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Abstract

A complex, seven-parameter ground-state problem for an Ising model on a
3D honeycomb zigzag-ladder lattice, containing two types of magnetic sites,
is considered in the presence of an external field using the method of basic
rays and basic sets of cluster configurations. It is shown that the geometrical
frustration due to the presence of triangle elements leads to the emergence of a
large variety of magnetic phases, the majority of which are highly degenerate.
The obtained theoretical results are used to elucidate the sequence of phase
transitions in the family of rare-earth oxides with a honeycomb zigzag-ladder
lattice. New phases predicted by our model and observed experimentally do
not appear in previously considered simpler models for noninteracting zigzag-
ladders.
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Figure 1: A honeycomb zigzag-ladder lattice comprised of two types of sites, red and blue.
The coupling between the two neighboring spins along the ladder legs is J01 for red sites
and J02 for blue sites. The spin coupling along ladder rungs is J11 and J12 for the red and
blue sites, respectively, while the coupling between red and blue neighboring sites is J2.
The external field for the two sites is represented by h1 and h2. This magnetic lattice is
found, for example, in the SrRE2O4 compounds [1] for which the orange box represents a
crystallographic unit cell.

1 Introduction

Geometrically frustrated magnets, due to richness of their magnetic structures and behav-
iors, have been among the most intensively studied objects in the physics of magnetism
and magnetic materials over the past several decades. Their theoretical description is
a rather difficult task, especially in the case when quantum effects are essential. How-
ever, among frustrated magnets, there are many compounds with large-moment magnetic
atoms. Often, these magnets can be well described with classical, either Heisenberg or
Ising spin models, depending on the presence of strong crystal-field effects.

In this paper, we study geometrically frustrated magnets with magnetic atoms carry-
ing large spins. These are 3D honeycomb zigzag-ladder magnets such as SrRE2O4 [1, 2]
and BaRE2O4 [3–6], where RE is a rare earth atom. These families of compounds exhibit
a very rich magnetic behavior, especially in an external magnetic field [7–15]. Rare earth
magnetic atoms in these compounds occupy two crystallographically inequivalent posi-
tions with substantially different values of magnetic moments (which can be considered as
classical) and, very often, almost orthogonal directions of easy-axis magnetization.

One of the most important experimental and theoretical challenges is to determine the
magnetic structures of these magnets in an external magnetic field at low temperature.
If an appropriate Hamiltonian is established, then one can try to solve the ground-state
problem. This is difficult, even for rather simple classical Hamiltonians and, although
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several methods have been developed [16–27], in particular the method of geometric in-
equalities by J. Kanamori and M. Kaburagi [20,21], no general algorithm exists to obtain
the ground-state phase diagrams.

To appropriately describe the honeycomb zigzag-ladder magnets with strong magnetic
anisotropy, we consider an Ising-like Hamiltonian with seven parameters (see Fig. 1). Since
we deal with two types of spins, and the direction of the external field is arbitrary, two,
rather than one, external field parameter needed to be introduced. Although we refer to
spins throughout the text, one has to keep in mind that the orbital contribution to the
magnetic moments is significant in almost all SrRE2O4 and BaRE2O4 compounds.

The ground-state problem for Ising-like Hamiltonians can be solved by using the
method of basic rays and basic sets of cluster configurations [28–32]. This is the only
method that gives the complete solution for a ground-state problem of Ising-like Hamilto-
nians, i.e, all the ground-state structures in every point of Hamiltonian parameter space.
In the previous studies by one of the authors, this method was mostly used to rigorously
prove the completeness of solutions [28, 31, 32]. Here, we use the method as a tool for
finding a solution to the ground-state problem for an Ising model on a honeycomb zigzag-
ladder lattice with two types of sites. Although we restrict our considerations to the
smallest clusters (triangular plaquettes) the problem is rather complex because there are
four types of such plaquettes with six configurations for each type. We have found 22 basic
rays (edges of ground-state regions in the parameter space), but this is not a complete
set – to determine all the basic rays, larger clusters should be considered. It might be
possible to eventually establish a complete solution for this ground-state problem using
an advanced, specially developed software package, however, even the incomplete solution
found here sheds light on the sequence of magnetic transitions observed in the honeycomb
zigzag-ladder magnets in the SrRE2O4 and BaRE2O4 families. Due to strong crystal-field
effects, the magnetic moments in several members of these families demonstrate Ising-like
behaviour with the easy-axes directions varying from one rare-earth site to another, which
makes them a good fit to the model considered.

The paper is organized as follows. Subsection 2.1 of Section 2 gives a description of
the model under consideration and the cluster method used. In Subsection 2.2, triangu-
lar plaquettes and their spin configurations are introduced, the Hamiltonian is presented
as a sum of energies of all the plaquettes of the lattice. In Subsection 2.3, all the ba-
sic rays (vectors) which can be found using the triangular plaquettes are listed. Fully
dimensional (that is, seven-dimensional) ground-state regions and corresponding ground-
state structures found on the basis of these basic rays are described in Subsection 2.4.
In Subsection 2.5, the disorder (degeneracy) of the fully dimensional phases is analyzed.
In Subsection 2.6, “nontriangular” fully dimensional structures neighboring “triangular”
ones are constructed and analyzed and, in Subsection 2.7, six examples of ground-state
phase diagrams are presented. In Section 3, the relation between the experimental and
the theoretical results is discussed and, in Section 4, conclusions are drawn.

2 “Triangular” ground-state structures

2.1 Model and method

The magnetic lattice of 3D honeycomb zigzag-ladder magnets is shown in Fig. 1. The
structure is composed of three types of zigzag ladders: red, blue and gray (after the color
of rungs in Fig. 1). We will refer to a part of the lattice with one red, one blue, and four
gray ladders as a “hexagonal tube”. There are two species of nonequivalent sites, these are

3



SciPost Physics Submission

depicted with two colors: blue and red. The value of spin at each site is equal to −1 or +1.
The coupling between two neighboring spins along ladder legs (rungs) is J01 for red sites
and J02 for blue ones (J11 and J12). The coupling between spins at neighboring sites of
different colors (along ladder rungs) is J2. There are also two external field parameters, h1
and h2 for the red and blue sites, respectively; these parameters depend on the components
of an external field along the two easy magnetization axes and the values of the magnetic
moments at red and blue sites. We therefore consider an Ising-type model with seven
parameters and the Hamiltonian of the model reads

H =
∑

〈magenta
bonds 〉

J01σiσj +
∑
〈 cyan
bonds〉

J02σiσj +
∑
〈 red
bonds〉

J11σiσj +
∑
〈 blue
bonds〉

J12σiσj

+
∑
〈 gray
bonds〉

J2σiσj −
∑
〈 red
sites〉

h1σi −
∑
〈blue

sites 〉
h2σi. (1)

To find the ground states of such a model, we use a cluster method developed by one
of the authors in previous papers, the so-called method of basic rays and basic sets of
cluster configurations [28, 29, 31, 32]. Let us briefly elaborate on the main aspects of the
method used.

The ground-state phase diagram for any Ising-type model is a set of convex polyhedral
cones (polyhedral angles with the vertices at the origin of coordinates) in the parameter
space. A polyhedral cone is the linear hull, that is, all linear combinations with non-
negative coefficients — the so-called conic hull — of a set of vectors. An n-dimensional
polyhedral cone is bounded by (n− 1)-, (n− 2)-, . . ., 2-, 1-faces. 1-faces are called edges.
The polyhedral cone is fully determined by its edges (vectors along them). The most
important are fully dimensional polyhedral cones (seven-dimensional for the model con-
sidered). These cones fill the parameter space without gaps and overlaps. We refer to
a structure, which is a ground-state structure in a fully dimensional polyhedral cone, as
fully dimensional and to the corresponding edges (vectors) as basic rays (vectors) [28–32].
A ground-state problem can be considered as resolved if all the edges (basic rays or basic
vectors) of all the fully dimensional polyhedral cones are determined as well as all the
ground states at these edges. The ground states in basic rays (the same along an entire
ray) are constructed with the lowest energy configurations of a cluster (or clusters). We
refer to the sets of these configurations as “basic sets of cluster configurations.” Simple
examples of basic rays and basic sets of cluster configurations are given in Refs. [31, 32]
and in the appendix of Ref. [29]. It should be noted that the lower the dimension of a
face, the more degenerate is the corresponding ground state. The most degenerate ground
states correspond to 1-faces, i.e., edges.

2.2 Triangular plaquettes and their energies

Let us consider the simplest plaquettes of the lattice shown in Fig. 1 – triangular ones
(Fig. 2). There are four types of triangular plaquettes, the total energy can be distributed
between them in different ways, as every plaquette has vertices and sides shared with the
neighboring plaquettes. The arbitrariness in energy distribution can be taken into account
by introducing a set of coefficients α1, α2, β, γ1, γ2, η1, and η2 which can take arbitrary
values between zero and one and which we refer to as “free” coefficients. The four types
of the triangular plaquettes and energy distribution between them are shown in Fig. 2.
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Figure 2: Four types of triangular plaquettes and their energies (see Fig. 1). The energy
distribution between plaquettes of different types with shared sites or bonds is parame-
terized by a set of coefficients α1,2, β, γ1,2, and, η1,2, which take arbitrary values between
zero and unity and which we refer to as “free” coefficients.

The Hamiltonian (1) can be presented as a sum of energies for all the plaquettes,

H =
∑

i

[
(1− α1)J01σi1σi2 +

J11
2

(σi2σi3 + σi3σi1)−
1− η1

2
γ1h1(σi1 + σi2)

−(1− δ1)(1− γ1)h1σi3
]

+
∑

i

[
(1− α2)J02σi1σi2 +

J12
2

(σi2σi3 + σi3σi1)−
1− η2

2
γ2h2(σi1 + σi2)

−(1− δ2)(1− γ2)h2σi3
]

+
∑

i

[
α1

2
J01σi1σi2 + (1− β)J2(σi2σi3 + σi3σi1)− η1

γ1
4
h1(σi1 + σi2)− δ2

1− γ2
2

h2σi3

]

+
∑

i

[
α2

2
J02σi1σi2 + (1− β)J2(σi2σi3 + σi3σi1)− η2

γ2
4
h2(σi1 + σi2)− δ1

1− γ1
2

h1σi3

]
,

(2)

where the first, second, third, and fourth summations go over all the plaquettes shown in
Fig. 2.

Let us show, for instance, that the energy of every red site is taken into account only
once in the sum of energies of all the plaquettes on the lattice, that is, in the Hamilto-
nian (2). Every red site belongs to three plaquettes of type a (to one in the upper position
and to two in the lower positions), to four plaquettes of type c, and to two plaquettes of
type d. Therefore the one-site energy is

e = −σh1
(

(1− δ1)(1− γ1) + 2
(1− η1)γ1

2
+ 4

η1γ1
4

+ 2
δ1(1− γ1)

2

)
= −σh1, (3)

where σ is the value of spin at the red site. The Hamiltonian (2) does not depend on free
coefficients despite the fact that the four sums for the individual plaquettes do depend on
them.

There are six configurations of each plaquette, , , , , , and , where open
and solid circles denote spins σ = −1 and σ = +1, respectively. The energies of these
configurations for all the four types of plaquettes are given in Appendix A.
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2.3 Basic rays and basic sets of triangular plaquettes configurations

Using the expressions for these energies (see Appendix A), one can find 22 basic rays.
They are given in Table 1. In the first column of the table, the basic rays [7-vectors
(J01, J02, J11, J12, J2, h1, h2)] are listed. Symbols ?,˜, and denote the following transfor-
mations: sublattices swap (red sublattice becomes blue and vice versa), spin flip on the
blue sublattice, and spin flip on both sublattices. In the second column, the ground-state
configurations of the four types of plaquettes for the corresponding basic ray are given.
The symbol ‖ separates configurations for four different types of triangular plaquettes.
The symbol denotes the set of all the six configurations. Basic vector r?1, for instance,
and the corresponding basic set of cluster configurations can be obtained from vector r1
and its basic set of cluster configurations by using the ? transformation. In the last column,
the “free” coefficient values that minimize the energies of the corresponding configurations
in the basic ray are presented.

Let us consider as an example the ray r1 for which J01 < 0 (ferromagnetic coupling)
and all the other parameters are equal to zero. If α1 = 0, then, in this ray, the following
triangular plaquette configurations have the lowest energies: , , , and for the types
a and c of triangular plaquettes and all the possible configurations for the types b and
d. Configurations and have higher energies; configurations and , despite having
the lowest energies, are incompatible with other configurations. Any global configuration,
constructed with these local ones, is a ground-state configuration in this ray, that is,
any global configuration, where local configurations , , , and are excluded, is a
ground-state in this ray (and vice versa). It is clear that for these ground states all the red
chains are ferromagnetic while the blue chains could be arbitrary. We refer to a structure
constructed with a set of triangular plaquette configurations in such a way, that is, without
any additional condition, as a “triangular” structure.

It should be noted that, at this stage, it is not yet proven that the r1 is a basic ray.
As will become apparent below, the 22 rays listed in Table 1 are indeed basic rays, but
they do not form a complete set.

2.4 Fully dimensional “triangular” phases

Although the set of basic rays is incomplete, many fully dimensional global ground-state
configurations can be found using these basic rays, they are given in Table 2 and Figs. 3-7.

The first column of Table 2 gives the label for the regions in parameter space. In the
second column, the triangular plaquette configurations that generate all the ground-state
structures in this region are shown. Under the plaquette configurations basic rays (not all
in most cases) for the region considered are also listed in this column. The third column
lists some characteristics of the structure(s), such as energy (per six plaquettes), relative
number of each plaquette configuration in the structure(s), and dimensionality of disorder.
The coefficient in front of h1 (h2) in the expression for the energy, taken with opposite
sign, is equal to the magnetization per one sublattice site of the “red” (“blue”) sublattice.
For region 2, for example, magnetization per site is 1 for the “red” sublattice and 1/3
for the “blue” sublattice. Among the basic vectors for every region, there are necessarily
seven linearly independent ones, except for region 15. For this region seven basic vectors
are determined but only six of them are linearly independent. However, one can prove
that phase 15 is fully dimensional. To obtain all the basic vectors for this phase, larger
clusters should be considered.

Let us consider an example. Structures 3 (see Fig. 3), composed of red uu chains
and blue ud chains, are generated with triangular plaquette configurations , , , ,

, and , that is, every triangular plaquette in these structures should be one of these.
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Table 1: Basic rays and basic sets of configurations for the Ising model on a honeycomb
zigzag-ladder lattice.

Basic ray Basic set “Free”
(J01, J02, J11, J12, J2, h1, h2) of configurations Ri coefficients

r1 (−1, 0, 0, 0, 0, 0, 0) ‖ ‖ ‖ α1 = 0

r?1 (0,−1, 0, 0, 0, 0, 0) ‖ ‖ ‖ α2 = 0

r2 (1, 0,−2, 0, 0, 0, 0) ‖ ‖ ‖ α1 = 0

r?2 (0, 1, 0,−2, 0, 0, 0) ‖ ‖ ‖ α2 = 0

r3 (1, 0, 2, 0, 0, 0, 0) ‖ ‖ ‖ α1 = 0

r?3 (0, 1, 0, 2, 0, 0, 0) ‖ ‖ ‖ α2 = 0

r4 (2, 0, 0, 0, 1, 0, 0) ‖ ‖ ‖ α1 = 1, β = 0

r∼4 (2, 0, 0, 0,−1, 0, 0) ‖ ‖ ‖ α1 = 1, β = 0

r?4 (0, 2, 0, 0, 1, 0, 0) ‖ ‖ ‖ α2 = 1, β = 1

r∼?4 (0, 2, 0, 0,−1, 0, 0) ‖ ‖ ‖ α2 = 1, β = 1

r5 (1, 0, 0, 0, 0, 2, 0) ‖ ‖ ‖ α1 = 0, γ1 = 1, η1 = 0

r−5 (1, 0, 0, 0, 0,−2, 0) ‖ ‖ ‖ α1 = 0, γ1 = 1, η1 = 0

r?5 (0, 1, 0, 0, 0, 0, 2) ‖ ‖ ‖ α2 = 0, γ2 = 1, η2 = 0

r?−5 (0, 1, 0, 0, 0, 0,−2) ‖ ‖ ‖ α2 = 0, γ2 = 1, η2 = 0

r6 (0, 0, 1, 0, 0, 2, 0) ‖ ‖ ‖ γ1 = 1
2 , δ1 = 0, η1 = 0

r−6 (0, 0, 1, 0, 0,−2, 0) ‖ ‖ ‖ γ1 = 1
2 , δ1 = 0, η1 = 0

r?6 (0, 0, 0, 1, 0, 0, 2) ‖ ‖ ‖ γ2 = 1
2 , δ2 = 0, η2 = 0

r?−6 (0, 0, 0, 1, 0, 0,−2) ‖ ‖ ‖ γ2 = 1
2 , δ2 = 0, η2 = 0

r7 (0, 0, 0, 0, 1, 4, 4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r−7 (0, 0, 0, 0, 1,−4,−4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r∼7 (0, 0, 0, 0,−1, 4,−4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r∼−7 (0, 0, 0, 0,−1,−4, 4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1
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Table 2: Fully dimensional regions and “triangular” ground-state structures of the Ising
model on the honeycomb zigzag-ladder lattice. The structures (from 1 to 14) are numbered
in order of decreasing magnetization of the “red” sublattice.

Generating configurations Characteristics of the structure(s)
and basic rays (energy per six plaquettes)

1 ‖ ‖ ‖ J01 + J02 + J11 + J12 + 4J2 − h1 − h2
r1, r

?
1, r2, r

?
2, r
∼
4 , r

∼?
4 , [ 1 ‖ 1 ‖ 2 ‖ 2 ], order

r5, r
?
5, r6, r

?
6, r7, r

∼
7 , r

∼−
7

2 ‖ ‖ ‖ 1
3(3J01 − J02 + 3J11 − J12 + 4J2 − 3h1 − h2)

r1, r2, r
?
3, r
∼?
4 , r5, r

?
5, r6, r

?
6, r7, r

∼
7 [ 3 ‖ 1, 2 ‖ 2, 4 ‖ 4, 2 ], 2D disorder

3 ‖ ‖ ‖ J01 − J02 + J11 − h1
r1, r2, r

?
2, r

?
3, r

?
4, r
∼?
4 , [ 2 ‖ 1, 1 ‖ 2, 2 ‖ 4 ], 2D disorder

r5, r
?
5, r

?−
5 , r6, r7, r

∼
7

4 ‖ ‖ ‖ J01 + J02 + J11 − J12 − h1
r1, r

?
1, r2, r

?
3, r5, r6, r

?
6, r

?−
6 , r7, r

∼
7 [ 2 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], 2D disorder

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 − 3h1 − h2)

r?3, r
∼
4 , r

∼?
4 , r5, r6, r

?
6, r
∼
7 [ 1, 2, 2 ‖ 1, 2, 2 ‖ 4, 6 ‖ 2, 4, 4 ], order

6 ‖ ‖ ‖ 1
2(2J02 − 2J12 − 4J2 − h1)

r?1, r
?
3, r4, r5, r6, r

?
6, r

?−
6 , r7 [ 1, 2, 1 ‖ 2, 2 ‖ 4, 4 ‖ 4, 2, 2 ], 2D disorder

7 ‖ ‖ ‖ 1
3(−J01 − J02 + J11 + J12 − 4J2 − h1 − h2)

r2, r
?
2, r4, r

?
4, r5, r

?
5, r7 [ 1, 1, 1 ‖ 1, 1, 1 ‖ 2, 4 ‖ 2, 4 ], 1D disorder

8 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 − J12 − 4J2 − h1 − h2)

r3, r
?
3, r4, r

?
4, r5, r

?
5, r6, r

?
6, r7 [ 1, 2 ‖ 1, 2 ‖ 2, 4 ‖ 2, 4 ], order

9 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 − J12 + 4J2 − h1 − h2)

r3, r
?
3, r
∼
4 , r

∼?
4 , r5, r

?
5, r6, r

?
6 [ 1, 2 ‖ 1, 2 ‖ 2, 2, 2 ‖ 2, 2, 2 ], 2D disorder

10 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 + J12 + 4J2 − h1 − h2)

r?2, r3, r
∼
4 , r

∼?
4 , r5, r

?
5, r6 [ 1, 2 ‖ 1, 1, 1 ‖ 2, 2, 2 ‖ 2, 2, 2 ], 3D disorder

11 ‖ ‖ ‖ 1
3(−J01 − 3J02 − J11 − h1)

r?2, r3, r
?
3, r

?
4, r
∼?
4 , r5, r

?
5, r

?−
5 , r6 [ 2, 4 ‖ 3, 3 ‖ 4, 2, 4, 2 ‖ 4, 8 ], 2D disorder

12 ‖ ‖ ‖ J01 + J02 − J11 − J12 − 4J2
r1, r

?
1, r3, r

?
3, r4, r

?
4, [ 1, 1 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], order

r6, r
−
6 , r

?
6, r

?−
6 , r7, r

−
7

13 ‖ ‖ ‖ −J01 + J02 − J12
r?1, r2, r3, r

?
3, r4, r

∼
4 , r5, r

−
5 , r

?
6, r

?−
6 [ 1, 1 ‖ 1, 1 ‖ 2, 2 ‖ 1, 1, 1, 1 ], 2D disorder

14 ‖ ‖ ‖ −J01 − J02
r2, r

?
2, r3, r

?
3, [ 1, 1 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], 2D disorder

r4, r
∼
4 , r

?
4, r
∼?
4 , r5, r

−
5 , r

?
5, r

?−
5

15 ‖ ‖ 1
3(−J01 + 3J02 − J11 − 3J12 − h1)

‖ [ 2, 4 ‖ 3, 3 ‖ 4, 2, 4, 2 ‖ 2, 4, 2, 4 ], disorder
r?1, r3, r

?
3, r5, r6, r

?
6, r

?−
6
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5 6 8

11 12 13

14 15

Figure 3: Phases 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, and 15. For each phase, the left hand
panel shows the configuration of the spins within each chain of a hexagonal tube (its
development is depicted). The larger colored circles at the bottom of the chains are a
key that indicate how the spins along a chain are distributed in each of the arrangements
shown in the right hand panels. For each phase, the right hand panel shows the setting of
the spins viewed down the chains from above. The configurations of triangular plaquettes
are also given. Phases 5, 8, and 12 are ordered, while phases 2, 3, 4, 6, 11, 13, 14, and 15
are disordered (the disorder is two-dimensional).

This set of triangular plaquette configurations is a subset of basic sets Ri for basic rays
r1, r2, r

?
2, r

?
3, r

?
4, r
∼?
4 , r5, r

?
5, r

?−
5 , r6, r7, and r∼7 (see Table 1). It means that, in the conic hull

of this set of vectors, structures 3 are the ground-state ones. To calculate the energy of
structures 3, it is sufficient to determine the relative number of each plaquette configuration
in these structures (see Appendix A). These numbers are 2, 1, 1, 2, 2, and 4, respectively.

In Table 2, we give only one representative per class of structures. Other structures of
the class can be obtained from the given one by applying three transformations (?,˜, and

). For instance, the class of structures 5 contains eight structures (see Table 3 and Fig. 8):
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aa'

a'

a'
a'

a'a

aa
a

a' a

a'

a'

a'

a'a'

a

7

a a= a' a'=

Figure 4: Phase 7. The structures of this phase are constructed with the two configurations
of hexagonal tube: a and a′. The arrows show the directions of shift for chains. The global
arrow configuration (constructed with two hexagonal configurations) is fully determined
by a line of arrows (depicted in olive). Therefore, the disorder is one-dimensional.

Table 3: Structure 5 and seven other structures obtained from it using transformations ?,˜, and .

Generating configurations Characteristics of the structure
and basic rays (energy per six plaquettes)

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 − 3h1 − h2)

r?3, r
∼
4 , r

∼?
4 , r5, r6, r

?
6, r
∼
7 [ 1, 2, 2 ‖ 1, 2, 2 ‖ 4, 6 ‖ 2, 4, 4 ], order

5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 + 12J2 − h1 − 3h2)

r3, r
∼
4 , r

∼?
4 , r?5, r6, r

?
6, r
∼−
7 [ 1, 2, 2 ‖ 1, 2, 2 ‖ 2, 4, 4 ‖ 4, 6 ], order

5̃ ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 − 12J2 − 3h1 + h2)

r?3, r4, r
?
4, r5, r6, r

?−
6 , r7 [ 1, 2, 2 ‖ 2, 2, 1 ‖ 6, 4 ‖ 4, 2, 4 ], order

5̃? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 − 12J2 + h1 − 3h2)

r3, r4, r
?
4, r

?
5, r
−
6 , r

?
6, r7 [ 2, 2, 1 ‖ 1, 2, 2 ‖ 4, 2, 4 ‖ 6, 4 ], order

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 + 3h1 + h2)

r?3, r
∼
4 , r

∼?
4 , r−5 , r

−
6 , r

?−
6 , r∼−7 [ 2, 2, 1 ‖ 2, 2, 1 ‖ 6, 4 ‖ 4, 4, 2 ], order

5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 + 12J2 + h1 + 3h2)

r3, r
∼
4 , r

∼?
4 , r?−5 , r−6 , r

?−
6 , r∼7 [ 2, 2, 1 ‖ 2, 2, 1 ‖ 4, 4, 2 ‖ 6, 4 ], order

5̃ ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 − 12J2 + 3h1 − h2)

r?3, r4, r
?
4, r
−
5 , r

−
6 , r

?
6, r
−
7 [ 2, 2, 1 ‖ 1, 2, 2 ‖ 4, 6 ‖ 4, 2, 4 ], order

5̃? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 − 12J2 − h1 + 3h2)

r3, r4, r
?
4, r

?−
5 , r6, r

?−
6 , r−7 [ 1, 2, 2 ‖ 2, 2, 1 ‖ 4, 2, 4 ‖ 4, 6 ], order

5, 5?, 5̃, 5̃?, 5, 5?, 5̃, and 5̃?. This is the maximum number of structures in one class. It

should be noted here that ñ∗ = (ñ)∗. The class of structures 14 contains only structure 14
because this structure is symmetric with respect to all the three transformations. There
are 69 “triangular” phases in total.

It should be also noted that phases 5, 6, 7, and 10 are not possible if only uncoupled
“red” and “blue” zigzag-ladders are considered, i.e. if J2 = 0 (see Ref. [33] for ground
states of one zigzag-ladder).
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a'

9

a

b c b'c'

Figure 5: Structures 9 are composed of six hexagonal tube configurations corresponding to
six arrow configurations of hexagons (a, b, c, a′, b′, and c′) in which two arrows are pointing
clockwise and two others anticlockwise or vice versa. The global arrow configuration
generated by local configuration b is depicted. The substitution shown in the upper part
of the figure can be made locally without violating the ground state rules. Therefore, the
disorder is two-dimensional.

2.5 Disorder (degeneracy) of the phases

Let us analyze the disorder of phases next. Phases 1, 5, 8, and 12 (and the phases obtained
from them by using the transformations described above) are ordered. All the other phases
are disordered, that is, there are an infinite number of structures with the same energy. A
disorder can be characterized by its dimensionality. For instance, the disorder of phase 7
is one-dimensional, as shown in Fig. 4. The structures of this phase are constructed with
two hexagonal tube configurations that can be depicted as hexagons with two arrows
showing the shift of the corresponding chains. The global lattice configuration is mapped
on two-dimensional arrow configurations. It is easy to see, such an arrow configuration
is determined by an arbitrary one-dimensional sequence of arrows. So, the disorder is
one-dimensional.

The disorder of phase 2 is two-dimensional, since all the chains are ordered but every
up-up-down (uud) chain can be in three different positions. That is, there is a perfect order
along the c direction (along the chains) but a disorder in the ab-plane. The disorder of
phase 4 is also two-dimensional, since every “blue” ladder can be in two different positions.
It is shown in Fig. 5 that the disorder of phase 9 is two-dimensional as well, because all
the chains are ordered and, in the structure generated by arrow configuration b, the local
arrow configurations depicted in the upper part of the figure are interchangeable.

The disorder of phase 10 is three-dimensional, that is, the degeneracy is macroscopic
and therefore there exists a residual entropy in this phase. Let us prove this. The structures
of phase 10 are constructed with ten hexagonal tube configurations, shown in Fig. 6.
These tube configurations are composed of identical chains, uud. The shift of a chain
configuration when passing to a neighboring one can be indicated by an arrow. So, we
have ten arrow configurations of hexagons. Notation x′ means that all the arrows in the

11
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b d eca a' 10

Figure 6: Structures 10 are composed of ten hexagonal tube configurations corresponding
to ten arrow configurations of hexagons, a, b, c, d, e, a′, b′, c′, d′, and e′ (the last four are
not shown), in which one arrow is pointing clockwise and four others anticlockwise or vice
versa.

hexagon are opposite to those in hexagon configuration x. In Fig. 7, an example of arrow
configurations and another representation of the same structures, by explicit indication of
chain positions, are given. For the “shaded” chains the shifts of all the three neighboring
chains are equal. In such blue chains, one of two spins in each oval (Fig. 7, right panel) can
point in an arbitrary direction with the other being opposite. So, the disorder in phase 10
is three-dimensional.

2.6 Fully dimensional “nontriangular” phases

The sets of basic vectors are complete for only four (4, 11, 13, and 14) of the fully-
dimensional regions stated in Table 2. The proof of the completeness is given in Ap-
pendix B which lists the 6-faces for these regions. But even if the set of basic vectors for
a “triangular” phase region is incomplete, the majority of 6-faces of the polyhedral cone
generated by this set are 6-faces of this region. Then, even if the neighboring phase is not
a “triangular” one, it is possible to determine the ground-state structure(s) for this phase.
Such structures should have a maximum number of new triangular configurations which
are absent in structures of the “triangular” phase but present in ground-state structures
at the common boundary (6-face). We found nine phases (more exactly, nine classes)
of this type. The list of these phases is given in Table 4 (one representative per class)
and the corresponding structures are depicted in Figs. 9-13. In these figures, new trian-
gular configurations are framed by dotted squares. It should be noted that the sets of
triangular configurations in Table 4 and in the figures are the sets of ground-state tri-
angular configurations for six-dimensional boundaries. As one can see from Figs. 9-11,
some “nontriangular” structures, in contrast to “triangular” ones, are composed of two
different types of red ladder (phases 16, 18, 19, 22, and 23) or blue ladder (phases 20 and
21) configurations. These phases are due to the interaction between red and blue ladders,
they are therefore excluded from considerations in the one-dimensional models, such as
1D ANNNI model used in Ref. [34].

It is worthwhile studying the disorder of these “nontriangular” phases. Phases 17 and
20 are ordered. As it is clear from Fig. 9 (upper panel), the disorder of phase 16 is one-
dimensional, since the structure is completely determined by a sequence of arrows showing
the shifts of neighboring red uud chains. The disorder of phases 18, 21, 22, and 23 is two-
dimensional due to ud chains. A complex disorder is present in phase 24. The structures
of this phase can be mapped on two-dimensional arrow configurations composed of ten

12
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Table 4: Fully dimensional regions and “nontriangular” ground-state structures of the
Ising model on the honeycomb zigzag-ladder lattice.

Boun- Triangular configurations Characteristics
dary and basic rays of “nontriangular” structures

(2, 16) ‖ ‖ 1
3(J01 − J02 + 2J11 − J12 − 2h1 − h2)

‖ [ 1, 1, 4 ‖ 2, 4 ‖ 4, 4, 4 ‖ 2, 8, 2 ], 1D disorder
r2, r

?
3, r5, r

?
5, r

?
6, r7

(3, 17) ‖ ‖ 1
5(J01 − 3J02 + J11 + J12 − 4J2 − 3h1 − h2)

‖ [ 1, 2, 2 ‖ 2, 2, 1 ‖ 4, 4, 2 ‖ 2, 8 ], order
r?2, r

?
4, r5, r

?
5, r6, r7

(4, 18) ‖ ‖ 1
4(2J01 + 4J02 + 3J11 − 4J12 − 4J2 − 3h1)

‖ [ 1, 1, 6 ‖ 4, 4 ‖ 8, 4, 4 ‖ 8, 2, 6 ], 2D disorder
r?1, r2, r

?
3, r5, r

?
6, r

?−
6 , r7

(4, 19) ‖ ‖ 1
2(2J01 + 2J02 + 2J11 − 2J12 + 4J2 − h1)

‖ [ 1, 3 ‖ 2, 2 ‖ 2, 2, 4 ‖ 2, 2, 4 ], 2D disorder
r1, r

?
1, r2, r

?
3, r

?
6, r

?−
6 , r∼7

(10, 20) ‖ ‖ 1
9(−3J01 − 3J02 − 3J11 + 3J12 + 12J2 − 3h1 − h2)

‖ [ 3, 6 ‖ 1, 3, 3, 2 ‖ 8, 4, 6 ‖ 2, 4, 8, 4 ], order
r?2, r3, r

∼
4 , r

∼?
4 , r5, r6

(11, 21) ‖ ‖ 1
9(−3J01 − 7J02 − 3J11 + J12 − 4J2 − 3h1 − h2)

‖ [ 3, 6 ‖ 4, 4, 1 ‖ 4, 4, 8, 2 ‖ 4, 2, 12 ], 2D disorder
r?2, r3, r

?
4, r5, r

?
5, r6

(13, 22) ‖ ‖ 1
4(−2J01 + 4J02 + J11 − 4J12 + 4J2 − h1)

‖ [ 3, 3, 2 ‖ 4, 4 ‖ 8, 4, 4 ‖ 4, 4, 2, 6 ], 2D disorder
r?1, r2, r

?
3, r
∼
4 , r5, r

?
6, r

?−
6

(13, 23) ‖ ‖ 1
12(−10J01 + 12J02 − J11 − 12J12 + 4J2 − h1)

‖ [ 9, 2, 13 ‖ 12, 12 ‖ 24, 20, 4 ‖ 12, 12, 10, 14 ],
r?1, r3, r

?
3, r
∼
4 , r5, r

?
6, r

?−
6 2D disorder

(14, 24) ‖ ‖ 1
5(−3J01 − 3J02 − J11 + J12 − 4J2 − h1 − h2)

‖ [ 1, 1, 3 ‖ 2, 2, 1 ‖ 2, 2, 6 ‖ 2, 2, 6 ], disorder
r?2, r3, r4, r

?
4, r5, r

?
5
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Figure 7: One of possible structures of phase 10 is shown in two ways, (left panel) with the
help of arrow configurations and (middle panel) by indicating the shift of each chain, in the
units of the in-chain spin distance. The unit cell is also indicated. For the “shaded” chains
the shifts of all the three neighboring chains are equal. In such blue chains (right panel),
one of two spins in each oval can be arbitrary, the other being of opposite direction. The
disorder in phase 10 is three-dimensional, i.e. this phase is macroscopically degenerate.

5 5 5 5* ~ *~

Figure 8: Structure 5 and three related structures obtained from it by using transforma-
tions ?, and ˜ . Transformation (spin flip on both sublattices) gives additional four
structures. Only one hexagonal tube is shown for each structure.

hexagon arrow configurations in which one arrow is aligned clockwise and the five others
anticlockwise or vice versa, the arrow between blue sites being aligned with the majority
of the arrows. Three arrows depicted in Fig. 13 (left hand panel) produce an infinite half-
chain of hexagon arrow configurations. At the first sight, the local arrow configuration
shown in Fig. 13 (middle panel) should produce a three-dimensional disorder. However, the
number of this arrow configurations is infinitesimal, since every configuration of this type
generates at least two half-chains of hexagons. So, the disorder is not three-dimensional
but two- or, possibly, even one-dimensional.
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Figure 9: Phases 16, 17, 18, 19, 20, 22, and 23. They appear at boundary of phases 2, 3, 4,
4, 10, 13, and 13, respectively. The triangular configurations shown below the structures
are the ground-state configurations at these boundaries. New triangular configurations
are surrounded by dotted squares. The principle of these structures construction is to find
at the given boundary the structures containing maximum number of such configurations.
To show chains, only one hexagonal tube configuration is depicted for each phase. A more
detailed picture of phase 20 is shown in Fig. 7 (middle panel) with “dashed” ddu chains.
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Figure 10: Disorder of phase 19. Open and filled circles denote two types of ferromagnetic
chains. A similar disorder is present in phases 18, 22, and 23.
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Figure 11: Phase 21. There is a two-dimensional disorder in this phase due to the presence
of ud chains. Right panel gives a more detailed picture of the structure (compare with
Fig. 7, middle panel).

2.7 Ground-state phase diagrams in the (h1, h2)-plane

Consider the ground-state phase diagrams in the (h1, h2)-plane. Although the solution of
the ground-state problem is incomplete, at some particular values of the parameters J01,
J02, J11,J12, and J2, it is possible to construct exact and complete phase diagrams. Six
examples of such diagrams are given in Fig. 14. The boundaries shown with dotted lines
are not strictly proven.

When both the interaction parameter values and the external fields, h1 and h2, are
fixed we have a single point on the phase diagram. By continuously varying the value
(and possibly the direction) of an external field, instead of a point, we generate a line of
transitions on the phase diagram. For instance, increasing magnetic field along the a axis
in SrEr2O4 that corresponds to a passage along the h1 axis in Fig. 14 (left middle panel)
we have the following sequence of the phases: 13, 23, 15, 6̃ and 4 (see also Fig. 15).

Let us show how to prove that the point where three phases, for instance, 2, 5, and 9,
meet, exists in a ground-state phase diagram. This point is determined by the following
set of vectors (common for all the three phases), {r?3, r∼?4 , r5, r6, r

?
6}. At fixed J01, J02, J11
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Figure 12: Structures 24 are determined by ten arrow configurations of hexagon (a, b,
c, d, e, a′, b′, c′, d′, and e′) in which one arrow is pointing clockwise and five others
anticlockwise or vice versa. The arrow between blue sites is aligned with the majority of
the arrows. An example of global arrow configuration is also shown.
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Figure 13: Disorder of phase 24. Half-chain of hexagon arrow configurations for phase 24
(see Fig. 12) is completely determined by the three arrow depicted in olive or in green
(left hand panel). Local arrow configuration shown in olive (middle panel) could lead to a
three-dimensional disorder because a rearrangement of spins in blue chains of such config-
uration is possible (right hand panel). However, the number of this arrow configurations
is infinitely small, since every configuration of this type generates at least two half-chains
of hexagons.

J12, and J2 the solution of the equation

a?3r
?
3 + a∼?4 r∼?4 + a5r5 + a6r6 + a?6r

?
6 = (J01, J02, J11, J12, J2, h1, h2) (4)
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Figure 14: Examples of ground-state phase diagrams in the (h1, h2)-plane (the fields and
couplings are shown in arbitrary units). Some diagrams are not completely proven, par-
ticularly the transitions depicted by the doted lines.
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is

a?3 = J02 + 2J2, a
∼?
4 = −J2, a5 = J01, a6 = J11, a

?
6 = −2J02 + J12 − 4J2,

h1 = 2J01 + 2J11, h2 = −4J02 + 2J12 − 8J2. (5)

For J01 = 1.0, J02 = 0.65, J11 = 0.60, J12 = 0.75, and J2 = −0.25 all the five coefficients
are nonnegative, so, the linear combination in the left side of Eq. 4 belongs to the conical
hull of the set of vectors, and, therefore, for these values of parameters, the point where
the phases 2, 5, and 9 meet exists in the ground-state phase diagram for these values of
parameters. It is the point h1 = 3.2, h2 = 0.9.

In a similar way one can, for instance, find conditions for the existence of the region
13 – region 23 boundary in the (h1, h2)-plane,

J11 > 0, J12 > 0, J2 < 0, 2J01 − J11 + 4J2 > 0, J12 − 2J02 > 0. (6)

Then, for this boundary we have

h1 = 2J01 − J11 + 4J2,

4J02 − 2J12 < h2 < 2J12 − 4J02 if J02 > 0,

−2J12 < h2 < 2J12 if J02 < 0. (7)

3 Application to SrRE2O4 and BaRE2O4 compounds

In this section, we consider an application of the theoretical approach discussed above
to the magnetic properties of the two families of rare-earth compounds, SrRE2O4 and
BaRE2O4. We start by briefly summarizing what is experimentally known about the
ground state configurations of these zigzag-ladder magnets, particularly focusing on the
in-field behaviour of SrEr2O4, SrHo2O4, SrDy2O4 and BaDy2O4.

The crystal structure of these compounds is very close to the one depicted in Fig. 1,
with two RE ions in different positions forming a set of triangular ladders running along
the c axis [1]. The ladders are arranged in a honeycomb-like lattice in the a-b plane,
however, the honeycombs are significantly distorted so that the distances between the
ions are not identical, which results in the need to introduce different exchange couplings,
J11 6= J12 6= J2 in our model.

One important question to address here is to what degree the SrRE2O4 and BaRE2O4

compounds could be characterized as Ising-type magnets. The answer to this question
should come most naturally from considering the effects of crystal fields (CFs), however,
the task of establishing the sets of relevant CF parameters for the two ions in crystallo-
graphically inequivalent positions is far from trivial. Because of the low overall symmetry
and the large number of atoms in a unit cell, interpretation of inelastic neutron scattering
data does not necessarily return a unique set of CF parameters unless supplemented by
optical and electron paramagnetic resonance measurements, and so far this has only been
done for SrEr2O4 [35]. For SrEr2O4, the observed largely anisotropic g factors for the Er3+

ions in both crystallographically inequivalent sites [35] prove the applicability of the Ising
model. For SrHo2O4 anf SrDy2O4, the results of the inelastic neutron scattering were also
interpreted as consistent with the Ising chain model [36].

In zero field, the Er ions positioned in SrEr2O4 on different sites participate in the for-
mation of two different magnetic systems acting almost independently of each other [37,38].
Er1 sites form a long-range antiferromagnetic order with the magnetic moments aligned
parallel to the c direction. For this site, each ladder is made of the two ferromagnetic chains
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13 23 15

6~ 4

Figure 15: Sequence of the proposed phase transitions in SrHo2O4 and SrEr2O4 for a
magnetic field applied along the easy-magnetization direction for the RE2 site, a axis
in SrEr2O4 and b axis in SrHo2O4, for J2 < 0, J11 > 0. For J2 > 0 (J11 > 0), the
phase 2̃3 should appear instead of the phase 23 and the phase 6 should appear instead of
the phase 6̃. The corresponding sequence of magnetization values for the red sublattice
is 0, 1/12, 1/3, 1/2, and 1 (per one site of red sublattice). Transition field values are
h1,13−23 = 2J01 − J11 + 4J2, h1,23−15 = 2J01 − J11 − 4

3J2, h1,15−6̃ = 2J01 + 2J11 + 12J2,

h1,6̃−4 = 2J01 + 2J11 − 4J2. The width of the region 6̃ is three times the width of the
region 23 in (h1, h2)-plane (see Fig. 14).

aligned antiparallel to each other. Er2 sites participate in the formation of a short-range
one-dimensional order, where the spins lay in the a-b plane, and demonstrate very strong
antiferromagnetic in-chain correlations (along the c axis) with much weaker correlations
between the chains (that is in the direction normal to the c axis). In the absence of an
external field, phase 13 is realized in SrEr2O4 (without degeneracy of the Er1 subsystem).

In SrHo2O4, the zero-field ground state is similar to that of SrEr2O4, however, for the
Ho1 sites, the magnetic order remains limited even at the lowest experimentally achievable
temperature [39]. This lack of ordering can potentially be explained by the degeneracy
(disorder) of both Ho1 and Ho2 subsystems in phase 13, however, it is also possible that
for a non-Kramers Ho sites the crystal field effects lead to a considerable splitting of the
ground state doublets at the lowest temperature.

In SrDy2O4, there are no long-range correlations between the magnetic moments in
zero field, but they can be induced by applying a relatively weak magnetic field along the
b axis [12]. In fact the magnetization process in all the three compounds demonstrate
similar features, as revealed by the low-T single-crystal magnetization M(H) measure-
ments [7]. For certain directions of an applied field, the process is characterized by the
appearance of a magnetization plateau, albeit not very pronounced but still clearly visible
on the dM(H)/dH curves. To stabilize the plateaus, the field should be applied along the
a axis in SrEr2O4 and along the b axis in SrDy2O4 and SrHo2O4. The value of magneti-
zation on the plateaux is approximately a third of the magnetization observed in higher
fields [7]. The 1/3 magnetization plateaux are, of course, a common feature of many trian-
gular antiferromagnets, they correspond to the states with the two spins on each triangle
pointing along the field and the third spin pointing in the opposite direction (the so called
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Figure 16: A sequence of phase transitions proposed for an increasing field applied along
the c axis in SrHo2O4 and SrEr2O4. The corresponding numbers for magnetization of the
blue sublattice are 0, 1/3, and 1. J02 > 0. If J02 < 0, then there is a direct transition
from phase 13 to phase 3∗.

up-up-down, uud, structure) [40, 41]. Overall magnetization data are consistent with the
Ising behavior in these three SrRE2O4 compounds. The two magnetic sites have their
magnetization easy-axes aligned along (or very near) the two crystallographic axes, while
when the field is applied along the third crystallographic axis, the measured magnetization
is significantly lower (particularly for Ho and Er compounds [7]) suggesting that it is a
hard magnetization axis for both sites.

Apart from the magnetization data, the evidence for a field-induced uud structure
comes from the results of neutron diffraction for SrDy2O4 [12,13], SrHo2O4 [14], SrEr2O4 [42]
and BaDy2O4 [15]. The uud structures are characterized by the appearance of the sharp,
almost resolution-limited magnetic peaks at non-integer positions. In SrHo2O4, the ob-
served peaks are at the (h01

3), (h02
3) and symmetry related positions [14], in SrDy2O4,

they are indexed by the propagation vector k′ = [0 1
3

1
3 ] [12, 13] and in BaDy2O4, the

propagation vector is k′=[0 0 1
3 ] [15].

Let us consider the case of a field induced 1/3 magnetization plateau – the field applied
along the easy-magnetization direction for the RE2 site, a axis in SrEr2O4 and b axis in
SrHo2O4 (see Fig. 15). The high-field phase with all the spins on the RE2 sites polarized
along the field direction is phase 4. The experimentally determined uud structure is phase
15 (see Table 2 and Fig. 3). However, it follows from our study that regions 13 and 15
as well as regions 4 and 15 have no common 6-face. Therefore some intermediate phases
should exist between them. These are probably phases 23 and 6̃ (2̃3 and 6 if J2 > 0)
(see Fig. 15). Indeed the latest low-temperature magnetization and neutron diffraction
measurements [42] indicated the presence of the additional intermediate phase(s) between
zero-field and 1/3 magnetization plateau structures in SrEr2O4.

For H ‖ b in SrDy2O4, the situation should be somewhat similar, but the low-field
transition is from a disordered state and therefore difficult to describe within the framework
of our theory. The transition from the field-induced uud structure into a fully polarized
state should, however also involve an intermediate phase. For H ‖ b in SrDy2O4, the zero-
field phase is the disordered phase 14. There are several possibilities for the field-induced
uud phase from phase 14 (see Appendix B and Fig. 14). The transition from the uud
structure into a fully polarized state should also involve an intermediate phase.

A very interesting case is found in BaDy2O4. Its low temperature (T < TN = 0.48 K)
zero-field structure is characterized by two half-integer propagation vectors, k1 = [12 0 1

2 ]
and k2 = [12

1
2

1
2 ] [6], suggesting stabilization of a significantly different ground state

compared to SrEr2O4, SrHo2O4, and SrDy2O4. An in-field behaviour, however, seems to
be rather similar, as a uud structure is again inferred from powder neutron diffraction
measurements and from a pronounced plateau in the magnetization curve [15]. The uud

21



SciPost Physics Submission

structure appears to be much more stable than the zero field states, as it survives warming
to the three times higher temperature than the TN(H = 0). Remarkably, the field-induced
magnetic structure depicted in Fig. 7 of Ref. [15] contains the triangles with all 3 mag-
netic moments pointing in the same direction (the ladders with uuuudd structure). This
structure cannot be energetically favorable if only non-interacting zigzag ladders are con-
sidered, but present in our model (structures 7 or 10). Unfortunately, finding any further
intermediate magnetic states in BaDy2O4 is experimentally challenging in the absence of
large single crystal samples of this compound.

Let us conclude this section by considering the case of a field applied along the c axis
(direction of the chains of the magnetic atoms). For this geometry, magnetization data for
SrHo2O4 and SrEr2O4 suggest a single phase transition to a state with a full polarization
of a site for which the easy-magnetization direction coincides with the c axis. In the
language of this paper, the transition is from a zero-field phase 13 to phase 3∗ where all
spins on one of the magnetic sites are parallel to the field while the other site remains the
same as in zero-field. The proposal is that with increasing field, structure 11∗ is stabilized
between phases 13 and 3∗ (see Fig. 16), although a direct transition between these phases
is also possible.

4 Conclusions

We present a solution to the ground-state problem for an Ising model in an external field for
a honeycomb zigzag-ladder lattice with two different types of magnetic sites. Although the
solution is incomplete, the presence of a variety of ground-states is proved and, for several
phases, the corresponding regions in seven-dimensional parameter space are completely
determined. Some of these phases are ordered but the majority are disordered with the
disorder being one, two, or even three-dimensional.

The solution is used to explain the formation of experimentally determined spin ar-
rangements in honeycomb zigzag-ladder magnets SrRE2O4 and BaRE2O4 in an applied
magnetic field. In particularly for SrEr2O4 and BaDy2O4, the solution predicts new mag-
netic phases (with two different types of magnetic configurations on the same ladder),
recently found or yet to be detected experimentally.

Since the set of basic rays that we found here is incomplete, we hope that the paper
will inspire further efforts to find the remaining basic rays and to establish a complete set
for this very interesting and complex ground-state problem.
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A Appendix: Energy of triangular plaquette configurations

Here we present the energies for all the six configurations, , , , , , and (open
and solid circles denote spins σ = −1 and σ = +1, respectively), of the four types of
plaquettes (see Fig. 2 and Eq. (2)).
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e11 = (1− α1)J01 + J11 + [(1− η1)γ1 + (1− δ1)(1− γ1)]h1,
e12 = −(1− α1)J01 + (1− δ1)(1− γ1)h1,
e13 = (1− α1)J01 − J11 + [(1− η1)γ1 − (1− δ1)(1− γ1)]h1,
e14 = (1− α1)J01 − J11 − [(1− η1)γ1 − (1− δ1)(1− γ1)]h1,
e15 = −(1− α1)J01 − (1− δ1)(1− γ1)h1,
e16 = (1− α1)J01 + J11 − [(1− η1)γ1 + (1− δ1)(1− γ1)]h1; (8)

e21 = (1− α2)J02 + J12 + [(1− η2)γ2 + (1− δ2)(1− γ2)]h2,
e22 = −(1− α2)J02 + (1− δ2)(1− γ2)h2,
e23 = (1− α2)J02 − J12 + [(1− η2)γ2 − (1− δ2)(1− γ2)]h2,
e24 = (1− α2)J02 − J12 − [(1− η2)γ2 − (1− δ2)(1− γ2)]h2,
e25 = −(1− α2)J02 − (1− δ2)(1− γ2)h2,
e26 = (1− α2)J02 + J12 − [(1− η2)γ2 + (1− δ2)(1− γ2)]h2; (9)

e31 =
α1

2
J01 + 2(1− β)J2 + η1

γ1
2
h1 + δ2

(1− γ2)
2

h2,

e32 = −α1

2
J01 + δ2

(1− γ2)
2

h2,

e33 =
α1

2
J01 − 2(1− β)J2 + η1

γ1
2
h1 − δ2

(1− γ2)
2

h2,

e34 =
α1

2
J01 − 2(1− β)J2 − η1

γ1
2
h1 + δ2

(1− γ2)
2

h2,

e35 = −α1

2
J01 − δ2

(1− γ2)
2

h2,

e36 =
α1

2
J01 + 2(1− β)J2 − η1

γ1
2
h1 − δ2

(1− γ2)
2

h2; (10)

e41 =
α2

2
J02 + 2βJ2 + δ1

(1− γ1)
2

h1 + η2
γ2
2
h2,

e42 = −α2

2
J02 + δ1

(1− γ1)
2

h1,

e43 =
α2

2
J02 − 2βJ2 − δ1

(1− γ1)
2

h1 + η2
γ2
2
h2,

e44 =
α2

2
J02 − 2βJ2 + δ1

(1− γ1)
2

h1 − η2
γ2
2
h2,

e45 = −α2

2
J02 − δ1

(1− γ1)
2

h1,

e46 =
α2

2
J02 + 2βJ2 − δ1

(1− γ1)
2

h1 − η2
γ2
2
h2. (11)

To calculate the energy of a structure (or structures in the case of degeneracy), it is
sufficient to know the relative numbers of plaquette configurations which generate this
structure. For instance, structures 2 are generated with seven configurations , , , ,
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, , and (see Table 2), relative numbers of which in these structures are 3, 1, 2, 2, 4,
4, and 2, respectively. Hence, the energy (per six plaquettes) of structures 2 is

e2 =
1

3
(3e16 + e24 + 2e25 + 2e34 + 4e36 + 4e45 + 2e46)

=
1

3
(3J01 − J02 + 3J11 − J12 + 4J2 − 3h1 − h2). (12)

It should be noted that this energy does not depend on free coefficients although eij do
depend on these. The magnetization of the red sublattice (per one red site) is equal to
3 · 1/3 = 1, for the blue sublattice, it is equal to 1/3.

Let us show how to find conditions for the existence of a region in the (h1, h2)-plane,
for instance, region 4. This region is determined with the set of basic rays {r1, r?1, r2, r?3, r5,
r6, r

?
6, r

?−
6 , r7, r

∼
7 }.

From the equation

a1r1 + a?1r
?
1 + a2r2 + a?3r

?
3 + a5r5 + a6r6 + a?6r

?
6 + a?−6 r?−6 + a7r7 + a∼7 r∼7

= (J01, J02, J11, J12, J2, h1, h2) (13)

we have

a1 = a2 + a5 − J01, a?1 = a?3 − J02,
a6 = 2a2 + J11, a

?−
6 = −2a?3 − a?6 + J12, a7 = a∼7 + J2,

h1 = 4a2 + 2a5 + 8a∼7 + 2J11 + 4J2, h2 = 4a?3 + 4a?6 − 2J12 + 4J2. (14)

All the coefficients a should be nonnegative, therefore, we obtain

J12 > 0, − 2J02 + J12 > 0. (15)

These inequalities are the conditions for the existence of region 4 in h1, h2-plain at fixed
J01, J02, J11 J12, and J2. For h1 and h2 of region 4 we have,

h1 > 2J11 + 4|J2| if J01 < 0,

h1 > 2J01 + J11 + 4|J2| if J01 > 0, J11 < 0,

h1 > 2J01 + 2J11 + 4|J2| if J01 > 0, J11 > 0,

−2J12 + 4J2 < h2 < 2J12 + 4J2 if J02 < 0,

4J02 − 2J12 + 4J2 < h2 < −4J02 + 2J12 if J02 > 0. (16)

B Appendix: Completeness of sets of basic rays

Considering a set of basic rays (vectors) for a fully dimensional phase (see Table 2), we can
check whether this set is complete. All linear combinations with nonnegative coefficients
of the basic rays form a seven-dimensional polyhedral cone (see Subsection 2.1). First, we
should find all the six-dimensional faces (6-faces) of the polyhedral cone and the configu-
rations of triangular plaquettes for these 6-faces. As an example, let us consider phase 13.
The set of basic vectors for this phase is {r?1, r2, r3, r?3, r4, r∼4 , r5, r

−
5 , r

?
6, r

?−
6 }. The sets of

basic vectors for its 6-faces (enumerated from 1 to 12) and corresponding sets of plaquette
configurations are given below. For each 6-face the corresponding neighboring phase is
indicated in parentheses on the right.
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(1) {r?1, r2, r3, r4, r∼4 , r5, r
−
5 , r

?
6}, (3?, 13)

‖ ‖ ‖
(2) {r?1, r2, r3, r4, r∼4 , r5, r

−
5 , r

?−
6 }, (3

?
, 13)

‖ ‖ ‖
(3) {r2, r3, r?3, r4, r∼4 , r5, r

−
5 , r

?
6}, (11?, 13)

‖ ‖ ‖
(4) {r2, r3, r?3, r4, r∼4 , r5, r

−
5 , r

?−
6 }, (11

?
, 13)

‖ ‖ ‖
(5) {r?1, r2, r?3, r∼4 , r5, r?6, r

?−
6 }, (22, 13)

‖ ‖ ‖
(6) {r?1, r2, r?3, r∼4 , r

−
5 , r

?
6, r

?−
6 }, (22, 13)

‖ ‖ ‖

(7) {r?1, r2, r?3, r4, r5, r?6, r
?−
6 }, (2̃2, 13)

‖ ‖ ‖
(8) {r?1, r2, r?3, r4, r

−
5 , r

?
6, r

?−
6 }, (2̃2, 13)

‖ ‖ ‖
(9) {r?1, r3, r?3, r∼4 , r5, r?6, r

?−
6 }, (23, 13)

‖ ‖ ‖
(10) {r?1, r3, r?3, r∼4 , r

−
5 , r

?
6, r

?−
6 }, (23, 13)

‖ ‖ ‖
(11) {r?1, r3, r?3, r4, r5, r?6, r

?−
6 }, (2̃3, 13)

‖ ‖ ‖
(12) {r?1, r3, r?3, r4, r

−
5 , r

?
6, r

?−
6 }, (2̃3, 13)

‖ ‖ ‖

In the 6-faces (1) to (4), in addition to the structures 13, there are other structures that
we have previously identified. This means that these 6-faces indeed bound the region for
phase 13. The remaining eight 6-faces, (5) to (12), also bound this region, since, in addition
to structures 13, some new structures can be constructed for these 6-faces. The structures
(among these new ones) containing the greatest number of plaquette configurations which
are absent in structures 13 [configuration and for the 6-face (5); configurations
and for the 6-face (9)] are the structures of fully dimensional phases whose regions have
common boundaries with region 13. These structures are shown in Fig. 9 and we have
therefore found the complete set of basic vectors for phase 13.

The complete sets of basic vectors are also found for phases 4 ({r1, r?1, r2, r?3, r5, r6,
r?6, r

?−
6 , r7, r

∼
7 }), 11 ({r?2, r3, r?3, r?4, r∼?4 , r5, r

?
5, r

?−
5 , r6}), and 14 ({r2, r?2, r3, r?3, r4, r∼4 , r?4, r∼?4 ,

r5, r
−
5 , r

?
5, r

?−
5 }). For the rest of the phases the sets of basic vectors are incomplete. Con-

sider, for instance, phase 10. Its set of basic vectors, {r?2, r3, r∼4 , r∼?4 , r5, r?5, r6}, is incom-
plete. The sets of basic vectors for the 6-faces of the corresponding polyhedral cone and
sets of plaquette configurations are as follows

(1) {r?2, r∼4 , r∼?4 , r5, r
?
5, r6}, (1, 10)

‖ ‖ ‖

(2) {r?2, r3, r∼4 , r5, r?5, r6}, (2?, 10)

‖ ‖ ‖

(3) {r3, r∼4 , r∼?4 , r5, r
?
5, r6}, (9, 10)

‖ ‖ ‖

(4) {r?2, r3, r∼?4 , r5, r
?
5, r6}, (11, 10)

‖ ‖ ‖
(5) {r?2, r3, r∼4 , r∼?4 , r5, r

?
5}, (14, 10)

‖ ‖ ‖
(6) {r?2, r3, r∼4 , r∼?4 , r5, r6}, (20, 10)

‖ ‖ ‖
(7) {r?2, r3, r∼4 , r∼?4 , r?5, r6}, (−, 10)

‖ ‖ ‖

6-face (6) gives a new phase, “nontriangular” phase 20 (Fig. 9). 6-face (7) of the
polyhedral cone is not a 6-face between two fully dimensional phase regions because,
with the corresponding set of triangular configurations, it is not possible to construct
any structure different from structures 10 (although it is possible to construct a new
configuration of a “hexagonal tube”). Therefore the set of basic vectors for phase 10 is
incomplete.
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Here we give the complete sets of basic vectors for phases 4, 11, and 14, their 6-faces
and corresponding sets of plaquette configurations. For each 6-face the neighboring phase
is indicated in parentheses on the right.

Phase 4 {r1, r?1, r2, r?3, r5, r6, r?6, r
?−
6 , r7, r

∼
7 }

{r1, r?1, r2, r5, r6, r?6, r7, r∼7 }, (1, 4)

‖ ‖ ‖

{r1, r?1, r2, r5, r6, r
?−
6 , r7, r

∼
7 }, (1̃, 4)

‖ ‖ ‖

{r1, r2, r?3, r5, r6, r?6, r7, r∼7 }, (2, 4)

‖ ‖ ‖

{r1, r2, r?3, r5, r6, r
?−
6 , r7, r

∼
7 }, (2̃, 4)

‖ ‖ ‖

{r?1, r?3, r5, r6, r?6, r
?−
6 , r7}, (6, 4)

‖ ‖ ‖

{r?1, r?3, r5, r6, r?6, r
?−
6 , r∼7 }, (6̃, 4)

‖ ‖ ‖

{r1, r?1, r?3, r6, r?6, r
?−
6 , r7}, (12, 4)

‖ ‖ ‖

{r1, r?1, r?3, r6, r?6, r
?−
6 , r∼7 }, (1̃2, 4)

‖ ‖ ‖

{r?1, r2, r?3, r5, r?6, r
?−
6 , r7}, (18, 4)

‖ ‖ ‖

{r?1, r2, r?3, r5, r?6, r
?−
6 , r∼7 }, (1̃8, 4)

‖ ‖ ‖

{r1, r?1, r2, r?3, r?6, r
?−
6 , r∼7 }, (19, 4)

‖ ‖ ‖

{r1, r?1, r2, r?3, r?6, r
?−
6 , r7}, (1̃9, 4)

‖ ‖ ‖

Phase 11 {r?2, r3, r?3, r?4, r∼?4 , r5, r
?
5, r

?−
5 , r6}

{r?2, r?3, r?4, r∼?4 , r5, r
?
5, r

?−
5 , r6}, (3, 11)

‖ ‖ ‖

{r3, r?3, r?4, r5, r?5, r6}, (8, 11)

‖ ‖ ‖

{r3, r?3, r∼?4 , r5, r
?−
5 , r6}, (8̃, 11)

‖ ‖ ‖

{r3, r?3, r∼?4 , r5, r
?
5, r6}, (9, 11)

‖ ‖ ‖

{r3, r?3, r?4, r5, r
?−
5 , r6}, (9̃, 11)

‖ ‖ ‖

{r?2, r3, r∼?4 , r5, r
?
5, r6}, (10, 11)

‖ ‖ ‖

{r?2, r3, r?4, r5, r
?−
5 , r6}, (1̃0, 11)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r?5, r
?−
5 , r6}, (13?, 11)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r5, r
?
5, r

?−
5 }, (14, 11)

‖ ‖ ‖

{r?2, r3, r?4, r5, r?5, r6}, (21, 11)

‖ ‖ ‖

{r?2, r3, r∼?4 , r5, r
?−
5 , r6}, (2̃1, 11)

‖ ‖ ‖

Phase 14 {r2, r?2, r3, r?3, r4, r∼4 , r?4, r∼?4 , r5, r
−
5 , r

?
5, r

?−
5 }

{r2, r?2, r∼4 , r∼?4 , r5, r
?
5}, (1, 14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r−5 , r
?−
5 }, (1̄, 14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r5, r
?−
5 }, (1̃, 14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r
−
5 , r

?
5}, (1̃, 14)
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‖ ‖ ‖

{r2, r?2, r?3, r?4, r∼?4 , r5, r
?
5, r

?−
5 }, (3, 14)

‖ ‖ ‖

{r2, r?2, r?3, r?4, r∼?4 , r−5 , r
?
5, r

?−
5 }, (3, 14)

‖ ‖ ‖

{r2, r?2, r3, r4, r∼4 , r5, r
−
5 , r

?
5}, (3?, 14)

‖ ‖ ‖

{r2, r?2, r3, r4, r∼4 , r5, r
−
5 , r

?−
5 }, (3

?
, 14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r5, r?5}, (7, 14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r
−
5 , r

?−
5 }, (7̄, 14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r5, r
?−
5 }, (7̃, 14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r−5 , r
?
5}, (7̃, 14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r5, r?5}, (8, 14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r
−
5 , r

?−
5 }, (8̄, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r5, r
?−
5 }, (8̃, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r−5 , r
?
5}, (8̃, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r5, r
?
5}, (9, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r−5 , r
?−
5 }, (9̄, 14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r5, r
?−
5 }, (9̃, 14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r
−
5 , r

?
5}, (9̃, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r5, r
?
5}, (10, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r−5 , r
?−
5 }, (10, 14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r5, r
?
5}, (10?, 14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r−5 , r
?−
5 }, (10?, 14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r5, r
?−
5 }, (1̃0, 14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r
−
5 , r

?
5}, (1̃0, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r5, r
?−
5 }, (?1̃0, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r
−
5 , r

?
5}, (?1̃0, 14)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r5, r
?
5, r

?−
5 }, (11, 14)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r−5 , r
?
5, r

?−
5 }, (11, 14)

‖ ‖ ‖

{r2, r3, r?3, r4, r∼4 , r5, r
−
5 , r

?
5}, (11?, 14)

‖ ‖ ‖

{r2, r3, r?3, r4, r∼4 , r5, r
−
5 , r

?−
5 }, (11

?
, 14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r5, r?5}, (24, 14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r
−
5 , r

?−
5 }, (24, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r5, r?5}, (24?, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r
−
5 , r

?−
5 }, (24

?
, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r5, r
?−
5 }, (2̃4, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r−5 , r
?
5}, (2̃4, 14)
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‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r5, r
?−
5 }, (?2̃4, 14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r−5 , r
?
5}, (?2̃4, 14)

‖ ‖ ‖
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