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Abstract

We present the first holographic simulations of non-equilibrium steady state formation
in strongly coupled N = 4 SYM theory in 3+1 dimensions. We initially join together
two thermal baths at different temperatures and chemical potentials and compare the
subsequent evolution of the combined system to analytical solutions of the corresponding
Riemann problem and to numerical solutions of ideal and viscous hydrodynamics. The
time evolution of the energy density that we obtain holographically is consistent with the
combination of a shock and a rarefaction wave: A shock wave moves towards the cold bath,
and a smooth broadening wave towards the hot bath. Between the two waves emerges a
steady state with constant temperature and flow velocity, both of which are accurately
described by a shock+rarefaction wave solution of the Riemann problem. In the steady
state region, a smooth crossover develops between two regions of different charge density.
This is reminiscent of a contact discontinuity in the Riemann problem. We also obtain
results for the entanglement entropy of regions crossed by shock and rarefaction waves
and find both of them to closely follow the evolution of the energy density.
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1 Introduction

Describing the far-from-equilibrium dynamics of strongly coupled quantum systems is ex-
tremely challenging. Gauge/gravity duality [1–3] provides important insights by mapping
the dynamics of certain strongly coupled non-Abelian gauge theories to the dynamics of
classical gravity in higher dimensions. This approach has been successfully applied to
study the dynamics of the strongly coupled quark-gluon plasma in relativistic heavy ion
collisions [4] and strongly correlated condensed matter systems [5, 6]. The picture arises
that strongly coupled far-form-equilibrium states typically evolve extremely fast towards
a hydrodynamic regime before reaching a state of thermal equilibrium after a sufficiently
long time. An important exception to this rule are quantum states on dynamical back-
grounds that arise for example in the context of cosmology [7, 8].

Another exception are systems driven by external sources that therefore never reach
thermal equilibrium, but instead evolve towards a steady-state with non-vanishing fluxes,
but time independent thermodynamic properties. An important example, which is the
subject of this work, is a cold-hot interface of two identical copies of a quantum critical
system at different temperatures and chemical potentials from which a Non-Equilibrium
Steady State (NESS) emerges between two outgoing waves.

The properties and formation process of NESSs have been studied extensively using
various different approaches. In 1+1 dimensional conformal field theories (CFT2), the
heat and charge flows of the system considered show universal behaviour [9–13]. The
appearance of the NESS as well as its properties are insensitive to the details of the initial
state and depend only on fundamental parameters, the central charge and current algebra
level, of the CFT2, as well as on the initial temperatures and chemical potentials of the two
copies. More recently, exact results have also been obtained in T T̄ -deformed CFT2 [14].

In [15] it was shown that the NESSs in holographic CFT2 are dual to Lorentz boosted
black brane geometries in the bulk. The Einstein equations for the gravity dual determine
the geometry such that even far-from-equilibrium solutions such as propagating shock-
waves are related by large coordinate transformations to static AdS3. The holographic
entanglement entropy has been studied for the two-dimensional case in [16] using the
Hubeny-Rangamani-Takayanagi prescription [17,18].

One might ask if these NESSs are a curiosity of integrable CFT2 or if they also exist
in more general theories and dimensions higher than two? This question was addressed
in several studies by constructing solutions of the Riemann problem in relativistic hy-
drodynamics [15, 19–22], in holographic CFT3 [23], in theories with gravity duals in the
limit of large number of dimensions [24] and in non-relativistic theories with Lifshitz scale
symmetry [25]. This led to the insight that the formation of NESSs does not rely on con-
formal symmetry or integrability, but rather is a universal feature of the hydrodynamic
description of any fluid, independent of the underlying equation of state.

However, the details on how a NESS dynamically emerges from the interface depend
crucially on the number of dimensions in which the system lives. In 1+1 dimensions,
the NESS region emerges between two planar shockwaves travelling at the speed of light
outwards from the interface. In higher dimensions however, this is not the case any more:
For entropic reasons, the wave front moving towards the hot side is a smoothly broadening
rarefaction wave, while the wave front moving towards the cold side is still given by a
shockwave [20,21].

One goal of this work is to sharpen the picture of the formation process of NESSs at
strong coupling in four spacetime dimensions. First, we compare the evolution of both
the stress tensor and the charge density in the strongly coupled field theory to analytical
solutions and numerical approximations of the Riemann problem in ideal and viscous hy-
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drodynamics, respectively. We consider double-shock solutions, that are known to violate
the second law of thermodynamics in dimensions larger that two [20,21], physically sound
combinations of shock and rarefaction waves. Also, as we discuss both for the case of
two shock waves as well as for the shock+rarefaction wave combination, the charge den-
sity displays a discontinuity within the NESS region, for which we plot examples. Then,
moving on to the gravity dual in five dimensions, we numerically evolve the dual gravity
problem to obtain the fully far-from-equilibrium quantum dynamics in principle also be-
yond the hydrodynamic regime. In particular, we numerically establish and analyse the
gravity dual of the rarefaction wave. While being entirely smooth, our holographic solu-
tions agree to very good numerical accuracy with the shock+rarefaction wave scenario.
Importantly, our results are in line with the proposal of [20] that a NESS forms also for
the shock+rarefaction case, i.e. the spreading of the rarefaction wave is not so large as to
impede the NESS formation. We present a quantitative study of the deviations between
the shock+shock and shock+rarefaction cases, the hydrodynamic simulation and our holo-
graphic solutions. We find them to be generically small. Nevertheless, our holographic
solutions favour the shock+rarefaction scenario.

A further goal is to generalise the holographic entanglement entropy (HEE) calculation
of [16] to four spacetime dimensions. In [16], where two 1+1-dimensional shockwaves and
their gravity dual were considered, the time dependence of the HEE for a strip entan-
gling region was shown to display universal behaviour and to satisfy a velocity bound. In
contrast to CFT2, where the dual Riemann problem has a closed solution [26], in dimen-
sions larger than two it is necessary to solve the extremal surface problem for the HEE
numerically [27]. We perform a numerical analysis of the HEE for infinite strip regions
of different width. In particular for the shock+rarefaction case, we find that a convenient
way to make physical statements about the HEE time evolution is to compare it to the
time evolution of the energy density. We compare the time evolution of both HEE and
energy density during the passing of the shock and rarefaction waves. We find the time
evolution of HEE and energy density to be very similar, the main difference being that
the HEE trails the energy density by a small amount. This effect is more pronounced
in the rarefaction case, where the wave takes a relatively long time to move through the
entangling region.

The paper is structured as follows. Sec. 2 is a review of the Riemann problem in ideal
hydrodynamics. In particular, we recall the derivation of analytical solutions with two
shock waves and solutions with one shock and one rarefaction wave. In Sec. 3 we introduce
the holographic model which is Einstein-Maxwell gravity in five dimensions. In Sec. 4 we
discuss our setup of the HEE computation. In Sec. 5 we present the time evolution of the
stress tensor and charge density obtained from the holographic model and compare them
to analytical and numerical solutions of the corresponding Riemann problem in ideal and
viscous hydrodynamics. We then analyse the holographic entanglement entropy for shock
and rarefaction waves. In Sec. 6 we conclude and point towards a number of interesting
future directions. In two appendices we derive the Rankine-Hugoniot jump conditions and
provide numerical evidence that our results are independent on how we approximate the
initial interface of the Riemann problem on the gravity side.

2 Riemann problem in ideal hydrodynamics

Prior to discussing the holographic calculation, it is useful to review the Riemann problem
in ideal hydrodynamics. A standard reference on the Riemann problem is [28]. Here we
consider it in presence of a conserved U(1) charge. We start by defining the stress tensor
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and charge current of a relativistic fluid,

Tµν = (E + P)uµuν + Pηµν , Jµ = nuµ , (1)

where E , P, n and η denote energy density, pressure, charge density and the mostly plus
Minkowski metric, respectively. We are interested in one dimensional relativistic flows for
which the normalised velocity can be written as

uµ = γ(1, v,~0) , u2 = uµuνηµν = −1 . (2)

The Lorentz factor γ = 1/
√

1− v2 is expressed in terms of the local fluid velocity v. The
equations of motion of the fluid are the conservation laws for the stress tensor and the
charge current

∂µT
µν = 0 , ∂µJ

µ = 0 . (3)

These equations need to be closed by an equation of state (EoS) relating pressure to
energy and charge density. In what follows we neglect the dependence of the pressure on
the charge density and assume the fluid to be conformally invariant,

P(E) = c2
sE , c2

s =
1

d
, (4)

where cs is the speed of sound and d the number of spatial dimensions. We can now state
the Riemann problem which is an initial value problem for (3) with piecewise constant
initial conditions at time t = 0 for the energy and charge density with a planar discontinuity
at x = 0,

E(0, x) =

{
EC ∀x < 0

EH ∀x > 0
, n(0, x) =

{
nC ∀x < 0

nH ∀x > 0
. (5)

In the following we assume, without loss of generality, EC < EH , where subscripts C and
H denote the “cold” and the “hot” side of the system, respectively.

2.1 Double shock solution

One possible solution of the Riemann problem consists of two shock discontinuities moving
in opposite directions. In this case, there are three different regions, for which the stress
tensor is given by

TµνC =

(
EC 0
0 c2

sEC

)
, TµνS = c2

sES
(
(1 + 1/c2

s)u
µuν + ηµν

)
, TµνH =

(
EH 0
0 c2

sEH

)
,

(6)
respectively. In this subsection we suppress the d − 1 transverse coordinates for clarity.
The middle region, labelled by subscript S for steady state, is described by a fluid with
local restframe energy density ES moving with velocity vS ,

uµ = γ(1, vS) , γ = 1/
√

1− v2
S . (7)

The charge density can in addition develop a so-called contact discontinuity in the central
region where the pressure and the velocity are continuous. This means that the solution for
the charge density consists of four different regions in general, with local charge densities
of nC , n1, n2 and nH such that

JµC = nC

(
1
0

)
, Jµ1 = n1γ

(
1
vS

)
, Jµ2 = n2γ

(
1
vS

)
, JµH = nH

(
1
0

)
. (8)
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Energy-momentum and charge conservation then imply the Rankine-Hugoniot jump con-
ditions (for details see Appendix A) for the stress tensor at the left and right moving
shock,

vC(T ttC − T ttS ) =T xtC − T xtS vC(T txC − T txS ) = T xxC − T xxS
vH(T ttS − T ttH) =T xtS − T xtH vH(T txS − T txH ) = T xxS − T xxH , (9)

and correspondingly for the charge densities

vC(J tC − J t1) = JxC − Jx1 , vH(J t2 − J tH) = Jx2 − JxH . (10)

These conditions determine the charge densities n1 and n2, the shock velocities vC and
vH , as well as the boost velocity vS and energy density ES of the NESS region in terms of
the boundary conditions nC , nH , EC and EH ,

vS =− cs(1− χ)√
(1 + c2

sχ)(c2
s + χ)

vC =− cs

√
1 + c2

sχ

c2
s + χ

vH =cs

√
c2
s + χ

1 + c2
sχ

ES =
√
ECEH n1 =nC

√
1 + c2

sχ

χ(c2
s + χ)

n2 =nH

√
χ(c2

s + χ)

1 + c2
sχ

, (11)

where χ =
√
EC/EH . In Fig. 1 we plot the energy and charge density for different values

of χ for d = 3. In Fig. 2 (left) we show the velocities as a function of χ for d = 3, whereby
we note that 1 > vH > cs and cs > vC . We express the solutions as functions of the ratio
of the x-coordinate in which the shocks propagate and time t, x/t. Note that on the right
of both plots, the value of the quantities shown is one since E = EH . For special ratios of
the initial charge and energy densities

nC
nH

=
χ(c2

s + χ)

1 + c2
sχ

, (12)

the contact discontinuity of the charge is absent, implying n1 = n2. For d = 3 spatial
dimensions and nC/nH = 1/2, this is the case for χ = (

√
73 − 1)/12, as also shown in

Fig. 1. For smaller values of χ the charge density becomes non-monotonic: the difference
in the energy densities generates such a strong flow of charge that charge builds up next
to the cold bath.
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Figure 1: Energy density (left) and charge density (right) of the double shock solution. The
energy plot on the left shows the two heat baths and the NESS region. The charge plot displays
the additional contact discontinuity that is absent for the middle value of χ given.

As noted in [20, 24], a shock wave moving into a region of higher energy density and
pressure locally violates the entropy condition

∂µs
µ ≥ 0 , (13)
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where sµ = E+P
T uµ = kE

1

1+c2s uµ is the entropy density current and k a constant that
depends on the microscopic properties of the theory. To discuss this in the present context,
we first evaluate the jump conditions for the entropy current across the shock waves. Using
the entropy currents in the left, central and right regions

sµC = kE
1

1+c2s
C

(
1
0

)
, sµS = kE

1

1+c2s
S γ

(
1
vS

)
, sµH = kE

1

1+c2s
H

(
1
0

)
, (14)

we find the jump conditions for the entropy current across the shock waves to be

∆sC = vC
(
stC − stS

)
− (sxC − sxS) = kcsE

1

1+c2s
H

(
χ

3

2(1+c2s) − χ
2

1+c2s

√
1 + c2

sχ

c2
s + χ

)
, (15)

∆sH = vH
(
stS − stH

)
− (sxS − sxH) = kcsE

1

1+c2s
H

(
χ

1−c2s
2(1+c2s) −

√
c2
s + χ

1 + c2
sχ

)
. (16)

For the number of spatial dimensions d > 1, these expressions reveal that both shocks
violate the jump condition for the entropy current, i.e. ∆sC/H 6= 0. However, as shown in
Fig. 2 (right), the right-moving shock (orange curve) gives ∆sH < 0. This shock, moving
in the direction of the hot bath, hence violates the local second law of thermodynamics.
Recently, [29] (based on [30–34]) managed to proof the local second law of thermodynamics
under the very general assumptions of unitarity and hence we have to regard this right-
moving shock as an unphysical solution. In fact, in the next subsection we show how this
problem can be resolved by replacing the unphysical shock with a physical rarefaction
wave.

vS
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cs
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+
c
s

2

/(
k
c
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Figure 2: (left) The velocities of the steady state flow (vS), and the left- and right-moving shock
velocities vC and vH in comparison to the sound velocity cs for d = 3 according to Eqn. (11). (right)
Change in entropy across the left and right moving shock waves, as function of χ =

√
EC/EH .

‘Cold’ refers to the left-moving and ‘Hot’ to the right-moving shock. The normalisation factor is
motivated by (15).

The entropy flow across the right-moving shock is negative and monotonic. In the
limit χ→ 0, it is bounded by

lim
χ→0

∆sH = −k c2
s (EH)

1

1+c2s . (17)

The flow across the left-moving shock is completely suppressed in this limit , i.e. limχ→0 ∆sC =
0. Interestingly, for each dimension d the entropy flow across the left mover has a local
maximum at some χ∗d for which the shock produces a maximum amount of entropy. For
d = 2, 3, 4, the corresponding value of χd is given by

χ∗2 ≈ 0.1301 , χ∗3 ≈ 0.1397 , χ∗4 ≈ 0.1428 , . . . . (18)
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2.2 Shock + rarefaction wave solution

As is well known in the literature on the Riemann problem for some time already, [35], a
physical solution that - unlike the shock solution discussed above - is locally in thermal
equilibrium and respects the second law of thermodynamics is the rarefaction wave. For
the setup considered here, this was discussed for instance in [20]. A rarefaction wave is
a smooth, self-similar solution that by construction saturates the entropy condition (13)
and depends on x and t only via ξ = x/t. In the ξ coordinate, the conservation equations
for the stress tensor become

ξ
d

dξ

(
E 1 + c2

sv
2

1− v2

)
=

d

dξ

(
Ev 1 + c2

s

1− v2

)
, ξ

d

dξ

(
Ev 1 + c2

s

1− v2

)
=

d

dξ

(
E c

2
s + v2

1− v2

)
, (19)

which can be rearranged to (
0
0

)
= M

(
d
dξE
d
dξv

)
. (20)

This system of ordinary differential equations has solutions different from E = v = 0 if
and only if

detM =
(
c2
sξ

2 − 1
)
v(ξ)2 − 2

(
c2
s − 1

)
ξv(ξ) + c2

s − ξ2 = 0 , (21)

which gives a relation for the local velocity in terms of ξ,

v(ξ) =
ξ ± cs
1± csξ

, (22)

where the plus (minus) sign corresponds to a left (right) moving wave. Next we demand
local entropy conservation ∂µs

µ = 0 for the right-moving wave,

ξ
d

dξ

 E
1

1+c2s

√
1− v2

 =
d

dξ

 vE
1

1+c2s

√
1− v2

 . (23)

From this we can express the energy density of the rarefaction wave as

E = EH
(

(cs − 1)(ξ + 1)

(cs + 1)(ξ − 1)

) 1−c2s
2cs

, (24)

where we fixed the integration constant by E(ξ = cs) = EH . Similarly the conservation
law for the charge current

ξ
d

dξ

(
n√

1− v2

)
=

d

dξ

(
nv√

1− v2

)
, (25)

can be solved for the charge density in the rarefaction region

n(ξ) = nH

(
(1 + ξ)(1− cs)
(1− ξ)(1 + cs)

)cs/2
, (26)

where we used (22) to express the local velocity and n(ξ = cs) = nH to fix the integration
constant. By combining (22) and (24) we can express the energy density in the central
region in terms of the flow velocity

ES = EH
(

1 + vS
1− vS

) 1−c2s
2cs

. (27)
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An analogous expression can be derived from the Rankine-Hugoniot jump conditions (9)
for the left moving shock wave

vC

(
EC − ES

1 + c2
sv

2
S

1− v2
S

)
= −ES(1 + c2

s)vS
1− v2

S

, −vC
ES(1 + c2

s)vS
1− v2

S

= c2
sEC −

ES(v2
S + c2

S)

1− v2
S

,

(28)

from which we obtain

ES = EC
2c2
s + v2

S + c4
sv

2
S ± vS(1 + c2

s)
√

4c2
s + (c2

s − 1)2v2
S

2c2
s(1− v2

S)
, (29)

vC =

v2
S + c2

s

(
1− (1− v2

S)
(

1−vS
1+vS

) 1+c2s
2cs χ2

)
vS(1 + c2

s)
, (30)

where the solution with the minus (plus) sign corresponds to a right (left) moving rarefac-
tion wave. Combining (27) and (29) fixes a unique value for vS which we are only able to
determine numerically. With this in mind, we express the charge densities in terms of vS ,

n1 = nC
(v2
S − 1)χ2

(
1−vS
1+vS

) c2s+1

2cs + 1 +
v2S
c2s√

1− v2
S

(
1− χ2

(
1+vS
1+vS

) c2s+1
2cs

) , n2 = nH

(
(1 + vS)(1− cs)
(1− vS)(1 + cs)

)cs/2
. (31)

In Fig. 3 we plot some examples for energy and charge density. In contrast to the
shock+shock case the rarefaction wave provides a continuous solution near the hot bath.
From the figure it seems that χ = (

√
73−1)/12 again provides a solution without a contact

discontinuity, but in fact a careful numerical comparison shows that n1 − n2 ≈ 0.001092.
We also note that the direction the rarefaction wave travels is solely determined by the
presence of the hot bath, and does not depend on nH being higher or smaller than nC ,
which is clear from Fig. 3 (right). Similarly, the contact discontinuity does not get replaced
by a rarefaction wave, as in the steady state rest frame it is just a connection between
two baths of different charge densities. In practice charge will diffuse from the higher to
the lower charge density, but this is a process that is parametrically slower than the shock
and rarefaction waves (see also Section 5). All these solutions are now potential physical
solutions that satisfy the second law. In the remainder of this work, we will investigate
these further from a microscopic perspective.
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Figure 3: Energy density (left) and charge density (middle and right) for the shock+rarefaction
wave solution. The rarefaction wave moving to the hot bath appears on the right. This figure is
to be compared to the two-shock solution displayed in Fig. 1.

9



SciPost Physics Submission

3 Riemann problem in holography

3.1 Holographic model

The holographic dual model that we use is five-dimensional Einstein-Maxwell gravity with
negative cosmological constant. This allows us to study the dynamics of the stress tensor
and a conserved U(1) current in the dual field theory. The action of the gravity system is
given by

S =
1

16πGN

∫
M

d5x
√
−g
(
R+

12

L2
− e2L2

4
FMNF

MN

)
+

1

8πGN

∫
∂Mε

d4x
√
−γK + Sct ,

(32)
where GN is Newton’s constant, L is the asymptotic AdS radius, R is the Ricci scalar
of the bulk geometry on a manifold M with flat boundary ∂M and bulk metric gMN ,
FMN ≡ ∂[MAN ] is the electromagnetic field strength with AM the U(1) gauge field in the
bulk and the coupling constant e controls the strength of the electromagnetic field. The
trace of the extrinsic curvature K of the induced metric γµν and the counter-term [36,37]
are to be evaluated at a radial slice ∂Mε close to the boundary and are necessary to render
the variational principle well-defined and the on-shell action finite.

The action (32) can be viewed as a consistent truncation of the dimensional reduction
of type IIB supergravity on S5. In this case the dual gauge theory is N = 4 Super Yang-
Mills and the U(1) current arises from the R-symmetry of this theory.1 In the context of
this work we see (32) simply as bottom-up model that incorporates the dynamics of the
stress tensor and a conserved U(1) current in the dual gauge theory.

The equations of motion that follow from (32) are

RMN +
4

L2
gMN =

e2L2

2

(
FMPF

P
N − 1

6
gMNF

2

)
, (33a)

∇MFMN = 0 . (33b)

The ground state of the theory is given by a constant gauge field configuration on
AdS5,

ds2 =
L2

u2

(
du2 + ηµνdxµdxν

)
, AM = const. (34)

A general solution of the Maxwell equations near the AdS boundary takes in axial gauge
(Au = 0) the form

Aµ(u, xµ) = a(0)
µ (xµ) + u2

(
a(1)
µ (xµ) + ã(1)

µ (xµ) log u
)

+ . . . , (35)

where the coefficient a
(0)
µ (xµ) is identified as coupling of the global U(1) current Jµ(xµ) in

the quantum field theory. A constant a
(1)
µ (xµ) is then, by the holographic dictionary (see

e.g. [39]), identified as chemical potential µ for a global charge density ρ

µ ≡ a(0)
t , 〈J t〉 = ρ ≡ − e2L4

8πGN
a

(1)
t . (36)

In the following we will be interested in solutions dual to field theory states in the grand
canonical ensemble, i.e., thermodynamic states characterised by fixed chemical potential

1The full five-dimensional action for this truncation would include a Chern-Simons term (see e.g. [38]),
but this will play no role in our analysis and we have therefore omitted it.
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and temperature. Such states are dual to Reissner–Nordström (RN) black branes,

ds2
RN =

L2

u2

(
−f(u)dt2 + f(u)−1du2 + d~x2

)
, At(u) = µ

(
1− u2

u2
h

)
(37a)

f(u) = 1−M u4

u4
h

+Q2 u
6

u6
h

, M = 1 +Q2 , Q2 =
µ2u2

h e
2

3L2
, (37b)

where u = uh is the radial location of the horizon defined by f(uh) = 0 and f(0) = 1 fixes
the boundary metric to Minkowski. The temperature of the field theory state dual to the
geometry (37) is given by the Hawking temperature of the horizon. It can be derived by
demanding periodicity β of time circles in the Euclidean continuation of the line element,

T =
1

β
= −f

′(uh)

4π
=

2−Q2

2πuh
. (38)

By the Bekenstein–Hawking formula [40, 41], the entropy density is proportional to the
horizon area,

s =
L3

4Gu3
h

. (39)

The charge density then follows from using (37a) in (36),

ρ =
e2L2µ

8πGNu2
h

. (40)

RN-geometries (37) with different T and µ will serve as initial conditions to the left and
to the right of the interface in the Riemann problem and at the same time provide the
necessary boundary conditions at spatial infinity to solve the initial value problem. In
the next section we explain that NESSs emerging from the interface are dual to Lorentz
transformed (boosted) versions of (37) and present the method we use to simulate their
formation.

3.2 Holographic steady states

The holographic duality maps NESSs in the field theory to boosted black brane geometries
on the gravity side [15],

ds2
NESS =

L2

u2

[
du2f(u)−1 − f(u) (dt cosh η − dz sinh η)2 + (dz cosh η − dt sinh η)2 + dx2

⊥

]
,

(41)
where the rapidity η is related to the fluid velocity vs in the steady state by η = tanh−1 vs.
In contrast to Sec. 2, where we denote the spatial coordinate in which the waves propagate
by x, we denote the corresponding coordinate here and in the following by z. At this
point it is important to emphasise that explicit relations between the temperature, fluid
velocity, etc. of the holographic steady state and the properties of the hot and cold
reservoirs are only known in d = 2 [20]. The temperatures of the cold and the hot reservoir
(TC,H) depend on the corresponding chemical potentials by (38) (µC,H) and radial horizon
positions (uh(C,H)),

TC,H =
2−Q2

C,H

2πuh(C,H)
=

1

πuh(C,H)
−
µ2
C,Huh(C,H)

6π

e2

L2
. (42)

11
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The dual geometry for the steady state regime can be approximated as

ds2 =


ds2

RN,C if z . vCt ,

ds2
NESS if vCt . z . vHt ,

ds2
RN,H if z & vHt ,

(43)

where ds2
RN,C (ds2

RN,H) is (37) for T = TC(TH) and µ = µC(µH). In the hydrodynamic
limit, the left (vC) and right (vH) moving wave velocities are well approximated by (28)
with (22) evaluated for ξ = cs. It is important to note that if χ is not close to unity we
expect more complicated solutions that in particular include the rarefaction waves intro-
duced in Sec. 2.2. Similarly we can arrive at approximate expressions for the gauge field
using the formulae in Sec. 2.2. This is only an approximate solution, because the precise
form of the metric in the vicinity of the left and right moving waves is not available in
closed form. In Sec. 3 we present numerical evidence that the expressions for tempera-
ture, fluid velocity and charge density derived for the shock+rarefaction solution in Sec. 2
are, at sufficiently late time, in excellent agreement with the results of the holographic
simulation.

To study the Riemann problem in full detail we construct the solution numerically.
This will allow us to analyse the precise shapes of the propagating waves, how they change
in time and how they compare to the analytically constructed shock and rarefaction wave
solution in ideal hydrodynamics. For this we make the simplifying assumption that the
strength of the electromagnetic field is small, i.e. eL � 1. In this limit the backreaction
of the gauge field to the metric is subleading and the right hand side of (33a) vanishes.
This means our charged results are leading order results in a small eL expansion.

For the metric and the gauge field we follow [42–45] and use the ansätze

ds2
EF = −Cdt2 + 2drdt+ 2Gdzdt+ S2

(
eBdx2

⊥ + e−2Bdz2
)
, (44a)

AM = Atdt+Azdz , (44b)

where all functions depend on the Eddington–Finkelstein like time coordinate t, the lon-
gitudinal coordinate z and the AdS bulk coordinate r, but not on the two transverse
coordinates x⊥. The explicit form of the corresponding equations of motion for the metric
can for example be found in [42,46]. The Maxwell equations with (44b) as ansatz for the
gauge field can be written as

S3F ′rt =− e2B
(
Frz

(
S
(

2B̃ −G′
)

+ S̃
)

+ SF̃rz

)
− 3S2FrtS

′ , (45a)

S3F ′tz =
1

4
S2
(
− 2S

(
F̃rt + Frz

(
CB′ + 2Ḃ + C ′

)
+ 2B′ (GFrt + Ftz)

+ CF ′rz + FrtG
′)+ S′ (−CFrz + 10GFrt − 2Ftz)− 2ṠFrz

)
+ e2BG

(
Frz

(
S
(

2B̃ −G′
)

+ S̃
)

+ SF̃rz

)
, (45b)

4SḞrz =− 2S
(
−F̃rt + Frz

(
CB′ + 2Ḃ + C ′

)
+ 2B′ (GFrt + Ftz) + FrtG

′
)

− S′ (CFrz + 2GFrt + 2Ftz)− 2ṠFrz , (45c)

2S3Ḟrt =e2B
(
S
(

2G
(

2B̃Frt + F̃rt

)
+ 4B̃Ftz + CF̃rz + 2G̃Frt + 2F̃tz

)
+

Frz

(
2S
(
CB̃ + C̃ + Ġ

)
+ CS̃

)
+ 2S̃ (GFrt + Ftz)

)
− 6S2ṠFrt , (45d)

where ḣ = ∂th+ 1
2Ch

′ and h̃ = ∂zh−Gh′. Once Frz is specified the first three equations

can be used to respectively solve for Frt, Ftz and Ḟrz, after which it is possible to obtain

12



SciPost Physics Submission

the time derivative of Frz. The last equation is a constraint equation and can be used to
monitor the accuracy of the numerical evolution. Close to the boundary, the solution for
the metric and the gauge field can be expressed as power series in the radial coordinate,

C(r, t, z) = (r + α)2 − 2∂tα+
c4

r2
+
∂tc4 − 4αc4

2r3
+O

(
r−4
)
, (46a)

B(r, t, z) =
b4
r4

+
15∂tb4 + 2∂zf4 − 60αb4

15r5
+O

(
r−6
)
, (46b)

S(r, t, z) = r + α− 4∂zg4 + 3∂tc4

60r4
+O(r−5), (46c)

G(r, t, z) = ∂zα+
g4

r2
+

4∂tg4 + ∂zc4 − 10αg4

5r3
+O(r−4), (46d)

At(r, t, z) =
at,2
r2

+
2
3∂zaz,2 − 2αat,2

r3
+O(r−4), (46e)

Az(r, t, z) =
az,2
r2

+
−6αaz,2 − ∂zat,2 + 3∂taz,2

3r3
+O(r−4), (46f)

where the function α(t, z) is a residual gauge freedom of the ansatz (44a) which we used
to fix the horizon at r = 1. The functions c4(t, z), b4(t, z), g4(t, z), at,2(t, z) and az,2(t, z)
are not determined by the near boundary analysis, but need to be extracted from a full
bulk solution. The charge density and the holographic stress tensor in the field theory are
then given by [44,46,47]

〈Jµ〉 =
e2L4

4πGN


ρ
σ
0
0

 , 〈Tµν〉 =
1

4πGN


E S 0 0
S P‖ 0 0

0 0 P⊥ 0
0 0 0 P⊥

 , (47)

where we defined the reduced variables for charge density (ρ), charge flow (σ), energy
density (E), pressure in longitudinal (P‖) and transverse (P⊥) directions and momentum
flux (S) 2. These quantities are related to the expansion coefficients as follows

ρ =
1

2
at,2 , σ =

1

2
az,2 , E = −3

4
a4 , P‖ = −1

4
a4−2b4 , P⊥ = −1

4
a4+b4 , S = −f4 .

(48)
For N = 4 SU(Nc) SYM we have GN = π/2N2

c .
For the metric ansatz (44a) consistent initial conditions can be obtained by specifying

B(r, 0, z), as well as the functions a4(0, z), f4(0, z) and α(z) that determine the stress-
energy tensor at initial time t = 0. The initial conditions for the electromagnetic field
strength can be parametrised by Fry(r, 0, z) = ∂rAy and the normalisable mode of At,
which we call at,2(t, z). The initial conditions B(r, 0, z) and Fry(r, 0, z) can be used
to start with a far-from-equilibrium state, which then relaxes in a time of order 1/T ,
where T is the local temperature at the moment at which hydrodynamics becomes a good
description (hydrodynamisation) [48]. In this work, however, we are interested in much
longer time scales and we therefore set the initial values of these two functions to zero,
i.e., their values in thermal equilibrium. The initial conditions for the cold and hot bath
are then solely determined by the corresponding energy and charge densities, for which

2We note that in this section we switched to the z-coordinate to describe the boundary direction, to
make it explicit that we work in a 3+1D boundary field theory. Also note that in Section 2 E referred to
the energy density in the local restframe, whereas to be consistent with previous literature we here use E
for the energy density in the lab frame. For the hot and cold bath the lab frame is the local restframe, but
for the steady state and rarefaction waves it is necessary to compare to T tt in (1).
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we choose

E(z) = EC + (EH − EC) θ
(
z − 1

4zmax

)
θ
(

3
4zmax − z

)
, (49a)

ρ(z) = ρC + (ρH − ρC) θ
(
z − 1

4zmax

)
θ
(

3
4zmax − z

)
, (49b)

where we define θ(x) = 1
2

(
1 + tanh 3

2x
)

to be a smooth step function and zmax denotes
the size of the computational domain in z-direction. Since we neglect the back-reaction
of the gauge field to the geometry our results are conformally invariant and the ratio of
the energy densities of the hot and cold baths simply equals the fourth root of the ratio of

the corresponding temperatures EHEC = 4

√
TH
TC

. To make the scale invariance of our results

manifest we multiply axis labels and legends by appropriate powers of m = πTC , with
TC = (4

3EC)
1/4/π being the temperature of the cold bath.

We close this section with some comments on the numerical scheme we use to solve
the dual gravity problem. We impose periodic boundary conditions at z = 0 = zmax. In
the longitudinal direction we use a Fourier decomposition with 1500 grid points, whereas
in the holographic direction we use a pseudo-spectral representation with 28 grid points.
Our longest simulations use zmax = 80π and run from t = 0 till t = 80 with a time step
of δt = 0.0012. In all our plots we shift one of the hot/cold transitions to the origin and
make sure to only show times where the periodic boundary conditions do not yet affect the
results. At every time step we apply low-pass filters to the time derivatives, whereby for
the holographic direction we interpolate on a grid with 2/3 of the original grid points and
subsequently interpolate back to main grid (see [44]). For the longitudinal direction we
keep the lowest 30% of the Fourier modes used. Using Mathematica 11 with the scheme
presented in [46] this gives a runtime on a standard laptop of about one week for each of
the runs presented.

4 Holographic entanglement entropy

We consider entanglement entropy as a measure for the entanglement of states associated
to different spatial subregions R in quantum field theory [49],

SR = −TrRρ̂R log ρ̂R , (50)

where ρ̂R = TrR̄ρ̂ denotes the reduced density matrix obtained by performing on the full
density matrix ρ̂ a partial trace over the degrees of freedom outside R. For simplicity
we will assume spatial subregions that are adapted to the symmetries of the Riemann
problem. This means we choose for R at every constant time-slice (t = t0) spatial stripes
of finite width ` in z-direction and assume very large extend `⊥ � ` in the two other
spatial directions x1

⊥ and x2
⊥,

R± = {t = t0, −`/2 ≤ z ∓∆z ≤ `/2, |x1
⊥| = |x2

⊥| ≤ `⊥} . (51)

In practice we assume `⊥ →∞ and define two different regions R± centered at a distance
±∆z to the left and to the right of the initial location z = 0 of the interface in the Riemann
problem. In Fig. 4 we show a typical arrangement of entangling regions that we use in our
numerical simulations. The two entangling regions with ` = 1, shown in blue and red, are
centered at ∆z = ±4. We also show a typical initial (solid black) and late time (dashed
black) profile of the energy density. Our motivation for this specific placement of the two
regions is that both regions reside initially entirely within either the cold or the hot bath,
whereas at late time they both reside entirely within the NESS region. This will allow us
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Figure 4: Entangling regions: blue and red stripes are typical arrangements of entangling regions
of size ` = 1 that initially reside entirely within the cold and hot bath, respectively. Black solid
and black dashed lines are the spatial distributions of the energy density at early (t = 2) and late
(t = 40) time in units of m = πTC .

to independently monitor the propagation of entanglement by the shock wave in the left
region and the propagation of entanglement by the rarefaction wave in the right region
and compare the results.

In the limit ` → ∞ the entangling region (51) covers an entire spacelike slice of
Minkowski space and for thermal equilibrium states (50) equals the von Neumann en-
tropy of the full density matrix ρ̂R = ρ̂, i.e., the thermodynamic entropy of a quantum
state in thermal equilibrium. For the NESS system the situation is more subtle since at
finite t the NESS is still of finite size. The expectation, however, is that after taking t→∞
first it is possible to take the large size limit `→∞ with the region falling entirely in the
NESS regime. In that case it should be possible to identify the entanglement entropy with
the thermal entropy of the boosted thermal state.

Explicit solutions for entanglement entropy are only available in exceptional cases
such as free QFTs [50] or for 1+1 dimenstional CFTs in time-independent [51] and time
dependent settings [52]. The holographic duality replaces the field theory computation
of entanglement entropy by a much simpler extremisation problem for the area AR of a
codimension two surface in the bulk [18],

SR =
AR
4GN

. (52)

We emphasise that this was originally proposed in a static setting [17], where the extremi-
sation reduces to a minimal surface problem, but was later extended to the time-dependent
setting we use here. The relevant surface shares its boundary with the entangling region
R in the field theory and extremises the area functional in the bulk theory

AR[X] =

∫
d3σ

√
Det (∂aXM∂bXNgMN ) , s.t. ∂X = ∂R . (53)

In general the surface embedding XM = XM (σa) is parametrised by three intrinsic co-
ordinates σa. In our context, it is convenient to switch from (44a) to the inverse radial
coordinate u = 1/r for which the boundary is located at u = 0,

ds2 = gMNdxMdxN = −Cdt2 − 2dudt

u2
+ 2Gdzdt+ S2

(
eBdx2

⊥ + e−2Bdz2
)
, (54)

with {C,G, S,B} depend on {u, t, z}. The entangling regions (51) do not break translation
symmetry in x1,2

⊥ -directions of the line element (54), hence also not of the Riemann problem
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in the boundary theory. Since we neglect the backreaction of the gauge field to the
geometry, it does not enter in the calculation of the entanglement entropy. Analogously
to [53] we can parametrise the bulk surface as follows,

XM (σ, x1
⊥, x

2
⊥) = {Xα(σ), x1

⊥, x
2
⊥} , Xα(σ) = {U(σ), T (σ), Z(σ)} . (55)

This choice simplifies the area functional considerably, because the integration over the
perpendicular directions x1,2

⊥ can be performed explicitly and gives an overall factor

`⊥/2∫∫
−`⊥/2

d~x⊥ = `2⊥ . (56)

The remaining expression takes the form of a geodesic action,

AR[X] = `2⊥

∫
dσ

√
ḡαβ(U(σ), T (σ), Z(σ))

dXα

dσ

dXβ

dσ
s.t. Xα(0) = {0, t0,±`/2} , (57)

where the metric ḡαβ is related by a conformal factor to a three dimensional subspace
(α, β = {u, t, z}) of the bulk metric (44a)

d̄s
2

= ḡαβdxαdxβ = S(u, t, z)4e2B(u,t,z)gαβdxαdxβ . (58)

The equations of motion that follow from δAR = 0 are given by the geodesic equation

d2Xα

dr2
+ Γαβγ

dXβ

dr

dXγ

dr
= J

dXα

dr
, (59)

where Γαβγ is the Levi-Cività connection associated to ḡαβ and is meant to be evaluated
at the location of the surface Xα(σ); the friction term on the right hand side includes the

Jacobian J = d2τ(σ)
dσ2 /dτ(σ)

dσ that originates from transforming from the affine parameter τ

defined by dXα(τ)
dτ

dXβ(τ)
dτ ḡαβ = 1 to the non-affine parameter σ. For numerical convenience,

we choose a parametrisation that leads to the following Jacobian (for details see [54])

J(σ) =
−51σ + 145σ3 − 205σ5 + 159σ7 − 65σ9 + 11σ11

(2− σ2)(1− σ2)(3− 3σ2 + σ4)(1− σ2 + σ4)
. (60)

The area functional (53) for the stripe region (51) suffers from two kinds of infinities.
The first one is due to the infinite overall factor `2⊥ due to the infinitely long sides of
the stripe in transverse direction. Since this factor contains no dynamical information
we tame this infinity by considering in practice the entanglement entropy per transverse
area SR/`

2
⊥. The second one is less trivial and due to the fact that extremal surfaces in

the HRT-prescription of the holographic entanglement entropy (HEE) extend all the way
to the asymptotic boundary, which has infinite distance from any point in the interior.
To regularise the entanglement entropy we subtract the vacuum value, i.e., the area of
surfaces in Poincaré patch AdSd+1 with appropriate conformal pre-factor,

d̄s
2
0 = ḡ

(0)
αβdxαdxβ =

1

u2(d−2)

(
dt2 − 2dtdu+ dz2

)
. (61)

The solution for the extremal surface embedding of stripe regions can be expressed in
closed form

U0(σ) = u∗(1− σ2) , (62a)

Z0(σ) = sgn(σ)

(
− `

2
+
U0(σ)4

dud−1
∗

2F2

[
1
2 ,

d
2(d−1) ,

3d−8
2d−6 ;

(
U(σ)

u∗

)2(d−1)
])

, (62b)

T0(σ) = t0 − U0(σ) , (62c)
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where the u∗ = 2`√
π

Γ
(

1
d(d−1)

)
/Γ
(

d
2(d−1)

)
is the location of the turning point of the surface

in radial direction. The corresponding cut-off regularised surface area is given by

Acut
0 = `d−2

⊥

∫ σ+

σ−

dσ
1

Ud−1
0

√
−Ṫ 2

0 − 2U̇0Ṫ0 + Ż2
0 , (63)

where the cutoff at fixed radial location u = ucut is realized by the following bounds on
the non-affine parameter

σ± = ±
√

1− ucut

u∗
. (64)

Together with the cut-off regularised expression for the gravity dual of the Riemann prob-
lem

Acut = `2⊥

∫ σ+

σ−

dσS2eB
√
−AṪ 2 − 2

U2
U̇ Ṫ + 2FṪ Ż + S2e−2BŻ2 (65)

we can express the finite vacuum subtracted entanglement entropy per transverse area as

Sren =
Acut −Acut

0

4GN`2⊥
. (66)

In practice, we solve (59) using a relaxation algorithm [27,54] using a cut-off ucut = 0.075
and verified this value is small enough to not affect the results presented.

5 Results

5.1 Energy and charge density

In this section we present our results for the evolution of energy and charge density ob-
tained from the holographic calculation. The global features of the evolution are similar
to those of the analyticalal shock+rarefaction wave solution of the Riemann problem ob-
tained in Sec. 2.2. In Fig. 5 we plot the time evolution of the energy and charge density
for an initial cold/hot ratio of χ =

√
EC/EH =

√
nC/nH = 9/16 for both the energy

and charge density. In the plot for the energy density (left) we clearly see a NESS region

Figure 5: Time evolution of the energy density (left) and charge density (right) for χ = 9/16 and
nC/nH = χ2. A steady state region forms between the shock (moving towards the cold bath) and
the rarefaction wave (moving towards the hot bath). Two regions with constant charge density
can be identified within the steady state region.

emerging briefly after t = 0 between two wave fronts that propagate from z = 0 towards
z = ±∞. In the plot on the right we show the evolution of the charge density. Two
regions with constant but different charge densities emerge inside the NESS region, which
indicates the formation of a contact discontinuity.
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Figure 6: Evolution of the energy density (top) and charge density (bottom). Coloured lines
are snapshots at various different times of the holographic simulation. For comparison we show
in the upper panel results of the analytical shock+shock (black dotted, at t = 40 and 80) and
shock+rarefaction (black dashed) solution as well as a numerical solution of the ideal hydrody-
namics equations with smooth initial data (black solid, at t = 20, 40 and 60).

It is interesting to compare the result of the holographic simulation to the solution of
the corresponding Riemann problem in ideal hydrodynamics. For this we show in Fig. 6
profiles of the energy density and charge density of the holographic result at various times
together with the (unphysical) shock+shock and (physical) shock+rarefaction solutions
presented in Sec. 2. In addition we include a numerical solution obtained from an ideal
hydrodynamic simulation with smooth initial conditions for the energy density

E(z) =
EC + EH

2
+
EH − EC

2
tanh

(
zmax

20
sin

2πz

zmax

)
. (67)

The factor 20 in the denominator of (67) is a convenient numerical choice for realizing the
initial conditions such that the evolution resembles the holographic result at t = 20. The
shapes of the shock and the rarefaction wave in the ideal hydro simulation depend on the
initial details of the transition region. However, we have checked that the energy density
in the steady state region is insensitive to this choice. In Appendix B we verify that also
the properties of the NESS region in the holographic system do not depend on how the
initial conditions are set up.

Although the initial conditions of the hydrodynamic simulation are perfectly smooth,
the wave travelling towards the cold side steepens significantly as time progresses until the
applicability of ideal hydrodynamics and eventually also the numerical evolution breaks
down. The formation of shocks from smooth initial data is a well known phenomenon
in non-viscous hydrodynamics and faithful simulations require shock-capturing methods
which we did not attempt to implement. The wave that moves towards the hot side on the
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Figure 7: Snapshots of the local fluid velocity (solid) and charge velocity (dashed) at four different
times for the same evolution as in Fig. 5. The bottom panel shows a magnification of the upper
panel, where the velocity profile of the charge diffusion at the contact discontinuity of the two
charge plateaus is clearly visible.

other hand remains smooth and becomes wider with time. Coloured lines present snap-
shots of the holographic result, which at early times resemble the hydrodynamic solution,
but at late times become closer to the shock+rarefaction solution. The energy density in
the NESS steady state region agrees accurately with the result from the ideal hydrody-
namic calculation, but differs slightly from the analytical shock+shock (dotted) solution.
To be precise, using (27) we find ES = 625/432 ≈ 1.44676, ES ≈ 1.4450 and ES ≈ 1.446
for the shock+shock, shock+rarefaction and ideal hydrodynamics case respectively and
ES ≈ 1.4435 in the holographic simulation. By varying the z-location of the probe point
we estimate the numerical accuracy of the holographic result to be 0.001, which means
that within numerical accuracy the holographic result agrees with the shock+rarefaction
solution as presented in Section 2.

In the bottom panel of Fig. 6, we plot profiles of the charge density in the holographic
result (solid coloured lines) at various times together with two dashed lines for times
t = 40 and 80, which have ρ̄1 = 19/16 = 1.1875 and ρ̄2 = 43/27 ≈ 1.5926 obtained from
the analytical double shock solution (11) as well as two dotted lines at ρ̄1 ≈ 1.1866 and
ρ̄2 ≈ 1.5866 of the shock+rarefaction solution (31). We evaluate the full holographic values
of ρ̄1,2 at the point where the z-derivative of ρ̄ is minimised, which at t = 80 happens at
z = −41.29 and z = 10.26, where ρ̄1 ≈ 1.1845 and ρ̄1 ≈ 1.5823 respectively. In contrast to
the analytical solution the contact discontinuity (see Sec. 2 and also [20]) manifests in the
holographic model as a smooth crossover region that progressively broadens with time.

Fig. 7 shows the local fluid velocity, as determined by diagonalising the full stress-
energy tensor (solid), as well as the velocity of the charge as defined by vcharge = Jz/Jt
(dashed). As expected from a solution that is locally in equilibrium the two velocities are
virtually indistinguishable. In particular this implies that in the rest frame of the steady
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Figure 8: Time evolution of the energy density (left) and charge density (right) as a function of
ξ = z/t. At the latest time we managed to obtain (mt = 80) the solution closely resembles the
shock+rarefaction solution found in Section 2.
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Figure 9: Left: Diffusion of the charge density in a heat bath with constant temperature. Right:
Evolution of the charge diffusion width ∆diff(t). The blue line is the result extracted form the
numerical simulation and the black line the analytical fit.

state the charge is almost at rest throughout the contact discontinuity. Nevertheless, due
to diffusion the charge does smooth out, and a small velocity profile is visible (Fig. 7
bottom, see also below.

The time evolution of the charge and energy density and in particular the rarefaction
wave can be better understood by showing the profiles as a function of the scaled coordinate
ξ = z/t, as shown in Fig. 8. Since the width of the shock is approximately constant in
time, in the scaled coordinates the shock indeed resembles more closely a true shock (i.e. a
discontinuity), both for the energy and charge density. Also the rarefaction wave resembles
the analytical rarefaction wave from Section 2 more closely at later times, but with the
limited time span available it is not clear if it would converge to the analytical result in
the late time limit. The charge density again clearly shows the two plateaus at late times,
and also here it is clear that the diffusion at the contact discontinuity becomes a true
discontinuity in the late time limit in these scaled coordinates.

This contact discontinuity can be studied more precisely by studying a related but
separate problem where we set up of two baths of charge at different chemical potential
in a space at constant temperature. We simulated this situation by using the initial
condition of Fig. 5, with the sole difference that we made both temperatures equal to
the temperature of the cold bath. The results are shown in Fig. 9. Indeed, we find that
the diffusion of charge is qualitatively different as compared to the shock and rarefaction
waves. To quantify the difference we define the (time dependent) charge diffusion width
∆diff(t) as the spatial distance between the two points where the charge density is at 25%
and 75% in between the two baths with lower and higher charge, respectively. On the right
hand side of Fig. 9 we plot the time evolution of ∆diff which clearly follows the expected√
t scaling of a diffusion process. In rescaled coordinates this indeed implies the contact

discontinuity becomes a true discontinuity on a timescale of
√
t.

As explained in Sec. 2 the profile of the charge density depends on both the ratio
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Figure 10: We show a snapshot of the charge density at t = 40 for a temperature ratio of χ = 16/9
and three different ratios of the charge density, with nH/nC being 256/81, 64/27 and 1 for the blue,
red and green curves respectively. In general there are two regions of constant charged, determined
solely by χ and nH/nC . These two regions almost coincide for the 64/27 ratio, but are different
for the blue and green evolutions. For comparison we again show the analytical shock+rarefaction
solutions of Section 2 (dashed).

of the χ as well as nC/nH . In Fig. 10 we show charge densities at t = 40 for nC/nH
equal to 256/81 (blue, same as Fig. 5), 64/27 (red) and 1 (green). The ratio 64/27 equals
χ−3/2, which implies that the third root of the charge density has the same ratio as the
fourth root of the energy density, as suggested by dimensional analysis. Indeed this ratio
approximately leads to a charge profile with only one constant charge region, as opposed
to the other two solutions, where two separate charged regions are present. Even if the
charge densities in the hot and cold bath are equal (nC = nH) there is still a non-trivial
charge flow and density, as driven by the steady state of the energy density.

One crucial feature of the NESS is that in particular the shock is a far-from-equilibrium
effect that cannot be described by hydrodynamics. To quantify this we show in Fig. 11
(left) the transverse pressure over the energy density in the local restframe (again deter-
mined by diagonalising the stress-energy tensor). In ideal hydrodynamics of a conformal
theory this ratio PT /Eloc = 1/3, however in particular near the shock region significant
deviations are visible (see also solid lines in Fig. 11 (right)). For this we use the hydrody-
namic constituent equations

Tµν = ε uµuν + p[ε]∆µν − η[ε]σµν − ζ[ε]∆µν∇µuµ +O(∂2), where (68)

σµν = ∆µα∆νβ(∇αuβ +∇βuα)− 2

3
∆µν∆αβ∇αuβ, (69)

∆µν = gµν + uµuν , (70)

together with our determined local energy density ε, pressure p[ε] = ε/3, fluid velocity
uµ as well as the ratio η/s = 1/4π and ζ = 0, we also compare the transverse pressure
with the transverse pressure as determined from these first order viscous hydrodynamics,
as shown as dashed lines in Fig. 11 (right). Indeed the evolution of the rarefaction wave
can be entirely described using viscous hydrodynamics, however for the shock there are
significant differences.

Numerically it is more challenging to evolve profiles with χ < 9/16. However, we
were able to evolve some shorter runs stably, albeit on smaller grids and with a shorter
evolution time. Results for the energy density and the hydrodynamic comparison at t = 12
are shown in Fig. 12 for values of χ of 9/16 (blue, as in Fig. 5), 4/9 (red) and 16/49 (green).
Interestingly, also for these larger ratios the rarefaction wave is always well described by
hydrodynamics, though with larger viscous corrections as is apparent from the comparison
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Figure 11: (left) For the evolution of Fig. 6 we show the ratio of the transverse pressure over the
energy density in the local restframe together with the shock velocities (black, dashed) computed
from Eqn. (11). Most of the evolution is close to thermal equilibrium (PT = Eloc/3, in green in the
colour coding), but around the shocks there are significant deviations. (right) For several times we
present the deviations with respect to ideal hydro (solid) and first order viscous hydrodynamics
(dashed), normalised to the transverse pressure itself. The entire evolution can be described by
viscous hydrodynamics with better than 1% accuracy.

with ideal hydrodynamics. For the shock region deviations from viscous hydrodynamics
become larger as one increases the ratio between the hot and cold baths.

5.2 Shock evolution and entropy production

One of the main motivations in studying the NESS in holography is a complete descrip-
tion of its dynamics beyond the hydrodynamic limit, which is particularly relevant for
the evolution of the shocks. References [15, 20] showed that at intermediate times the
shock widens diffusively as governed by viscous hydrodynamics, with characteristic width
wshock ∝

√
t. At some time, however, the entropy production within hydrodynamics is

not large enough to be consistent with the total entropy production and the shock cannot
continue to diffuse. The typical timescale for this transition was estimated to be equal to

tdiff ∝
η

sTδ2
, (71)

where δ = TH/TC − 1 is assumed to be small. After this time it is unknown if the shock
settles down to a soliton-like object of constant width, or if it continues to widen at a
smaller rate. In Fig. 13 (left) we show snapshots of the time derivative of the energy
density for the evolution of the shocks in Fig. 5 (which has δ = 1/3). In the right plot we
show the full-width at half-maximum of the shocks shown in the left plot as a function of
time. Indeed, at early times the width grows diffusively (red dashed, with a small off-set
that is subleading, but can also be partly explained by the initial profile). Around t ≈ 20
the width starts growing more slowly, in qualitative agreement with the estimate provided
in (71) (note that T = m/π). All our numerical data points indicate that this width keeps
growing logarithmically in time, but we note that it is nevertheless also possible to fit
a function of the form C + ae−bt, which would settle down to the soliton-like object as
conjectured in [20].

As discussed in section 2, solutions to the Riemann problem in ideal hydrodynamics are
not unique and physically sensible solutions need to be selected by imposing additional
constraints, such as the entropy condition (13). Solutions to the holographic Riemann
problem are unique and conditions such as (13) are encoded in the equations of motion
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Figure 12: (top) Energy density for different heat bath temperature ratios together with the
shock+rarefaction from Section 2 (dashed). (bottom) Comparison with ideal (solid) and viscous
(dashed) hydrodynamics. For larger ratios ideal hydrodynamics becomes a worse description for the
rarefaction wave, though viscous hydrodynamics is applicable. The shock region has increasingly
large deviations from viscous hydrodynamics as the ratio is increased.
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Figure 13: We show the change in shape of the outgoing waves from the time derivative of the
energy density. Colours from yellow to red correspond to snapshots of the energy density profile
from early to late times. Both, the left moving and the right moving waves disperse. On the right
we show the time evolution of the full-width at half-maximum together with different numerical
fits, corresponding to diffusive growth (red dashed), logarithmic growth (blue solid), or a possible
exponential decay to a shock of constant width at late times (green dotted).

of the dual gravity problem [55]. In Fig. 14 we show snapshots of the divergence of the
entropy current as a function of time, where sµ = 4Eloc

3T uµ, with uµ the local fluid velocity
and Eloc the energy density in the local restframe. The entropy production is negligible in
the NESS region, but a significant amount of entropy is produced by the outgoing waves.
As expected from [29] the divergence of the local entropy current is however everywhere
positive. Fig. 14 (right) shows the integral of the divergence of the entropy current over
the waves that travel towards the cold (blue dots) and the hot side (red dots). The entropy
produced by the wave moving towards the cold bath slowly decays to a constant value,
similar to a shock wave, and can be compared to the analytical solution (14), which for
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Figure 14: We show the divergence of the entropy current for several times (left) as well as
the integral over the left (shock, blue) and right (rarefaction, red) regions (right). The entropy
production in the shock settles down to a constant value, whereas for the rarefaction wave the
entropy production decays to zero in a power-law fashion.

χ = 9/16 gives ∫
z<0

dz ∂µs
µ =

π√
3m3

(
χ−1/4 −

√
χ(3 + χ)

1 + 3χ

)
≈ 0.00610. (72)

At the end of the simulation we find an entropy production of about 0.007, which is still
higher than the value obtained from the shock+shock solution of the Riemann problem
cited above, but the extrapolation shown in Fig. 14 predicts for t → ∞ a significantly
smaller final value of about 0.0037. On the other hand, the entropy production of the
wave moving towards the hot side (red dots in Fig. 14 (right)) decays to zero with a power
law indicating that this wave indeed becomes at late time a rarefaction wave which has
zero entropy production per definition.

Lastly, we can compare the total entropy production directly with the holographic
dual by evaluating the area density of the apparent horizon A as shown in Fig. 15 (left),
whereby we use that SAH = A/4GN , and in analogy with (47) we show sAH ≡ S/4πGN .
In Fig. 15 (right) we show the spatial integral of the time derivative of the apparent
horizon density and it can be seen that the time evolution matches well with the sum of
the entropy production of the shock and rarefaction waves from the hydrodynamic results
shown in Fig. 14.
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Figure 15: We show the entropy density as determined from the area of the apparent horizon
(left) as well as time derivative of the spatial integral (right). The entropy production is to a good
approximation given by the sum of the entropy production of the shock and rarefaction waves as
derived in Fig. 14, and also the late time value (4.07, from the red dashed fit on the right) matches
well with the hydrodynamic result shown in Fig. 14 (3.77).

5.3 Extremal surfaces and entanglement entropy

Let us now discuss our numerical results for the entanglement entropy in the NESS system.
It is useful to first analyse some features of extremal surfaces from which we compute the
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entanglement entropy. Fig. 16 shows a typical family of such surfaces together with the
radial position of the apparent horizon in a gauge where α = 0. In the top (bottom) row,
we display the results for entangling regions of width ` = 2 (` = 1.5) centered at z = −4
(z = +4) corresponding to the blue (red) region in Fig. 4. Surfaces with small ` (not
shown here) reside mostly in the asymptotic AdS part of the geometry which explains the
universal (state-independent) UV scaling of entanglement entropy. Surfaces with large `
reach deep into the bulk and are therefore sensitive to the geometry close to the horizon
and lead to state-dependent contributions in the IR scaling of the entanglement entropy
(see similar discussion in [56]).

In static and boosted AdS black brane geometries, extremal surfaces that are connected
to the boundary cannot enter the region beyond the horizon [57]. However, in time-
dependent geometries such as the one considered here, the situation is different and there
are examples known, where extremal surfaces cross the apparent horizon and therefore
also the event horizon in regions where the spacetime changes rapidly in time [58]. The
holographic NESS system in our work is similar to a system of colliding shock waves
[53], where geodesics dual to two-point functions could cross the horizon, but no such
extremal surfaces were found. While we have not attempted to construct examples for
such geodesics, we expect the situation to be similar in the holographic dual of the NESS
system.

A further effect is the warping of surfaces close to the apparent horizon in the boosted
part of the geometry, i.e. in the part that corresponds to the NESS in the boundary theory.
This effect is clearly visible in our example with ` = 2 (less pronounced for ` = 1.5) in
the plots in the middle of Fig. 16, in which we zoom into the region close to the horizon
where the geometry transitions from the static to the boosted black brane geometry.

In addition, we show in the right panel of Fig. 16 cross-sections of surfaces in the u-z
plane at early (t = 2) and late time (t = 40), i.e., surfaces that reside entirely in the static
and in the boosted black brane geometry, respectively. At early times, when the surfaces
reside entirely in the static part of the geometry, the embedding function is symmetric
with respect to the center of the entangling region (located at z = ±4). At late times this
symmetry is clearly broken by velocity of the steady state.

In Fig. 17 we show the renormalised entanglement entropy as a function of time at
these locations for several different lengths of the interval, ranging from ` = 0.6 till ` = 2.0,
together with the energy density as also shown in Fig. 6. The renormalised entropy is
computed as a difference to its vacuum value, for which we use a cut-off in the holographic
coordinate at ucut = 0.075, in a gauge where α = 0 (see also Sec. 3 and [53]). Since
the entanglement entropy of the infinite strip region has both UV and IR divergences, we
choose to show a linear transformation such that its renormalised version Sren agrees with
the energy density in both the black brane and the steady state regime: aSren + b = E ,
which in particular means the curves are insensitive to our choice of regularisation. The
plots in Fig. 17 hence compare the shape of the entanglement entropy with the shape
of the energy density both during the passing of the shock and rarefaction waves. From
the insets it is clear that the entanglement entropy is slightly delayed as compared to the
energy density, in particular for shorter intervals. This delay is expected, as the surfaces
probe into the past geometry (Fig. 16), even though for larger intervals we note that the
entangling geometry starts to feel the wave earlier, since the region is bounded by z± `/2.

Fig. 18 shows the renormalised entanglement entropy as a function of time for intervals
of ` = 1 located at eleven different locations ranging from z = −4 till z = −14 (left figure,
shock region) and from z = 4 till z = 14 (right figure, rarefaction region). Here the same
linear transformation is used as in Fig. 17 for ` = 1. As time progresses the shock (left) or
rarefaction (right) wave passes through the interval, after which the interval settles down
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Figure 16: Cross-sections of extremal surfaces for entangling regions of size ` = 2 centered at
z = −4 (top, cold region) and of size ` = 1.5 centered at z = 4 (bottom, hot region) in the
geometry with χ =

√
EC/EH = 9/16. The plots on the left show surfaces at various different

boundary times and their position relative to the apparent horizon whose radial position is shown
in black and regions beyond the horizon are shown in gray. In the middle, we zoom into the
transition region close to the horizon between static and boosted black brane. On the right, we
show cross-sections of surfaces in the u-z plane at early (t = 2) and late time (t = 40).

to the steady state regime. The values of the entanglement entropy in the cold, steady
state and hot bath regions are given by 0.466, 0.835 and 1.351 respectively, as can also
be analytically computed [59]. We again find a small delay of the entanglement entropy
evolution, which is more pronounced for the rarefaction case.

The time evolution of the entanglement entropy received some recent attention as a
probe of equilibration towards a thermal state. After perturbing or quenching a quantum
state, the entanglement entropy will saturate to its final value in a time tS that is at
least tS ≥ R/vB [60], with R the radius of the largest sphere that can be inscribed in
the entangling region and vB the butterfly velocity that characterises chaotic growth of
quantum operators (for our case of a neutral holographic plasma vB =

√
d/2(d− 1) in d

spacetime dimensions). The start of this equilibration process, also called entanglement
tsunami [61], is characterised by the entanglement velocity, whereby SEE(t) = seqAvEt,
with seq the equilibrium entropy density, A the area of the boundary of the entangling re-
gion and where this equation defines the entanglement velocity vE . For neutral holographic
plasmas it was found that [61]

vE =
√
d(d− 2)1/2−1/d/(2[d− 1])1−1/d (73)

and it was shown that for any theory vE ≤ vB [60].
For the case of the steady state formation, a simple approximation of vE is possible

when the entanglement equilibration is much faster than the timescale of the perturbation
of the state [16]. For the shock/rarefaction regions considered here, this would be the case
when the respective shock and rarefaction velocities are much slower than vE . In that
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case the time evolution of the HEE can be approximated by the time evolution of the
equilibrium entropy density, which in the local restframe is just proportional to T d. In
this approximation the analogy of the entanglement velocity is given by [16]

vav,C/H = vC/H

(
1−

T dC/H

cosh(θ)T d

)
, (74)

where θ = arctanh(vS) is the boost factor associated to the steady state region. As
discussed for the case of two shock waves in [16], when χ → 0 this velocity violates the
bound on tS mentioned above for d > 2 spacetime dimensions. For χ→ 0 a full holographic
calculation is therefore necessary, extending the results for intermediate values of χ shown
here in Figs. 17 and 18. Our small time delay of the HEE compared to the energy density
can indeed be interpreted as the need to study the full HEE instead of the equilibrium
entropy density. Unfortunately in our setting it is numerically difficult to probe small
enough χ and large enough entangling regions to truly investigate the butterfly bound
tS ≥ R/vB. We leave this to a future investigation. A promising approach for this is to
use membrane theory [60,62].

Figure 17: We show the energy density at z = −4 (shock regime, left) and z = 4 (rarefaction
regime, right) together with the time evolution of the holographic entanglement entropy SEE

for different lengths. Since the SEE is sensitive to UV regularisation and length dependence we
apply a linear transformation such that at early time (hot/cold) and late time (steady state) the
entanglement entropy agrees with the energy density. After this rescaling the curves agree almost
exactly, although shorter lengths that are more sensitive to regions closer to the boundary have a
small delay (see insets).

Figure 18: Similarly to Figure 17, for ` = 1 we now show the energy density (solid) as well as the
rescaled HEE (dashed, the rescaling parameters are the same as in Figure 17 for ` = 1) for different
positions of the entangling region, varying from −4 till −14 (left, shock region) and from 4 till 14
(right, rarefaction region). Note that the rescaling is the same for all curves, which reaffirms that
the evolution of the HEE is almost entirely determined by the evolution of the energy density.
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We end this section with an attempt to characterise the differences between shock
and rarefaction waves in the NESS system with a new quantity that is inspired by the
entanglement temperature.

In the limit where the entangling region is small compared to the length scale as given
by the energy density (meaning `d � E) changes in entanglement entropy and the energy
density satisfy a universal relation that is analogous to the first law of thermodynamics
(dE = TdS) and is therefore called first law of entanglement entropy [63]

∆ER = Tent∆SR , (75)

where Tent is the entanglement temperature, ∆SR is the variation of the entanglement
entropy associated to the region R and ∆ER is variation of the integral of the energy
density over R. In this small size limit the entanglement temperature depends only on
the theory and the shape of the chosen subregion, with

Tent = c/` . (76)

For stripe shaped subregions (51) and thermal states the constant c can be expressed in
closed form [63]

c =
2(d2 − 1)Γ

(
1
2 + 1

d−1

)
Γ
(

d
2(d−1)

)2

√
πΓ
(

1
2(d−1)

)2
Γ
(

1
d−1

) , (77)

while in the limit `→∞ the entanglement temperature becomes equal to the thermody-
namic temperature Tent = T .

Inspired by (75) we define the dynamic entanglement temperature as the ratio of the
total energy and the renormalised entanglement entropy inside the entangling region

T dyn
ent =

∫
R dz〈T tt(t, z)〉

Sren(t)
. (78)

The quantity (78) is well-defined for dynamic states and reduces for static states in the

small ` limit to the entanglement temperature defined by (75). We compute T dyn
ent in the

NESS with χ =
√
EC/EH = 9/16 for entangling regions that are passed by shock and

rarefaction waves. It turns out T dyn
ent behaves qualitatively different when either a shock or

a rarefaction wave passes the region. The results for three different sizes (` = 0.6, 1, 1.5)
of the entangling region are shown in Fig. 19. For these lengths (76) implies Tent =
0.703, 0.422, 0.281 respectively, and note that we have TC = 1/π ≈ 0.318, TS ≈ 0.367
and TH = 4/3π ≈ 0.424. From the figure it is clear that for ` = 0.6 the dynamic
entanglement temperature is closer to the small region limit (Eqn. (76)), whereas for
` = 1.5 the result is closer to the large region limit (the physical temperature), and we see
that the dynamic entanglement temperature is always higher than either of them. One
curious feature happens when a rarefaction wave passes a smaller region, in which case
T dyn

ent can be non-monotonic. One reason is that T dyn
ent for ` = 0.6 is larger at late times for

the rarefaction wave, even though the physical temperature has decreased from the hot
temperature towards the lower steady state temperature.

6 Discussion

To the best of our knowledge, our work is the first successful simulation of the dynamic
formation of NESSs in a holographic field theory in four spacetime dimensions. We con-
sidered the evolution of energy and charge densities in particular, as well as the evolution
of entanglement entropy.
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Figure 19: Dynamical entanglement temperature for ` = 0.6 (left), ` = 1 (middle) and ` = 1.5
(right) as function of time, all for the the NESS with χ =

√
EC/EH = 9/16.

Let us recall our main results. Most importantly, our holographic results are consistent
with a solution involving a shock wave travelling towards the cold bath and a rarefaction
wave travelling towards the hot bath, with a steady state region forming in between. The
wave moving towards the cold side approaches a steep, but smooth wave with time in-
dependent profile and finite entropy production at late times. The wave moving towards
the hot side is progressively broadening and approaches a rarefaction wave with zero en-
tropy production at late times. At sufficiently late time the properties of the NESS region
(energy density, charge density, etc) are numerically very close to those of an analytical
shock+rarefaction wave solution (less close to a shock+shock solution) of the Riemann
problem.

For the dynamics of a conserved U(1) charge density, we find that there emerge two
separate plateaus with different charge density inside the NESS region, as expected from
the analogous Riemann problem. In contrast to the Riemann problem however, for which
these plateaus are separated by a discontinuity, in our holographic simulation this transi-
tion region is realised as smooth crossover that broadens in time.

We also investigated the evolution of entanglement entropy of spatial sub-regions re-
gions crossed by our holographic shock and rarefaction waves using the Hubeny-Rangamani-
Takayanagi prescription [18] to determine the HEE in our time dependent setting. Subject
to appropriate normalisation by which the energy density and HEE are chosen to agree in
the NESS and thermal regions, the evolution of the entanglement entropy follows closely
the evolution of the energy density, except for a small time delay that is more pronounced
for the rarefaction wave than for the shock wave. Inspired by the first law of entangle-
ment, we define the dynamical entanglement temperature as the ratio of the entanglement
entropy and the spatial integral over the energy density inside the entangling region.

There are many interesting future directions. A logical extension of the current work
is to turn on the back-reaction of the gauge field to the metric [45]. Physically this implies
that the pressure is not a function of the energy density only in the hydrodynamic regime,
but also depends on the charge density. It would be interesting to see how features such
as the contact discontinuity in the charge density change when the back reaction is taken
into account. Including the back-reaction will also allow to study the relation of the null
energy condition in the gravity dual to the dynamics of the stress tensor in the boundary
theory along the lines of [64].

One could introducing a scalar field [65] with non-trivial potential to study the effect
of conformal symmetry breaking on the properties of the NESS. Another possibility is
to investigate the effect of finite coupling corrections with simulations in Gauss–Bonnet
gravity [66, 67]. It would also be interesting to include transverse flow, in the presence
of which not only the charge density, but also the energy density can develop a contact
discontinuity [68]. Furthermore, it would be interesting to compare our results against
solutions recently obtained from the equations of relativistic hydrodynamics of non-perfect
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fluids [69].
It would be very interesting to study the time evolution of HEE in membrane the-

ory, using [60, 62] as a starting point to study the long time and large scale dynamics
of the entanglement entropy. In that case the extremal surface computation reduces to
a minimisation problem that is much easier to study numerically with e.g. the Surface
Evolver [70]. The current setting could be a perfect playground to employ membrane the-
ory in non-homogeneous settings, as it would be possible to use the analytically available
metric (43) in the shock region. Generally, such a study will provide new information on
velocity bounds for the holographic shock+rarefaction wave solution.

Moreover, it will also be of interest to make contact with the analysis of [71] which
studies NESS using a quasinormal mode approach, in a rather different setup though that
involves a forced flow across obstacles in which inhomogeneous, but time-independent
states form.

Finally, it is highly desirable to numerically probe the far-from-equilibrium dynamics
of the system considered in this paper under more extreme conditions, for χ� 1. Fig. 12
represents our efforts in this direction, but we found it prohibitively hard to numerically
achieve stable time evolution at smaller ratios of the initial energy densities. The question
whether the breakdown of our simulations at small χ is just an artefact of our numerical
scheme or if it indicates a physical instability is currently not clear and deserves further
investigation.
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A Rankine–Hugoniot jump conditions

In this appendix we review the derivation of the Rankine-Hugoniot jump conditions [72–
76]. We start with the following Riemann problem

∂tq(t, x) + ∂xf(q(t, x)) = 0 , q(0, x) =

{
qL ∀x < 0

qR ∀x > 0
, (79)

where q(t, x) is a conserved charge and f(q(t, x)) the associated flux. A discontinuous
solution of (79) can be obtained from the integrated conservation law

∂t

(∫ xS(t)

xL

dx q(t, x) +

∫ xR

xS(t)
dx q(t, x)

)
= −

∫ xR

xL

dx ∂xf(q(t, x)) , (80)

where xS(t) parametrizes the location of the discontinuity at time t and the integration
bounds are chosen such that xL < xS(t) < xR. To simplify the expression on the left hand
side we use Leibniz integral rule

∂t

(∫ b(t)

a(t)
dx g(t, x)

)
= g(t, b(t))

d

dt
b(t)− g(t, a(t))

d

dt
a(t) +

(∫ b(t)

a(t)
dx ∂tg(t, x)

)
. (81)
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Figure 20: Evolution of the energy density for two different initial profiles: c = 3
2 (solid) and c = 1

(dashed). For mt & 4 the evolution is insensitive to the initial condition.

This gives

qLx
′
S(t) + lim

ε→0+

∫ xS(t)−ε

xL

dx ∂tq(t, x)− qRx′S(t) + lim
ε→0+

∫ xR

xS(t)+ε
dx ∂tq(t, x) = −(fR − fL) ,

(82)
where we defined fR/L = f(qL/R). The remaining two integrals vanish when taking the
limits xL → xS(t) − ε and xR → xS(t) + ε. We arrive at the Rankine-Hugoniot jump
condition

vS(qL − qR) = fL − fR , (83)

where vS = x′S(t) is the propagation speed of the shock.

B Sensitivity to initial conditions

Numerically it is difficult to initialize the evolution of our coupled heat baths with a truly
discontinuous step function. In practice we approximate the discontinuous interface by a
smooth function of the form tanh(cz), which in the limit c→∞ converges to the Heaviside
theta function. In the following we verify that the evolution is insensitive to the choice of
the constant c that determines the steepness of the initial interface. For this we compare
in Fig. 20 two evolutions, where solid lines equal the evolution in Fig. 5 and the dashed
lines an evolution with an 1.5 times smaller value of c. At t = 0 the smaller value of c gives
a wider profile, but after a time t & 4 the two simulations are virtually indistinguishable.
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