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Abstract

We consider the XY spin chain with arbitrary time-dependent magnetic field
and anisotropy. We argue that a certain subclass of Gaussian states, called Co-
herent Ensemble (CE) following [1], provides a natural and unified framework
for out-of-equilibrium physics in this model. We show that all correlation
functions in the CE can be computed using form factor expansion and ex-
pressed in terms of Fredholm determinants. In particular, we present exact
out-of-equilibrium expressions in the thermodynamic limit for the previously
unknown order parameter 1-point function, dynamical 2-point function and
equal-time 3-point function.
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1 Introduction

Quantum integrable models are special models of many-body quantum physics with both a
rich phenomenology and an exact Bethe-ansatz solution. But despite their “exact solvabil-
ity”, obtaining closed-form expressions in the thermodynamic limit for correlations of local
observables in and out-of-equilibrium remains a formidable challenge. The standard ap-
proach to these problems [2] consists in expressing such correlation functions as form factor
sums over the full Hilbert space. In interacting models, this task has been achieved only
in certain parameter regimes, such as ground state correlations at late times and large dis-
tances [3–6], equal-time finite temperature correlations at short or large distances [7–16],
full correlations in systematic strong coupling expansions [17, 18] or expansions in low
densities of excitations [19–21], and also in some particularly simple interacting models or
settings [22–25]. A number of numerical, approximate, field theory and other approaches
aimed at facilitating form factor summations have been developed over the last decade
and a half [26–42].

A subclass of quantum integrable models has arguably been of particular importance,
namely theories that can be formulated in terms of free fermions. Examples include
the Lieb-Liniger model at infinite coupling [43, 44] and the XY model in a field [45–50].
They constitute the point of departure and testbed of any field theory or exact method
applying to the interacting case. But despite their free fermion formulation, the problem
of obtaining analytic expressions for general in- and out-of-equilibrium correlations in the
thermodynamic limit is still unsolved for some of these models. In fact, the computation of
in- and out-of-equilibrium correlations can be said to be “fully” solved only for the models
with a U(1) symmetry such as the Lieb-Liniger model at infinite coupling and the XX
chain. In this case, there exist integral, Pfaffian or Fredholm determinant representations
for all static and dynamical correlations in arbitrary eigenstates [51–60], as well as for the
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full out-of-equilibrium time evolution of correlations after quantum quenches [56,61]. The
exact tractability of the form factor expansion in these cases originates from the Cauchy
determinant structure of the form factors [51].

However, there are still unknown correlation functions in the thermodynamic limit of
free fermionic models without U(1) symmetry such as the Transverse Field Ising Model
and more generally the XY model in a field, despite a vast literature on the subject, see
e.g. [45,47,49,62–96]. While the quantities that are local in the underlying fermions (such
as any correlation of the transverse magnetization, and the static 2n-point functions of the
order parameter) can be computed efficiently with Pfaffian representations arising from
Wick’s theorem [47,49], there are no known exact representations for expectation values in
general Gaussian states in the thermodynamic limit for the quantities that are non-local in
the underlying fermions (such as static (2n+ 1)-point functions of the order parameter, or
any dynamical correlation of the order parameter). What makes the form factor expansion
difficult to compute in these cases despite the model being free is that the form factors of
the order parameter are not of Cauchy form. As a consequence, in terms of difficulty of
the calculation these free models without U(1) symmetry can be considered as in certain
ways intermediate cases between free U(1)-symmetric and interacting models.

In contrast to the situation in the thermodynamic limit Pfaffian representations are
readily available in finite systems with open boundary conditions, see e.g. [97]. Similarly,
for finite systems with periodic boundary conditions one can invoke clustering properties
[49, 50, 77, 79, 83] to obtain approximate representations. However, these representations
typically scale with system size and as a far as we are aware their thermodynamic limits
are generally not known.

In this work we show how to perform the form factor expansion for expectation values
of arbitrary operators out of equilibrium. In particular, we derive the full time evolu-
tion of the order parameter one-point function, dynamical two-point function and static
three-point function under arbitrary time-dependent ramps of the magnetic field and the
anisotropy. We also derive alternative Fredholm determinant expressions for the full count-
ing statistics of the transverse magnetization and order parameter two-point function using
form factor expansions rather than Wick’s theorem, hence with a method that is more
generalizable to interacting models. This puts the XY model in a field on the same footing
as the models with U(1) symmetry with regards to out-of-equilibrium physics.

The technique we use to obtain these results is as follows. We define the Coherent
Ensemble (CE) as the expectation value of operators within coherent states, which are
superpositions of all zero-momentum pair states, weighted by amplitudes which are pa-
rameters of the CE. The crucial property of these coherent states is that they retain their
structure when expressed in terms of eigenstates of the XY Hamiltonian with different
values of magnetic field h and anisotropy γ, as observed in [1] for the Ising model. This
has two consequences: (i) The time evolution of the initial state with any variation of
magnetic field h(t) and anisotropy γ(t) can be written as a coherent state with a certain
amplitude; (ii) Any correlation function in the CE can be recast as a correlation function
in an elementary (classical) Hamiltonian such as −

∑
j σ

x
j σ

x
j+1 for h = 0, γ = 1 or −

∑
j σ

z
j

for h = ∞. At these values of parameters, the form factors of the order parameter are
exactly Cauchy determinants, which enables one to use the techniques developed for U(1)
symmetric models and obtain Fredholm determinant expressions in the thermodynamic
limit.

We note that these coherent states appeared more or less explicitly in different papers
in the literature [67, 68, 74, 77, 100]. Most notably in [67, 68] they were used to obtain
a Fredholm determinant expression for the two-point function of the order parameter at
equilibrium at finite temperature. But to the best of our knowledge their utility in deriving
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Fredholm determinant representations for generic out-of-equilibrium correlators has not
been realized prior to [1] and the present work.

The paper is organized as follows. We start by introducing coherent states in Section
10, and explain why out-of-equilibrium physics can be written as a CE. Then in Section
3 we show that arbitrary expectation values and correlation functions can be computed
within the CE. Their derivation relies on a number of Lemmas for form factors and sum-
mation formulas that are gathered and proven in Appendix B. Finally, in Section 4 we
apply our results to a number of examples including the Kibble-Zurek mechanism, Floquet
physics and quantum quench physics.

2 Coherent Ensemble in the XY model

2.1 The XY model in a field

The Hamiltonian of the XY model on a system of size L, in a magnetic field h and with
anisotropy γ is [45]

H(h, γ) = −
L∑
j=1

1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyj σ
y
j+1 + hσzj . (1)

We impose periodic boundary conditions L + 1 ≡ 1. The diagonalisation of H(h, γ) is
reviewed in Appendix A. The Hamiltonian splits into two sectors H(h, γ) = HNS(h, γ)⊕
HR(h, γ) called Neveu-Schwarz (NS) and Ramond (R) sector respectively

HNS,R(h, γ) =
∑

k∈NS,R

εhγ(k)

(
α†hγ;kαhγ;k −

1

2

)
, (2)

where the fermions αhγ;k satisfy canonical anti-commutation relations {αhγ;k, α
†
hγ;p} = δk,p.

Here, NS and R denote the sets

NS =

{
2π(n+ 1/2)

L
, n = −L/2, ..., L/2− 1

}
R =

{
2πn

L
, n = −L/2, ..., L/2− 1

}
,

(3)

and εhγ(k) denotes the energy of mode k

εhγ(k) =

{
2
√

(h− cos k)2 + γ2 sin2 k if k 6= 0

−2(1− h) if k = 0
. (4)

In these conventions, σz (resp. σx) is local (resp. non-local) in the underlying Jordan-
Wigner fermions1, see Appendix A.

Denoting by |0〉NS,R
hγ the respective vacuum states annihilated by the αhγ;k’s in the NS

and R sectors, the eigenstates of the model are then

|kkk〉h,γ = α†hγ;k1
...α†hγ;kN

|0〉NS
hγ , kkk ⊂ NS , N even

|kkk〉h,γ = α†hγ;k1
...α†hγ;kN

|0〉Rhγ , kkk ⊂ R , N odd .
(5)

1We note that compared to the previous paper in Ising [1] the notations for σx, σz have been switched,
to match usual conventions in the quantum quench literature.
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In these definitions we choose an ordering such that ki < kj if i < j and ki 6= 0, kj 6= 0. If
0 ∈ kkk then we choose kN = 0.

For h > 1, the ground state is |0〉NS
hγ . For 0 < h < 1 the two lowest energy states are

|0〉NS
hγ and α†hγ;0|0〉

R
hγ . Their energy levels are exponentially close in L, and in finite size

the true ground state is |0〉NS
hγ . The model has two critical lines |h| = 1, γ 6= 0, and for

γ = 0, |h| < 1 [47]. The energies of |0〉NS
hγ and α†hγ;0|0〉

R
hγ are given by

ENS
hγ = −

∑
k∈NS

√
(h− cos k)2 + γ2 sin2 k

ER
hγ = −

∑
k∈R

√
(h− cos k)2 + γ2 sin2 k + 2|1− h|111h>1 .

(6)

Here we have defined

111h>1 =

{
1 if h > 1 ,

0 else .
(7)

2.2 Coherent states

We define NS+,R+ as the subsets of NS and R defined in (3) with strictly positive elements.
Given kkk ⊂ NS+, we define pair states in the NS sector as the Fock states

|k̄̄k̄k〉NS
hγ = |kkk ∪ (−kkk)〉NS

hγ , (8)

and given kkk ⊂ R+, pair states in the R sector as

|¯̄k̄̄k̄̄k〉Rhγ = |kkk ∪ (−kkk) ∪ {0}〉Rhγ . (9)

Following [1], for a complex number A called “phase” and a function f called “amplitude”,
we introduce coherent states by

ΨNS
hγ (A, f) ≡ A

∑
kkk⊂NS+

[∏
k∈kkk

f(k)

]
|k̄̄k̄k〉NS

hγ = A
∏

k∈NS+

[
1 + f(k)α†hγ;−kα

†
hγ;k

]
|0〉NS

hγ

ΨR
hγ(A, f) = A

∑
kkk⊂R+

[∏
k∈kkk

f(k)

]
|¯̄k̄̄k̄̄k〉Rhγ = A

∏
k∈R+

[
1 + f(k)α†hγ;−kα

†
hγ;k

]
α†hγ;0|0〉

R
hγ .

(10)

In these definitions the amplitude f needs to be defined only on [0, π]. However we will
consider it as an odd function defined on [−π, π].

The key observation made in [1] for the transverse field Ising chain is the following
relation between coherent states at different at different parameter values (h, γ) and (h̃, γ̃):

Theorem 1. Let h, h̃ and γ, γ̃ be arbitrary magnetic fields and anisotropies respectively.
Then we have

ΨNS,R
hγ (A, f) = ΨNS,R

h̃γ̃
(Ã, f̃) , (11)

where

Ã = A
∏

k∈NS+,R+

1 + iKh̃γ̃;hγ(k)f(k)√
1 +K2

h̃γ̃;hγ
(k)

,

f̃(k) =
iKh̃γ̃;hγ(k) + f(k)

1 + iKh̃γ̃;hγ(k)f(k)
. (12)
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Here we have defined

Kh̃γ̃;hγ(k) = tan
θh̃γ̃k − θ

hγ
k

2
, eiθ

hγ
k =

h− cos k − iγ sin k√
(h− cos k)2 + γ2 sin2 k

. (13)

Proof. The proof is similar to that in [1] for the Ising model. Expanding the coherent
state in a basis of energy eigenstates gives

ΨNS
hγ (A, f) = A

∑
qqq⊂NS

∑
rrr⊂NS+

[∏
r∈rrr

f(r)

]
|qqq〉NS

h̃γ̃
NS
h̃γ̃
〈qqq|r̄̄r̄r〉NS

hγ . (14)

The overlaps NS
h̃γ̃
〈qqq|r̄̄r̄r〉NS

hγ between eigenstates of H(h, γ) at different magnetic fields and

anisotropies is given in Lemma 1 in Appendix B. Introducing the short-hand notation
K(k) ≡ Kh̃γ̃;hγ(k) we have

ΨNS
hγ (A, f) =

A∏
k∈NS+

√
1 +K2(k)

∑
qqq⊂NS+

∏
q∈qqq

[iK(q)]
∑

rrr⊂NS+

∏
r∈rrr
F(r, qqq)

 |q̄̄q̄q〉NS
h̃γ̃

,

F(r, qqq) =

{
f(r)
iK(r) if r ∈ qqq ,
iK(r)f(r) if r /∈ qqq .

(15)

The sum over rrr is∑
rrr⊂NS+

∏
r∈rrr
F(r, qqq) =

∏
q∈qqq

(
1 +

f(q)

iK(q)

) ∏
k∈NS+

k/∈qqq

(1 + iK(k)f(k))

=
∏
q∈qqq

1 + f(q)
iK(q)

1 + iK(q)f(q)

∏
k∈NS+

(1 + iK(k)f(k)) .

(16)

Then

ΨNS
hγ (A, f) = Ã

∑
qqq⊂NS+

[∏
q∈qqq

f̃(q)

]
|q̄̄q̄q〉NS

h̃γ̃
, (17)

with Ã, f̃ defined in the Theorem.

2.3 Coherent Ensemble

The purpose of this section is to introduce the Coherent Ensemble which is convenient for
formulating general time-dependent Hamiltonian dynamics.

2.3.1 Generalized Gibbs and Gaussian ensembles

We recall that the Generalized Gibbs Ensemble (GGE) parametrized by generalized tem-
peratures β1, β2, ... is defined by the following expectation values of an operator O

〈O〉GGE[hγ]
βββ =

tr [Oe−
∑
n βnHn ]

tr [e−
∑
n βnHn ]

, (18)

where Hn are the conserved quantities of the model, and where tr denotes a trace over
the full Hilbert space. These ensembles describe equilibrium physics in the XY model, be
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it finite-temperature equilibrium or steady states reached after a quantum quench. In the
thermodynamic limit, they are equivalently parametrized by a particle density ρ(λ) [98].

The Gaussian Ensemble (GE) parametrized by the 2 × 2 block L × L correlation
matrix Γ is defined by the fact that the expectation values satisfy Wick’s theorem when
expressed in terms of the Jordan-Wigner fermions cj , see Appendix A, the elementary
2-point functions being given by

Γij =

(
〈c†icj〉

GE[hγ]
Γ 〈c†ic

†
j〉

GE[hγ]
Γ

〈cicj〉GE[hγ]
Γ 〈cic†j〉

GE[hγ]
Γ

)
. (19)

GGE’s are particular cases of GE’s for the XY Hamiltonian (1).

2.3.2 Definition of the Coherent Ensemble

An operator O is called even (resp. odd) if its matrix elements between eigenstates with
different (resp. same) fermion parity vanish. We define the Coherent Ensemble (CE)
parametrized by an amplitude f(k) by the following expectation values for even local
operators O

〈O〉CE[hγ]
f = ΨNS

hγ (ANS, f)†OΨNS
hγ (ANS, f) , (20)

and for odd operators

〈O〉CE[hγ]
f =

1

2

[
ΨR
hγ(AR, f)†OΨNS

hγ (ANS, f) + ΨNS
hγ (ANS, f)†OΨR

hγ(AR, f)
]

= <
[
ΨR
hγ(AR, f)†OΨNS

hγ (ANS, f)
]
,

(21)

where
ANS,R =

∏
k∈NS+,R+

(1 + |f(k)|2)−
1
2 . (22)

Replacing NS by R in (20) incurs only negligible corrections in system size.
We note that the expression (21) naturally arises when the expectation value of an

odd operator O is computed in a state that is a superposition of NS and R sector states

|Ψ〉 =
|ΨNS〉+ |ΨR〉√

2
. (23)

2.3.3 CE as a particular case of a GE

Let us show that each CE corresponds to a particular GE. To that end, we consider the
following expectation value of Jordan-Wigner fermions in momentum space

〈c(k1)†...c(kn)†c(q1)...c(qm)〉CE[hγ]
f , (24)

with for example k1, ..., kn, q1, ..., qm ∈ NS, and would like to show that it can be computed
using Wick contractions. Using Theorem 1, we can write it in the (∞, γ) basis with another
amplitude f ′. In this basis we have

〈c(k1)†...c(kn)†c(q1)...c(qm)〉CE[hγ]
f = 〈α†k1 ...α

†
kn
αq1 ...αqm〉

CE[∞γ]
f ′ , (25)

where the α’s are implicitly written in the (∞, γ) basis for notational lightness. Next, we

observe that for the expectation value 〈α†k1 ...α
†
km
αq1 ...αqm〉

CE[∞γ]
f ′ to be non-zero, for each

ki there has to be either another kj with kj = −ki, or a qj with qj = ki. The same holds
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true interchanging the k’s and the q’s. Hence we are led to evaluating expectation values
of the form

〈
∏
i

α†kiαki
∏
i

α†−qiα
†
qi

∏
i

αriα−ri
∏
i

α†−siα
†
siαsiα−si〉

CE[∞γ]
f ′ , (26)

where the k’s, q’s, r’s and s’s are all distinct. Using the definition of the CE, we obtain

〈
∏
i

α†kiαki
∏
i

α†−qiα
†
qi

∏
i

αriα−ri
∏
i

α†−siα
†
siαsiα−si〉

CE[∞γ]
f ′

=
∏
i

|f ′(ki)|2

1 + |f ′(ki)|2
∏
i

f ′∗(qi)

1 + |f ′(qi)|2
∏
i

f ′(ri)

1 + |f ′(ri)|2
∏
i

|f ′(si)|2

1 + |f ′(si)|2
.

(27)

We now observe that the non-zero elementary two-point functions satisfy

〈α†kαk〉
CE[∞γ]
f ′ =

|f ′(k)|2

1 + |f ′(k)|2
, 〈αkα−k〉

CE[∞γ]
f ′ =

f ′(k)

1 + |f ′(k)|2
. (28)

Because of the relation

|f ′(s)|2

1 + |f ′(s)|2
= 〈α†−sα†s〉

CE[∞γ]
f ′ 〈αsα−s〉CE[∞γ]

f ′ + 〈α†−sα−s〉
CE[∞γ]
f ′ 〈α†sαs〉

CE[∞γ]
f ′ , (29)

we obtain that the right-hand side of (27) and so (24) can indeed be computed using
Wick’s theorem, which establishes that the CE is a particular case of a GE.

2.3.4 Inequivalence of CE with GE or GGE

CE ensembles are not equivalent to either GEs or GGEs. To show this, let us consider
an operator O that is local in terms of the fermions cj and compute its expectation value
within the CE. Using Wick’s theorem in the thermodynamic limit it can be recast into
sums and products of expectation values of quadratic terms in the Jordan Wigner fermions
cj ’s in real space. These take the values

〈c†ncm〉
CE[hγ]
f =

1

2π

∫ π

−π
ei(n−m)k

[
cos2(θhγk /2)

|f(k)|2

1 + |f(k)|2
+ sin2(θhγk /2)

1

1 + |f(k)|2

]
dk

− 1

2π

∫ π

−π
ei(n−m)k sin θhγk

=f(k)

1 + |f(k)|2
dk ,

〈cncm〉CE[hγ]
f =

i

4π

∫ π

−π
eik(n−m) sin θhγk

1− |f(k)|2

1 + |f(k)|2
dk

− 1

2π

∫ π

−π
eik(n−m) cos2(θhγk /2)f(k) + sin2(θhγk /2)f∗(k)

1 + |f(k)|2
dk . (30)

By computing the Fourier series, one sees that the values of 〈cncm〉CE[hγ]
f for all n,m impose

a system of two polynomial equations of degree 2 on <f and =f . This prevents 〈c†ncm〉CE[hγ]
f

from taking arbitrary values, whereas in the GE they are independent quantities. Hence
the CE’s are a strict subset of GE’s.

Expectation values of local operators in the thermodynamic limit of a GGE can be
expressed in terms of mode occupation numbers or equivalently a root density ρ [98] and
the associated hole density ρh = 1

2π − ρ as

〈c†ncm〉GGE[hγ]
ρ =

∫ π

−π
ei(n−m)k cos2(θh,γk /2)ρ(k)dk +

∫ π

−π
ei(n−m)k sin2(θhγk /2)ρh(−k)dk

〈cncm〉GGE[hγ]
ρ =

i

2

∫ π

−π
eik(n−m) sin θh,γk (ρh(−k)− ρ(k))dk .

(31)
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To have 〈cncm〉GGE[hγ]
ρ = 〈cncm〉CE[hγ]

f for all n,m requires a purely imaginary f(k) ≡ if̃(k)
and the relation

ρ(k) =
1

2π

f̃(k)2

1 + f̃(k)2
+

1

2π tan θhγk

f̃(k)

1 + f̃(k)2
. (32)

The requirement that 〈c†ncm〉GGE[hγ]
ρ = 〈c†ncm〉CE[hγ]

f for all n,m further imposes that

ρ(k) =
1

2π

f̃(k)2

1 + f̃(k)2
−

tan θhγk
2π

f̃(k)

1 + f̃(k)2
. (33)

One sees that the two relations are compatible only if f̃(k) takes the values 0 or ∞. In
this case, the coherent state ΨNS

hγ (A, f) is nothing but an eigenstate of the Hamiltonian.
In fact, it is a “representative state” [98] of a root density that is either zero or maximal,
which exactly corresponds to so-called “zero-entropy states”, in the sense that their Yang-
Yang entropy vanishes. Hence no GGE can be written as a CE, apart from zero-entropy
state expectation values.

2.3.5 GGE at the boundary of CE

However, starting from a coherent state ΨNS
hγ (f) one can obtain a GGE by taking the late

time limit of the evolution of the CE induced by the Hamiltonian H(h, γ). Indeed, one
has

e−iτH(h,γ)ΨNS,R
hγ (f,A) = ΨNS,R

hγ (fτ , Aτ ) , (34)

with
fτ (k) = f(k)e−2iτεhγ(k) , Aτ = Ae−iτE

NS,R
hγ . (35)

Hence the CE after time τ is obtained from (30) by replacing f by fτ . In the limit τ →∞,
the fast oscillations in fτ (k) cause the second terms of the expectation values in (30) to
vanish, while leaving the other terms invariant. This establishes that if the root density ρ
is even, and if one chooses f such that

ρ(k) =
1

2π

|f(k)|2

1 + |f(k)|2
, (36)

then

lim
τ→∞

〈c†ncm〉
CE[hγ]
fτ

= 〈c†ncm〉GGE[hγ]
ρ , lim

τ→∞
〈cncm〉CE[hγ]

fτ
= 〈cncm〉GGE[hγ]

ρ . (37)

This shows that any GGE with even root density can be obtained as a limit of CE. Figure
1 summarizes the inclusion of the different ensembles GE, CE and GGE.

Figure 1: Sketch of the position of the GGE (red line) and CE (yellow surface) within the
GE (gray volume), for symmetric root densities.

9



2.4 Out-of-equilibrium physics as a Coherent Ensemble

It is known that equilibrium physics can be formulated as a GGE [98]. The purpose of
this section is to show how homogeneous non-equilibrium dynamics in the XY model can
be formulated as a CE, see also Refs [71,88,100,101,104].

2.4.1 Differential equation for the amplitude

We assume that at time t = 0 the system is prepared in the ground state of H(h0, γ0),
and that it is time-evolved at time t > 0 with the Hamiltonian H(h(t), γ(t)), namely

|ψ(0)〉 = |0〉NS
h0γ0 ,

i∂t|ψ(t)〉 = H(h(t), γ(t))|ψ(t)〉 . (38)

We note that by virtue of the linearity of the Schrödinger equation one can equally well
consider initial states that are superpositions, for example of the ground states in the NS
and R sectors.

We would like to determine the time evolution of observables during this process.
To that end, we replace the time evolution of the magnetic field and anisotropy by a
series of quenches in which they are suddenly changed to hn = h(tn), γn = γ(tn) at times
tn = (n − 1)δt, for a given small time interval δt > 0, and kept constant between these
quenches. The original dynamics is obtained in the limit δt → 0. We now observe that
the initial state can be written as a coherent state

|ψ(0)〉 = ΨNS
h0γ0(1, 0) , (39)

and that the time-evolution with H(h, γ) of a coherent state written in the (h, γ) basis is
simply given by

e−itH(h,γ)ΨNS
hγ (A, f) = ΨNS

hγ (A′, f ′) , (40)

with f ′(k) = f(k)e−2itεhγ(k) and A′ = Ae−itE
NS
hγ . As a consequence, using repeatedly

Theorem 1 to write the state as a coherent state in the (hn, γn) basis for tn ≤ t < tn+1,
and then expressing it in the (0, 1) basis, one has at time t−n

|ψ(t−n )〉 = ΨNS
01 (ANS

(n−1), f(n−1)) , (41)

where the sequence of functions fj and phases Aj satisfy

f(0)(k) = −iKh0γ0;01(k) ,

f(j)(k) =
iKhjγj ;01(k)(e

−2iεhjγj (k)δt − 1) + (K2
hjγj ;01(k) + e

−2iεhjγj (k)δt
)f(j−1)(k)

1 + e
−2iεhjγj (k)δt

K2
hjγj ;01(k) + iKhjγj ;01(k)(1− e−2iεhjγj (k)δt

)f(j−1)(k)
,

ANS
j = ANS

j−1e
−iδtENS

hjγj ,

×
∏

k∈NS+

1 +K2
hjγj ;01(k)e

−2iεhjγj (k)δt
+ iKhjγj ;01(k)f(j−1)(k)(1− e−2iεhjγj (k)δt

)

1 +K2
hjγj ;01(k)

.

(42)

We now take the limit δt → 0. To that end it is useful to introduce a function ft(k) of
both t and k by

ft(k) = lim
δt→0

f(bt/δtc)(k) . (43)

10



From (42), we conclude that the state of the system at time t following an arbitrary
variation h(t), γ(t) of the magnetic field and anisotropy can be written as a coherent state

|ψ(t)〉 = ΨNS
01 (ANS

t , ft) , (44)

whose amplitude ft(k) satisfies a non-linear differential equation

∂tft(k) =
2Kh(t)γ(t);01(k)

1 +K2
h(t)γ(t);01(k)

εh(t)γ(t)(k)(1 + f2
t (k))− 2i

1−K2
h(t)γ(t);01(k)

1 +K2
h(t)γ(t);01(k)

εh(t)γ(t)(k)ft(k) .

(45)
The initial condition is f0(k) = −iKh(0)γ(0);01(k). This shows that any expectation value
out-of-equilibrium can be written as a CE. An example of the function ft(k) is plotted in
Figure 2 for a sudden quench from h0 = 0.1 to h = 0.9.

An equivalent system of linear differential equations was obtained previously in [100].
Indeed, we have

|ψ(t)〉 =
∏

k∈NS+

[
nt(k) +mt(k)α†01;−kα

†
01;k

]
|0〉NS

01 , (46)

where nt(p) an mt(p) fulfil the following system of linear ordinary differential equations

d

dt

(
nt(p)
mt(p)

)
= εh(t),γ(t)(p)

(
i cos ∆t(p) − sin ∆t(p)
sin ∆t(p) −i cos ∆t(p)

)(
nt(p)
mt(p)

)
, p ∈ NS+ , (47)

where we have defined

∆t(k) = θ
h(t)γ(t)
k − θ01

k , (48)

and with the initial conditions

n0(k) =
1√

1 +K2
h0γ0;01(k)

, m0(k) = −
iKh0γ0;01(k)√
1 +K2

h0γ0;01(k)
. (49)

This formulation is equivalent to (44) once we identify

ft(p) =
mt(p)

nt(p)
, ANS

t =
∏

p∈NS+

nt(p) . (50)

2.4.2 The phase factor

In the limit δt→ 0, the phase becomes

ANS
t = ANS

0 e
−i

∫ t
0 ENS

h(s)γ(s)
ds

exp

 ∑
k∈NS+

ϕt(k)


ϕt(k) = −2

∫ t

0
εh(s)γ(s)(k)

Kh(s)γ(s);01(k)

1 +K2
h(s)γ(s);01(k)

(iKh(s)γ(s);01(k) + fs(k))ds .

(51)

For a coherent state in the R sector the same formula holds where the sum is over momenta
in R+ and with ENS

h(s)γ(s) replaced by ER
h(s)γ(s). For expectation values in the CE of even

operators, the phase is irrelevant since it always cancels out. However, for odd operators
the expectation value is proportional to the phase factor

φL(t) ≡ ANS
t (AR

t )∗

|ANS
t (AR

t )∗|
, (52)

11



Figure 2: Amplitude ft(k) for a quantum quench from h(0) = 0.1 to h(t) = 0.9 for t > 0
at times (a) t = 0; (b) t = 0.5; (c) t = 1; (d) t = 2. The real and imaginary parts are
shown in blue and red respectively.

where we made explicit the system size dependence of φL(t) that is only implicit in ANS,R
t .

Let us assume first that the solution ft(k) to the non-linear differential equation (45)
is regular for all t and k. Then, using the Euler-MacLaurin formula, we find∑

k∈NS+

ϕt(k) =
L

2π

∫ π

0
ϕt(k)dk +O(L−1)

∑
k∈R+

ϕt(k) =
L

2π

∫ π

0
ϕt(k)dk − ϕt(π) + ϕt(0)

2
+O(L−1)

ENS
hγ = − L

4π

∫ π

−π
εhγ(k)dk +O(L−1)

ER
hγ = − L

4π

∫ π

−π
εhγ(k)dk + 2|1− h|111h>1 +O(L−1) .

(53)

Assuming that the trajectory h(t), γ(t) is such that the time spent on a critical point is of
measure 0, we find ϕt(π) = 0 and

ϕt(0) = −4i

∫ t

0
|1− h(s)|111h(s)>1ds . (54)

Hence in this case we obtain in the thermodynamic limit

φ∞(t) = 1 . (55)

However, if the function ft(k) is singular for some values t∗, k∗, then φL(t) for t ≥ t∗ is
not guaranteed to become 1 in the thermodynamic limit, which can result in a non-trivial
multiplicative phase in (21). This phase has to be computed with (52) and (51).
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Singularities of ft(k) are best understood with the system of linear differential equa-
tions (47). nt(p) and mt(p) are regular functions and the nature of the singularities of ft(p)
becomes transparent: they simply correspond to situations when at least one probability
amplitude nt∗(k

∗) vanishes. This implies that the overlap of the time evolved state with
|0〉NS

01 vanishes

NS
01 〈0|T exp

(
−i
∫ t∗

0
H(h(s), γ(s))ds

)
|0〉NS

h0γ0 = 0 =⇒ ft∗(k
∗) singular. (56)

This situation is somewhat reminiscent of non-analyticities in the Loschmidt amplitude
[102]. This phase will be discussed again in a concrete example in Section 4.1.

To summarize this section, the CE provides the natural framework to evaluate the
expectation value of any operator O during the out-of-equilibrium evolution (38). If O is
even, then its expectation value is given by (20) with f satisfying the nonlinear differential
equation (45). If O is odd, then its expectation value is given by (21) multiplied (inside
the real part) by the phase φL(t) (52). In the thermodynamic limit, φ∞(t) is constant
in time as long as ft(k) is a regular function of k. If ft∗(k) has a singularity at k∗, then
φ∞(t) can be discontinuous at t∗, and has to be evaluated according to (51).

3 Expectation values in the Coherent Ensemble

The purpose of this section is to show that essentially all correlation functions and expec-
tation values in the CE can be expressed as Fredholm determinants and Pfaffians in the
thermodynamic limit. We fix h, γ and to ease notations write

〈O〉f ≡ 〈O〉
CE[hγ]
f . (57)

3.1 Definitions

The formulas obtained for the various expectation values considered involve Fredholm
determinants and Fredholm Pfaffians. In this section we present the definition of these
objects and some of their properties.

3.1.1 Fredholm determinant

Given a function F (λ, µ) on [a, b]× [a, b], the Fredholm determinant Det[Id+F ] is defined
by

Det[Id + F ] = 1 +

∞∑
n=1

1

n!

∫ b

a
...

∫ b

a
det[F (zi, zj)]1≤i,j≤ndz1...dzn . (58)

Here, Id should be merely considered as a notation. The Fredholm determinant satisfies
the following relation

Det[Id + F ] = lim
N→∞

det

[
δi,j +

b− a
N

F (ζi, ζj)

]
1≤i,j≤N

, (59)

with ζ1 < ... < ζN regularly spaced numbers covering [a, b].
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3.1.2 Block Fredholm Pfaffian

Given a 2×2 matrix-valued functionKKK(x, y) = (Kij(x, y))1≤i,j≤2 on [a, b]× [a, b] satisfying
Kij(x, y) = −Kji(y, x), the block Fredholm Pfaffian Pf[JdJdJd +KKK] is defined by [103]

Pf[JdJdJd +KKK] = 1 +
∞∑
n=1

1

n!

∫ b

a
...

∫ b

a
pf[K(zi, zj)]1≤i,j≤ndz1...dzn . (60)

The matrices inside the Pfaffian on the right-hand side are thus n × n matrices of 2 × 2
blocks. Here, JdJdJd should be merely considered as a notation. The block Fredholm Pfaffian
satisfies the relation

Pf[JdJdJd +KKK] = lim
N→∞

pf

[
δi,jJJJ +

b− a
N

KKK(ζi, ζj)

]
1≤i,j≤N

, (61)

with J the 2× 2 matrix

JJJ =

(
0 1
−1 0

)
. (62)

3.1.3 Fredholm Pfaffian

Given an antisymmetric function F (λ, µ) on [−a, a]× [−a, a], i.e. that satisfies F (µ, λ) =
−F (λ, µ), one can define the 2× 2 matrix-valued function KKKF on [0, a]× [0, a] by

KKKF (x, y) =

(
F (x, y) F (x,−y)
F (−x, y) F (−x,−y)

)
. (63)

We thus define the Fredholm Pfaffian Pf[Jd + F ] of an antisymmetric function F on
[−a, a]× [−a, a] by

Pf[Jd + F ] ≡ Pf[JdJdJd +KKKF ]

= 1 +

∞∑
n=1

1

n!

∫ a

0
...

∫ a

0
pf

[
F (zi, zj) F (zi,−zj)
F (−zi, zj) F (−zi,−zj)

]
1≤i,j≤n

dz1...dzn .
(64)

It satisfies the relation

Pf[Jd + F ] = lim
N→∞
Neven

(−1)N/2 pf

[
δi,N+1−j sgn (j − i) +

2a

N
F (ζi, ζj)

]
1≤i,j≤N

. (65)

Here, ζ1 < ... < ζN are regularly spaced numbers covering [−a, a] and assumed to be
symmetrically distributed to ensure the antisymmetry of the matrix. The factor (−1)N/2

compared to (61) arises from the re-ordering of rows and columns after changing the
2× 2 block N/2×N/2 matrix into an N ×N matrix, and re-ordering the negative ζ’s in
ascending order.

3.2 Full counting statistics of the transverse magnetization

As the operator σz is local in the Jordan-Wigner fermions cj , any static correlation of σz

is simple to calculate and can be expressed as a multiple integral in the thermodynamic
limit. The purpose of this section is to derive a Fredholm determinant expression for the
following generating function

〈eiθ
∑`
j=1 σ

z
j 〉f , (66)
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for arbitrary θ and `. Exact Pfaffian representations of size 2` for the full counting statistics
of the transverse magnetization in a generic GE have been derived before using Wick’s
theorem [71,72,85–87,90,99].

To compute (66), we express the coherent states involved in the CE in the (∞, γ) basis
and expand them to obtain

〈eiθ
∑`
j=1 σ

z
j 〉f = |A|2

∑
λλλ,µµµ⊂NS+

NS
∞γ〈λ̄̄λ̄λ|e

iθ
∑`
j=1 σ

z
j |µ̄̄µ̄µ〉NS

∞γ
∏
λ∈λλλ

g∗(λ)
∏
µ∈µµµ

g(µ) , (67)

where

g(k) =
iK∞γ;hγ(k) + f(k)

1 + iK∞γ;hγ(k)f(k)
. (68)

We now use Lemma 2 to write the form factor of eiθ
∑`
j=1 σ

z
j as a determinant

〈eiθ
∑`
j=1 σ

z
j 〉f = eiθ`|A|2

∑
λλλ,µµµ⊂NS+

|λλλ|=|µµµ|

detE(λ̄̄λ̄λ, µ̄̄µ̄µ)
∏
λ∈λλλ

g∗(λ)
∏
µ∈µµµ

g(µ) , (69)

where E(λλλ,µµµ) is defined in (177). Because of the pair structure of µ̄̄µ̄µ each µi appears in
two columns of the matrix E(λ̄̄λ̄λ, µ̄̄µ̄µ). Hence we can use Lemma 6 to carry out the sum
over µµµ, with NS+ being the set K, and (177) being the function f when µk > 0 and the
function g when µk < 0. This gives∑

µµµ⊂NS+

|λλλ|=|µµµ|

detE(λ̄̄λ̄λ, µ̄̄µ̄µ)
∏
µ∈µµµ

g(µ) = (−1)N/2 pf[Ẽ(λ̄̄λ̄λ)− Ẽ(λ̄̄λ̄λ)T ] . (70)

In notations where λ̄̄λ̄λ = {λ1, ..., λN} the matrix elements of Ẽ for λj 6= −λk are given by

Ẽ(λ̄̄λ̄λ)jk =

(
e−2iθ − 1

L

)2 ∑
µ∈NS+

µ 6=λj ,−λk

ei(λj+λk) 1− ei`(λj−µ)

1− ei(λj−µ)

1− ei`(λk+µ)

1− ei(λk+µ)
g(µ)

+ (111λj>0g(λj) + 111λk<0g(−λk))
(

1 +
`

L
(e−2iθ − 1)

)
e−2iθ − 1

L
ei(λj+λk) 1− ei`(λj+λk)

1− ei(λj+λk)
,

(71)
while for λj = −λk we have

Ẽjk(λ̄̄λ̄λ) =

(
e−2iθ − 1

L

)2 ∑
µ∈NS+
µ 6=λj

∣∣∣∣∣1− ei`(λj−µ)

1− ei(λj−µ)

∣∣∣∣∣
2

g(µ)

+ 111λj>0

(
1 +

`

L
(e−2iθ − 1)

)2

g(λj) .

(72)

The factor (−1)N/2 arises from the re-ordering of the columns of the matrix in order to use
Lemma 6. Factorizing g(λ) for λ > 0, in the thermodynamic limit one obtains a Fredholm
Pfaffian

(−1)N/2 pf[Ẽ(λ̄̄λ̄λ)− Ẽ(λ̄̄λ̄λ)T ] = Pf[Jd + E [ρ]]
∏
λ∈λλλ

g(λ)(1 + o(L0)) . (73)
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Here the kernel acts on [−π, π]× [−π, π]

E [ρ](λ, µ) =
(e−2iθ − 1)2

2π

√
ρ(λ)ρ(µ)

g+(λ)g+(µ)

×
∫ π

0

[
1− ei`(λ−k)

1− ei(λ−k)

1− ei`(µ+k)

1− ei(µ+k)
− 1− ei`(µ−k)

1− ei(µ−k)

1− ei`(λ+k)

1− ei(λ+k)

]
g(k)dk

+ (e−2iθ − 1)

√
ρ(λ)ρ(µ)

g+(λ)g+(µ)

1− ei`(λ+µ)

1− ei(λ+µ)
(g(λ)− g(µ)) ,

(74)

the function ρ(λ) is the root density associated with λλλ and g+(λ) is defined by

g+(λ) =

{
g(λ) if λ > 0 ,

1 if λ < 0 .
(75)

The factor
√
ρ(λ)ρ(µ) ensures that in the definition (64), each integral over [0, π] comes

with a root density factor ρ(λ). Substituting (73) and (70) into (69) we obtain

〈eiθ
∑`
j=1 σ

z
j 〉f = eiθ`|A|2

∑
λλλ⊂NS+

Pf[Jd + E [ρ]]
∏
λ∈λλλ
|g(λ)|2(1 + o(L0)) . (76)

Finally we employ Lemma 7 to arrive at our final result in terms of a Fredholm Pfaffian

〈eiθ
∑`
j=1 σ

z
j 〉f = eiθ` Pf[Jd + E [ρs]] , (77)

where

ρs(k) =
1

2π

|g(k)|2

1 + |g(k)|2
. (78)

3.3 Order-parameter one-point function

In contrast to σz` the longitudinal spin operator σx` is non-local in the Jordan-Wigner
fermions and as a consequence the computation of its expectation value is a non-trivial
problem. In this section we present a formula for the expectation value of the magnetiza-
tion in the CE as defined in (21), i.e.

〈σx` 〉f ≡ <
[
ΨR
hγ(AR, f)†σx` ΨNS

hγ (ANS, f)
]
. (79)

Since σx` is an odd operator under fermion parity it maps NS (R) states onto R (NS) states
and only averages like (79) are non-vanishing. We note that they arise naturally in the
context of spontaneous symmetry breaking of the spin-flip Z2 symmetry. The average (79)
has been derived in the Supplemental Material of [1] in the particular case of the Ising
model, and the generalization to the XY model is straightforward. The result takes the
form of a Fredhom determinant

〈σx` 〉f = <Det[Id +M[ρs]] , (80)

where we defined the following kernel acting on [0, π]× [0, π]

M[ρ](λ, µ) = − 2

π

ρ(λ) sinλ

h(λ)

1

cosλ− cosµ

[∫ π

0

h(k) sin k

cosλ− cos k
dk −

∫ π

0

h(k) sin k

cosµ− cos k
dk

]
,

(81)

h(k) =
iK01;hγ(k) + f(k)

1 + iK01;hγ(k)f(k)
, ρs(k) =

1

2π

|h(k)|2

1 + |h(k)|2
. (82)
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In (80) we have assumed that the function h in (82) is regular. We stress that in (79)
the amplitudes AR and ANS are given by (22). In applications to time-dependent ramps
the additional phase factor discussed in section 2.4.2 needs to be taken into account, cf.
section 4.1.

3.4 Equal-time order-parameter two-point function

The purpose of this section is to derive the static two-point correlation function

〈σx`+1σ
x
1 〉f . (83)

We note that exact Pfaffian/determinant representations of size 2` for the order parameter
two point function in an arbitrary GE have been derived before using Wick’s theorem and
various explicit results on large-distance asymptotics have been derived, see e.g. Refs
[45,47,49,71,76,77].

To compute (83), we express the coherent states in the (0, 1) basis and insert a complete
set of eigenstates between the two σx operators to obtain

〈σx`+1σ
x
1 〉f = |A|2

∑
λλλ,µµµ⊂NS+

∑
ννν⊂R

NS
01 〈λ̄̄λ̄λ|σx1 |ννν〉R01

R
01〈ννν|σx1 |µ̄̄µ̄µ〉NS

01

∏
λ∈λλλ

h∗(λ)
∏
µ∈µµµ

h(µ)
∏
ν∈ννν

ei`ν , (84)

with h(k) defined as in (82). Using Lemma 3 to express the form factor of σx as a
determinant, and Lemma 5 to sum over ννν, we obtain

〈σx`+1σ
x
1 〉f = |A|2

∑
λλλ,µµµ⊂NS+

detC(λ̄̄λ̄λ, µ̄̄µ̄µ)
∏
λ∈λλλ

h∗(λ)
∏
µ∈µµµ

h(µ) , (85)

where

C(ppp,qqq)jk =
4

L2

∑
ν∈R

ei(`+1)ν

(eipj − eiν)(eiν − eiqk)
. (86)

To perform this sum, we now use Lemma 11. If pj 6= qk, we decompose the summand into
partial fractions with respect to eiν and use (220) to carry out the sum over ν ∈ R. If
pj = qk we use the derivative with respect to z of (220). We obtain

C(ppp,qqq)jk =

{
− 2
L
ei`pj−ei`qk
eipj−eiqk

if pj 6= qk ,(
1− 2`

L

)
eipj(`−1) if pj = qk .

(87)

We next use Lemma 6 to sum over µµµ, which gives

〈σx`+1σ
x
1 〉f = |A|2

∑
λλλ⊂NS+

(−1)N/2 pf[C̃(λ̄̄λ̄λ)− C̃(λ̄̄λ̄λ)T ]
∏
λ∈λλλ

h∗(λ) . (88)

Here N is the number of momenta in λ̄̄λ̄λ and

C̃(qqq)jk = (1− δqj+qk,0)C̃1(qj , qk) + δqj+qk,0 C̃2(qj , qk) ,

C̃1(qj , qk) =
4

L2

∑
p∈NS+
p 6=qj ,−qk

ei`qj − ei`p

eiqj − eip
e−i`p − ei`qk
e−ip − eiqk

h(p)

− (111qj>0h(qj) + 111qk<0h(−qk))
2

L

(
1− 2`

L

)
1− ei`(qk+qj)

1− ei(qk+qj)
,

C̃2(qj , qk) =
4

L2

∑
p∈NS+
p6=qj

∣∣∣∣ei`qj − ei`peiqj − eip

∣∣∣∣2 h(p) + 111qj>0

(
1− 2`

L

)2

h(qj) . (89)
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Taking the thermodynamic limit we obtain a Fredholm Pfaffian

(−1)N/2 pf[C̃(λ̄̄λ̄λ)− C̃(λ̄̄λ̄λ)T ] = Pf[Jd + C2[ρ]]
∏
λ∈λλλ

h(λ) , (90)

where ρ is the root density corresponding to λλλ and where C2[ρ] is the following kernel
acting on [−π, π]× [−π, π]

C2[ρ](λ, µ) = −2

√
ρ(λ)ρ(µ)

h+(λ)h+(µ)

[
1− ei(λ+µ)`

1− ei(λ+µ)
(h(λ)− h(µ))

−
∫ π

0

dk

π

(1− ei`(λ−k)

1− ei(λ−k)

1− ei`(µ+k)

1− ei(µ+k)
− 1− ei`(µ−k)

1− ei(µ−k)

1− ei`(λ+k)

1− ei(λ+k)

)
h(k)

]
,

with

h+(λ) =

{
h(λ) if λ > 0

1 if λ < 0
. (91)

We then employ Lemma 7 to arrive at our final result

〈σx`+1σ
x
1 〉f = Pf[Jd + C2[ρs]] , (92)

where

ρs(k) =
1

2π

|h(k)|2

1 + |h(k)|2
. (93)

3.5 Equal-time order-parameter three-point function

The purpose of this section is to show that the strategy employed for one and two-point
functions can be generalized straightforwardly to higher-point functions. We consider the
particular example of the order-parameter three-point function

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f . (94)

This operator is odd and non-local in terms of the Jordan-Wigner fermions and as far as
we are aware of there is no known Pfaffian or determinant representation of (94) in the
thermodynamic limit.

We then follow the same steps as for the two-point function by expressing the two
coherent states in the (0, 1) basis and inserting complete sets of eigenstates between each
operator to obtain

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f = <AR∗ANS

∑
λλλ⊂R+
µµµ⊂NS+

∑
ννν⊂NS
κκκ⊂R

R
01〈λ̄̄λ̄λ|σx1 |ννν〉NS

01
NS
01 〈ννν|σx1 |κκκ〉R01

R
01〈κκκ|σx1 |µ̄̄µ̄µ〉NS

01

×
∏
λ∈λλλ

h∗(λ)
∏
µ∈µµµ

h(µ)
∏
ν∈ννν

ei`2ν
∏
κ∈κκκ

ei`1κ .

(95)

Next we perform the sum over κκκ by employing Lemmas 3 and 5 and obtain an analogous
expression as in the two-point function case

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f = <AR∗ANS

×
∑
λλλ⊂R+
µµµ⊂NS+

∑
ννν⊂NS

R
01〈λ̄̄λ̄λ|σx1 |ννν〉NS

01 detC(ννν, µ̄̄µ̄µ)
∏
λ∈λλλ

h∗(λ)
∏
µ∈µµµ

h(µ)
∏
ν∈ννν

ei(`2−1/2)ν .

(96)
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Here C(ννν, µ̄̄µ̄µ) is given by (87) with ` replaced by `1. Then we use Lemmas 3 and 5 to
perform the sum over ννν and obtain

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f = <AR∗ANS

∑
λλλ⊂R+
µµµ⊂NS+

detC ′(λ̄̄λ̄λ, µ̄̄µ̄µ)
∏
λ∈λλλ

h∗(λ)
∏
µ∈µµµ

h(µ) ,
(97)

where

C ′(ppp,qqq) =
2

L

∑
ν∈NS

ei(`2+1)ν

eipj − eiν
×

{
− 2
L
ei`1ν−ei`1qk
eiν−eiqk if ν 6= qk ,

(1− 2`1
L )eiν(`1−1) if ν = qk .

(98)

Writing

ei`1ν − ei`1qk
eiν − eiqk

= ei(`1−1)ν
`1−1∑
m=0

eim(qk−ν) , (99)

we can use Eq (221) in Lemma 11 to compute C ′(ppp,qqq). We find

C ′(ppp,qqq)jk =
2

L

ei(`1+`2)pj − ei(`1qk+`2pj) + ei(`1+`2)qk

eipj − eiqk
. (100)

We then use Lemma 6 to sum over µµµ to obtain

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f = <AR∗ANS

∑
λλλ⊂R+

(−1)N/2 pf[C̃ ′(λ̄̄λ̄λ)− C̃ ′(λ̄̄λ̄λ)T ]
∏
λ∈λλλ

h∗(λ) , (101)

where N is the number of momenta in λ̄̄λ̄λ and

C̃ ′(λ̄̄λ̄λ)jk =
4

L2

∑
q∈NS+

ei(`1+`2)pj − ei(`1q+`2pj) + ei(`1+`2)q

eipj − eiq

× ei(`1+`2)pk − ei(−`1q+`2pk) + e−i(`1+`2)q

eipk − e−iq
h(q) .

(102)

In the thermodynamic limit the remaining sum can be converted into an integral, except
when pj = −pq where an additional contribution δpj ,−pkh(pj) arises from the double pole
in q. This results in a Fredholm Pfaffian

(−1)N/2 pf[C̃ ′(λ̄̄λ̄λ)− C̃ ′(λ̄̄λ̄λ)T ] = Pf[Jd + C3[ρ]]
∏
λ∈λλλ

h(λ) +O(L−1) , (103)

where ρ is the root density corresponding to λλλ and where C3[ρ] is the following kernel
acting on [−π, π]× [−π, π]

C3[ρ](λ, µ) =
2

π

√
ρ(λ)ρ(µ)

h+(λ)h+(µ)

∫ π

0

[
a(λ, k) a(µ,−k)− a(λ,−k) a(µ, k)

]
h(k)dk ,

a(λ, k) =
1− ei`2(λ−k) + ei(`1+`2)(λ−k)

eiλ − eik
. (104)

This expression for C3[ρ](λ, µ) is to be understood as a principal value integral with simple
poles at k = ±λ,±µ for λ 6= −µ, and is defined by continuity for λ = −µ. Finally we
apply Lemma 7 to (101), which results in the Fredholm Pfaffian

〈σx`2+`1+1σ
x
`1+1σ

x
1 〉f = <Pf[Jd + C3[ρs]] , (105)

where

ρs(k) =
1

2π

|h(k)|2

1 + |h(k)|2
. (106)

In (105) we have once again assumed that the function h in (82) is regular.
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3.6 Dynamical order-parameter two-point function

We now turn to the non-equal-time two-point function of σx in the CE, i.e.

Cxx(`, t) ≡ 〈σx`+1(t/2)σx1 (−t/2)〉f = 〈eitH(h,γ)/2σx`+1e
−itH(h,γ)σx1e

itH(h,γ)/2〉f . (107)

A particular case of the correlator (107) is the dynamical two-point function in the XY
model in a field after a quantum quench. This has been considered previously for γ = 1
and analytic results were obtained at low densities of excitations and large space/time
separations [81].

3.6.1 Summation of the σx form factors

Without loss of generality we choose the coherent state in (107) to belong to the R sector
and then expand it as (10) in the (0, 1) basis. We then insert a complete set of eigenstates
between each of the operators to obtain

Cxx(`, t) = AR
t A

R∗
−t

∑
qqq,kkk⊂R+

∑
λλλ,µµµ⊂NS

[∏
q∈qqq

h∗−t(q)
∏
k∈kkk

ht(k)

]
× R

01〈¯̄q̄̄q̄̄q|σx`+1|λλλ〉NS
01

NS
01 〈λλλ|e−iH(h,γ)t|µµµ〉NS

01
NS
01 〈µµµ|σx1 |¯̄k̄̄k̄̄k〉R01 , (108)

where we have from Theorem 1 and Eq (34)

ht(k) =
iK01;hγ(k) + eitεhγ(k)f(k)

1 + iK01;hγ(k)eitεhγ(k)f(k)
, (109)

AR
t = eitE

R/2
∏
k∈R+

√
1 +K01;hγ(k)2

1 + |f(k)|2
1

1− iK01;hγ(k)ht(k)
. (110)

For later convenience we introduce

ANS
t = eitE

NS/2
∏

k∈NS+

√
1 +K01;hγ(k)2

1 + |f(k)|2
1

1− iK01;hγ(k)ht(k)
. (111)

In the remainder of the section we will use the shorthand notations K(k) ≡ K01;hγ(k) and
ε(k) ≡ εhγ(k).

To evaluate (108), we first express the σx form factors as determinants using Lemma

3. Because of the pair structure of the states ¯̄k̄̄k̄̄k and ¯̄q̄̄q̄̄q, each ki and qj appear twice in these
determinants. Hence the sums over qqq,kkk ⊂ R+ are of the form of Lemma 6. It yields

Cxx(`, t) = AR
t A

R∗
−t

∑
λλλ,µµµ⊂NS

NS
01 〈λλλ|e−iH(h,γ)t|µµµ〉NS

01 pf[Dt(µµµ)−Dt(µµµ)T ]

× pf[D−t(λλλ)−D−t(λλλ)T ]∗
∏
λ∈λλλ

ei(`+1/2)λ
∏
µ∈µµµ

e−iµ/2 , (112)

where

Dt(µµµ)jk =
4

L2

∑
p∈R+

ht(p)

(eip − eiµj )(e−ip − eiµk)
. (113)

The thermodynamic limit of this expression is

Dt(µµµ)jk = ht(µj)δµj ,−µk 111µj>0

+
2

πL(1− ei(µj+µk))

[∫ π

0

ht(p)

1− ei(µj−p)
dp−

∫ π

0

ht(p)

1− e−i(µk+p)
dp

]
+O(L−2) ,

(114)
where the second term is understood as a derivative when µj = −µk.
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3.6.2 Thermodynamic limit of the Pfaffians

The thermodynamic limit of the Pfaffians appearing in (112) is more involved than for the
equal-time correlations treated in the previous sections. Indeed, λλλ and µµµ are not necessarily
pair states and so the “anti-diagonal” term δµj ,−µk 111µj>0 in (114) is not always present.
To treat this complication we introduce two sets of momenta π(µµµ), σ(µµµ) as in Lemma 1.
One sees that the behaviour of Dt(µµµ) −Dt(µµµ)T significantly depends on whether the µ’s
are paired µ ∈ π(µµµ), in which case there is a non-zero anti-diagonal term δµj ,−µk of order
L0, or whether they are not paired µ ∈ σ(µµµ), in which case this “anti-diagonal” term is
absent. In order to use Lemma 10 we employ Cayley’s relation

pf[Dt(µµµ)−Dt(µµµ)T ]2 = det[Dt(µµµ)−Dt(µµµ)T ] , (115)

and write

[Dt(µµµ)−Dt(µµµ)T ]jk =ht(µj)δµj ,−µk +
1

L
dt(µj , µk) ,

dt(λ, µ) =
2

π(1− ei(λ+µ))

[∫ π

0

ht(p)

1− ei(λ−p)
dp+

∫ π

0

ht(p)

1− e−i(λ+p)
dp

−
∫ π

0

ht(p)

1− ei(µ−p)
dp−

∫ π

0

ht(p)

1− e−i(µ+p)
dp

]
. (116)

In the determinant (115) we then rearrange the lines and columns in such a way that the
paired momenta µj ∈ π(µµµ) appear on the “anti-diagonal” of the matrix Dt(µµµ) −Dt(µµµ)T

and are ordered among themselves (but the unpaired momenta in σ(µµµ) are not necessarily
ordered). We then factorize Dt(µµµ)−Dt(µµµ)T = LR, where

Rij = δi,N+1−j sgn (j − i)
∏

µ∈π(µµµ)

h2
t (µ) , i, j = 1, . . . , N. (117)

This way, the determinant det[Dt(µµµ) − Dt(µµµ)T ] is of the form of Lemma 10, with n the
number of unpaired momenta σ(µµµ) = {ν1, ..., νn} and with functions

f(λ, µ) =
dt(λ,−µ)

h+
t (λ)h+

t (µ)
, gj(λ) =

dt(λ, νj)

h+
t (λ)

, hi(µ) =
dt(νi,−µ)

h+
t (µ)

, ai,j = dt(νi, νj) ,

(118)

where we introduced

h+
t (λ) =

{
ht(λ) if λ > 0 ,

1 if λ < 0 .
(119)

We thus obtain as we approach the thermodynamic limit

det[Dt(µµµ)−Dt(µµµ)T ] =
1

L|σ(µµµ)| Detλ,µ[Id +Dρ,t(λ,−µ)] det [Fρ,t(νi, νj)]νi,νj∈σ(µµµ)

×
∏

µ∈π(µµµ)

h2
t (µ) , (120)

where ρ the root density corresponding to µµµ, and where we defined the following kernel
acting on [−π, π]× [−π, π]

Dρ,t(λ, µ) =

√
ρ(λ)ρ(µ)

h+
t (λ)h+

t (µ)
dt(λ, µ) , (121)
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and Fρ,t(λ, µ) satisfies the linear integral equation

Fρ,t(λ, µ) +

∫ π

−π

dt(λ,−ν)

h+
t (λ)h+

t (ν)
Fρ,t(ν, µ)ρ(ν)dν = dt(λ, µ) . (122)

Eqn (122) is obtained from (206) by using the equation for the resolvent (207) as well as
its equivalent definition (217). It is useful to define two further functions by

D′ρ,t(λ, µ) =

√
ρ(λ)ρ(µ)

(h+
t )∗(λ)(h+

t )∗(µ)
d∗t (λ, µ) ,

F ′ρ,t(λ, µ) +

∫ π

−π

d∗t (λ,−ν)

(h+
t )∗(λ)(h+

t )∗(ν)
F ′ρ,t(ν, µ)ρ(ν)dν = d∗t (λ, µ) . (123)

Now, using that dt(λ, µ) = −dt(µ, λ), we find from (122) and (217) that Fρ,t(λ, µ) =
−Fρ,t(µ, λ). Hence [Fρ,t(νi, νj)]νi,νj∈σ(µµµ) is an antisymmetric matrix, and we can write its

determinant as the square of its Pfaffian

det [Fρ,t(νi, νj)]νi,νj∈σ(µµµ) = pf [Fρ,t(νi, νj)]2νi,νj∈σ(µµµ) . (124)

This results in a Fredholm Pfaffian as we approach the thermodynamic limit

(−1)N/2 pf[Dt(µµµ)−Dt(µµµ)T ] =
s(σ(µµµ), t)

L|σ(µµµ)|/2 Pf[Jd +Dρ,t] pf [Fρ,t(νi, νj)]νi,νj∈σ(µµµ)

∏
µ∈π(µµµ)

ht(µ) .

(125)
Here, s(σ(µµµ), t) is a function that takes the values ±1. Let us argue that it is always
equal to 1. By definition of the Fredholm Pfaffian, we know from (65) that s({}, t) = 1
indeed. Besides, expanding the Pfaffian on the left-hand side of (125) on the lines and
columns where the elements of σ(µµµ) are present, we see that it is an integral over a finite
product of terms dt(µ, ν) for ν ∈ σ(µµµ), which is regular in ν assuming ht is regular. Hence
s(σ(µµµ), t) cannot depend on the elements of σ(µµµ). However it can still depend a priori on
the number of unpaired momenta |σ(µµµ)| as well as on t. To go further, let us consider the
antisymmetric matrix B(κκκ)jk = ht(κj)δκj ,−κk + 1+ε

L dt(κj , κk) for a paired state κκκ and a
small ε. By expanding the Pfaffian, we have

pfB(κκκ) =
∑
J⊂κκκ
|J | even

ε|J |/2 pfBJ(κκκ) , (126)

with BJ(κκκ)jk = ht(κj)δκj ,−κk 111κj /∈J + 1
Ldt(κj , κk). In this sum, there are O(L2n) elements

for |J | = 2n, whereas the Pfaffian pfBJ(κκκ) is of order O(L−m) pfB(κκκ) where m is the
number of momenta either that are in J or whose opposite is in J (or both). Indeed,
in these cases the O(L0) anti-diagonal term δκj ,−κk is is not present. It follows that in
the thermodynamic limit, contribute only the cases where J is a set of paired momenta.
Hence

pfB(κκκ) =

[ ∑
J⊂κκκ

J paired

ε|J |/2 pfBJ(κκκ)

]
(1 +O(L−1)) . (127)

We now observe that BJ(κκκ) is exactly Dt(µµµ)−Dt(µµµ)T with |σ(µµµ)| = |J |, in the limit µµµ→ κκκ
and σ(µµµ) becoming a set of paired momenta, equal to J . Hence in the thermodynamic
limit (−1)N/2 pfB(κκκ) is the left-hand side of (125) multiplied by ε|σ(µµµ)|/2, summed over
|σ(µµµ)| and σ(µµµ), in the limit of a set of paired momenta equal to κκκ.
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Now, using (122) we observe that in the thermodynamic limit

(−1)N/2 pfB(κκκ) = Pf[Jd + (1 + ε)Dρ,t]
∏

κ∈π(κκκ)

ht(κ)

= Pf[Jd +Dρ,t] Pf[Jd + εF̃ρ,t]
∏

κ∈π(κκκ)

ht(κ) ,
(128)

with F̃ρ,t(λ, µ) =
Fρ,t(λ,µ)

h+t (λ)h+t (µ)
. Using (64) to expand Pf[Jd + εF̃ρ,t], we obtain that in

the thermodynamic limit, (−1)N/2 pfB(κκκ) is the right-hand side of (125) multiplied by
ε|σ(µµµ)|/2, summed over |σ(µµµ)| and σ(µµµ), in the limit of a set of paired momenta equal to κκκ,
with s(σ(µµµ), t) = 1. Thus by comparing the order ε|σ(µµµ)|/2 of the two expansions in ε (127)
and (128) we deduce s(σ(µµµ), t) = 1 for all |σ(µµµ)|. Hence we have in the thermodynamic
limit

(−1)N/2 pf[Dt(µµµ)−Dt(µµµ)T ] =
1

L|σ(µµµ)|/2 Pf[Jd +Dρ,t] pf [Fρ,t(νi, νj)]νi,νj∈σ(µµµ)

∏
µ∈π(µµµ)

ht(µ) .

(129)

3.6.3 Summation over the e−itH(h,γ) form factors

Returning to (112) we now see that the form factor of e−itH(h,γ) given in Lemma 4 imposes
that σ(λλλ) = σ(µµµ). This permits us to write

Cxx(`, t) = AR
t A

R∗
−t

∑
ννν⊂NS

ννν∩(−ννν)=∅

∏
ν∈ννν e

i`ν

L|ννν|

∑
λλλ,µµµ⊂

NS+−{ννν,−ννν}

NS
01 〈λ̄̄λ̄λ ∪ ννν|e−iH(h,γ)t|µ̄̄µ̄µ ∪ ννν〉NS

01

×
∏
λ∈λλλ

h∗−t(λ)
∏
µ∈µµµ

ht(µ) Pf[Jd +Dρ,t] Pf[Jd +D′ρ′,−t]

× pf [Fρ,t(νi, νj)]νi,νj∈ννν pf
[
F ′ρ′,−t(νi, νj)

]
νi,νj∈ννν

, (130)

where ρ and ρ′ are the root densities corresponding to µµµ and λλλ respectively. At fixed ννν,
given the form factor of e−itH(h,γ) in Lemma 4, the summand is of the form of Lemma 8
with

f = iKh∗−t
1− e−2itε

1 +K2e−2itε
, g = −iKht

1− e−2itε

1 +K2e−2itε
, h =

(1 + e−2itεK2)(1 + e−2itε/K2)

(1− e−2itε)2
,

(131)
and with NS+ replaced by NS+−{ννν ∪−ννν}. To apply Lemma 8, let us first investigate the
denominator of Eq (192). We note that the form factor of e−iH(h,γ)t in Lemma 4 generates
a factor

e−itE
NS

∏
k∈NS+

1 +K2(k)e−2itε(k)

1 +K2(k)
. (132)

Moreover, from (111) we have

ANS
t ANS∗

−t e
−itENS

∏
k∈NS+

1 +K2(k)e−2itε(k)

1 +K2(k)

=
∏

k∈NS+

1 +K2(k)e−2itε(k)

[1 + hth∗−tK
2 + (hth∗−t +K2)e−2itε − iK(ht − h∗−t)(1− e−2itε)](k)

,

(133)
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which is precisely the inverse of the denominator in (192). Hence, defining the following
(complex) root density

ρt =
1

2π

−iK(1− e−2itε)ht + (K2 + e−2itε)hth
∗
−t

1 + hth∗−tK
2 + (hth∗−t +K2)e−2itε − iK(ht − h∗−t)(1− e−2itε)

,

ρ′t = [ρ−t]
∗ ,

(134)

appearing in Lemma 8, we obtain

Cxx(`, t) = φ∞(t)φ∞(−t)∗
∑
ννν⊂NS

ννν∩(−ννν)=∅

∏
ν∈ννν s`,t(ν)

L|ννν|
Pf[Jd +Dρt,t] Pf[Jd +D′ρ′t,−t]

× pf [Fρt,t(νi, νj)]νi,νj∈ννν pf
[
F ′ρ′t,−t(νi, νj)

]
νi,νj∈ννν

, (135)

where

s`,t(z) =
1

2π

[1 +K2(z)]ei(`z−tε(z))

[1 + hth∗−tK
2 + (hth∗−t +K2)e−2itε − iK(ht − h∗−t)(1− e−2itε)](z)

, (136)

and

φ∞(t) = lim
L→∞

AR
t

ANS
t

. (137)

The factor s`,t(z) arises from the terms in (180) corresponding to the unpaired momenta
ννν, and the fact that Lemma 8 is applied with NS+ replaced by NS+ − {ννν ∪ −ννν}. The
phase φ∞(t) is identical to the phase discussed in Section 2.4.2. However, since here the
operators involved in the dynamical correlation are time-evolved with a Hamiltonian with
a constant magnetic field and anisotropy, the phase can be expressed only in terms of
quantities at t. It can be straightforwardly computed with Eqs (111) and (110), and so is
much easier to evaluate numerically than the generic phase discussed in Section 2.4.2.

3.6.4 Representation as a product of Pfaffians

In the thermodynamic limit the sums over the unpaired momenta ν ∈ ννν in (135) can be
converted into |ννν| = 2n-fold integrals over [−π, π], because the cases where νi = −νj that
are excluded in (135) are negligible by at least a factor of L. This provides us with a
multiple-integral representation of the form

Cxx(`, t) = φ∞(t)φ∞(−t)∗ Pf[Jd +Dρt,t] Pf[Jd +D′ρ∗−t,−t]

×
∑
n≥0

1

(2n)!

∫ π

−π
· · ·
∫ π

−π

2n∏
j=1

s`,t(zj) pf
i,j

[Fρt,t(zi, zj)] pf
i,j

[F ′ρ∗−t,−t(zi, zj)]dz1...dz2n ,

(138)

with the convention that the term for n = 0 in the series is equal to 1. We now observe
that

pf
i,j

[Fρt,t(zi, zj)] pf
i,j

[F ′ρ∗−t,−t(zi, zj)]
2n∏
j=1

s`,t(zj)

= pf

[
(s`,t(zi)s`,t(zj)Fρt,t(zi, zj))1≤i,j≤2n 0

0 (F ′ρ∗−t,−t(zi, zj))1≤i,j≤2n

]

= pf
1≤i,j≤2n

[
s`,t(zi)s`,t(zj)Fρt,t(zi, zj) 0

0 F ′ρ∗−t,−t(zj , zi)

]
.

(139)
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The swap of the arguments of F ′ρ∗−t,−t in the last line compensates the sign factor (−1)n

that results from changing the 2n × 2n block 2 × 2 matrix into a 2 × 2 block 2n × 2n
matrix. Eqn (139) allows us to recast the series over n of (138) in the form of the block
Fredholm Pfaffian (129) with n restricted to be even, namely

∑
n≥0

1

(2n)!

∫ π

−π
· · ·
∫ π

−π

2n∏
j=1

s`,t(zj) pf
i,j

[Fρt,t(zi, zj)] pf
i,j

[F ′ρ∗−t,−t(zi, zj)]dz1...dz2n

=
1

2
( Pf[JdJdJd +FFF `,t] + Pf[JdJdJd−FFF `,t]) ,

(140)

where FFF `,t(x, y) is a 2× 2 matrix-valued function on [−π, π]× [−π, π]

FFF `,t(x, y) =

(
s`,t(x)s`,t(y)Fρt,t(x, y) 0

0 F ′ρ∗−t,−t(y, x)

)
. (141)

From the fact that the 2 × 2 kernel FFF `,t is diagonal, using that the Pfaffian is multiplied
by −1 whenever a row and the corresponding columns are multiplied simultaneously by
−1, we find

Pf[JdJdJd−FFF `,t] = Pf[JdJdJd +FFF `,t] . (142)

Hence putting everything together we arrive at our final result

Cxx(`, t) = φ∞(t)φ∞(−t)∗ Pf[Jd +Dρt,t] Pf[Jd +D′ρ∗−t,−t] Pf[JdJdJd +FFF `,t] . (143)

Eq (143) again assumes that the functions ht and h−t are regular.

4 Applications

In this section we apply the results reported above in a number of settings. For simplicity
we focus on the case of the transverse-field Ising chain γ = 1.

4.1 Order parameter and the Kibble-Zurek mechanism

As a first application we consider the time-dependence of the order parameter in the
transverse-field Ising model for a ramp of the magnetic field through the critical point.
While this and closely related non-equilibrium protocols have been previously studied in
great detail [71, 88, 94, 100, 104–106] in connection to the Kibble-Zurek mechanism [101,
107–110], we are not aware of any results on the dynamics of the order parameter in the
thermodynamic limit. We will consider time-dependent magnetic fields

(i) h(t) = h0 + αt , γ = 1 ,

(ii) h(t) = 1 +
(αt− 1 + h0)3

(1− h0)2
, γ = 1 ,

(144)

that cross the critical point linearly (case (i)) or cubically (case (ii)) with a speed parameter
α, and assume that the system is initialized in the ground state for 0 < h0 < 1 at time
t = 0. The presence of spontaneous symmetry breaking in the thermodynamic limit can
be accounted for by working with the following initial state, cf. Refs [76,77]

|ψh0(0)〉 =
|0〉Rh01 + α†01;0|0〉NS

h01√
2

. (145)
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The time evolution of the order parameter in the thermodynamic limit is then obtained
from (80), (52)

〈ψh0(t)|σx` |ψh0(t)〉 = < (φ∞(t) Det[Id +M[ρs]]) . (146)

Here M is given in (81) with

h(k) =
iK01;h(t)1(k) + ft(k)

1 + iK01;h(t)1(k)ft(k)
, (147)

and ft(k) is the solution of the nonlinear differential equation (45). Importantly the phase
factor φ∞(t) is not always equal to one in this case. We find that there is a sequence of
times t∗n and associated magnetic fields h∗n = h(t∗n) such that

φ∞(t) = (−1)n , tn < t < tn+1 , n = 0, 1, . . . . (148)

As an example we consider h0 = 0.6 and α = 0.3 for the linear ramp of case (i). Then

t∗0 ≈ 2.883547 , h∗0 ≈ 1.465064 ,

t∗1 ≈ 4.591509 , h∗1 ≈ 1.977452. (149)

We observe, in agreement with the discussion of Section 2.4.2, that this behaviour arises
from the vanishing of the overlaps 〈ψh0(t)|ψ0(0)〉 at particular times t∗n in the thermo-
dynamic limit, which is equivalent to the function ft(k) becoming singular at times t∗n
for particular wave numbers k∗n. We note however that the Fredholm determinant ap-
pearing in (146) also exhibits discontinuities at times t∗n in such a way that the resulting
magnetization 〈σx(t)〉 is a continuous function of time, as expected on physical grounds.

The results of a numerical evaluation of the Fredholm determinant expression for the
order parameter during the quench are shown in Fig. 3. We use (59) and [111] to compute
the determinant and use a quadrature rule with up to 4000 points. We stress that by
construction we are considering the magnetization per site in the thermodynamic limit.

Figure 3: Order parameter expectation value 〈σx(t)〉 as a function of h(t), with a ramp
crossing the critical point linearly h(t) = 0.6 + αt (left) and cubically h(t) = 1 + 6.25 ×
(tα− 0.4)3 (right).

We first consider linear ramps across the quantum criticial point starting in the ordered
phase, i.e. case (i) in (144) with h0=0.6. We see that ramping up the magnetic field initially
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leads to a reduction of 〈σxj (t)〉, the size of which depends on the ramp rate α. For very fast
α, 〈σxj (t)〉 is expected to remain essentially pinned to its value at t = 0: this corresponds to
a sudden approximation and is closely related to the situation encountered in a quantum
quench. A slower ramp rate is expected to result in a faster reduction of 〈σxj (t)〉 at early
times. Both of these expectations are borne out by the numerical results shown in Fig. 3.
At later times the magnetization per site displays an oscillatory behaviour. In the scaling
regime around the critical field h = 1 this behaviour has been analyzed in some detail in
Ref. [94]. For a very slow ramp rate the magnetization closely follows the magnetic field
dependence in the ground state, as expected by the adiabatic approximation, until h ≈ 1,
where adiabadicity breaks down and Kibble-Zurek physics ensues. We next consider a
nonlinear ramp starting at the same initial field h(0) = 0.6 and whose derivative vanishes
at the critical point, given by case (ii) in (144). On a very qualitative level the time
dependence of the order parameter is similar to the linear ramp case in that oscillations
ensue after an initial decay.

4.2 Order parameter in periodically driven systems

The results derived in the previous sections allow for a systematic study of the thermo-
dynamic limit of Floquet physics where the driving magnetic field and anisotropy are
periodic functions of time, see e.g. Refs [112–120]. In Fig. 4 we show the order parameter
〈σx` (t)〉 of a system initialized in the ground state at h = 0 and then driven periodically
with frequency ω

h(t) =
1− cos(πωt)

2
, γ = 1 . (150)

Figure 4: Order parameter expectation value 〈σx(t)〉 as a function of t, with the variation
of magnetic field h(t) = 1

2(1− cosπωt). In dashed is indicated the time-evolution after a
sudden quench h(t) = 1

2 for t > 0.

At large frequencies ω we expect to recover the results for evolution with the time-
averaged Hamiltonian [116], which corresponds to a quantum quench where the system in
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initialized in the ground state of H(0, 1) and then time-evolved with H(1
2 , 1). We see that

the time evolution for ω = 10 is indeed very close to this limit. At late times the system
synchronizes and can be described by a “periodic generalized Gibbs ensemble” [115]. In
particular this implies that the order parameter should vanish, which is indeed what we
observe in Fig. 4. In the limit of low frequencies ω ≈ 0 the behaviour is initially adiabatic
and the order parameter follows the ground state value at the corresponding magnetic field
h(t). As t → ω−1 the magnetic field h(t) approaches its critical value and adiabaticity
breaks down and Kibble-Zurek physics ensues. For frequencies ω > 2 the magnetization is
seen to decay towards zero with only weak oscillations on top of the decay. For frequencies
ω ≈ 1 there are strong oscillations that decay in time. Interestingly, for lower frequencies
the oscillatory behaviour becomes less pronounced.

4.3 Dynamical correlations after a sudden quench

In this section we illustrate formula (143) for dynamical correlations in a CE for a particular
case of the general scenario discussed in section 2.4. We initialize the state of the system
|ψ(0)〉 in the ground state of the transverse field Ising model with magnetic field h0,
i.e. H(h0, 1), and suddenly change the magnetic field to h, triggering a non-trivial time
evolution of the state |ψ(t)〉. We are then interested in the connected non-equal time order
parameter correlation function

〈σx`+1(t1)σx1 (t2)〉c = 〈ψ(t2)|σx`+1e
i(t1−t2)H(h,γ)σx1 |ψ(t1)〉 − 〈σx`+1(t1)〉〈σx1 (t2)〉 . (151)

Numerical results for 〈σx`+1(t1)σx1 (t2)〉c for a quench from h0 = 0.1 to h = 0.9, obtained
by numerically evaluating (143), are shown in Fig. 5. One sees that there are several
regions where the 2-point function is negligibly small. These light-cone structures can
be understood with the quasi-particle picture initially proposed to describe the growth of
entanglement entropy after a quench [83,121]. According to this picture, the effect of the
quench is to create pairs of quasi-particles at each position in the chain that evolve with
velocities ±v(k) = ±∂kεhγ(k), and a non-zero connected correlation can occur between
two points in space-time only if a quasi-particle can propagate from one to the other. Let
us fix t1 < t2 and set δ = t2 − t1. According to this quasi-particle picture, the operator
σx`+1(t1) can be considered as a local operator with support in [`+1−vmaxt1, `+1+vmaxt1],
with vmax = maxk |v(k)|. The condition for the connected correlator to be non-negligible
is for the supports of σx`+1(t1) and σx1 (t2) (or equivalently their backward light-cones) to

overlap. This explains why for t1 + t2 <
`

vmax
the connected 2-point function is negligibly

small. This corresponds to the triangular blue regions in the bottom left corners of Figs 5,
which grow with `. On the other hand, we expect on physical grounds that the effects
of making a local perturbation at time t1 will become increasingly difficult to detect if
we wait long enough and connected correlations should therefore decay with respect to
the time difference |t2 − t1| when the latter gets large. This explains the smallness of the
connected two-point functions observed in the upper left and bottom right corners of 5.
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Figure 5: Density plots of the connected non-equal time correlation 〈σx`+1(t2)σx1 (t1)〉c after
a quantum quench as a function of t1 and t2, for ` = 0, 3, 6 from left to right. The three
plots use different color scales.

5 Discussion and outlook

In this work we have addressed the problem of computing out-of-equilibrium observables
in the XY spin chain subject to arbitrary time variations of the magnetic field h(t) and
anisotropy γ(t). We obtained closed-form expressions for the thermodynamic limit of the
order parameter expectation value, dynamical two-point function and static three-point
function, as well as of the full counting statistics of the transverse magnetization. These
expressions are valid for all times and for arbitrary distances. They hold not only for
out-of-equilibrium situations, but also in the wider context of the Coherent Ensemble
as introduced in the text. We emphasize that to the best of our knowledge no exact
explicit expressions in the thermodynamic limit were known for the expectation value of
operators that are non-local in the underlying fermions, namely for the order parameter
one-point function, two-point dynamical correlation and three-point static correlation.
While the expectation values of operators that are local in the underlying fermions can
be straightforwardly computed using Wick’s theorem and do not require the Fredholm
determinant expressions derived in this paper, our method provides a unified approach
based on form factor summation, hence better suited for generalization to the interacting
case where no Wick’s theorem holds. Despite the free nature of the XY model, the problem
of performing the spectral sum over form factors was previously solved only for free models
with U(1) symmetry such as the impenetrable Bose gas or the XX chain.

In our derivation of these results we have followed a different route than the ones tradi-
tionally used in the computation of out-of-equilibrium dynamics in integrable models. Our
approach relies on remarkable properties of coherent states, that are weighted superposi-
tions (in a precise manner) of exponentially many eigenstates of the Hamiltonian, that in a
sense behave more smoothly than pure eigenstates and are easier to manipulate. Crucially
they stay coherent when expressed in terms of the eigenstates of the Hamiltonian at other
values of h and γ, which allows one to carry out the calculations in a preferred simple
basis, such as h = 0 and γ = 1, where the form factors are exactly Cauchy determinants.
Efficient summation formulas exploiting both the coherent state structure and the form
factor determinant structure eventually lead to our results.

Our work opens up a number of future directions. The first direction is to determine
the asymptotic behaviour of the various correlation functions considered here. A second
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direction is to investigate whether some ideas of this fruitful approach can be generalized
to an interacting case. Although the coherent state structure used in this paper is rather
fragile, there could be analogous macroscopic superpositions of eigenstates in an interacting
model that enjoy similar interesting properties.

Acknowledgements. H.D. acknowledges support from the European Research Council
under the European Union Horizon 2020 Research and Innovation Programme via Grant
Agreement No. 804213-TMCS. E.G. acknowledges support from the EPSRC under grant
EP/S020527/1.

A Diagonalization of the XY model in a field

A.1 Mapping to free fermions

In this appendix we review how to diagonalize the XY Hamiltonian with magnetic field h
and anisotropy γ

H(h, γ) = −
L∑
j=1

1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyj σ
y
j+1 + hσzj , (152)

where σαj are the Pauli matrices at site j and

σαL+1 = σα1 , α = x, y, z. (153)

The quantum XY chain is mapped to a model of spinless fermions by means of a Jordan-
Wigner transformation. Defining σ±j =

(
σx` ±iσ

y
j

)
/2 we construct spinless fermion creation

and annihilation operators by

c†l =

l−1∏
j=1

σzjσ
−
l , {cj , c†l } = δj,l. (154)

The inverse transformation is

σzj = 1− 2c†jcj , σ
x
j =

j−1∏
l=1

(1− 2c†l cl)(cj + c†j) , σ
y
j = i

j−1∏
l=1

(1− 2c†l cl)(c
†
j − cj) . (155)

The Hamiltonian can be expressed in terms of the fermions as

H(h, γ) =−
L−1∑
j=1

1 + γ

2

[
c†j − cj

][
cj+1 + c†j+1

]
−
L−1∑
j=1

1− γ
2

[
c†j + cj

][
cj+1 − c†j+1

]
− h

L∑
j=1

[1− 2c†jcj ]

− eiπN̂ 1 + γ

2
(cL − c†L)(c1 + c†1)− eiπN̂ 1− γ

2
(cL + c†L)(c†1 − c1) , (156)

where

N̂ =
L∑
j=1

c†jcj . (157)

As [H, eiπN̂ ] = 0 we may diagonalize the two operators simultaneously. The Hamiltonian
is thus block diagonal H = HNS ⊕ HR, where HNS,R act on the subspaces of the Fock
space with an even/odd number of fermions respectively.
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A.2 Even fermion number

In the sector with an even number of fermions we have eiπN̂ = 1 and the Hamiltonian can
be written in the form

HNS(h, γ) =−
L∑
j=1

1 + γ

2

[
c†j − cj

][
cj+1 + c†j+1

]
−

L∑
j=1

1− γ
2

[
c†j + cj

][
cj+1 − c†j+1

]
− h

L∑
j=1

[1− 2c†jcj ] (158)

where we have imposed antiperiodic boundary conditions on the fermions

cL+1 = −c1. (159)

The Hamiltonian HNS is diagonalized by going to Fourier space

c(kn) =
1√
L

L∑
j=1

cj e
iknj , (160)

where kn are quantized according to (159)

kn =
2π(n+ 1/2)

L
, n = −L

2
, . . .

L

2
− 1. (161)

The antiperiodic sector is commonly referred to as Neveu-Schwarz (NS) sector. Introduc-
ing Bogoliubov fermions by

c(kn) = cos(θkn/2)αhγ;kn + i sin(θkn/2)α†hγ;−kn ,

c†(−kn) = i sin(θkn/2)αhγ;kn + cos(θkn/2)α†hγ;−kn , (162)

where the Bogoliubov angle fulfils

tan θk =

[
γ sin(k)

cos(k)− h

]
, (163)

the Hamiltonian becomes diagonal

HNS(h, γ) =
∑
k∈NS

εhγ(k)

[
α†hγ;kαhγ;k −

1

2

]
. (164)

Here the dispersion relation is

εhγ(k) = 2

√
(h− cos k)2 + γ2 sin2 k. (165)

A basis for the Fock space in the sector with even fermion number is then given by

|k1, . . . , k2m〉NS
hγ =

2m∏
j=1

α†hγ;kj
|0〉NS

hγ , kj ∈ NS, (166)

where the fermion vacuum |0〉NS
hγ is the state annihilated by all αhγ;kj (j = −L

2 , . . . ,
L
2 −1).
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A.3 Odd fermion number

In the sector with an odd number of fermions we have eiπN̂ = −1. The Hamiltonian can
again be written in the form

HR(h, γ) =−
L∑
j=1

1 + γ

2

[
c†j − cj

][
cj+1 + c†j+1

]
−

L∑
j=1

1− γ
2

[
c†j + cj

][
cj+1 − c†j+1

]
− h

L∑
j=1

[1− 2c†jcj ] (167)

but now we have to impose periodic boundary conditions on the fermions

cL+1 = c1. (168)

In Fourier space we therefore now have

c(pn) =
1√
L

L∑
j=1

cj e
ipnj , (169)

where pn are quantized according to (168)

pn =
2πn

L
, n = −L

2
, . . .

L

2
− 1. (170)

The periodic sector is known as Ramond sector. Defining Bogoliubov fermions αpn for
pn 6= 0 by

c(pn) = cos(θpn/2)αhγ;pn + i sin(θpn/2)α†hγ;−pn ,

c†(−pn) = i sin(θpn/2)αhγ;pn + cos(θpn/2)α†hγ;−pn , (171)

we can express the Hamiltonian as

HR(h, γ) =
∑
p∈R
p 6=0

εhγ(p)

[
α†hγ;pαhγ;p −

1

2

]
− 2(1− h)

[
α†hγ;0αhγ;0 −

1

2

]
. (172)

A basis of the subspace of the Fock space with odd fermion numbers is then given by

|p1, . . . , p2m+1〉Rhγ =
2m+1∏
j=1

α†hγ;pj
|0〉Rhγ , pj ∈ R, (173)

where the fermion vacuum |0〉Rhγ is the state annihilated by all αhγ;pj (j = −L
2 , . . . ,

L
2 − 1).

B Useful lemmas

B.1 Overlap and form factors

Lemma 1. Let |kkk〉NS
hγ and |qqq〉NS

h̃γ̃
two eigenstates of the XY Hamiltonian at different mag-

netic fields h, h̃ and anisotropies γ, γ̃. We define π(kkk) as the subset of strictly positive
elements kn ∈ kkk such that −kn ∈ kkk as well, and σ(kkk) the subset of unpaired momenta, i.e.
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kj ∈ kkk but −kj /∈ kkk. π(qqq) and σ(qqq) are defined analogously. Then the following formula
for the overlap between the two states holds

NS
h̃γ̃
〈qqq|kkk〉NS

hγ = 111σ(qqq)=σ(kkk)

∏
p∈σ(kkk)

1

cos(θh̃γ̃k −θ
hγ
k )/2

∏
p∈π(qqq)⊥π(kkk) iKh̃γ̃;hγ(p)∏

p∈NS+

√
1 +K2

h̃γ̃;hγ
(p)

, (174)

where we defined π(qqq) ⊥ π(kkk) = π(qqq) ∪ π(kkk)− (π(qqq) ∩ π(kkk)).

Proof. As shown in Appendix A, we have the following relation between Bogoliubov
fermion operators at different values of magnetic fields and anisotropies

αhγ;k = cos
θh̃γ̃k − θ

hγ
k

2
αh̃γ̃;k + i sin

θh̃γ̃k − θ
hγ
k

2
α†
h̃γ̃;−k . (175)

From this, we deduce the relation between the vacuum states

|0〉NS
hγ =

∏
p∈NS+

1 + iKh̃γ̃;hγ(p)α†
h̃γ̃;−pα

†
h̃γ̃;p√

1 +K2
h̃γ̃;hγ

(p)

 |0〉NS
h̃γ̃
. (176)

Indeed, the right-hand side is annihilated by all the αhγ,k. From these relations one deduces
the overlap given in the Lemma.

Lemma 2 (Form factor of eiθ
∑`
j=1 σ

z
j ). If λλλ and µµµ have the same number of elements the

following determinant representation holds

NS
∞γ〈λλλ|e

iθ
∑`
j=1 σ

z
j |µµµ〉NS

∞γ = eiθ` detE(λλλ,µµµ) ,

E(λλλ,µµµ)jk =

{
e−2iθ−1

L ei(λj−µk) 1−ei`(λj−µk)

1−ei(λj−µk)
if λj 6= µk ,

1 + `
L(e−2iθ − 1) if λj = µk .

(177)

If they have different numbers of elements the form factor vanishes.

Proof. Since the operator conserves the number of particles, λλλ and µµµ must have the same
number of particles for the form factor not to vanish. Let us denote this number by N .
Using that at h = ∞ the Bogoliubov fermions reduce to the Jordan-Wigner fermions we
have

NS
∞γ〈λλλ|e

iθ
∑`
j=1 σ

z
j |µµµ〉NS

∞γ =
1

LN

∑
j1...jN

∑
k1...kN

NS
∞γ〈0|cjN ...cj1e

iθ
∑`
j=1 σ

z
j c†k1 ...c

†
kN
|0〉NS
∞γ

× e−ik1µ1−...−ikNµN eij1λ1+...+ijNλN

=
eiθ`

LN

∑
σ∈SN

(−1)σ
∑
j1...jN

eij1(λ1−µσ(1))+...+ijN (λN−µσ(N))e−2iθ
∑N
q=1 111jq≤`

=
eiθ`

LN

∑
σ∈SN

(−1)σ
N∏
q=1

L∑
j=1

eij(λq−µσ(q))e−2iθ 111j≤`

= eiθ` detE(λλλ,µµµ) . (178)
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Lemma 3 (Form factors of σx). The form factors of σx` between energy eigenstates at
h = 0, γ = 1 have the following determinant representation

R
01〈λλλ ∪ {0}|σx` |µµµ〉NS

01 =(−1)N(N+1)/2

(
2

L

)N
e
i
2 (

∑
λ∈λλλ λ+

∑
µ∈µµµ µ)e−i`(

∑
λ∈λλλ λ−

∑
µ∈µµµ µ)

× det

[
1

eiλj − eiµk

]
jk

.

(179)

Here N is the number of elements in λλλ and µµµ. If they have different numbers of elements
the form factor vanishes.

Proof. See Refs [122–125].

Lemma 4 (Form factors of e−itH(h,γ)). The form factors of e−itH between energy eigen-
states at h = 0, γ = 1 have the following representation

NS
01 〈λλλ|e−itH(h,γ)|µµµ〉NS

01 = 111σ(λλλ)=σ(µµµ)e
−itENS

∏
k∈NS+

1 +K2(k)e−2itε(k)

1 +K2(k)

×
∏

ν∈σ(λλλ)

e−itε(ν) 1 +K2(ν)

1 + e−2itε(ν)K2(ν)

×
∏

λ∈π(λλλ)

iK(λ)
1− e−2itε(λ)

1 +K2(λ)e−2itε(λ)

∏
µ∈π(µµµ)

(−iK(µ))
1− e−2itε(µ)

1 +K2(µ)e−2itε(µ)

×
∏

ν∈π(λλλ)∩π(µµµ)

(1 + e−2itε(ν)K2(ν))(1 + e−2itε(ν)/K2(ν))

(1− e−2itε(ν))2
.

(180)
Here the notations are as in Lemma 1 and we have used shorthand notations K(k) =
K01;hγ(k), ε(k) = εhγ(k).

Proof. Inserting two resolutions of the identity in terms of energy eigenstates on either
side of e−iH(h,γ)t we obtain

NS
01 〈λλλ|e−itH(h,γ)|µµµ〉NS

01 =
∑
ννν

NS
01 〈λλλ|ννν〉NS

hγ
NS
hγ 〈ννν|µµµ〉NS

01 e
−itENS

∏
ν∈ννν

e−itε(ν)

= 1σ(λλλ)=σ(µµµ)e
−itENS

∏
k∈σ(λλλ)

e−itε(k)(1 +K2(k))
∏

µ∈π(µµµ)

(−iK(µ))
∏

λ∈π(λλλ)

iK(λ)
∏

p∈NS+

1

1 +K2(p)

×
∑

ννν⊂NS+

∩[σ(λλλ)∪(−σ(λλλ))]=∅

∏
ν∈ννν

e−2itε(ν)


1

K2(ν)
if ν ∈ π(λλλ) ∩ π(µµµ) ,

−1 if ν ∈ π(λλλ) ⊥ π(µµµ) ,

K2(ν) if ν /∈ π(λλλ) ∪ π(µµµ) .

(181)

The last line can be rewritten in the form∏
k∈π(λλλ)∩π(µµµ)

[1 + e−2itε(k)

K2(k)
]

∏
k∈π(λλλ)⊥π(µµµ)

[1− e−2itε(k)]
∏

k/∈π(λλλ),π(µµµ)
/∈[σ(λλλ)∪(−σ(λλλ))]

[1 + e−2itε(k)K2(k)] . (182)

Substituting this back in (181) results in the representation given in the Lemma.
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B.2 Summation formulas

Lemma 5 (Andréief identity [126]). Given two functions f(λ, µ) and g(λ, µ), a set K and
two sets of numbers {λi}Ni=1, {µj}Nj=1 we have the relation

∑
k1<...<kN∈K

det
i,j

[f(λi, kj)] det
i,j

[g(ki, µj)] = det
i,j

[∑
k∈K

f(λi, k)g(k, µj)

]
. (183)

Proof. See Ref. [1].

Lemma 6 (de Bruijn identity [127]). Let f(λ, µ) and g(λ, µ) be two functions of two
variables, a set K and a set of numbers {λi}2Ni=1. Define a matrix(

A(kkk)
)
ij

=

{
f(kq, λj) if i = 2q − 1 ,

g(kq, λj) if i = 2q .
(184)

Then the following indentity holds∑
k1<...<kN∈K

detA(kkk) = pf
ij

[∑
k∈K

f(k, λi)g(k, λj)− f(k, λj)g(k, λi)

]
. (185)

Proof. Using the definition of the determinant we have

detA(kkk) =
∑

σ∈S2N

(−1)σf(k1, λσ(1))g(k1, λσ(2))...f(kN , λσ(2N−1))g(kN , λσ(2N)) . (186)

Then∑
k1<...<kN

detA(kkk) =
1

N !

∑
k1,...,kN

detA(kkk) =
1

N !

∑
σ∈S2N

(−1)σbσ(1)σ(2)...bσ(2N−1)σ(2N) , (187)

where
bij =

∑
k

f(k, λi)g(k, λj) . (188)

Changing variables to σ = σ′ · (1, 2) we have∑
σ∈S2N

(−1)σbσ(1)σ(2)...bσ(2N−1)σ(2N) =
∑

σ∈S2N

(−1)σ

2
(bσ(1)σ(2) − bσ(2)σ(1))...bσ(2N−1)σ(2N)

=
1

2N

∑
σ∈S2N

(−1)σBσ(1)σ(2)...Bσ(2N−1)σ(2N) , (189)

where Bij is the matrix on the right-hand side in the Lemma. This completes the proof.

B.3 Coherent averages

Lemma 7. Let F [qqq] be a function of qqq, and f(k) a function. We define

〈F 〉 ≡ 1∏
k∈NS+

[1 + |f(k)|2]

∑
qqq⊂NS+

F [qqq]
∏
q∈qqq

[|f(q)|2] . (190)

If in the thermodynamic limit F [qqq] depends on the momenta only through the root density
ρ, i.e. limth F [qqq] = F [ρ], then

〈F 〉 = F [ρs] + o(L0) ,

ρs(k) =
1

2π

|f(k)|2

1 + |f(k)|2
. (191)
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Proof. See Ref. [1].

Lemma 8. Given two functionals F [qqq] and G[qqq], as well as three functions f(k), g(k), h(k),
we define

〈F,G〉 ≡
∑

λλλ,µµµ⊂NS+
F [λλλ]G[µµµ]

∏
λ∈λλλ f(λ)

∏
µ∈µµµ g(µ)

∏
ν∈λλλ∩µµµ h(ν)∏

k∈NS+
[1 + f(k) + g(k) + f(k)g(k)h(k)]

. (192)

If F [qqq] and G[qqq] depend only on the root density of qqq in the thermodynamic limit, then

〈F,G〉 = F [ρ1]G[ρ2] + o(L−0) , (193)

with

ρ1 =
1

2π

f + fgh

1 + f + g + fgh
, ρ2 =

1

2π

g + fgh

1 + f + g + fgh
. (194)

In these equations the root density can be complex.

Proof. It is a generalisation of the proof of Lemma 7 in [1]. Let us first treat the particular
case where in the thermodynamic limit F and G depend only on r the number of elements
of qqq divided by L. We introduce the generating function

Γ(α;β) =

∑
λλλ,µµµ⊂NS+

∏
λ∈λλλ[1 + α

L ]f(λ)
∏
µ∈µµµ[1 + β

L ]g(µ)
∏
ν∈λλλ∩µµµ h(ν)∏

k∈NS+
[1 + f(k) + g(k) + f(k)g(k)h(k)]

. (195)

We note that the denominator is such that Γ(0; 0) = 1. By differentiating with respect to
α and β, we see that

〈ri, rj〉 = ∂iα∂
j
βΓ(0; 0) +O(L−1) . (196)

Besides, performing the summation on λλλ,µµµ we obtain

Γ(α) =
∏

k∈NS+

[
1 +

α

L

f + fgh

1 + f + g + fgh
+
β

L

g + fgh

1 + f + g + fgh
+
αβ

L2

fgh

1 + f + g + fgh

]
(k) .

(197)
From this we find for any i, j

〈ri, rj〉 =

(∫ π

0
ρ1(k)dk

)i(∫ π

0
ρ2(k)dk

)j
+O(L−1) , (198)

with ρ1, ρ2 given in the Lemma. As any regular function can be approximated by a
polynomial with arbitrary precision provided its degree is high enough, this establishes
the result of the Lemma when F and G are functions of r only.

Let us now divide [0, π] into m windows Wk = [ πm(k − 1), πmk] for k = 1, ...,m, and
consider F [r1, ..., rm], G[r1, ..., rm] functions of qqq that in the thermodynamic limit de-
pend only on rk’s, the number of elements of qqq in Wk divided by L. By introducing
Γ(α1, ..., αm;β1, ..., βm) as in (195) with α replaced by αk where k is such that λ, µ ∈Wk,
we get similarly

〈ri11 ...r
im
m , rj11 ...r

jm
m 〉 =

m∏
a=1

(∫
Wa

ρ1

)ia (∫
Wa

ρ2

)ja
+O(L−1) . (199)

Hence the Lemma holds whenever F , G are functions of r1, ..., rm only. Since any regular
functional of ρ can be approximated with arbitrary precision by such a function provided
m is large enough, the Lemma holds for general F [ρ] and G[ρ].
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B.4 Fredholm determinants

Lemma 9 (Generalized Cramer’s rule). Let A be an N ×N matrix and xi1 , ..., xik vectors
of size N . We define B to be the matrix obtained from A by replacing the columns i1, ..., ik
by xi1 , ..., xik . Then

detB = detY detA , (200)

with Y the k × k matrix with entries Yia,ib = yiaib , where the vector yia is a solution to

Ayia = xia . (201)

Proof. Denoting the columns of A by C1, ..., CN Eq (201) reads

xia =
N∑
j=1

yiaj Cj . (202)

Using the multilinearity of the determinant, one has

detB =
N∑

j1,...,jk=1

yi1j1 ...y
ik
jk

detAj1,...,jk , (203)

where Aj1,...,jk denotes the matrix obtained from A by replacing the columns i1, ..., ik by
Cj1 , ..., Cjk . Since its determinant is non-zero only if {j1, ..., jk} = {i1, ..., ik}, we obtain

detB =
∑
σ∈Sk

yi1iσ(1) ...y
ik
iσ(k)

detAiσ(1),...,iσ(k)

= detY detA .

(204)

Lemma 10. Let f(λ, µ) be a function of two variables, J ⊂ {1, ..., L} a set of n indices,
(aij)i,j∈J n

2 numbers and (gi(µ))i∈J , (hj(λ))j∈J 2n functions of a single variable. Define
an L× L matrix A by

Aij =


δij + 1

Lf( iL ,
j
L) if i, j /∈ J ,

1
Lgj(

i
L) if j ∈ J, i /∈ J ,

1
Lhi(

j
L) if i ∈ J, j /∈ J ,

1
Laij if i, j ∈ J .

(205)

Then in the limit L→∞ the following Fredholm determinant representation holds

detA =
1

Ln
det

[
aij −

∫ 1

0

∫ 1

0
hi(λ)gj(µ)φ(λ, µ)dλdµ

]
1≤i,j≤n

· Det[Id+f ]+o(L−n) , (206)

where φ is the resolvent of the Fredholm equation

φ(λ, µ) +

∫ 1

0
f(λ, ν)φ(ν, µ)dν = δ(λ− µ) . (207)

Proof. Using Lemma 9, one has

detA = detA′ detX . (208)
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Here A′ is the L× L matrix

A′ij =


δij + 1

Lf( iL ,
j
L) if i /∈ J ,

1
Lhi(

j
L) if i ∈ J, j /∈ J ,

δij + 1
Lf( iL ,

j
L) if i, j ∈ J ,

(209)

and X the n× n matrix whose entry Xij for i, j ∈ J is the i-th element of the solution xj

to the linear system
A′xj = bj , (210)

with the vector

bji =

{
1
Lgj(

i
L) if i /∈ J ,

1
Laij if i ∈ J .

(211)

As A′ differs from the matrix with elements δij + 1
Lf( iL ,

j
L) by only off-diagonal terms on

a finite number of rows in the thermodynamic limit, one has the Fredholm determinant

detA′ = Det[Id + f ] + o(L0) . (212)

For i /∈ J the system (210) reads

xji +
1

L

L∑
k=1

f( iL ,
k
L)xjk =

1

L
gj(

i
L) . (213)

This equation allows one to describe the entries xji for i /∈ J by a function xj(λ) in

the thermodynamic limit, since xjk for k ∈ J appears a finite number of times with a

factor 1
L . However, the entry xji for i ∈ J can be discontinuous in the i direction in the

thermodynamic limit. We thus obtain an integral equation for xj(λ)

xj(λ) +

∫ 1

0
f(λ, ν)xj(ν)dν =

1

L
gj(λ) , (214)

whose solution is expressed as

xj(λ) =
1

L

∫ 1

0
φ(λ, µ)gj(µ)dµ , (215)

with the resolvent φ(λ, µ) defined by

φ(λ, µ) +

∫ 1

0
f(λ, ν)φ(ν, µ)dν = δ(λ− µ) , (216)

or equivalently

φ(λ, µ) +

∫ 1

0
φ(λ, ν)f(ν, µ)dν = δ(λ− µ) . (217)

Now, for i, j ∈ J the system (210) reads

xji +
1

L

L∑
k=1

hi(
k
L)xjk =

1

L
aij . (218)

In the thermodynamic limit, this yields for i, j ∈ J

xji =
1

L

(
aij −

∫ 1

0

∫ 1

0
hi(λ)gj(µ)φ(λ, µ)dλdµ

)
. (219)

This concludes the proof of the Lemma.
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B.5 Miscellaneous

Lemma 11. For z complex and 0 ≤ ` < L an integer, we have in finite size L

∑
ν∈R

ei(`+1)ν

eiν − z
= L

z`

1− zL
, (220)

and ∑
ν∈NS

ei(`+1)ν

eiν − z
= L

z`

1 + zL
. (221)

Proof. Let us start with (220). The left-hand side is a meromorphic function of z with
simple poles in eiR, i.e. for zL = 1. The full result can thus be obtained with analytic
continuation from |z| < 1. In this region, one has

∑
ν∈R

ei(`+1)ν

eiν − z
=
∑
m≥0

zm
∑
ν∈R

ei(`−m)ν . (222)

If ` − m is a multiple of L, then the sum over ν is L, and otherwise the sum vanishes.
Hence ∑

ν∈R

ei(`+1)ν

eiν − z
=
∑
k≥0

z`+kLL

= L
z`

1− zL
.

(223)

Now, to show (221) we write NS = R + π
L to obtain

∑
ν∈NS

ei(`+1)ν

eiν − z
= ei`π/L

∑
ν∈R

ei(`+1)ν

eiν − ze−iπ/L
. (224)

Using (220), we then obtain (221).
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[14] C. Trippe, F. Göhmann and A. Klümper, Short-distance thermal correlations in the
massive XXZ chain, Eur. Phys. J. B 73, 253, (2010).
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