 + 2
∣∣χ̃8 + χ̃9

∣∣2,
ZÑS
F =

∣∣χ̃0 − χ̃1

∣∣2 +
∣∣χ̃6 − χ̃7

∣∣2 + 2
∣∣χ̃8 − χ̃9

∣∣2,
ZR
F =

∣∣χ̃2 + χ̃3

∣∣2 +
∣∣χ̃4 + χ̃5

∣∣2 +
∣∣√2χ̃10

∣∣2,
ZR̃
F =

∣∣χ̃2 − χ̃3

∣∣2 +
∣∣χ̃4 − χ̃5

∣∣2 = 62 + 02.

(3.19)

We can see that the NS vacuum has the primary of h = 3/2 as a descendant, which
is able to play a potential role as the supersymmetry current. Based on the fact
that ZR̃

F (τ, τ̄) becomes constant, we also see that there are non-trivial cancellations
between bosonic and fermionic contributions beyond the vacuum. Since the model
under study has no free fermion, it could be explained by the existence of the super-
symmetry.

C-type As presented in table 11, the C-type includes the WZW models on the sym-
plectic group Sp(2N) that obey the supersymmetric conditions after fermionization.
They are Sp(4)3, Sp(6)2, and Sp(12)1 WZW models, all of which have a primary of
h = 3/2. The rank and the level of the each C-type model are also constrained by a
relation kN = 6.

We choose the Sp(6)2 WZW model to discuss the fermionization in details. The
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i h Rep Z2 i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (2;0,0,0) + 3 1
2

(1;0,1,0) + 6 7
24

(1;1,0,0) - 9 7
8

(0;1,1,0) -

1 3
2

(0;0,0,2) + 4 1 (0;1,0,1) + 7 7
6

(0;0,2,0) +

2 5
8

(1;0,0,1) - 5 31
24

(0;0,1,1) - 8 2
3

(0;2,0,0) +

Table 12: Sp(6)2: primaries labeled by i are characterized by weights h and Sp(6)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the center symmetry Z2.

i h Rep Z2 i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (3;0,0) + 3 5
6

(1;0,2) + 6 5
8

(1;1,1) - 9 7
8

(0;3,0) -

1 3
2

(0;0,3) + 4 5
24

(2;1,0) - 7 1
2

(1;2,0) +

2 1
3

(2;0,1) + 5 29
24

(0;1,2) - 8 1 (0;2,1) +

ZNS
F =

∣∣∣∣χ0 + χ1

∣∣∣∣2+ ∣∣∣∣χ2 + χ3

∣∣∣∣2+ ∣∣∣∣χ7 + χ8

∣∣∣∣2, ZR
F =

∣∣∣∣χ4 + χ5

∣∣∣∣2+ ∣∣∣∣
√

2χ6

∣∣∣∣2+ ∣∣∣∣
√

2χ9

∣∣∣∣2

Table 13: Sp(4)3: primaries labeled by i are characterized by weights h and Sp(4)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the center symmetry Z2.

modular invariant of partition function of this model is

ZB(τ, τ̄) =
9∑
i=0

∣∣χi(τ)
∣∣2, (3.20)

where χi are the conformal characters for the primaries of hi. See table 12 where the
group representation and the conformal weight hi of each primary are summarized.

The model has the Z2 center symmetry, generated by the Verlinde line defect
Lh=3/2 associated with the primary of h = 3/2. One find the transformation rules for
ten primaries of the model under Z2 in table 12.

Let us consider the orbifold B̃ = B/Z2. Based on the Z2 actions and modular
matrices, one can compute various twisted partition functions

Z(g,1) =
∑

i=0,1,3,4,7,8

∣∣χi∣∣2 − ∑
i=2,5,6,9

∣∣χi∣∣2,
Z(1,g) =

∣∣χ2

∣∣2 +
∣∣χ9

∣∣2 +
{

(χ0χ̄1 + χ3χ̄4 + χ5χ̄6 + χ7χ̄8) + (c.c)
}
,

Z(g,g) =
∣∣χ2

∣∣2 +
∣∣χ9

∣∣2 +
{

(−χ0χ̄1 − χ3χ̄4 + χ5χ̄6 − χ7χ̄8) + (c.c)
}
,

(3.21)

which leads to the orbifold partition function below

ZB̃ =
4∑
i=0

∣∣χi∣∣2 +
9∑
i=7

∣∣χi∣∣2 +
(
χ5χ̄6 + c.c

)
. (3.22)
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i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (1;0,0,0,0,0,0) + 3 13
32

(0;1,0,0,0,0,0) - 6 33
32

(0;0,0,1,0,0,0) -

1 3
2

(0;0,0,0,0,0,1) + 4 5
4

(0;0,0,0,1,0,0) +

2 45
32

(0;0,0,0,0,1,0) - 5 3
4

(0;0,1,0,0,0,0) +

ZNS
F =

∣∣∣∣χ0 + χ1

∣∣∣∣2+ ∣∣∣∣χ4 + χ5

∣∣∣∣2, ZR
F =

∣∣∣∣χ2 + χ3

∣∣∣∣2+ ∣∣∣∣
√

2χ6

∣∣∣∣2

Table 14: Sp(12)1: primaries labeled by i are characterized by weights h and Sp(12)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the center symmetry Z2. The partition functions for F in the NS and R
sectors are also presented.

Gk c ZB̃ Gk c ZB̃ Gk c ZB̃
SO(8)3

28
3

ZB − 128 SO(12)2 11 ZB − 144 SO(24)1 12 ZB − 576

Table 15: List of D-type WZW models satisfying the supersymmetry conditions after
the fermionization. Each has a non-anomalous Z2 symmetry, a subgroup of center
symmetry. Since ZB and ZB̃ differ by constant, we expect that their fermionic theories
have supersymmetric vacua in the Ramond sector.

Since χ5 − χ6 = −6, we can see that ZB and ZB̃ differ by a constant 36. It is then
natural to expect that a fermionic model dual to the model of our interests respects
the supersymmetry.

Applying the fermionization with use of (3.21), we indeed verify that

ZNS
F =

∣∣χ0 + χ1

∣∣2 +
∣∣χ3 + χ4

∣∣2 +
∣∣χ7 + χ8

∣∣2,
ZÑS
F =

∣∣χ0 − χ1

∣∣2 +
∣∣χ3 − χ4|2 + |χ7 − χ8

∣∣2,
ZR
F =

∣∣χ5 + χ6

∣∣2 +
∣∣√2χ2

∣∣2 +
∣∣√2χ9

∣∣2, ZR̃
F =

∣∣χ5 − χ6

∣∣2 = 62.

(3.23)

As proposed, the model has the h = 3/2 Virasoro primary as a vacuum descendant,

and the ZR̃F becomes an index, namely constant.
We do not repeat the same exercise for other C-type WZW models listed in table

11. Instead, we provide a summary of how fermionization computes the partition
functions of F in the four spin structures in table 13 and 14.

D-type From table 15, the D-type models refer to the SO(2N)k WZW models
containing h = 3

2
primary. One can see that SO(24)1, SO(12)2 and SO(8)3 WZW

models are the member of D-type where the rank and the level are constrained by the
condition kN = 12. We choose the SO(12)2 WZW model as an interesting example
of the D-type models, and verify that it has all the features proposed above.
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i h Rep ZA2 ZB2 ZC2 i h Rep ZA2 ZB2 ZC2
0 0 (2;0,0,0,0,0,0) + + + 7 19

16
(0;1,0,0,0,0,1) + - -

1 3
2

(0;0,0,0,0,0,2) + + + 8 35
24

(0;0,0,0,0,1,1) - + -

2 1 (0;2,0,0,0,0,0) + + + 9 11
24

(1;1,0,0,0,0,0) - + -

3 3
2

(0;0,0,0,0,2,0) + + + 10 4
3

(0;0,0,0,1,0,0) + + +

4 11
16

(1;0,0,0,0,0,1) - - + 11 5
6

(0;0,1,0,0,0,0) + + +

5 19
16

(0;1,0,0,0,1,0) - - + 12 9
8

(0;0,0,1,0,0,0) - + -

6 11
16

(1;0,0,0,0,1,0) + - -

Table 16: SO(12)2: primaries labeled by i are characterized by weights h and SO(12)
Dynkin labels. Their characters are denoted by χi(τ). Primaries i = 1, 2, 3 are the
generator of ZA2 ,ZB2 ,ZC2 , respectively. We highlight the primary related to the Z2

subgroup of the center symmetry Z2 × Z2.

The model of our interests is a rational CFT with c = 11 and has 13 primaries
whose SO(12) representations and conformal weights can be found in table 16. Note
that there are three candidates generating Z2 symmetry. They are Verlinde defects
associated with the primaries of h = 3/2 and h = 1. Former and latter generate the
ZA2 and ZB2 symmetries whose actions on 13 primaries are presented in table 16.

One can show that gauging the ZB2 results in the non-diagonal modular invariant
partition function,

ZB/ZB2 (τ, τ̄) =
∣∣χ0 + χ2

∣∣2 +
∣∣χ1 + χ3

∣∣2 + 2
12∑
i=8

∣∣χi∣∣2, (3.24)

which agrees with the diagonal modular invariant partition function of the SU(12)1

WZW model (3.1). The conformal embedding [50] can explain the above coincidence.

Let us now move on the the orbifold B̃ = B/ZA2 . From the ZA2 action in table 16,
one obtains

Z(1,1)(τ, τ̄) =
12∑
i=0

∣∣χi(τ)
∣∣2, Z(g,1)(τ, τ̄) =

∑
i∈A+

∣∣χi(τ)
∣∣2 −∑

i∈A−

∣∣χi(τ)
∣∣2,

Z(1,g)(τ, τ̄) =
{

(χ0χ̄1 + χ2χ̄3 + χ6χ̄7 + χ8χ̄9 + χ10χ̄11) + (c.c)
}

+
∣∣χ4(τ)

∣∣2 +
∣∣χ5(τ)

∣∣2 +
∣∣χ12(τ)

∣∣2,
Z(g,g)(τ, τ̄) =

{
(−χ0χ̄1 − χ2χ̄3 − χ6χ̄7 + χ8χ̄9 − χ10χ̄11) + (c.c)

}
+
∣∣χ4(τ)

∣∣2 +
∣∣χ5(τ)

∣∣2 +
∣∣χ12(τ)

∣∣2,
(3.25)

where A+ = {0, 1, 2, 3, 6, 7, 10, 11} and A− = {4, 5, 8, 9, 12}.
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i h Rep ZA2 ZB2 ZC2 i h Rep ZA2 ZB2 ZC2
0 0 (1;0,0,0,0,0,0,0,0,0,0,0,0) + + + 2 1

2
(0;1,0,0,0,0,0,0,0,0,0,0,0) - + -

1 3
2

(0;0,0,0,0,0,0,0,0,0,0,0,1) + - - 3 3
2

(0;0,0,0,0,0,0,0,0,0,0,1,0) - - +

ZNS
F =

∣∣∣∣χ0 + χ1

∣∣∣∣2, ZR
F =

∣∣∣∣χ2 + χ3

∣∣∣∣2

Table 17: SO(24)1: primaries labeled by i are characterized by weights h and SO(24)
Dynkin labels. Their characters are denoted by χi(τ). Primaries i = 1, 2, 3 are the
generator of ZA2 ,ZB2 ,ZC2 , respectively. We highlight the primary related to the Z2

subgroup of the center symmetry Z2 × Z2. The partition functions for F in the NS
and R sectors are also presented.

The partition function of B̃ is then given by

ZB̃(τ, τ̄) =
7∑
i=0

∣∣χi(τ)
∣∣2 +

12∑
i=10

∣∣χi(τ)
∣∣2 + χ8χ̄9 + χ9χ̄8, (3.26)

which differs from ZB by a constant value 144. This is because χ8 − χ9 = −12.
We thus expect that (2.2) with ZA2 would transform the SO(12)2 WZW model to a
fermionic theory that preserves the supersymmetry.

Indeed, applying the generalized Jordan-Wigner transformations, one can see from
the partition functions in four spin structures below

ZNS
F (τ, τ̄) =

∣∣χ0 + χ1

∣∣2 +
∣∣χ2 + χ3

∣∣2 +
∣∣χ6 + χ7

∣∣2 +
∣∣χ10 + χ11

∣∣2
ZÑS
F (τ, τ̄) =

∣∣χ0 − χ1

∣∣2 +
∣∣χ2 − χ3

∣∣2 +
∣∣χ6 − χ7

∣∣2 +
∣∣χ10 − χ11

∣∣2
ZR
F (τ, τ̄) =

∣∣χ8 + χ9

∣∣2 +
∣∣√2χ4

∣∣2 +
∣∣√2χ5

∣∣2 +
∣∣√2χ12

∣∣2,
ZR̃
F (τ, τ̄) =

∣∣χ8 − χ9

∣∣2 = 122,

(3.27)

that a candidate for the supersymmetry current appears a descendant of the vacuum,
and that the partition function ZR̃ is constant. Thus we propose that the SO(12)2

WZW model can fermionize to a supersymmetric theory. It is consistent with the
recent result in [35] that this model has the N = 1 SVOA.

We avoid doing the same exercise for the SO(24)1 WZW models, but present useful
facts in table 17 to study the fermionic models dual to them. As a final remark, it
turns out that the SO(24)1 WZW model can be fermionized to the well-known model
exhibiting the Co0 moonshine phenomenon [31,51].

SO(N)3-type It is easy to show that every WZW model on the SO(N) group has
a primary of h = 3/2 when the level k = 3. We can further propose that the SO(N)3

WZW models can be mapped to supersymmetric models via the fermionization.
Let us illustrate SO(8)3 WZW model as a representative example. The model

under study has 24 primaries whose SO(8) representations and the conformal weights
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i h Rep ZA2 ZB2 ZC2 i h Rep ZA2 ZB2 ZC2
0 0 (3;0,0,0,0) + + + 12 4

3
(0;1,0,1,1) + + +

1 3
2

(0;0,0,0,3) + - - 13 5
6

(1;1,0,1,0) + - -

2 3
2

(0;3,0,0,0) - + - 14 5
6

(1;0,0,1,1) - + -

3 3
2

(0;0,0,3,0) - - + 15 5
6

(1;1,0,0,1) - - +

4 8
9

(1;0,0,0,2) + + + 16 8
9

(1;2,0,0,0) + + +

5 7
18

(2;0,0,0,1) + - - 17 25
18

(0;0,0,2,1) + - -

6 25
18

(0;1,0,2,0) - + - 18 7
18

(2;1,0,0,0) - + -

7 25
18

(0;2,0,1,0) - - + 19 25
18

(0;0,0,1,2) - - +

8 8
9

(1;0,0,2,0) + + + 20 2
3

(1;0,1,0,0) + + +

9 25
18

(0;2,0,0,1) + - - 21 7
6

(0;0,1,0,1) + - -

10 25
18

(0;1,0,0,2) - + - 22 7
6

(0;1,1,0,0) - + -

11 7
18

(2;0,0,1,0) - - + 23 7
6

(0;0,1,1,0) - - +

Table 18: SO(8)3: primaries labeled by i are characterized by weights h and SO(8)
Dynkin labels. Their characters are denoted by χi(τ). Primaries i = 1, 2, 3 are the
generator of ZA2 ,ZB2 ,ZC2 , respectively. We highlight the primary related to the Z2

subgroup of the center symmetry Z2 × Z2.

are presented in table 18. Note that the model has ZA2 ×ZB2 ×ZC2 symmetry, each of
which can be generated by the Verlinde lines associated with three h = 3/2 primaries.
Gauging any of these Z2 symmetries would lead to essentially the same orbifold, which
manifests the triality of SO(8).

Choosing the ZB2 to construct the orbifold B̃. Based on the ZB2 action, one can
show that

Z(g,1)(τ, τ̄) =
∑
i even

∣∣χi∣∣2 −∑
i odd

∣∣χi∣∣2
Z(1,g)(τ, τ̄) =

∑
i=0,4,8,
12,16,20

(χiχ̄i+2 + c.c) +
∑

i=1,5,9,
13,17,21

(χiχ̄i+2 + c.c)

Z(g,g)(τ, τ̄) = −
∑

i=0,4,8,
12,16,20

(χiχ̄i+2 + c.c) +
∑

i=1,5,9,
13,17,21

(χiχ̄i+2 + c.c) .

(3.28)

It implies that the orbifold partition function ZB̃(τ, τ̄) becomes

ZB̃(τ, τ̄) =
∑
i even

∣∣χi∣∣2 +
∑

i=1,5,9,
13,17,21

(χiχ̄i+2 + c.c), (3.29)
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Gk c Gk c Gk c Gk c Gk c
(E7)2 133/10 (E8)2 13/2 SU(8)2/Z2 63/5 SO(16)2/Z2 15 SU(16)1/Z2 15

Table 19: Five WZW models related to spontaneously broken supersymemtric
RCFTs.

which disagree with ZB(τ, τ̄) only by a constant,

ZB(τ, τ̄)− ZB̃(τ, τ̄) = 128. (3.30)

Thus, the SO(8)3 WZW model satisfies the SUSY conditions.
One can verify that, in the fermionic model F mapped by the Jordan-Wigner

transformation, the h = 3/2 primary behaves as the supersymmetry current, and
that the partition function in the Ramond-Ramond sector becomes constant:

ZNS
F (τ, τ̄) =

∣∣χ0 + χ2

∣∣2 +
∣∣χ4 + χ6

∣∣2 +
∣∣χ8 + χ10

∣∣2 +
∣∣χ12 + χ14

∣∣2
+
∣∣χ16 + χ18

∣∣2 +
∣∣χ20 + χ22

∣∣2,
ZÑS
F (τ, τ̄) =

∣∣χ0 − χ2

∣∣2 +
∣∣χ4 − χ6

∣∣2 +
∣∣χ8 − χ10

∣∣2 +
∣∣χ12 − χ14

∣∣2
+
∣∣χ16 − χ18

∣∣2 +
∣∣χ20 − χ22

∣∣2,
ZR
F (τ, τ̄) =

∣∣χ1 + χ3

∣∣2 +
∣∣χ5 + χ7

∣∣2 +
∣∣χ9 + χ11

∣∣2 +
∣∣χ13 + χ15

∣∣2
+
∣∣χ17 + χ19

∣∣2 +
∣∣χ21 + χ23

∣∣2,
ZR̃
F (τ, τ̄) =

∣∣χ1 − χ3

∣∣2 +
∣∣χ5 − χ7

∣∣2 +
∣∣χ9 − χ11

∣∣2 +
∣∣χ13 − χ15

∣∣2
+
∣∣χ17 − χ19

∣∣2 +
∣∣χ21 − χ23

∣∣2 = 02 + 82 + 82 + 02 + 02 + 02.

(3.31)

These results strongly suggest that the fermionic model F corresponding to the
SO(8)3 WZW model preserves the supersymmetry.

Other models in this type basically share the same features without the triality,
and we skip the detailed analysis for simplicity.

4 Models with Spontaneously Broken SUSY

The goal of this section is to present further examples of fermionic RCFTs satisfying
SUSY conditions. Specifically, we propose that the five models in table 19 can satisfy
the SUSY conditions after fermionization. The common feature of the five fermionized
theories is ZR̃

F (τ, τ̄) = 0, unlike the models studied in the previous section. This
implies that the supersymmetry is spontaneously broken in those models.

E-type E-type models refer to the (E7)2 and (E8)2 WZW models. Both of them
has an non-anomalous Z2 symmetry.
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i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (2;0,0,0,0,0,0,0) + 2 21
16

(0;0,0,0,0,0,0,1) - 4 7
5

(0;0,0,0,0,1,0,0) +

1 3
2

(0;0,0,0,0,0,2,0) + 3 57
80

(1;0,0,0,0,0,1,0) - 5 9
10

(0;1,0,0,0,0,0,0) +

Table 20: (E7)2: primaries labeled by i are characterized by weights h and E7 Dynkin
labels. Their characters are denoted by χi(τ). We highlight the primary related to
the center symmetry Z2.

i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (2;0,0,0,0,0,0,0,0) + 1 15
16

(0;0,0,0,0,0,0,1,0) - 2 3
2

(0;1,0,0,0,0,0,0,0) +

Table 21: (E8)2: primaries labeled by i are characterized by weights h and E8 Dynkin
labels. Their characters are denoted by χi(τ). We highlight the primary related to
the center symmetry Z2. The partition functions for F in the NS and R sectors are
also presented.

For the (E7)2 WZW models, the Z2 symmetry can be identified as the outer
automorphism of the affine e7 algebra, or equivalently the center symmetry, and is
generated by the Verlinde line associated with a primary of h = 3/2. We can find the
Z2 action on each primary of the model in table 20. It is straightforward to compute
the Z2 orbifold partition function ZB̃. It turns out that ZB̃ agrees with ZB, namely,

the orbifold B̃ returns back to the original model B. This eventually results in a
vanishing ZR̃

F . To see this, we use (2.2) to compute the partition function for F in
each spin structure,

ZNS
F =

∣∣χ0 + χ1

∣∣2 +
∣∣χ4 + χ5

∣∣2, ZNS
F =

∣∣χ0 − χ1

∣∣2 +
∣∣χ4 − χ5

∣∣2,
ZR
F =

∣∣√2χ2

∣∣2 +
∣∣√2χ3

∣∣2, ZR̃
F = 0. (4.1)

As expected, they satisfy the SUSY conditions and ZR̃
F = 0.

Let us move onto the WZW model for (E8)2. The Verlinde line related to a
primary of h = 3

2
provides the Z2 action on each primary as presented in table 21.

In contrast to E7 case, one cannot identify the Z2 symmetry as the center symmetry.
Nevertheless we proceed to apply the generalized Jordan-Wigner transformation with
the above Z2 symmetry, and obtain the partition functions for F below,

ZNS
F =

∣∣χ0 + χ2

∣∣2, ZÑS
F =

∣∣χ0 − χ2

∣∣2, ZR
F =

∣∣√2χ1

∣∣2, ZR̃
F = 0. (4.2)

We see that all SUSY conditions are satisfied. Because any primary in the R-sector
cannot saturate the unitarity bound hR ≥ c

24
, the Ramond vacua break the super-

symmetry spontaneously.
As a remark, the partition functions (4.2) can be expressed in terms of the elliptic
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i h Rep Z2 i h Rep Z2 i h Rep Z2

0 0 (2;0,0,0,0,0,0,0) + 12 303
160

(0;0,0,1,1,0,0,0) - 24 51
32

(0;0,1,0,0,1,0,0) -

1 7
8

(0;0,0,0,0,0,0,2) + 13 263
160

(0;0,1,1,0,0,0,0) - 25 43
32

(0;1,0,0,1,0,0,0) -

2 3
2

(0;0,0,0,0,0,2,0) + 14 183
160

(0;1,1,0,0,0,0,0) - 26 27
32

(1;0,0,1,0,0,0,0) -

3 15
8

(0;0,0,0,0,2,0,0) + 15 63
160

(1;0,0,0,0,0,0,1) - 27 35
32

(0;0,1,0,0,0,0,1) -

4 2 (0;0,0,0,2,0,0,0) + 16 9
5

(0;0,0,1,0,1,0,0) + 28 35
32

(0;1,0,0,0,0,1,0) -

5 15
8

(0;0,0,2,0,0,0,0) + 17 67
40

(0;0,1,0,1,0,0,0) + 29 27
32

(1;0,0,0,0,1,0,0) -

6 3
2

(0;0,2,0,0,0,0,0) + 18 13
10

(0;1,0,1,0,0,0,0) + 30 43
32

(0;0,0,0,1,0,0,1) -

7 7
8

(0;2,0,0,0,0,0,0) + 19 27
40

(1;0,1,0,0,0,0,0) + 31 51
32

(0;0,0,1,0,0,1,0) -

8 63
160

(1;0,0,0,0,0,0,1) - 20 4
5

(0;1,0,0,0,0,0,1) + 32 7
5

(0;0,1,0,0,1,0,0) +

9 183
160

(0;0,0,0,0,0,1,1) - 21 27
40

(1;0,0,0,0,0,1,0) + 33 51
40

(0;1,0,0,1,0,0,0) +

10 263
160

(0;0,0,0,0,1,1,0) - 22 13
10

(0;0,0,0,0,1,0,1) + 34 9
10

(1;0,0,0,1,0,0,0) +

11 303
160

(0;0,0,0,1,1,0,0) - 23 67
40

(0;0,0,0,1,0,1,0) + 35 51
40

(0;0,0,1,0,0,0,1) +

Table 22: SU(8)2: primaries labeled by i are characterized by weights h and SU(8)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the center symmetry Z2.

theta functions and Dedekind eta function. More explicitly, one can show

χ0 + χ2 =

(
ϑ3

η

) 31
2

− 31

(
ϑ3

η

) 7
2

,

χ0 − χ2 =

(
ϑ4

η

) 31
2

+ 31

(
ϑ4

η

) 7
2

,

√
2χ1 =

(
ϑ2

η

) 31
2

+ 31

(
ϑ2

η

) 7
2

.

(4.3)

Therefore, the NS-sector partition function (4.2) can be identified with the single-
character solution of the fermionic modular differential equation [34].

Orbifold type We start from the WZW models for SO(16)2, SU(16)1 and SU(8)2.
Analogous to the SU(4)4 WZW model, all of them have a primary of h = 3/2
for which the Verlinde line cannot generate a Z2 symmetry. Instead, it is a line
defect associated with the h = 2 primary that generates a Z2 symmetry. One can
then construct the Z2 orbifold theory B̃ by employing (2.1). The orbifold partition
functions have a form of non-diagonal modular invariant, and the chiral symmetry is
enhanced by the weight-two primary.

Let us demonstrate the details of the WZW model for SU(8)2. The h = 2 primary,
labeled by i = 4 in table 22, is now associated with the Z2 generator. It is easy to
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i h χ̃i Z̃2 i h χ̃i Z̃2 i h χ̃i Z̃2 i h χ̃i Z̃2

0 0 χ0 + χ4 + 3 15
8

χ3 + χ7 - 6 13
10

χ18 + χ22 + 9 51
40

χ33 -

1 7
8

χ1 + χ5 - 4 9
5

χ16 + χ20 + 7 27
40

χ19 + χ23 - 10 9
10

χ34 +

2 3
2

χ2 + χ6 + 5 67
40

χ17 + χ21 - 8 7
5

χ32 + 11 51
40

χ35 -

Table 23: SU(8)2/Z2: primaries labeled by i are characterized by weights h. Their
characters χ̃i(τ) are expressed in terms of the characters of SU(8)2 WZW model (see
table 22). We highlight the primary related to the Z̃2 symmetry.

show that the partition function of orbifold theory B̃ = SU(8)2/Z2 is given by,

ZB̃ =
∣∣χ0 + χ4

∣∣2 +
∣∣χ2 + χ6

∣∣2 +
∣∣χ16 + χ20

∣∣2 +
∣∣χ18 + χ22

∣∣2 + 2
∣∣χ32

∣∣2 + 2
∣∣χ34

∣∣2
+
∣∣χ1 + χ5

∣∣2 +
∣∣χ3 + χ7

∣∣2 +
∣∣χ17 + χ21

∣∣2 +
∣∣χ19 + χ23

∣∣2 + 2
∣∣χ33

∣∣2 + 2
∣∣χ35

∣∣2, (4.4)

Using the modular S-matrix of B̃, which is obtained via the block-diagonalization,
we can see how the quantum Z̃2 symmetry of the orbifold theory B̃ acts on each
primary (see table 23). Applying the generalized Jordan-Wigner transformation to

(4.4) with the quantum Z̃2 symmetry, we can analyze the fermionic partition function
with each spin structure. Explicitly, we find

ZNS
F =

∣∣χ0 + χ4 + χ2 + χ6

∣∣2 +
∣∣χ16 + χ20 + χ18 + χ22|2 + 2|χ32 + χ34

∣∣2,
ZÑS
F =

∣∣χ0 + χ4 − χ2 − χ6

∣∣2 +
∣∣χ16 + χ20 − χ18 − χ22|2 + 2|χ32 − χ34

∣∣2,
ZR
F =

∣∣χ1 + χ5 + χ3 + χ7

∣∣2 +
∣∣χ17 + χ21 + χ19 + χ23

∣∣2 + 2
∣∣χ33 + χ35

∣∣2,
ZR̃
F =

∣∣χ1 + χ5 − χ3 − χ7

∣∣2 +
∣∣χ17 + χ21 − χ19 − χ23

∣∣2 + 2
∣∣χ33 − χ35

∣∣2 = 0,

(4.5)

which indeed satisfy the SUSY conditions. Moreover, none of the primaries involved in
the Ramond partition function ZR

F saturate the supersymmetric unitarity bound hR ≥
21
40

. These results strongly suggest that the orbifold SU(8)2/Z2 can be fermionized to
a spontaneously broken supersymmetric model.

Our next model of interest is the SU(16)1 WZW model. The 16 primaries of
the model are labeled by i = 0, 1, · · · , 15, and their conformal weights and SU(16)
representations are summarized in table 24. Although the center symmetry Z16 itself
is anomalous [52–54], its Z2 subgroup turns out to be free from the ’t Hooft anomaly.
The generator of Z2 symmetry can be identified as the Verlinde line associated with
the primary of h = 2. The partition function of the orbifold theory B̃ = SU(16)1/Z2

then becomes

ZB̃ =
∣∣χ0 + χ8

∣∣2 +
∣∣χ4 + χ12

∣∣2 +
∣∣χ2 + χ10

∣∣2 +
∣∣χ6 + χ14

∣∣2. (4.6)

To search for a supersymmetric model, we start with the orbifold theory B̃. The
theory B̃ has a Z̃2 global symmetry. One can read off the Z̃2 action from the Verlinde
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i h Rep Z2 i h Rep Z2

0 0 (1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) + 8 2 (0;0,0,0,0,0,0,0,1,0,0,0,0,0,0,0) +

1 15
32

(0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) - 9 63
32

(0;0,0,0,0,0,0,1,0,0,0,0,0,0,0,0) -

2 7
8

(0;0,0,0,0,0,0,0,0,0,0,0,0,0,1,0) + 10 15
8

(0;0,0,0,0,0,1,0,0,0,0,0,0,0,0,0) +

3 39
32

(0;0,0,0,0,0,0,0,0,0,0,0,0,1,0,0) - 11 55
32

(0;0,0,0,0,1,0,0,0,0,0,0,0,0,0,0) -

4 3
2

(0;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0) + 12 3
2

(0;0,0,0,1,0,0,0,0,0,0,0,0,0,0,0) +

5 55
32

(0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0) - 13 39
32

(0;0,0,1,0,0,0,0,0,0,0,0,0,0,0,0) -

6 15
8

(0;0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) + 14 7
8

(0;0,1,0,0,0,0,0,0,0,0,0,0,0,0,0) +

7 63
32

(0;0,0,0,0,0,0,0,0,1,0,0,0,0,0,0) - 15 15
32

(0;1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) -

Table 24: SU(16)1: primaries labeled by i are characterized by weights h and SU(16)
Dynkin labels. Their characters are denoted by χi(τ). We highlight the primary
related to the Z2 subgroup of the center symmetry Z16.

i h χ̃i Z̃2 i h χ̃i Z̃2 i h χ̃i Z̃2 i h χ̃i Z̃2

0 0 χ0 + χ8 + 1 7
8

χ2 + χ10 - 2 3
2

χ4 + χ12 + 3 7
8

χ6 + χ14 -

Table 25: SU(16)1/Z2: primaries labeled by i are characterized by weights h. Their
characters χ̃i(τ) are expressed in terms of the characters χi of the SU(16)1 WZW
model (see table 24). We highlight the primary related to the Z̃2 symmetry.

line associated with the h = 3/2 primary, as presented in table 25. The fermionization
then gives the fermionic partition functions

ZNS
F =

∣∣χ0 + χ8 + χ4 + χ12

∣∣2, ZÑS
F =

∣∣χ0 + χ8 − χ4 − χ12

∣∣2,
ZR
F =

∣∣χ2 + χ10 + χ6 + χ14

∣∣2, ZR̃
F =

∣∣χ2 + χ10 − χ6 − χ14

∣∣2 = 0.
(4.7)

It turns out that the NS vacuum contains the spin-3/2 current, and furthermore the

ZR̃
F vanishes. Because the SUSY conditions are all obeyed, (4.7) can be considered

as the partition functions of a supersymmetric RCFT. Note that the alternative
expressions for (4.7) are given by

χ0 + χ8 + χ4 + χ12 =

(
ϑ3

η

)15

− 30

(
ϑ3

η

)3

,

χ0 + χ8 − χ4 − χ12 =

(
ϑ4

η

)15

+ 30

(
ϑ4

η

)3

,

χ2 + χ10 + χ6 + χ14 =

(
ϑ2

η

)15

+ 30

(
ϑ2

η

)3

,

(4.8)

from which one can identify the partition functions (4.7) as the solution of the first
order fermionic modular differential equation [34].
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i h Rep ZA2 ZB2 ZC2 i h Rep ZA2 ZB2 ZC2
0 0 (2;0,0,0,0,0,0,0,0) + + + 8 63

32
(0;0,0,0,0,0,0,1,1) - + -

1 2 (0;0,0,0,0,0,0,0,2) + + + 9 15
32

(1;1,0,0,0,0,0,0,0) - + -

2 1 (0;2,0,0,0,0,0,0,0) + + + 10 15
8

(0;0,0,0,0,0,1,0,0) + + +

3 2 (0;0,0,0,0,0,0,2,0) + + + 11 7
8

(0;0,1,0,0,0,0,0,0) + + +

4 15
16

(1;0,0,0,0,0,0,0,1) + - - 12 55
32

(0;0,0,0,0,1,0,0,0) - + -

5 23
16

(0;1,0,0,0,0,0,1,0) + - - 13 39
32

(0;0,0,1,0,0,0,0,0) - + -

6 15
16

(1;0,0,0,0,0,0,1,0) - - + 14 3
2

(0;0,0,0,1,0,0,0,0) + + +

7 23
16

(0;1,0,0,0,0,0,0,1) - - +

Table 26: SO(16)2: primaries labeled by i are characterized by weights h and SO(16)
Dynkin labels. Their characters are denoted by χi(τ). Primaries i = 1, 2, 3 are the
generator of ZA2 ,ZB2 ,ZC2 , respectively. We highlight the primary related to the Z2

subgroup of the center symmetry Z2 × Z2.

The WZW model for SO(16)2 involves 15 primaries whose quantum numbers are
summarized in table 26. There are three Verlinde lines related to the Z2 symmetry.
We denote them as ZA2 ,ZB2 and ZC2 which are associated with the primaries labeled
by i = 1, 2, 3 respectively. Only two of them are independent generators, and they
can be identified with the center symmetry Z2×Z2 of SO(16). However, the primary
of h = 3/2 is associated to none of non-anomalous discrete symmetries.

Let us consider an orbifold with ZA2 generated by the Verlinde line Lh=2. We
choose the primary of i = 1 for an illustration, but the other choice, i.e., i = 3 would
lead to essentially the same result. A straightforward computation shows that the
ZA2 orbifold partition function reads

ZSO(16)2/ZA2 =
∣∣χ0 + χ1

∣∣2 +
∣∣χ2 + χ3

∣∣2 +
∣∣χ10 + χ11

∣∣2 + 2
∣∣χ14

∣∣2 + 2
∣∣χ4

∣∣2 + 2
∣∣χ5

∣∣2.
(4.9)

We remark that the orbifold theory B̃A ≡ SO(16)2/ZA2 has an non-anomalous Z̃A2
symmetry which is now generated by the Verlinde line Lh=1 associated with the
primary of h = 1. The first four terms of (4.9) are even under Z̃A2 and the other

terms are odd. One can further apply the transformation (2.1) with Z̃A to arrive at
a non-diagonal partition function,

ZB̃A/Z̃A2
=
∣∣χ0 + χ1 + χ2 + χ3

∣∣2 + 2
∣∣χ10 + χ11

∣∣2 +
∣∣2χ14

∣∣2. (4.10)

We return to the diagonal partition function of the WZW model for SO(16)2 and
take an orbifolding with ZB2 symmetry generated by the Verlinde line Lh=1. As a
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consequence, we find a non-diagonal invariant

ZB/ZB2 =
∣∣χ0 + χ2

∣∣2 +
∣∣χ1 + χ3

∣∣2 + 2
14∑
i=8

∣∣χi∣∣2. (4.11)

The orbifold theory B̃B ≡ B/ZB2 possesses the non-anomalous Z̃B2 symmetry associ-

ated with the h = 2 primary. An orbifold with Z̃B2 symmetry provides the partition
function

ZB̃B/Z̃B2
=
∣∣χ0 + χ1 + χ2 + χ3

∣∣2 + 2
∣∣χ10 + χ11

∣∣2 +
∣∣2χ14

∣∣2. (4.12)

and this process reproduces the orbifold partition function (4.10).
We remark that the orbifold partition functions (4.10) and (4.12) exactly agree

with (4.6). Therefore, the supersymmetric nature of SO(16)2 WZW model is identical
to that of the SU(16)1 WZW model.

Remarks So far, we explore the fermionic RCFTs that satisfy the SUSY conditions.
Those fermionic RCFTs arise as a consequence of the orbifold or fermionization with
respect to a non-anomalous Z2 symmetry of the WZW model.

Here we point out that the supersymmetric RCFTs are not always obtained by
orbifold or fermionization with help of an non-anomalous Z2 symmetry. A prominent
example is the so-called non-BPS solution of the fermionic second-order modular dif-
ferential equation at c = 39

2
found in [34]. Two independent solutions in both NS

and R-sectors at c = 39
2

were shown to be expressed in terms of the (E6)4 characters.
Using those solutions, we can construct partition functions of a supersymmetric the-
ory. However the partition function in each sector cannot be tied with any discrete
Z2 symmetries of (E6)4 WZW model.

A similar phenomenon happens for the Sp(14)2, SU(10)2 and Sp(10)1 WZW
models. Using the block-diagonalization of the modular S-matrix, one can construct
the partition functions for their corresponding fermionic models F satisfying the
SUSY conditions. However, it is not clear if those partition functions for F are
originated from the Z2 symmetry of the WZW models.

5 Comments on the Read-Rezayi States

In this section, we explore the possibility of emergent supersymmetry on the edges
of the generalized Pfaffian Hall states proposed by Read and Rezayi [15]. It is shown
in [55] that a product of the U(1)k(kM+2) theory and the Zk parafermion CFT followed
by the diagonal Zk quotient,

U(1)k(kM+2) ×
(
SU(2)k/U(1)2k

)
Zk

, (5.1)
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can describe the edge excitations of the Read-Rezayi states at filling fraction

ν =
k

kM + 2
, (5.2)

where (k − 1) and M are nonnegative integers. Here an odd (even) M is for the
fermionic (bosonic) state. We show that the generalized Jordan-Wigner transforma-
tion provides further evidence for an emergent supersymmetry on the edges of the
specific Read-Rezayi states with (k = 2,M = 1) and (k = 4,M = 1) [36,37].

To see this, let us briefly review the U(1) theory and Zk parafermion CFT for
the later purpose. The U(1) theory with level l is a free-boson theory on a circle of
radius R =

√
l. For an even integer l, the U(1) theory becomes rational, namely, the

partition functions can be expressed in terms of a finite number of primary states.
The characters of individual primaries are given by

χlλ(τ) =
1

η(τ)

∑
n∈Z

q
l
2(n+λ

l )
2

, (5.3)

where λ = 0,±1,±2, ..,±(l/2 − 1), l/2. The S-transformation rule of the character
(5.3) is given by

χlλ (−1/τ) =
1√
l

∑
µ

e−
2πiλµ
l χlµ (τ) . (5.4)

On the one hand, the Zk parafermion CFT is a coset model SU(2)k/U(1)2k. Thus,

the central charge of the Zk parafermion CFT is given by c = 3k
k+2
− 1 = 2(k−1)

k+2
. The

Zk parafermion CFT involves k(k+1)
2

primaries with conformal weights

hk`,m =
`(`+ 2)

4(k + 2)
− m2

4k
, (5.5)

where the range of the quantum numbers ` and m is given by

{(`,m)
∣∣ 0 ≤ ` ≤ k, −`+ 2 ≤ m ≤ `, `−m ∈ 2Z}. (5.6)

We denote the characters of primaries by ψk`,m in what follows. The characters of the
Zk parafermion CFT takes the form of

ψk`,m(τ) =
1

η(τ)2

((∑
i,j≤0

−
∑
i,j<0

)
(−1)iq

(`+1+(i+2j)(k+2))2

4(k+2)
− (m+ik)2

4k

−
( ∑
i≤0,j>0

−
∑

i<0,j≤0

)
(−1)iq

(`+1−(i+2j)(k+2))2

4(k+2)
− (m+ik)2

4k

)
,

(5.7)

and their S-matrix is given by [56]

Sk`m;`′m′ =
2√

k(k + 2)
e2πimm

′
2k sin

(
π

(`+ 1)(`′ + 1)

k + 2

)
. (5.8)
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i h fi ZA2 ZB2 ZC2 i h fi ZA2 ZB2 ZC2 i h fi ZA2 ZB2 ZC2
0 0 χ8

0ψ
2
2,2 + + + 8 3

4
χ8

2ψ
2
2,0 + + + 16 5

8
χ8

5ψ
2
1,1 - - +

1 1
16

χ8
0ψ

2
1,1 - + - 9 9

16
χ8

3ψ
2
2,2 + - - 17 17

16
χ8

5ψ
2
2,0 + - -

2 1
2

χ8
0ψ

2
2,0 + + + 10 5

8
χ8

3ψ
2
1,1 - - + 18 1

4
χ8

6ψ
2
2,2 + + +

3 1
16

χ8
1ψ

2
2,2 + - - 11 17

16
χ8

3ψ
2
2,0 + - - 19 5

16
χ8

6ψ
2
1,1 + + -

4 1
8

χ8
1ψ

2
1,1 - - + 12 1 χ8

4ψ
2
2,2 + + + 20 3

4
χ8

6ψ
2
2,0 - + +

5 9
16

χ8
1ψ

2
2,0 + - - 13 17

16
χ8

4ψ
2
1,1 - + - 21 1

16
χ8

7ψ
2
2,2 + - -

6 1
4

χ8
2ψ

2
2,2 + + + 14 3

2
χ8

4ψ
2
2,0 + + + 22 1

8
χ8

7ψ
2
1,1 + - +

7 5
16

χ8
2ψ

2
1,1 - + - 15 9

16
χ8

5ψ
2
2,2 + - - 23 9

16
χ8

7ψ
2
2,0 - - -

Table 27: U(1)8 × Ising model: The conformal characters fi of 24 primaries (i =
0, 1, · · · , 23) can be expressed in terms of the characters of the U(1)8 theory and the
Ising model, denoted by χl=8

i and ψk=2
`,m . We highlight the primaries related to the

discrete ZC2 symmetry of the theory.

the Read-Rezayi state with (k = 2,M = 1) Armed with the characters and the
modular S-matrix of the U(1) theory and the Zk parafermion theory, let us analyze
an orbifold

B̃ =
U(1)8 × (Ising model)

Z2

, (5.9)

proposed to describe the edge modes of the Read-Rezayi state at ν = 1/2.
Let us first consider a product theory B = U(1)8 × (Ising model) that has 24

primaries whose conformal weights and characters are given in table 27. There are
three Verlinde lines Lh= 1

2
, Lh=1 and Lh= 3

2
that generate ZA2 , ZB2 and ZC2 . The ZA2 can

be identified as that of the Ising model while ZB2 as that of the U(1)8 theory. The
ZC2 is the diagonal subgroup of ZA2 × ZB2 .

The orbifold partition function follows from (2.1) with ZC2 applied to diagonal
modular invariant partition function ZB =

∑23
i=0 |fi|2 of U(1)8 × (Ising model),

ZB̃ =
11∑
n=0

∣∣f2n

∣∣2 +
{

(f1f̄13 + f3f̄17 + f5f̄15 + f7f̄19 + f9f̄23 + f11f̄21) + (c.c)
}
. (5.10)

We can see that ZB and ZB̃ differ by a constant, ZB − ZB̃ = 3. We therefore expect

that the orbifold B̃ can be fermionized to a supersymmetric theory F̃ .
Based on the web described in table 3, partition functions for F̃ can be determined
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as,

ZNS
F̃ =

∣∣f0 + f14

∣∣2 +
∣∣f2 + f12

∣∣2 +
∣∣f4 + f16

∣∣2 +
∣∣f6 + f20

∣∣2 +
∣∣f8 + f18

∣∣2 +
∣∣f10 + f22

∣∣2,
ZÑS
F̃ =

∣∣f0 − f14

∣∣2 +
∣∣f2 − f12

∣∣2 +
∣∣f4 − f16

∣∣2 +
∣∣f6 − f20

∣∣2 +
∣∣f8 − f18

∣∣2 +
∣∣f10 − f22

∣∣2,
ZR
F̃ =

∣∣f1 + f13

∣∣2 +
∣∣f3 + f17

∣∣2 +
∣∣f5 + f15

∣∣2 +
∣∣f7 + f19

∣∣2 +
∣∣f9 + f23

∣∣2 +
∣∣f11 + f21

∣∣2,
ZR̃
F̃ = −

∣∣f1 − f13

∣∣2 − ∣∣f3 − f17

∣∣2 − ∣∣f5 − f15

∣∣2 − ∣∣f7 − f19

∣∣2 − ∣∣f9 − f23

∣∣2 − ∣∣f11 − f21

∣∣2,
= − 12 − 12 − 02 − 02 − 02 − 12, (5.11)

which are in perfect agreement with those of [57]. Since (5.11) satisfies the SUSY
conditions, we propose that there exists an emergent supersymmetry on the edges of
the (k = 2,M = 1) Read-Rezayi state. Moreover, we observe that the above partition
functions (5.11) coincide with those of the N = 2 unitary supersymmetric minimal
model at c = 3/2. To find the explicit expressions of the N = 2 super-Virasoro
characters at c = 3/2, readers are referred to [58, 59]. It strongly suggests that the
N = 2 supersymmetry can emerge on the edges of the (k = 2,M = 1) Read-Rezayi
state.

the Read-Rezayi state with (k = 4,M = 1) We next analyze the orbifold theory

B =
U(1)24 × (Z4 parafermion CFT)

Z4

, (5.12)

proposed to describe the edge modes of the Read-Rezayi state with (k = 4,M = 1).
U(1)24 × (Z4 parafermion CFT) has two copies of Z4 symmetries, one of which

is originated from that of U(1)24 and the other from that of the parafermion the-
ory. Although the Z4 × Z4 symmetries are anomalous, one can show that their
diagonal subgroup Z4 becomes non-anomalous. It is the Verlinde line Lh=3/2 associ-
ated with χ24

18ψ
4
4,2 that generate the non-anomalous Z4 symmetry. We can gauge the

non-anomalous Z4, which results in the orbifold (5.12) that has 60 primaries whose
conformal weights and conformal characters can be found in table 28. There are two
the Verlinde lines L̃h=3/2 which generate essentially the same Z̃2 symmetry.

We can fermionize the bosonic theory (5.12) with help of the Z̃2 symmetry. The
fermionic partition function in each spin structure follows from (2.2) applied to a
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i h fi Z2 i h fi Z2 i h fi Z2

0 0 χ24
0 ψ

4
4,4 + χ24

12ψ
4
4,0 + 20 1

3
χ24

4 ψ
4
4,4 + χ24

16ψ
4
4,0 + 40 4

3
χ24

8 ψ
4
4,4 + χ24

20ψ
4
4,0 +

1 13
12

χ24
6 ψ

4
2,0 + χ24

18ψ
4
2,0 - 21 5

12
χ24

10ψ
4
2,0 + χ24

22ψ
4
2,0 - 41 5

12
χ24

2 ψ
4
2,0 + χ24

14ψ
4
2,0 -

2 1
3

χ24
0 ψ

4
2,0 + χ24

12ψ
4
2,0 + 22 2

3
χ24

4 ψ
4
2,0 + χ24

16ψ
4
2,0 + 42 2

3
χ24

8 ψ
4
2,0 + χ24

20ψ
4
2,0 +

3 3
4

χ24
18ψ

4
4,4 + χ24

6 ψ
4
4,0 - 23 1

12
χ24

10ψ
4
4,0 + χ24

22ψ
4
4,4 - 43 1

12
χ24

2 ψ
4
4,4 + χ24

14ψ
4
4,0 -

4 3
4

χ24
6 ψ

4
4,4 + χ24

18ψ
4
4,0 - 24 13

12
χ24

10ψ
4
4,4 + χ22

12ψ
4
4,0 - 44 13

12
χ24

2 ψ
4
4,0 + χ24

14ψ
4
4,4 -

5 1 χ24
12ψ

4
4,4 + χ24

0 ψ
4
4,0 + 25 4

3
χ24

4 ψ
4
4,0 + χ24

16ψ
4
4,4 + 45 1

3
χ24

8 ψ
4
4,0 + χ24

20ψ
4
4,4 +

6 1
12

χ24
1 ψ

4
1,1 + χ24

13ψ
4
3,1 + 26 7

12
χ24

5 ψ
4
1,1 + χ24

17ψ
4
3,1 + 46 3

4
χ24

9 ψ
4
1,1 + χ24

21ψ
4
3,1 +

7 13
12

χ24
7 ψ

4
1,1 + χ24

19ψ
4
3,1 - 27 7

12
χ24

11ψ
4
1,1 + χ24

23ψ
4
3,1 - 47 3

4
χ24

3 ψ
4
3,1 + χ24

15ψ
4
1,1 -

8 7
12

χ24
7 ψ

4
3,1 + χ24

19ψ
4
1,1 - 28 1

12
χ24

11ψ
4
3,1 + χ24

23ψ
4
1,1 - 48 1

4
χ24

3 ψ
4
1,1 + χ24

15ψ
4
3,1 -

9 7
12

χ24
1 ψ

4
3,1 + χ24

13ψ
4
1,1 + 29 13

12
χ24

9 ψ
4
3,1 + χ24

21ψ
4
1,1 + 49 1

4
χ24

0 ψ
4
4,4 + χ24

12ψ
4
4,0 +

10 13
12

χ24
8 ψ

4
4,−2 + χ24

20ψ
4
4,2 - 30 3

4
χ24

0 ψ
4
4,2 + χ24

12ψ
4
4,−2 - 50 13

12
χ24

4 ψ
4
4,2 + χ24

16ψ
4
4,−2 -

11 1
6

χ24
2 ψ

4
2,2 + χ24

14ψ
4
2,2 + 31 5

6
χ24

6 ψ
4
2,2 + χ24

18ψ
4
2,2 + 51 1

6
χ24

10ψ
4
2,2 + χ24

22ψ
4
2,2 +

12 5
12

χ24
8 ψ

4
2,2 + χ24

20ψ
4
2,2 - 32 1

12
χ24

0 ψ
4
2,2 + χ24

12ψ
4
2,2 - 52 5

12
χ24

4 ψ
4
2,2 + χ24

16ψ
4
2,2 -

13 5
6

χ24
2 ψ

4
4,−2 + χ24

14ψ
4
4,2 + 33 3

2
χ24

6 ψ
4
4,−2 + χ24

18ψ
4
4,2 + 53 5

6
χ24

10ψ
4
4,−2 + χ24

22ψ
4
4,2 +

14 5
6

χ24
2 ψ

4
4,2 + χ24

14ψ
4
4,−2 + 34 3

2
χ24

6 ψ
4
4,2 + χ24

18ψ
4
4,−2 + 54 5

6
χ24

10ψ
4
4,2 + χ24

22ψ
4
4,−2 +

15 13
12

χ24
8 ψ

4
4,2 + χ24

20ψ
4
4,−2 - 35 3

4
χ24

0 ψ
4
4,−2 + χ24

12ψ
4
4,2 - 55 13

12
χ24

4 ψ
4
4,−2 + χ24

16ψ
4
4,2 -

16 1
4

χ24
9 ψ

4
3,−1 + χ24

21ψ
4
3,3 - 36 1

12
χ24

1 ψ
4
3,3 + χ24

13ψ
4
3,−1 - 56 7

12
χ24

5 ψ
4
3,3 + χ24

17ψ
4
3,−1 -

17 1
4

χ24
3 ψ

4
3,3 + χ24

15ψ
4
3,−1 + 37 13

12
χ24

7 ψ
4
3,3 + χ24

19ψ
4
3,−1 + 57 7

12
χ24

11ψ
4
3,3 + χ24

23ψ
4
3,−1 +

18 3
4

χ24
3 ψ

4
3,−1 + χ24

15ψ
4
3,3 + 38 7

12
χ24

7 ψ
4
3,−1 + χ24

19ψ
4
3,3 + 58 1

12
χ24

11ψ
4
3,−1 + χ24

23ψ
4
3,3 +

19 3
4

χ24
9 ψ

4
3,3 + χ24

21ψ
4
3,−1 - 39 7

12
χ24

1 ψ
4
3,−1 + χ24

13ψ
4
3,3 - 59 13

12
χ24

5 ψ
4
3,−1 + χ24

17ψ
4
3,3 -

Table 28:
(
U(1)24×(Z4 parafermion CFT)

)
/(Z4): The conformal characters fi of 60

primaries (i = 0, 1, · · · , 59) can be expressed in terms of the characters of the U(1)24

theory and the Z4 Parafermion CFT, denoted by χl=24
i and ψk=4

`,m . We highlight the
primaries related to the discrete Z2 symmetry of the theory.

diagonal partition function ZB =
∑59

i=0 |fi|2,

ZNS
F =

∣∣f0 + f33

∣∣2 +
∣∣f2 + f31

∣∣2 +
∣∣f5 + f34

∣∣2 +
∣∣f6 + f38

∣∣2 +
∣∣f9 + f37

∣∣2
+
∣∣f11 + f42

∣∣2 +
∣∣f13 + f45

∣∣2 +
∣∣f14 + f40

∣∣2 +
∣∣f17 + f46

∣∣2 +
∣∣f18 + f49

∣∣2
+
∣∣f20 + f53

∣∣2 +
∣∣f22 + f51

∣∣2 +
∣∣f25 + f54

∣∣2 +
∣∣f26 + f58

∣∣2 +
∣∣f29 + f57

∣∣2,
ZÑS
F =

∣∣f0 − f33

∣∣2 +
∣∣f2 − f31

∣∣2 +
∣∣f5 − f34

∣∣2 +
∣∣f6 − f38

∣∣2 +
∣∣f9 − f37

∣∣2
+
∣∣f11 − f42

∣∣2 +
∣∣f13 − f45

∣∣2 +
∣∣f14 − f40

∣∣2 +
∣∣f17 − f46

∣∣2 +
∣∣f18 − f49

∣∣2
+
∣∣f20 − f53

∣∣2 +
∣∣f22 − f51

∣∣2 +
∣∣f25 − f54

∣∣2 +
∣∣f26 − f58

∣∣2 +
∣∣f29 − f57

∣∣2,
ZR
F =

∣∣f1 + f32

∣∣2 +
∣∣f3 + f35

∣∣2 +
∣∣f4 + f30

∣∣2 +
∣∣f7 + f36

∣∣2 +
∣∣f8 + f39

∣∣2
+
∣∣f10 + f43

∣∣2 +
∣∣f12 + f41

∣∣2 +
∣∣f15 + f44

∣∣2 +
∣∣f16 + f48

∣∣2 +
∣∣f19 + f47

∣∣2
+
∣∣f21 + f52

∣∣2 +
∣∣f23 + f55

∣∣2 +
∣∣f24 + f50

∣∣2 +
∣∣f27 + f56

∣∣2 +
∣∣f28 + f59

∣∣2,
ZR̃
F =

∣∣f1 − f32

∣∣2 +
∣∣f3 − f35

∣∣2 +
∣∣f4 − f30

∣∣2 +
∣∣f7 − f36

∣∣2 +
∣∣f8 − f39

∣∣2
+
∣∣f10 − f43

∣∣2 +
∣∣f12 − f41

∣∣2 +
∣∣f15 − f44

∣∣2 +
∣∣f16 − f48

∣∣2 +
∣∣f19 − f47

∣∣2
+
∣∣f21 − f52

∣∣2 +
∣∣f23 − f55

∣∣2 +
∣∣f24 − f50

∣∣2 +
∣∣f27 − f56

∣∣2 +
∣∣f28 − f59

∣∣2.

(5.13)
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It is clear that the SUSY conditions are all satisfied by (5.13); let us take a closer
look at the q-expansion of the NS vacuum given below

f0 + f33 = q−1/12
[
1 + q + 2q3/2 + 3q2 + 4q5/2 + 6q3 + · · ·

]
(5.14)

where we can see that the NS vacuum has descendants of h = 1 and h = 3/2. Those
descendants are likely to play roles of the U(1) R-symmetry and the supersymmetry

currents of N = 2 supersymmetry. Moreover, ZR̃
F takes a constant value and thus

becomes an index,

ZR̃
F = 12 + 0 + 0 + 12 + 0 + 12 + 0 + 0 + 0 + 0 + 0 + 12 + 0 + 0 + 12. (5.15)

In fact, we can verify that the partition functions (5.13) agree with those of the
sixth unitary N = 2 supersymmetric minimal model at c = 2 [58, 59]. Especially,
(5.14) correspond to the NS vacuum character of the N = 2 super-Virasoro vacuum
character at c = 2. Therefore, we propose again that there can exist an emergent
N = 2 supersymmetry on the edges of the Read-Rezayi state of (k = 4,M = 1),
briefly mentioned in [36].
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A Fermionization of the Parafermion CFT

The prime goal of this appendix is to apply the generalized Jordan-Wigner trans-
formation to the Zk parafermion CFT. We choose Z2 subgroup of Zk symmetry to
explore the fermionized parafermion CFT. Therefore, k ought to be even integers.
Furthermore, the weight formula (5.5) suggests that the weight 3

2
primary can ex-

ist only for k ≤ 8. To avoid the free-fermion issue, we only consider Z6 and Z8

parafermion CFT.

Z6 parafermion CFT Z6 parafermion CFT has 21 primaries and the central charge
is 5/4. We consider the Z2 subgroup of Z6 to apply fermionization (2.2). The weight
3/2 primary with (` = 6,m = 0) generate the Z2 symmetry of interest and ` even
(odd) primaries are even (odd) states under the Z2 subgroup.
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It is easy to find the partition functions of F̃ for each spin structure. The gener-
alized Jordan-Wigner transformation provides the following partition functions.

ZNS
F̃ =

∣∣ψ6
6,6 + ψ6

6,0

∣∣2 +
∣∣ψ6

2,2 + ψ6
4,2

∣∣2 +
∣∣ψ6

4,4 + ψ6
4,−2

∣∣2
+
∣∣ψ6

2,0 + ψ6
4,0

∣∣2 +
∣∣ψ6

6,4 + ψ6
6,2

∣∣2 +
∣∣ψ6

6,−4 + ψ6
6,−2

∣∣2,
ZÑS
F̃ =

∣∣ψ6
6,6 − ψ6

6,0

∣∣2 +
∣∣ψ6

2,2 − ψ6
4,2

∣∣2 +
∣∣ψ6

4,4 − ψ6
4,−2

∣∣2
+
∣∣ψ6

2,0 − ψ6
4,0

∣∣2 +
∣∣ψ6

6,4 − ψ6
6,2

∣∣2 +
∣∣ψ6

6,−4 − ψ6
6,−2

∣∣2,
ZR
F̃ =

∣∣ψ6
1,1 + ψ6

5,1

∣∣2 +
∣∣ψ6

5,5 + ψ6
5,−1

∣∣2 +
∣∣ψ6

5,−3 + ψ6
5,3

∣∣2
+
∣∣√2ψ6

3,3

∣∣2 +
∣∣√2ψ6

3,−1

∣∣2 +
∣∣√2ψ6

3,1

∣∣2,
ZR̃
F̃ =

∣∣ψ6
1,1 − ψ6

5,1

∣∣2 +
∣∣ψ6

5,5 − ψ6
5,−1

∣∣2 +
∣∣ψ6

5,−3 − ψ6
5,3

∣∣2 = 12 + 12 + 0

(A.1)

The above partition functions (A.1) satisfy the SUSY conditions. Especially, the
primary of Ramond sector with weight h = 5

96
saturate the unitarity bound. Thus,

we expect that the Ramond sector ground state preserves supersymmetry.

Z8 parafermion CFT Our next target is to fermionize the Z8 parafermion CFT
with central charge c = 7/5. We first note that the weight-two primary of (` = 8,m =
0) has a role of the generator for Z2 symmetry. The Z2 action on each primary is
readily obtained from the S-matrix, the ` even representations are Z2 even while `
odd are Z2 odd. An orbifold partition function in turn takes the form of

ZB̃ =
∣∣ψ8

8,8 + ψ8
8,0

∣∣2 +
∣∣ψ8

8,−4 + ψ8
8,4

∣∣2 +
∣∣ψ8

2,0 + ψ8
6,0

∣∣2
+
∣∣ψ8

6,−4 + ψ8
6,4

∣∣2 + 2
∣∣ψ8

4,4

∣∣2 + 2
∣∣ψ8

4,0

∣∣2
+
∣∣ψ8

2,2 + ψ8
6,2

∣∣2 +
∣∣ψ8

6,6 + ψ8
6,−2

∣∣2 +
∣∣ψ8

8,−6 + ψ8
8,2

∣∣2
+
∣∣ψ8

8,6 + ψ8
8,−2

∣∣2 + 2
∣∣ψ8

4,−2

∣∣2 + 2
∣∣ψ8

4,2

∣∣2.
(A.2)

In the Z2 orbifold theory B̃, the weight-3/2 primary acquire a role of the generator

of new Z̃2 symmetry. Under the Z̃2 symmetry, the first and second lines of (A.2) are
even while the third and fourth lines are odd. After some computation, we find that
the fermionization of ZB̃ provides the following partition functions.

ZNS
F̃ =

∣∣ψ8
8,8 + ψ8

8,0 + ψ8
8,−4 + ψ8

8,4

∣∣2 +
∣∣ψ8

2,0 + ψ8
6,0 + ψ8

6,−4 + ψ8
6,4

∣∣2 +
∣∣ψ8

4,4 + ψ8
4,0

∣∣2,
ZÑS
F̃ =

∣∣ψ8
8,8 + ψ8

8,0 − ψ8
8,−4 − ψ8

8,4

∣∣2 +
∣∣ψ8

2,0 + ψ8
6,0 − ψ8

6,−4 − ψ8
6,4

∣∣2 +
∣∣ψ8

4,4 − ψ8
4,0

∣∣2,
ZR
F̃ =

∣∣ψ8
2,2 + ψ8

6,2 + ψ8
6,6 + ψ8

6,−2

∣∣2 +
∣∣ψ8

8,−6 + ψ8
8,2 + ψ8

8,6 + ψ8
8,−2

∣∣2 +
∣∣ψ8

4,−2 + ψ8
4,2

∣∣2,
ZR̃
F̃ =

∣∣ψ8
2,2 + ψ8

6,2 − ψ8
6,6 − ψ8

6,−2

∣∣2 +
∣∣ψ8

8,−6 + ψ8
8,2 − ψ8

8,6 − ψ8
8,−2

∣∣2 +
∣∣ψ8

4,−2 − ψ8
4,2

∣∣2
(A.3)
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Especially, the R̃-sector partition function ZR̃
F̃ vanishes. Therefore the partition func-

tions (A.3) satisfy the SUSY conditions, however the Ramond ground state possesses
broken supersymmetry in contrast to (A.1).
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