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Is it possible to immediately distinguish a system made by an Avogadro's number of identical
elements and one with a single additional one? In this work, we show that a simple experiment can
do so, yielding two qualitatively and quantitatively di�erent outcomes depending on whether the
system includes an even or an odd number of elements. We consider a typical (local) quantum-quench
setup and calculate a generating function of the work done, namely, the Loschmidt echo, showing
that it displays di�erent features depending on the presence or absence of topological frustration.
We employ the prototypical quantum Ising chain to illustrate this phenomenology, which we argue
being generic for antiferromagnetic spin chains.

When the number of elements that make up a sys-
tem is small, it is hardly surprising that even intensive
quantities can be extremely sensitive to the increment or
reduction of such a number. But as the amount of com-
ponents increases, the common thought is that the e�ect
of adding/removing one of them becomes less and less
relevant. At the end of the process, the system reaches a
point where all the intensive quantities become indepen-
dent of the total number of components while the exten-
sive ones are characterized by a simple linear dependence.
In practice, while, by observing an intensive quantity, it
is possible to understand if the system is made of 4 or 5
elements, it is not so if we have to discriminate between
a system made up of one billion or of one billion and one
elements. This assumption seems so obvious and natural
that on it, we have implicitly based the very de�nition of
intensive quantity, the concept of thermodynamic limit,
and, going to the bare bones, the whole thermodynamics.

On the other hand, physics has also accustomed us to
small or huge unexpected results that have shaken from
the foundations many of our convictions consolidated
over time. In the following, we will take into account
a quantum system out of equilibrium and consider a typ-
ical measure of its evolution, known as the Loschmidt-
echo (LE) [1�4]: we will show how, under some condi-
tions, the Loschmidt-echo (LE), displays two completely
di�erent behaviors depending on whether the number of
components in the system is even or odd. Quite surpris-
ingly, such a di�erence, not only does not disappear as
the number of elements increases but, to the contrary,
it becomes more and more evident moving towards ther-
modynamically large systems. In other words, the anal-
ysis of the LE allows for a discrimination between sys-
tems consisting of N and N +1 elements even when N is
in the order of the Avogadro's number, hence represent-
ing a clear violation of what would be expected from a
naïve application of the concept of the thermodynamic
limit. This result is similar to the even/odd e�ect in the
current�voltage curve observed in superconducting tran-
sistors, but it persists to much greater numbers, while

the latter is limited by the capacity of the mesoscopic
dot (109) [5].
One can de�ne the LE as the overlap between a state
|g〉 and its evolution driven by the Hamiltonian that de-
scribes the system. We employ a quantum quench pro-
tocol [4, 6�8], which is one of the most popular ways to
drive a system out of equilibrium: namely, we prepare
the system in the ground state |g〉 of an initial Hamilto-
nian H0 and then we suddenly add a perturbation λHp,
where λ stands for a tunable amplitude while the eigen-
values of Hp are of the order of unity [2, 9, 10]. Then
the initial state is unitarily evolved by the Hamiltonian
H1 = H0 + λHp and the LE can be de�ned as

L(t) = | 〈g|e−iH1t|g〉 |2. (1)

A deeper insight in the time behavior of the LE can be
obtained by expanding the initial state in terms of the
eigenstates |n〉 of the perturbed Hamiltonian H1:

L(t) =

∣∣∣∣∣∑
n

e−iEnt|cn|2
∣∣∣∣∣
2

, cn = 〈n|g〉 . (2)

In the general (nontrivial) case, the state |g〉 is not an
eigenstate of the Hamiltonian H1 and thus several co-
e�cients cn assume a non-vanishing value and the time
evolution of the LE depends on their relative weights.
Roughly speaking, we can arrange the possible behaviors
into two large families. The �rst is made of the cases in
which one of the coe�cients is much greater, in absolute
value, than the sum of all the others. As a consequence,
denoting as |0〉 the eigenstate of H1 for which cn reaches
the maximum, from eq. (2) we recover that the LE will be
characterized by oscillations with an average value close
to the identity and oscillation amplitudes bounded from
above by (1 − |c0|2)|c0|2. On the other hand, if none of
the cn dominates over the others, we obtain an evolution
characterized by a more complex pattern with larger os-
cillation amplitudes.
These two prototypical behaviors for the LE are gen-

erally associated with di�erent properties of the physical
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systems [12, 13]. For example, the �rst trend type char-
acterizes systems in which H0 shows an energy gap that
separates the ground state from the set of the excited
states [3, 11, 14]. In this case, assuming that λ is much
smaller than the energy gap, the coe�cient 〈g1|g〉, where
|g1〉 is the ground state of H1, is expected to be much
larger than all the others. On the other side, for sys-
tems in which the ground state of H0 is part of a narrow
band that, in the thermodynamic limit, tends to a con-
tinuous spectrum, the perturbation λHp may induce a
non-negligible population in several low-energy excited
states [15] and, hence, the time evolution of the second
kind [16].

Typically, these di�erent spectrum properties do not
turn into one another by changing the number of elements
that make up the system. Indeed, the presence or the
absence of a gap in the energy spectrum is related to
the di�erent symmetries of the Hamiltonian and, usually,
they are not size-dependent. Hence, keeping all other
parameters �xed and increasing the number of elements,
we expect the same kind of time-evolution, with �nite-
size e�ects that reduce with the system size up to some
point at which the dependence of the LE on the number
of constituents is almost undetectable. To have a LE
evolution that changes as the number of elements turns
from even to odd and vice-versa, we need to �nd a system
in which also the shape of the energy spectrum is strongly
dependent on it.

In the very last years, it was pointed out that such
models can be found, among the one-dimensional spin-
1/2 models with periodic boundary conditions. Namely,
they are short-range antiferromagnetic systems in which
frustration [17�23] is induced when the number of the
elements making up the system is odd, so realizing the
so-called frustrated boundary conditions [24�27]. Hence
the presence/absence of frustration in the ring geometry
(therefore also the term topological frustration) is a direct
consequence of the fact that the number of the spins is
odd/even.

To understand well how such kind of frustration works
let us take a step back. In classical antiferromagnetic
systems, when the number of the elements is an integer
multiple of two, even in the presence of periodic boundary
conditions, there is no problems in minimizing the contri-
bution of every single term to the total energy. Therefore,
the system will show a ground state manifold made of the
two Neel states, well separated from the excited states
by an energy gap that does not vanish in the thermody-
namic limit. This picture is very resilient and also the
introduction of quantum e�ects does not change it signif-
icantly [28, 29]. On the contrary, when the number of el-
ements turns odd, the presence of the periodic boundary
conditions makes it impossible to satisfy simultaneously
all the local constraints [17, 18]. Such an impossibility
induces a frustration that gives rise to the creation of a
set of states that are Neel states with a pair of parallelly

oriented spin, a so-called domain wall. If the system is
invariant under spatial translation, since the defect can
be placed equivalently on every lattice site, the ground
state manifold of the system becomes highly degenerate,
consisting of 2N states for a chain made byN sites, and it
is separated from the other states by an energy gap that
stays �nite in the thermodynamic limit. When quantum
e�ects are taken into account, the macroscopic ground-
state degeneracy is typically lifted, generating a narrow
band of states (which can be interpreted as containing
a single excitation with a de�nite momentum) and thus
yielding an energy gap that vanishes in the thermody-
namic limit. Hence, as a result, the energy spectrum of
such models depends dramatically on whether the num-
ber of elements is even or odd.
However, this property alone is not su�cient to ensure

a dependence of the dynamics of the LE on the size of the
system like the one we are looking for. The perturbation
that acts on the initial Hamiltonian must also be chosen
carefully. On the one hand, as the states in the lowest
energy band of the frustrated system are identi�ed by
di�erent quantum numbers (namely, their momenta), the
perturbation should break the symmetry these numbers
re�ect, to ensure that the eigenstates of the perturbed
Hamiltonian can have a �nite overlap in the whole band
(otherwise, we expect that the initial state would over-
lap only with states carrying the same quantum number).
On the other hand, if the unfrustrated system is in a sym-
metry broken phase with an (asymptotically) degenerate
ground state manifold, we want the perturbation to pre-
serve the ground state choice, so that in the evolution
the overlap between other ground state vectors remain
suppressed.
Results: To clarify these arguments and to provide

a speci�c example, let us discuss a paradigmatic model
i.e. the antiferromagnetic Ising chain in a transverse
magnetic �eld with periodic boundary conditions [30�
32]. Such well-known model is described by the following
Hamiltonian

H0 =

N∑
j=1

(
σxj σ

x
j+1 + hσzj

)
. (3)

Here σαj with α = x, y, z stands for the Pauli operators
de�ned on the j-th lattice site, h is the relative weight
of the local transverse �eld, N is the length of the ring
and periodic boundary conditions imply that σαN+j = σαj .
As we can see from eq. (3), the system holds the par-
ity symmetry with respect to the z-spin direction, since
[H0,Π

z] = 0 where Πz =
⊗N

i=1 σ
z
i . This means that the

eigenstates of H0 can be arranged in two sectors, corre-
sponding to two di�erent eigenvalues of Πz. Moreover,
the model in eq. (3) also holds an invariance under spatial
translation which implies that there exists a complete set
of eigenstates of H0 made of states with de�nite lattice
momentum [33].
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FIG. 1: (Color online) Loschmidt echo comparison between frustrated and unfrustrated chains of similar length N ,
�xing the magnetic �eld and the perturbation parameter respectively to h = 0.4, λ = 0.2 (left plot) and h = 0.8,
λ = 0.1 (right plot). The time is rescaled for a better comparison. For even N (unfrustrated systems), due to the

negligible hybridization with the �rst excited states, the LE presents small oscillations around a value near one (left
columns). For odd N instead the higher number of hybridized states results in a strong sensitivity of the LE

oscillations to the system parameters.

In the range 0 < h < 1, for N = 2M the system shows
two nearly degenerate lowest energy states with opposite
parity and an energy di�erence closing exponentially with
the system size [30, 34] while all other states remain sep-
arated by a �nite energy gap. When N = 2M + 1, topo-
logical frustration sets in and the unique ground states
becomes part of a band in which states of di�erent par-
ities alternate. In this case the gaps between the lowest
energy states close algebraically as 1/N2 [25, 26, 35�39].
A simple perturbation that satis�es the criteria we dis-

cussed above is Hp = λσzN , since it breaks the transla-
tional invariance which classi�es the eigenstates of H0,
while preserving the parity symmetry. Thus, we have

H1 = H0 + λσzN , (4)

and we assume that λ� 1.
Since H1 is not invariant under spatial translation, we

cannot diagonalize it analytically as is possible for H0,
by exploiting the usual approach based on the Jordan-
Wigner transformation followed by a Bogoliouv rota-
tion [30]. Nevertheless, we can resort to the diagonal-
ization procedure reported in [28], which allows us to
diagonalize numerically the Hamiltonians eq.s (3), (4) in
an e�cient way [40] and thus to calculate the LE (see the
Methods section for the details). The results obtained are
summarized in Fig. 1, where several behaviors of the LE
for even N and odd N + 1 sizes are compared.
The results �t well in the qualitative picture we have

discussed in the �rst part. When N is even and hence
the system is not frustrated the LE presents small noisy

oscillations around a value close to unity, see Fig. 1. The
average value is almost independent from the parame-
ters, while oscillations reduce as the system size increases.
This behavior re�ects the fact that, λ being small, the ini-
tial state shares a signi�cant overlap only with one of the
lowest eigenstates of H1 and the contributions from all
other states above the gap produce fast oscillations that
average out in the long time limit.

For the frustrated caseN = 2M+1 instead, the picture
is completely di�erent. Here, because of the closing of
the gap, the same perturbation hybridizes several states,
which thus contribute to the evolution of the LE. Finite-
size e�ects become important, since the density of states
changes with the chain length approaching its asymptotic
value and thus changes the number of states which get
hybridized. These considerations imply a strong sensibil-
ity in the LE's oscillation frequency and amplitude to all
the parameters in the setting.

The results presented in Fig. 1 make it clear that the
behaviors of the LE for even and odd N are completely
di�erent. To go beyond this qualitative assessment, we
can make a quantitative comparison of the di�erence be-
tween these two behaviors, by considering the time aver-
aged value of the LE L̄ over a long period of time, which
ideally tends to be in�nite. Such analysis, whose results
can be appreciated in the left panel of Fig. 2, clearly
shows that for the unfrustrated case (blue circles) the
time average is almost independent from the size of the
ring, while for the frustrated one (red squares) there is a
signi�cant dependence on the ring's size with an asymp-
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FIG. 2: (Color online) Comparison between the result for frustrated (red squares) and unfrustrated (blue circles)
chains of the time-average (left panel) and of the standard deviations (right panel) of the LE for several sets of
parameters as a function of the inverse system length. Di�erently from the frustrated case, the unfrustrated time

average is mostly size independent. The standard deviation deviation for the frustrated case is always larger, even a
few orders of magnitude, than the one of the unfrustrated case.

totic value in the thermodynamic limit which di�ers from
the even chain length case. The similarity between the
frustrated and unfrustrated values for small systems can
be easily understood considering that for small N the
gap between the ground state and the other states in the
lowest energy band in the frustrated models can be big-
ger than the perturbation amplitude hence giving life to
an �unfrustrated-like� behavior for the LE.
As we wrote above, since Hp breaks the spatial invari-

ance, it is impossible to obtain an exact expression for
the LE. For the unfrustrated case, it is possible to de-
velop a cumulant expansion [3] which provides the cor-
rect evolution of the LE, but its reliability hinges on a
clear separation of scales between the strength of the per-
turbation and the energy gap. When N is odd, the gap
closes and for su�ciently large system size this approach
fails. Nonetheless, to gain some insight into the LE when
the system is frustrated, we can resort to a perturbation
theory around the classical point (h = 0) [33, 41, 42]
and derive an analytic expression which can be com-
pared to our numerical results. Within this approach,
we �rst compute the initial (ground) state of H1 con-
sidering, in the beginning, λσzN as the perturbation to
the Hamiltonian at the classical point (h = 0), and then
bringing back the term h

∑
j σ

z
j as a second-order per-

turbation term. By construction, this approach is justi-
�ed for 0 < h � λ � 1. The e�ect of the local term
λσzN is to split the initial 2N degenerate states into three
groups. In particular, the ground space becomes two-fold
degenerate, separated by an energy gap of order λ from
2N − 4 degenerate states, on top of which, separated by
a gap of the same value, there are two other degener-
ate states. The second perturbation term h

∑
j σ

z
j does

not act signi�cantly on the two two-dimensional mani-
folds but removes the macroscopic degeneracy, creating
an intermediate band of 2N − 4 states.
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FIG. 3: (Color online) Loschmidt echo's comparison
between the numerics (dotted red line) and the analytic
expression eq. (5 (blue line) for a spin chain of length
N = 201 and for λ = 0.1. The time is rescaled for a
better comparison. The results are in agreement for
h = 0.01, that corresponds to the limit 0 < h� λ� 1
(upper panel, the curves are mostly superimposed). We
also �nd similar results when h and λ are comparable,
as shown in the middle panel for the case λ = h = 0.1.
Finally in the lower panel it is shown the failure of the

approximation for h = 0.5 when the value of the
magnetic �eld is beyond the assumed range of validity.
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Exploiting this perturbative analysis (see the Method section for details), we obtain for the LE

L(t) =

∣∣∣∣ 2

N(N − 1)

(N−1)/2∑
k=1

tan2

[
(2k − 1)π

2(N − 1)

]
exp

{
− ı2ht cos

[
(2k − 1)π

N − 1

]}
+

2

N
exp

[
ıt(λ+ h)

]∣∣∣∣2. (5)

In Fig. 3 we compare the analytical results eq. (5) with
the numerical data and we �nd a substantial agreement
between the two in the region, especially for h � λ, see
the upper panel. It is also worth noting that the two
methods give similar results even when h and λ are com-
parable (middle panel of Fig. 3). The main di�erence be-
tween the two behaviors is, apparently, only a rescaling
of the oscillation frequency that seems to be underesti-
mated in the perturbative approach.
In the thermodynamic limit the term proportional to

2/N in eq. (5) can be neglected and the expression of the
LE can be approximated as: L(t) ' F

(
2ht
N2

)
where the

function F(x) is given by

F(x) = lim
M→∞

∣∣∣∣ 1

2M2

M∑
k=1

tan2

[
(2k − 1)π

4M

]
× (6)

× exp

{
− ix(2M + 1)2 cos

[
(2k − 1)π

2M

]}∣∣∣∣2
The function in eq. (6) is somewhat reminiscent of the
Weierstrass function [43] and indeed it displays a con-
tinuous, but nowhere di�erentiable behavior. While it is
remarkable its emergence in such a simple context, we
remark that such fractal curve [44, 45] was already ob-
served in LE evolution [16]. Moreover, it is worth noting
that the expression in eq. (5) is very far away from the
one obtained by Silva [3] for systems with an even num-
ber of elements where, in the thermodynamic limit, the
oscillations are suppressed and the LE assumes the form
of a straight line.
In conclusion, we analyzed the behavior of the LE in

short-range antiferromagnetic one-dimensional spin sys-
tems with periodic boundary conditions in the presence
of a perturbation that violates translational invariance,
but leaves una�ected the parity, namely a local magnetic
�eld. Under these conditions, the LE shows an anoma-
lous dependence on the number of elements in the system.
When this number is even, LE shows small random oscil-
lations around a value very close to unity that is almost
independent from the system size, and the amplitude of
these oscillations tend to decrease with the size increas-
ing until it disappears in the thermodynamic limit. On
the contrary, in the presence of a ring made out of an
odd number of sites, the oscillations are large and do not
disappear in the thermodynamic limit while the average
value is strongly dependent on the system size. The pres-
ence of two di�erent behaviors can be traced back to the

di�erent energy spectrum that arises from the presence,
in the case of an odd number of elements, of a topologi-
cal frustration that leads to a closure of the energy gap,
which is instead �nite in these systems when N is even.
These general results have been tested in a paradigmatic
model, the Ising model in the transverse �eld, using both
exact diagonalization methods and perturbation theory.

This peculiar LE trend represents an exception to the
behavior of intensive quantities in the thermodynamic
limit. Within this limit, as it is well known, intensive
quantities tend to assume a constant value in which the
dependence on the system size disappears. On the con-
trary, in the case just analyzed this does not happen as
the LE �ips continuously between the two trends depend-
ing on whether the number of elements is even or odd.
This behavior is reminiscent of the current-voltage curve
in superconducting transistors [5], which show periodic
2emodulations depending on the parity of the total num-
ber of electrons in the superconducting island, but it is
not limited to mesoscopic systems and extends to arbi-
trary large sizes. This result is even more relevant when
we take into account that LE plays a fundamental role
in several problems of current interest in quantum ther-
modynamics such as quantum work statistics [3, 46] and
information scrambling [46, 47]. Indeed, a detailed anal-
ysis of the implication of this work in these applications
and additional quantitative characterizations of the frus-
trated LE will be the subject of future works. Further-
more, the LE can be easily observed experimentally by
looking at the decoherence of a two-level system inter-
acting with the spin system [11].

On the other hand, this particular LE pattern can be
seen as a further surprise provided by one-dimensional
systems with topological frustration. Despite their sim-
plicity, they present several peculiar aspects such as in-
commensurate magnetic patterns [33, 41], the appear-
ance of phase transitions not present with boundary
conditions that do not force the presence of frustra-
tion [33, 42], etc. Until now, the analysis had focused
on the static aspects induced by topological frustration.
However, our work also emphasizes that this violent
change between systems with di�erent spectral proper-
ties can greatly in�uence the dynamics and open the door
to possible applications of such models in the perspective
of quantum computing [24] as well as in quantum ther-
modynamics.
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METHODS

Loschmidt echo. Let us provide a detailed description
of the method exploited to obtain the data on the Ising
model plotted in the paper. Our starting point is to
observe that, for spin systems that can be mapped to free-
fermionic models, eq. (1) can be rewritten in the following
form [11, 14]:

L(t) = |det
(
1− r + re−iCt

)
|. (7)

Here

∆† = (c†1, . . . , c
†
N , c1, . . . , cN ), (8)

describes the fermionic operators, C is the matrix coef-
�cient of the Hamiltonian H1 in the fermionic language,
i.e.

H1 =
1

2
∆†C∆, (9)

and r = 〈g|∆†i∆j |g〉 is the two-point fermionic correla-
tion matrix in the initial state. The hermiticity require-
ment for the Hamiltonian �xes the matrix C to be of the
block-form

C =

(
S T
−T −S

)
, (10)

where S is a symmetric and T an antisymmetric matrix.
It is useful to rewrite the r matrix in terms of the

correlation functions of the Majorana operators. Follow-
ing [28] we de�ne:

Ai = c†i + ci (11)

Bi = ı(c†i − ci). (12)

Exploiting eq. (11) and eq. (12) and the fact that, since
|g〉 is the ground state of H0, 〈g|AiAj |g〉 = 〈g|BiBj |g〉 =
δij it is straightforward to obtain:

r =
1

4

(
2I + G + Gᵀ G−Gᵀ

−G + Gᵀ 2I−G−Gᵀ

)
. (13)

with Gij = −ı 〈g|BiAj |g〉.
Therefore, to calculate the LE it remains to evaluate

the correlation matrix G on the ground state of the un-
perturbed Hamiltonian H0 and the matrix C linked to
H1. Both can be determined following the same ap-
proach. Exploiting the Jordan-Wigner transformation

cj =
( j−1⊗
l=1

σzl

)σxj + ıσyj
2

, c†j =
( j−1⊗
l=1

σzl

)σxj − ıσyj
2

, (14)

we map the spin system to a quadratic fermionic one.
In fact, due to non-locality of the Jordan-Wigner trans-
formation the Hamiltonians eq. (3) and eq. 4 cannot be
written as a quadratic form eq. (9). However, they com-

mute with the parity operator Πz =
⊗N

i=1 σ
z
k and it is

possible to separate them into two parity sectors, cor-
responding to the eigenvalues Πz = ±1, so that in each
sector they are a quadratic fermionic form. In the follow-
ing, we can restrict ourselves to the Hamiltonians H0 and
H1 only in the odd sector (Πz = −1) since the ground
state of the quantum Ising model eq. (3) with frustrated
boundary conditions and h > 0 belongs to it [26, 35].
There, they can be written in the form of eq. (9), up
to an additive constant. In particular, the matrix C for
H1 in the odd sector, present in eq. (7), can be obtained
easily by inspection.
The matrix G can be found easily from the exact solu-

tion of the quantum Ising chain with frustrated bound-
ary conditions [26, 35]. However, for a more e�cient
numerical implementation we follow the approach from
ref. [14, 28], where we write H0 in the odd sector in the
form of eq. (9) and where

Gij = − (ΨᵀΦ)ij , (15)

with the matrices Φ and Ψ being formed by the corre-
sponding vectors given by the solution of the following
coupled equations:

Φk (S−T) = ΛkΨk, (16)

Ψk (S + T) = ΛkΦk. (17)

This problem can be easily solved considering the follow-
ing eigenvalue problems:

Φk (S−T) (S + T) = Λ2
kΦk, (18)

Ψk (S + T) (S−T) = Λ2
kΨk. (19)

Here the eigenvalues give us the free-fermionic energies
Λk. The sign of a particular energy is a matter of choice.
Transforming Λk to −Λk corresponds simply to switching
the creation and the annihilation operator, and to trans-
forming Φk (Ψk) into −Φk (−Ψk) in eq.s (16) and (17).
It is important to note that the parity requirements do
not allow for the ground state of H0 to be the vacuum
state for free fermions with positive energy [26, 35]. Thus,
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assuming the eigenvalues of the matrix appearing on the
l.h.s. of eqs. (18), (19) are labeled in ascending order, the
ground state corresponds to the vacuum state of fermions
with Λ1 < 0 and the remaining energies Λk positive.

Perturbation Theory near the classical point Let us
now turn to provide some more details on the perturba-
tive approach to the LE near the classical point in the
presence of topological frustration. The �rst step con-
sists of �nding the ground state of the Hamiltonian H0

in eq. (3), treating the term h
∑
j σ

z
j as a perturbation.

It is known that, at the classical point, in the presence
of an odd number of spins the interplay between periodic
boundary conditions and antiferromagnetic interactions
gives rise to a 2N -fold degenerate ground state manifold.
Such a space is spanned by the kink states |j〉 and Πz |j〉,
j = 1, 2, . . . N with energy −(N−2), that have one ferro-
magnetic bond σxj = σxj+1 = ±1 respectively, the others
being antiferromagnetic (σxk = −σxk+1 for k 6= j). The
excited states outside this manifold are separated from
the ground space by an energy gap of order unity so that
we can neglect them in a perturbative approach. By con-
sidering the magnetic �eld the 2N -fold degeneracy is re-
moved and a narrow-band of states is created, with a gap
that separates the ground state from the other elements
of the band closing as 1/N2 (see Ref. [27, 33]). To the
lowest order in perturbation theory in h we found for the
initial state appearing in eq. (1), that is for the ground
state of the unperturbed system, the expression:

|g〉 =
1√
N

N∑
j=1

1−Πz

√
2
|j〉 . (20)

The next step is to �nd the lowest energy states of the
Hamiltonian H1 in eq. (4) through a perturbation theory
both for h > 0 and λ > 0. Since we �rst apply the
perturbation theory in λ while we consider h as a second-
order perturbation, we are assuming that h � λ � 1.
Also in this case we start again from the 2N degenerate
ground space formed by the kink states and we treat
the term λσzN as a perturbation. Again we �nd that
the degeneracy is removed and, at this point, the system
shows a two-fold degenerate with eigenvectors given by:

|ψ±〉 =
1±Πz

2
(|N − 1〉 ∓ |N〉), (21)

separated by an energy gap equal to λ from 2N−4 degen-
erate kink states. Above this macroscopically degenered
manifold, separated by a gap λ there are other two states:

|φ±〉 =
1±Πz

2
(|N − 1〉 ± |N〉) (22)

We now consider the second-order perturbation h
∑
j σ

z
j .

Its e�ect on the |ψ±〉 and |φ±〉 states is only a shift in
the energy respectively of ∓h. Furthermore it creates a

band of states from the kink ones given by:

|ξ±,m〉 =
1±Πz

√
N − 1

N−2∑
j=1

(−1)j sin
( mπ

N − 1
j
)
|j〉 , (23)

with m = 1, 2, . . . , N − 2. The energies of the discussed
eigenstates are given by

E(ψ±) = −(N − 2)− (λ+ h), (24)

E(φ±) = −(N − 2) + λ+ h, (25)

E(ξ±,m) = −(N − 2)∓ 2h cos
( mπ

N − 1

)
. (26)

The calculation of the Loschmidt echo is now straight-
forward. From the de�nition eq. (1), expressing the ini-
tial state eq. (20) in terms of the eigenstates of the per-
turbed model eq.s (21), (22), and (23) and applying the
evolution operator e−iH1t we �nally obtain the expression
in eq. (5).
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