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Abstract

We study the Bose-polaron problem in a nonequilibrium setting, by consid-
ering an impurity embedded in a quantum fluid of light realized by exciton-
polaritons in a microcavity, subject to a coherent drive and dissipation on
account of pump and cavity losses. We obtain the polaron effective mass,
the drag force acting on the impurity, and determine polaron trajectories at
a semiclassical level. We find different dynamical regimes, originating from
the unique features of the excitation spectrum of driven-dissipative polariton
fluids, in particular a non-trivial regime of motion against the flow. Our work
promotes the study of impurity dynamics as an alternative testbed for probing
superfluidity in quantum fluids of light.
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1 Introduction

In vacuum, light can exchange momentum and energy with free moving particles via the
mechanism of radiation pressure. When a photon impinges a particle (e.g. an atom,
a glass bead, an interplanetary probe) it can be absorbed, refracted and/or scattered,
thereby transferring a fraction of its momentum and energy to the particle, which is thus
accelerated and steered by light. This mechanism is at the basis of several key applications
and phenomena such as ultracold atom cooling [1, 2], cavity quantum optomechanics [3],
as well as in proposed interplanetary probes design [4]

This picture is expected to be profoundly modified and enriched for photons propagat-
ing in solids, and all the more so for photons strongly dressed with electronic excitations,
such as in semiconductor microcavities in the strong coupling regime between excitons
(bound electron hole pair excitation) and cavity photons [5–8]. In this case, the dressed
photons are called excitons-polaritons (polaritons) [9], and they are characterized by two-
body interactions and quantum many-body effects [9] such as collective excitations [10–12].
Experimentally, the polariton quantum fluid [13,14] can be generated in a well-defined mo-
mentum state and sent to collide against a fixed obstacle (e.g. a localized barrier potential)
or a quantum impurity provided e.g. by free electrons, free dark excitons, or polaritons in
a different polarization state with respect to the fluid. The fixed-obstacle case has been
examined both theoretically [15–18] and experimentally [19, 20]: it was shown that for
a suitable set of experimental parameters the flow around the obstacle exhibits strong
signatures of superfluidity [21], evidenced by frictionless flow and absence of drag force,
while for other experimental parameters, the drag force is restored [22], with a non-trivial
magnitude and directions [23].

In this work, we consider the case of a free moving finite-mass obstacle subject to
the drag force exerted by a driven-dissipative quantum fluid of polaritons. This problem
can be understood as the analogue of determining the dynamics of a particle subjected
to radiation pressure, when radiation pressure is replaced by the polaritonic quantum
fluid drag force. This is also a different class of problem than the fixed obstacle case
mentioned above: indeed, a fixed obstacle has an infinite mass and cannot be excited
by the fluid, and thus has no dynamics. From a theoretical point of view, the situation
that we consider is that of a single impurity dressed by the excitations of its many-body
environment, known as the polaron problem. This problem is of high importance in
several contexts. In solid-state physics, a polaron state describes electrons dressed by
lattice phonons [24–29]. The Fermi polaron, describing a mobile impurity in a degenerate
Fermi gas has also attracted renewed attention in ultracold atomic gases [30–43] and
has recently been observed in monolayer semiconductors [44, 45] when exciton-polaritons
propagate in a fluid of free electrons [46,47]. The Bose polaron problem, i.e. the case of an
impurity in a bosonic quantum fluid has also attracted significant attention [48–58] and
was experimentally demonstrated in ultracold atoms [59–64]. For Bose polaron-polaritons
at equilibrium, Feshbach-mediated interactions [65] and formation of photon bound states
[66] were predicted.

Here, we extend the description of Bose polarons to the non-equilibrium case of a
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Figure 1: Schematic of the setup considered in the present work. Left panel: excitons
(x) and impurities (i) are placed in a photonic cavity (c), pumped by laser light and sub-
jected to losses. Central panel as a result of the strong light-matter coupling, a polariton
fluid is created. The impurity is dressed by the fluid excitations, giving rise to a Bose po-
laron (BP). Right panel: ilustration on how this set up could be experimentally realized in
semiconductor microcavities. To achieve the quasi-one-dimensional geometry considered
in the present work, a specific etched structure can be realized. The figure shows also how
to set into motion the polariton fluid by suitably choosing the angle of incidence of the
laser beam.

bosonic driven-dissipative quantum fluid, with specific focus on exciton-polaritons. Fo-
cusing on the experimentally relevant condition of weak coupling between the impurity
and the fluid, we develop a Bogoliubov-Fröhlich approach in the presence of an external
bath and provide solutions, under Markovian approximation, for the effective mass of the
polaron and the drag force exerted on it. We consider both the cases of the fluid at rest
and in motion. We then examine the impurity motion induced by the drag of the fluid
and identify signatures of superfluidity in the polaron dynamics.

The paper is organized as follows. We begin with the description of the model for
our system in Sec. 2. We then derive the equations for the quantum dynamics of the
impurity in Sec. 3, allowing us to obtain expressions for the effective mass, drag force and
trajectories. The next section 4 is devoted to present our main results, in particular on the
drag force, which can be either positive or negative depending on the parameter regimes.
We also derive the semiclassical trajectories of the impurity, and discuss the effect of drive
and dissipation on the impurity dynamics. We show in particular how it can be used as
microscopic probe of the superfluid properties of the polariton fluid. We finally present
our main conclusions and outlook in Sec. 5.

2 Physical system and model Hamiltonian

We consider a polariton fluid coherently driven by a resonant pump and interacting with
dilute impurities. A schematic of the system considered in the present work is shown in
Figure 1. We describe the polariton losses throughout the mirrors by its coupling to the
continuum of photons outside the cavity, which thus acts as a bath. The total Hamiltonian
of the system reads

Ĥ = ĤP + ĤI + ĤB. (1)

Here ĤP describes the lower-polariton (P) fluid coherently driven by a continuous wave
laser pump of frequency ωp and wavevector kp [9] and is given as

ĤP =
∑
k

(
h̄2k2

2m
− h̄ωp

)
â†kâk +

g

2A

∑
k,k′,q

â†k+qâ
†
k′−qâk′ âk

+ âkp
F ∗0 + â†kp

F0, (2)
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where g is the polariton-polariton interaction constant, A is the pumped area in the plane
of the microcavity and F0 is the plane-wave incident laser field with wavevector kp.
ĤI describes a single impurity, weakly interacting with the polariton fluid and is given

as

ĤI =
p̂2

2M
+
gIB

A

∑
k,k′

ei(k−k
′)·x̂â†k′ âk, (3)

where M is the mass of the impurity and the second term describes the impurity-polariton
interaction, characterized by coupling constant gIB.

Finally, ĤB describes the external radiation bath as harmonic excitations, linearly
interacting - in the spirit of Caldeira-Legget model [67–69] - with the polariton fluid:

ĤB =

∫
dq
∑
k

h̄ωq,k α̂
†
q,kαq,k +

∫
dq
∑
k

[
κ∗q,k α̂

†
q,kâk + κq,k â

†
kα̂q,k

]
, (4)

where ωq,k is frequency of the bath mode with in-plane wavevector k and a continuous
wavevector q in the orthogonal direction; κq,k quantifies the coupling of the polariton
modes with the external bath modes. We neglect the coupling of the impurity with the
bath for simplicity.

In the next two subsections, we simplify this Hamiltonian first by assuming a weak
excitation density on top of the condensate at all times, and thus taking the Bogoliubov
approximation, and then by moving to the impurity reference frame using the Lee, Low
and Pines (LLP) transformation.

2.1 Bogoliubov approximation

Let us first move to the reference frame in which the polariton fluid flowing with the
pump induced momentum h̄kp is at rest; hereof we shift every instance of momentum in
our system Hamiltonian (1) by an amount kp.

Now we’ll consider the three subsystems separately, starting with the polariton Hamil-
tonian in equation (2), which after the change of frame is written as

ĤP =
∑
k

(
h̄2(kp + k)2

2m
− h̄ωp

)
â†kp+kâkp+k

+
g

2A

∑
k,k′,q

â†kp+k+qâ
†
kp+k′−qâkp+k′ âkp+k

+ âkp
F ∗0 + â†kp

F0. (5)

We use the Bogoliubov approximation - which assumes a macroscopic occupation of kp

mode âkp
(â†kp

) ≈
√
N0 - in (5) to approximate it as a quadratic Hamiltonian in the

creation and annihilation operators. It is then diagonalized with the help of Bogoliubov
transformation (see Appendix A for details)

âkp+k = uk b̂kp+k − v∗−k b̂
†
kp−k (6a)

â†kp−k = −vk b̂kp+k + u∗−k b̂
†
kp−k. (6b)

The polariton Hamiltonian in the Bogoliubov approximation then reads

ĤP = Ess +
∑
k6=0

Eb b̂
†
kp+kb̂kp+k, (7)
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where Ess is the energy of the macroscopically occupied steady state at kp; it provides a
constant energy shift and since it doesn’t contribute to the dynamics of the problem we
can safely neglect this term moving forward. Eb is the Bogoliubov spectrum of polaritons
and is given as

Eb =
h̄2k · kp

m
+ h̄ωk (8)

where h̄ωk =
[
εk (εk + 2gn)

] 1
2
, εk = h̄2k2

2m − ∆ and ∆ = h̄ωp −
h̄2k2

p

2m − gn, with gn

the blueshift due to polariton-polariton interactions. The parameters of the Bogoliubov
transformation are given by

uk, vk =

[
1

2

(
εk + gn

h̄ωk
± 1

)] 1
2

. (9)

Noting that uk(vk) = u−k(v−k) = u∗k(v∗k), henceforth we’ll use uk(vk) for all the the
instances of u−k(v−k) and u∗k(v∗k) in subsequent derivations. For the particular case of
∆ > 0 we have uk(vk) 6= u∗k(v∗k); this calls for a special diagonalization treatment which
is detailed in Appendix A.

The nature of the excitation spectrum at low momentum is controlled by the detuning
∆: depending on its value, the excitation spectrum can be gapless, gapped, or exhibit a
non-dispersive region at small wavevector (see panel b) in Fig.2).

Using the Bogoliubov approximation in the impurity Hamiltonian (3) and neglecting
the term describing the interaction between two Bogoliubov excitations of the condensate
which are of order 1/

√
N0 smaller than the interaction of an excitation with the impurity,

we obtain

ĤI =
p̂2

2M
+ gIBn+

∑
k 6=0

eikx̂
(
Vk b̂kp+k + Vk b̂

†
kp−k

)
, (10)

where Vk is the scattering amplitude of Bogoliubov excitation with the impurity, given as

Vk = gIB

√
N0

A
(uk − vk) . (11)

Notice that Vk is associated to the polariton fluid density fluctuations through the term
(uk − vk). In the case of a gapless phononic dispersion, this term is suppressed at low
momenta as phase fluctuations dominate the Bogoliubov excitation spectrum. Our anal-
ysis hence shows that the impurity dynamics can probe the superfluid properties of the
quantum fluid of light.

We finally apply the Bogoliubov transformation to the bath Hamiltonian (4), which
results in

ĤB =

∫
dq
∑
k

h̄ωq,k α̂
†
q,kαq,k +

∫
dq
∑
k

[
κ∗q,k α̂

†
q,k

(
uk b̂kp+k − vk b̂

†
kp−k

)
+ κq,k α̂q,k

(
uk b̂

†
kp+k − vk b̂kp−k

)]
. (12)

The sum of equations (7), (10) and (12) provides an approximate description of our system,
that takes the form of a Bogoliubov-Fröhlich Hamiltonian with a dissipative bath term.
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2.2 Lee Low Pines transformation

In order to further simplify our model we use the Lee Low Pines (LLP) transformation to
remove the impurity degree of freedom in the impurity-polariton interaction term. This
is achieved by applying the operator

TLLP = exp

−i
∑

k 6=0

h̄k b̂†kp+kb̂kp+k

 · x̂
 (13)

on the full system Hamiltonian, to move to the impurity reference frame. The resulting
total Hamiltonian reads

ĤLLP =
∑
k 6=0

Eb b̂
†
kp+kb̂kp+k +

1

2M

(
p̂−

∑
k 6=0

h̄k b̂†kp+kb̂kp+k

)2

+
∑
k 6=0

(
Vk b̂kp+k + Vk b̂

†
kp−k

)
+

∫
dq
∑
k

h̄ωq,k α̂
†
q,kαq,k

+

∫
dq
∑
k

[
κ∗q,k α̂

†
q,k

(
uk b̂kp+k − vk b̂

†
kp−k

)
e−ikx̂

+ κq,k α̂q,k

(
uk b̂

†
kp+k − vk b̂kp−k

)
eikx̂

]
. (14)

3 Quantum dynamical equations and observables

In order to obtain the impurity dynamics, we derive the Heisenberg equation of mo-
tion for x̂, p̂, b̂kp+k and α̂q,k operators. In order to simplify the notation, we use

Π =
∑

k 6=0 h̄k b̂†kp+kb̂kp+k to denote the momentum of the Bogoliubov excitations. The
resulting equations of motion read:

dx̂

dt
=

(p̂−Π)

M
, (15)

dp̂

dt
=
∑
k

ike−ikx̂
∫
dq

[
κ∗q,k α̂

†
q,k

(
uk b̂kp+k − vk b̂

†
kp−k

)
+ κq,−k α̂q,−k

(
u−k b̂

†
kp−k − vk b̂kp+k

)]
, (16)

ih̄
d

dt
b̂kp+k =

(
Eb +

h̄2k2

2M
+
h̄k ·Π
M

− h̄k.p̂

)
b̂kp+k + Vk

+

∫
dq
(
κq,k α̂q,k uk − κ∗q,k α̂

†
q,k vk

)
eikx̂ , (17)

ih̄
d

dt
α̂q,k = h̄ωq,k αq,k + κ∗q,k

(
uk b̂kp+k − vk b̂

†
kp−k

)
e−ikx̂. (18)

Notice that the impurity momentum is not conserved due to the presence of the bath.
Now we proceed to obtain a solution for the four coupled equation of motions. We derive
a self-consistent equation for Π in the next subsection, from which we can calculate the
trajectory of polarons.
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3.1 Dynamics of the fluid excitations

We commence by tracing out the bath degrees of freedom by substituting the solution of
(18) for α̂q,k in (17). The general solution of (18) is given as

α̂q,k = e−iωq,k(t−t0)αq,k(t0)− iκ∗q,k
∫ t

t0

dt′ e−iωq,k(t−t′)
(
uk b̂kp+k(t′)− vk b̂†kp−k(t′)

)
e−ikx̂(t′).

(19)

Using (19) in (17) we obtain

ih̄
d

dt
b̂kp+k =

(
Eb +

h̄2k2

2M
+
h̄k ·Π
M

− h̄k.p̂

)
b̂kp+k + Vk − i

∫ ∞
−∞

dt′Γ
(1)
k (t− t′) b̂kp+k(t′)

− i
∫ ∞
−∞

dt′Γ
(2)
k (t− t′) b̂†kp−k(t′) + F sto

k (20)

where

Γ
(1)
k (t− t′) = Θ(t− t′)

∫
dq
(
|κq,k|2u2

ke
−iωq,k(t−t′) − |κq,−k|2v2

ke
iωq,−k(t−t′)

)
e−ik(x̂(t′)−x̂(t)) (21a)

Γ
(2)
k (t− t′) = Θ(t− t′)

∫
dq ukvk

(
|κq,k|2e−iωq,k(t−t′) − |κq,−k|2eiωq,−k(t−t′)

)
e−ik(x̂(t′)−x̂(t)) and

(21b)

F sto
k =

∫
dq
(
κq,kuke

−iωq,kt α̂q,k − κ∗q,−kvkeiωq,−kt α̂†q,k

)
. (21c)

Here, Γ
(1)
k and Γ

(2)
k are the memory kernels of the integro-differential equation (20), and

F sto
k describes stochastic fluctuations due to the coupling with the bath. This will not

enter in the calculation of the average trajectories and will hence be neglected from now
on. We next employ the Markovian approximation, which assumes no memory of past

times, in (20) and under this approximation the integral kernels Γ
(1)
k ≈ Γkδ(t

′ − t), where

2π/Γk is the polariton radiative lifetime and Γ
(2)
k → 0. Hence, the equation of motion for

b̂kp+k is simplified as

ih̄
d

dt
b̂kp+k =

(
Eb +

h̄2k2

2M
− h̄k · (p̂−Π)

M
− iΓk

)
b̂kp+k + Vk. (22)

The steady-state solution of (22) in the mean-field approximation is a coherent state of
the Bogoliubov excitations. Under this assumption we replace the b̂kp+k quantum operator

with a classical mean field βkp+k = 〈b̂kp+k〉 in (22) and obtain the stationary solution of
the field as

βkp+k =
−Vk(

Eb + h̄2k2

2M − h̄k·(p̂−Π)
M − iΓk

) (23)

Similarly the stationary solution for β̄kp+k = 〈b̂†kp+k〉 reads

β̄kp+k =
−Vk(

Eb + h̄2k2

2M − h̄k·(p̂−Π)
M + iΓk

) . (24)

Notice that β̄kp+k 6= β∗kp+k if Eb takes imaginary values. A detailed discussion of this
regime is provided in Appendix A.
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3.2 Effective mass of polarons

We next proceed in determining the observables characterizing the polaron in a driven-
dissipative fluid of light. In the mean field approximation Π reads

Π =
∑
k 6=0

h̄(k + kp)β̄kp+kβkp+k − h̄kp

∑
k6=0

β̄kp+kβkp+k (25)

The first term on the r.h.s. of (25) describes the Bogoliubov excitations mean field
momentum, while the second term describes an effective drift of the impurity due to the
flow of polariton fluid. We derive a self-consistent equation for Π by substituting Eqs. (23)
and (24) in (25), leading to

Π =
∑
k 6=0

h̄kV 2
k(

Eb + h̄2k2

2M − h̄k·(p−Π)
M

)2
+ Γ2

k

. (26)

The effective mass of the polaron is then obtained from the first term in (25): In the
case when p → 0 the excitation momentum behaves as Π ≈ ηp and the effective mass is
given by

1

Meff

=
(1− η)

M
(27)

where is η is the fraction of excitation momentum in the direction of p.

3.3 Drag force

The instantaneous drag force experienced by the impurity is obtained using Ehrenfest
theorem according to which

Fdrag = − gIB〈
∫
ψ†[∇nimp]ψ〉 (28)

= −

〈∑
k 6=0

ikVke
ikx̂
(
b̂kp+k + b̂†kp−k

)〉
. (29)

After using the LLP transformation in the above definition, ie moving to the polaron
reference frame, we calculate the instantaneous drag force that it experiences, which results
in

Fdrag = −
∑
k 6=0

ikVk
(
βkp+k + β̄kp−k

)
(30)

Substituting for βkp+k and β̄kp−k from Eqs. (23) and (24), respectively, we have

Fdrag =
∑
k 6=0

2ikV 2
k

(
h̄2k2

2M
+ h̄ωk

) 1(
h̄2k2

2M + h̄ωk

)2
−
(
h̄2k·kp

m − h̄k·(p−Π)
M − iΓk

)2

 .

(31)

In the limit when M →∞ we recover the expression derived in [22].
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3.4 Polaron trajectory

We begin deriving an equation for the polaron trajectory, by substituting Eq. (19) in
(16), that is, by tracing out the bath degrees of freedom. Within the Markovian and
semiclassical approximations we get

dp̂

dt
= −

∑
k 6=0

2k

[
u2
k

〈
b̂kp+k(t)b̂†kp+k(t)

〉
+ v2

k

〈
b̂†kp−k(t)b̂kp−k(t)

〉
− ukvk

〈
b̂kp+k(t)b̂kp−k(t)

〉
− ukvk

〈
b̂†kp+k(t)b̂†kp−k(t)

〉]
. (32)

We then use the solution of Eq. (22) for the Bogoliubov operators to finally obtain a set
of coupled semiclassical equations providing the trajectory of the polaron :

dx

dt
=

(p−Π)

M
(33)

dp

dt
= −2Γ

∑
k6=0

kV 2
k(

Eb + h̄2k2

2M − h̄k·(p−Π)
M

)2

+ Γ2
k{

1− 2 cos

[(
Eb +

h̄2k2

2M
+
h̄k · (Π− p)

M

)
t

]
+ e−2Γt

}
. (34)

4 Results

4.1 Effective mass of the polaron

We present first the results for the polaron effective mass obtained by solving Eq. (27).
In the current and following subsections we present our results in a quasi-one dimensional
geometry, as illustrated in Fig.1, but the equations that we derived are also valid in higher
dimensions. Also, for all further results we will take the value of interaction constant,
1/[2πnξ(gIB/g)2], with ξ = h̄/

√
mgn being the healing length, equal to 0.2. This ensures

we stay in the regime of weak impurity-fluid interactions, as assumed in Sec.2.
As shown in Figure 2a), upon increasing the detuning ∆ we observe a non-monotonous

behaviour of the effective mass. This can be understood as being related to the different
nature of the Bogoliubov excitations at varying ∆. The various possible regimes are
illustrated in Fig. 2b). When ∆ ≤ 0 (region I in the figure) the excitation spectrum is
gapped and becomes gapless and phononic at ∆ = 0. The latter regime is reminiscent of
the Bogoliubov spectrum for equilibrium condensates albeit with dissipation. When ∆ > 0
the excitations spectrum is diffusive with purely imaginary eigenenergies in some range
of wavevectors that depends on the ratio ∆/gn. If ∆/gn < 2 (region II) the imaginary
values lie in the region |k| <

√
2m∆ with the maximum of the imaginary part at k = 0,

while if ∆/gn > 2 (region III) the diffusive regime is at finite k wavevectors.
In all the above cases, the polariton condensate is dynamically stable as long as the

imaginary part of its excitation spectrum is smaller than zero [9, 70]. This is possible
thanks to the presence of the dissipation constant Γ. Hence, it is remarkable that driven-
dissipative quantum fluids can reach a wealth of dynamical regimes not accessible by their
equilibrium counterpart. This has a direct impact on the polaron effective mass: the way
the fluid excitations dress the impurity depends on the dynamical regime. We find that
the largest effective mass occurs close to the sonic case, where a large density of excitations
can be generated by the impurity for a vanishing energetic costs. Another peculiar regime
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Figure 2: a) Ratio of effective mass to bare mass, Meff/M of the impurity as a
function of the detuning, ∆ - in the units of blueshift gn. The shaded regions from left to
right depicts the regions (I), (II) and (III) corresponding to different types of excitation
spectrum of the fluid shown in Panel b) and the dashed lines indicate the point where
effective mass coincides with bare mass of the impurity. Here the impurity-polariton mass
ratio is M/m = 10. b) Imaginary (top) and real (bottom) parts of the Bogoliubov
spectrum of polaritons for varying values of detuning ∆ leading to (I) gapless or gapped
spectrum, (II) diffusive spectrum around k = 0 and (III) diffusive spectrum around finite
k points. In all the figures we have used Γ = 1.5 gn and kp = 0.
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Figure 3: Drag Force, Fdrag, experienced by polaron at rest as a function of the detuning
∆ - in units of interation energy, gn - and the polariton pump wavevector kp - in units of
inverse healing length ξ = h̄/

√
mgn - which quantifies the fluid flow velocity, vfl = h̄kp/m.

The red line depicts the Landau critical velocity, vc as function of detuning ∆, with
vc = minkEb(k)/|k|. Here we have taken M/m = 10 for the impurity-polariton mass
ratio and Γ = 1.5 gn.

found in this driven-dissipative quantum fluids is the one where the effective mass is smaller
than the bare one: this occurs when the spectrum is diffusive at finite wavevector. In this
case the impurity feels a negative drag (see next subsection) and behaves as an effectively
lighter particle.

4.2 Drag force

We next calculate the drag force (31) experienced by polaron. The drag force depends on
the fluid momentum h̄kp, and on the dynamical regime for the fluid excitations, controlled
by the detuning ∆. The results are summarized in Fig. 3.

For positive values of ∆ we observe a region of negative drag force. This extends
the results predicted by [22] to the case of an impurity with finite mass. This regime
corresponds to the case when the effective mass is smaller than bare one. For negative
values of ∆ the drag force is non-zero and positive, showing an important increase starting
from the case where the fluid velocity exceeds the Landau critical velocity, estimated as
vc = minkEb(k)/|k| and marked by the red line in Fig. 3. Our analysis hence shows that
the impurity acts as a ’test particle’ in the fluid to probe its superfluid properties, which
strongly depend on the dynamical regime of the fluid.

4.3 Polaron dynamics

We finally follow the semiclassical dynamics of the polaron moving with a finite initial
momentum in a fluid at rest. The results are summarized in Fig. 4.

The key quantity to follow in order to determine the excitation dynamics is the exci-
tation momentum Π. When Π reaches zero, it means that the impurity has reached its
terminal velocity: it is not dressed by excitations anymore, and its effective mass equals
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Figure 4: a) Excitation momentum Π as a function of polaron momentum p, both in
units of p0 =

√
mgn for various values of detuning ∆ = −1.5, 0, 1.5, 2.5, 3.5 - in units of

gn - going from darker to lighter shaded curves respectively, for a fluid at rest. The arrows
depict the momentum flow towards the long time limit state, where the polaron attains
a saturation or terminal momentum. The saturation momentum values are depicted by
the black dots on p axis (roots of excitation momentum Π(p)) and are dependent on the
initial value of the impurity momentum p. In the inset we show the roots of the excitation
momentum, as a function of ∆ in units of gn. The gray-shaded region in the inset marks
the region of negative drag. b) and c) Heatmaps of impurity momentum, p/p0 as
a function of time, t, in units of t0 = h̄/gn, and detuning ∆, in units of gn, for different
values of the inital momentum: c) p = 6 p0, d) p = 12 p0. In all panels we have taken
M/m = 10, Γ = 1.5 gn and the fluid is at rest.
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Figure 5: Polaron saturation momentum: absolute value of the polaron saturation
momentum p in units of p0 =

√
mgn as a function of detuning, ∆, and dissipation, Γ -

both in units of blueshift gn, for a fluid at rest. The gray area represents the region of
dynamical instability of the Bogoliubov theory.

the bare mass. Different kind of trajectories are shown in Fig. 4 a). The arrows indicate
the impurity momentum evolution in time, till it reaches a terminal value (black dots in
the figure). For negative ∆, we see that the terminal momentum is always zero, regardless
of the initial momentum. For ∆ > 0, the situation is more exotic: above a certain positive
∆, the terminal momentum p = 0 becomes unstable with respect to fluctuations of Π, and
two nonzero terminal momenta become possible (cf. the bifurcation in the inset of Fig. 4
a)). These nonzero terminal momenta result from the negative drag regime in which the
impurity moves opposite to the flow of the fluid.

In Figure 4b) and Figure 4c) we show the polaron momentum as a function of time
and of the detuning ∆ for fixed initial momentum, smaller or larger than the terminal
value. Two regimes clearly emerge from this analysis: for negative detuning the polaron
decelerates till a final rest position, while for positive detuning, in the regime of negative
drag, the impurity of given initial momentum accelerates till a terminal momentum is
reached.

Finally, we analyse the influence of losses on the polaron dynamics for positive ∆.
The results are summarized in Fig. 5, where we show the terminal velocity reached by
polarons as a function of the detuning ∆ and of the dissipation constant Γ. We see that
the region of non-zero terminal velocity caused by the negative drag regime disappear
upon decreasing Γ. For increasing Γ we see that the lower boundary ∆th of this region
increases to compensate for the increased losses.

5 Conclusions and outlook

We have studied the motion of an impurity in a polariton fluid under drive and dissipation,
assuming a weak coupling between the impurity and the fluid. The presence of Bogoliubov
excitations lying on top of the coherent steady state of the polariton fluid dress the impurity
particle giving rise to a Bose polaron in the Fröhlich regime. We have determined the
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polaron effective mass, the drag force acting on the impurity, as well as polaron trajectories
at semiclassical level.

We have found different dynamical regimes, originating from the unique features of
the excitation spectrum of driven-dissipative polariton fluids. We have shown that it is
possible to tune polaron effective mass to values both smaller and larger than the bare
one by adjusting the detuning ∆. In the ∆ > 0 regime of diffusive excitations spectrum
the impurity is subjected to negative drag force: as a result, the impurity rest position
is unstable and it starts accelerating against the flow until it reaches a non-zero terminal
velocity. This work shows that the impurity dynamics can be used as a test particle to
probe the different regimes of nonequilibrium quantum flow, including superfluidity, in
quantum fluids of light.

As indicated by our analysis of the coupling with the electromagnetic vacuum bath
outside the cavity, corrections beyond the Markov approximation (see [71] for an approx-
imate treatment) could lead to experimentally relevant non-trivial corrections of the dy-
namics, that would be interesting to examine. Another open direction is to go beyond the
semiclassical description of the impurity trajectories, and beyond the weak impurity-fluid
interaction regime.
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to a lighter shade and we have taken M̃ = 10 and Γ = 1.5

A Generalized Bogoliubov transformation

In the case of positive detuning, the quadratic form of lower polariton Hamiltonian in
(5) after undergoing Bogoliubov approximation is non-positive definite for a finite range
of wavevector k values. This precludes its diagonalization using the standard Bogoliubov
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operators b̂k and b̂†k (6a, 6b) in this range of k values [72]. This happens because b̂k and b̂†k
fail to satisfy the bosonic commutation relations upheld by the condition |uk|2− |vk|2 = 1
which in this instance is zero. However, we may still diagonalize the Hamiltonian using
non-standard Bogoliubov operators given by

b̂kp+k = uk âkp+k + v−k â
†
kp−k (35)

ˆ̄bkp−k = vk âkp+k + u−k â
†
kp−k. (36)

These operators satisfy the bosonic commutation relation with the condition u2
k−v2

k =

1 but in this case ˆ̄bkp+k 6= b̂†kp+k which results, in general, complex Bogoliubov energy and
onset of dynamical instability. However, we stay in the regime where the imaginary part
of the Bogoliubov energy is less than the dissipation rate, Γk which stabilizes the system
against the instability caused due to complex Bogoliubov energies. Proceeding forward
with these non-standard Bogoliubov operators all the subsequent results remain the same

as derived in the main paper, albeit replacing b̂†kp+k with ˆ̄bkp+k.
The use of non-standard Bogoliubov operators when detuning ∆ is positive also results

in a small imaginary contribution to the excitation momentum Π when we solve the self-
consistency relation in (26). We have taken it into account by adding an imaginary
contribution to the energy spectrum as Im{Eb − iΓ} +Im{Π}.
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Figure 7: Varying impurity-polariton mass ratio. Excitation momentum, Π as a
function of impurity momentum p, both in units of p0 =

√
mgn in the case of diffusive

Bogoliubov spectrum (∆ = 2.5 gn) for varying impurity-polariton mass ratios M̃ : 5, 10
and 20 from a darker to a lighter shade respectively. The case for M̃ = ∞ is shown in
black for which the excitation momentum is zero. Here Γ = 1.5 gn and the fluid is at rest.

B Further Results

B.1 Case of moving fluid

The case of a moving fluid with a finite flow velocity |v| = kp/m is a straightforward
extension of the case discussed in the main text. We focus here on the regime of diffusive
spectrum. As shown in Fig. 6, the terminal drift velocity attained by the impurity depends
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on the detuning ∆. For sufficiently large ∆ the regime of negative drag emerges, indicated
by a terminal velocity in the opposite direction of fluid flow.

B.2 Varying mass ratios

We show in Fig. 7 the results for excitation momentum Π in the case of diffusive spectrum
for varying values of the impurity-polariton mass ratios, M̃ . We observe that for increasing
mass ratio the terminal velocity attained by the impurity also increases.
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