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Abstract

The hidden order in URu2Si2 remains a compelling mystery after more than
thirty years, with the order parameter still unidentified. One intriguing pro-
posal for the phase has been hastatic order: a symmetry breaking heavy Fermi
liquid with a spinorial hybridization that breaks both single and double time-
reversal symmetry. Hastatic order is the first spinorial, rather than vectorial
order in materials, but previous work has not yet found direct consequences
of the spinorial nature. In this paper, we revisit the hastatic proposal within
Landau-Ginzburg theory. Rather than a single spinorial order parameter
breaking double-time-reversal symmetry, we find two gauge invariant vectorial
orders: the expected composite order with on-site moments, and a new quan-
tity capturing symmetries broken solely by the spinorial nature. We address
the effect of fluctuations and disorder on the tetragonal symmetry breaking,
explaining the absence of in-plane moments in URu2Si2 and predicting a new
transition in transverse field.
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1 Introduction

URu2Si2 is an Ising heavy fermion material that undergoes a phase transition into an
unknown state, known as ”hidden order” (HO) at THO = 17.5K [1–8]. While the large
entropy at the transition suggests a large order parameter [1], no large moments have
ever been found. Translation symmetry is clearly broken [9–11], but other broken sym-
metries [12, 13], particularly tetragonal symmetry are more controversial [14–19], with
apparently conflicting results. The problem has given rise to a number of fascinating the-
oretical proposals [13,20–32], in part driven by the difficulty in determining the appropriate
underlying microscopic model in actinide materials.

A B

A B

Figure 1: (a) Hastatic order arises from valence fluctuations between the U4+ ground
state Γ5 non-Kramers doublet and an excited Γ+

7 Kramers doublet that lead to two-
channel Kondo physics, in which the finite excited state occupation (bσ) breaks SU(2)
channel symmetry. (b) As the order parameter is fundamentally a spinor, distinct spinor
arrangements (color) break different symmetries, even with identical moment structure
(arrows). This can be seen in the two and four sublattice antiferrohastatic phases, which
break time-reversal and inversion symmetries, respectively. (c) Generic phase diagram of
antiferrohastatic order beyond mean-field theory. The spinor amplitude can onset grad-
ually with a coherence temperature T ∗, followed by second order transitions for the two
possible order parameters, ~Ψ representing the moment ordering and ~Φ representing RKKY
hopping induced inter-sublattice correlations, with three ordered phases: ~Ψ only (II), ~Φ
only (III) and mixed (IV ).

Hastatic order was proposed to explain the HO as a symmetry breaking heavy Fermi
liquid, where the order parameter is the hybridization gap itself, and the moments are nat-
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urally suppressed by THO/D, where D is the conduction electron bandwidth [31,33]. This
hybridization is generated by valence fluctuations from a Γ5 non-Kramers doublet ground
state to an excited Kramers doublet. The order parameter may be treated as the con-
densation of a spinor of auxiliary bosons, 〈bjσ〉 representing the excited state occupation.
The amplitude, 〈b†b〉 gives an Ising anisotropic heavy Fermi liquid, capturing hybridiza-
tion gaps [5–8, 34] and heavy masses [1], as well as the Ising anisotropic Fermi surface
magnetization [3, 11, 35, 36] and non-linear susceptibility [4]. The direction, 〈b†~σb〉 breaks
symmetries, and the staggered basal plane order of these excited moments is consistent
with the physics of HO. Several key open questions remain: experimentally, hastatic order
predicts tiny transverse moments, 〈b†~σ⊥b〉 that have not been found in neutrons [37–39], as
well as an associated broken tetragonal symmetry that remains experimentally controver-
sial [14–19,40]; theoretically, hastatic order would be the first spinorial order in materials,
yet thus far all predicted signatures arise from the vectorial composite order parameter,
〈b†~σb〉.

We resolve these questions by developing the Landau-Ginzburg theory for tetragonal
hastatic order with Landau parameters motivated by microscopic theory [31, 41]. In ad-

dition to the on-site moments, 〈b†i~σbi〉, the spinorial order generically requires a second

order parameter associated with intersite interference, ∼ 〈b†i~σbj〉 that captures the double
time-reversal symmetry breaking. We revisit the tetragonal symmetry breaking to find
three relevant couplings with vastly different microscopic magnitudes that reconcile the
experimental literature, and show that weak in-plane anisotropy leads to soft transverse
fluctuations that couple linearly to random strains. These lead to an Imry-Ma-like loss of
tetragonal symmetry breaking beyond a small critical disorder that explains why neutrons
find no basal plane moments, even as µSR and NMR see disordered local fields [42, 43].
The fluctuations can be stiffened by external strain or transverse magnetic fields, predict-
ing an additional ordering transition where the transverse moments develop that should be
observable in neutrons or elastoresistivity under applied strain or large transverse fields.

This paper is organized as follows: we review the microscopic model and introduce the
hastatic spinor in Sec. 2, and construct three gauge-independent quantities that capture
the symmetries broken by hastatic order in Sec. 3. Broken symmetries and moments are
further explored in Sec. 4 and used to derive an effective antiferrohastatic Landau theory
in Sec. 5, where we focus on distinct signatures of tetragonal symmetry breaking and
novel transverse field transitions. In Sec. 6, we examine the effect of fluctuations and
disorder on tetragonal symmetry breaking before concluding in Sec. 7.

2 Microscopic model

The simplest microscopic model for tetragonal hastatic order is the infinite-U two-channel
Anderson model depicted in Fig. 1(a), where local Γ5 non-Kramers moments fluctuate to
an excited Kramers doublet (Γ+

7 ) via two channels of conduction electrons that lie in differ-
ent tetragonal irreducible representations, Γ6 and Γ−7 . As we focus on the phenomenology,
we take a schematic version of this Hamiltonian that captures the essential details,

H =
∑
k

εkc
†
kσαckσα + ∆E

∑
j

b†jσbjσ +
∑
ij

tf,ijf
†
iαfjα +

∑
j

c†jσαb
†
jσ (V6fjα + V7fj-α) +H.c.

(1)
The first term describes two bands of non-interacting conduction electrons (ckσα) that can
mix with the Γ5 non-Kramers doublet ground state of 5f2 U4+ (fjα) via valence fluctuations
to an excited Kramers doublet (5f1 or 5f3) at energy ∆E (bjσ). The original infinite-U
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model is written in terms of Hubbard operators, which we have already eliminated by
introducing this representation of the excited Kramers doublet by a auxiliary boson bjσ,
and the non-Kramers ground state by a auxiliary fermion, fjσ as derived in Ref. [ [31]]. The
development of hastatic order is represented by the condensation of the auxiliary bosons,
which leads to the development of hybridization gaps and heavy Fermi liquid physics,
in addition to the symmetry breaking aspects discussed in this work. This mean-field is
exact in the large-N limit where the SU(2) pseudospin of the ground state doublet (α)
is generalized to SU(N). Tetragonal symmetry leads to two conduction electron channels
(σ) that hybridize via two different symmetries Γ6 and Γ−7 . We have included an “f-
electron hopping” term, tf that moves auxiliary fermions between sites, but it is important
to note that this is not the bare hopping of the original f-electrons, t0f . Rather it is a
generic emergent term generated by fluctuations. Theoretically, it can be straightforwardly
obtained by decoupling the RKKY interactions explicitly in SU(N) mean-field theory
[44, 45], as in U(1) spin liquids. 1 Excitations are confined to the Hilbert space in Fig.

1(a) by the constraint,
∑

σ b
†
jσbjσ +

∑
α f
†
jαfjα = 1.

A key consequence of this auxiliary particle representation is an emergent U(1) gauge
symmetry:

bjσ → bjσe−iξj , fjα → fjαe−iξj , tf,ij → tf,ije
i(ξi−ξj). (2)

In the large-N limit, there are two non-gauge-invariant order parameters, bjσ and tf,ij .
For simplicity, we always chose a uniform tf,ij that breaks no symmetries on its own. The
hastatic order parameter is naively an SU(2) spinor,

bj = |bj |eiχj
(

cos
θj
2 eiφj/2

sin
θj
2 e−iφj/2

)
. (3)

As the spinor is not gauge invariant, its spinorial nature is washed out by gauge fluctuations
for any finite N , which also affects the gauge dependent tf . As real symmetries are
additionally broken, there are real order parameters, but these must be gauge invariant
combinations of the original gauge dependent quantities.

3 Order parameters

The broken symmetries are captured by gauge invariant order parameters bilinear in bj .
These are vectorial, but carry unmistakable fingerprints of their spinorial origin. As these
break different symmetries, they may develop in stages beyond mean-field theory [see Fig.
2(a)].

• nb,i = 〈b†ibi〉 is the on-site excited state occupation, which breaks no symmetries
and mimics the single-channel Kondo effect, reproducing the heavy Fermi liquid
signatures above THO [1, 7, 34].

• ~Ψi = 〈b†i~σbi〉 are the on-site moments of the excited doublet, which correspond
to the SO(3) composite order parameter of the two-channel Kondo model [46–49].
The arrangement of ~Ψi may break spatial symmetries, leading to ferrohastatic (FH)
or antiferrohastatic (AFH) order. In tetragonal symmetry, ~Ψ is reducible, with
~Ψ = Ψz ⊕ ~Ψ⊥ = mΓ+

2 ⊕mΓ+
5 . mΓ+

i labels the different irreducible representations
(irreps) that preserve inversion (+), translation (Γ) and break time-reversal (m);
here these are the dipolar moments, 〈Jz〉 (mΓ+

2 ) and 〈 ~J⊥〉 (mΓ+
5 ).

1Alternately tf may be found by treating the constrained hopping of the original f-electrons, which pick
up additional auxiliary boson correlations, tf,ij ∼ t0f 〈b†i bj〉.
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• ~Φij = tf,ij〈b†i~σbj〉 captures additional symmetries broken by the arrangement of the
spinors, which generate interference between different sites, as shown in the diagram
in region III of Fig. 1(c). This interference is described by the complex ~Φ, whose
real and imaginary parts have different symmetries. ~Ψ is contained in Re~Φ ⊗ Im~Φ,
allowing a third order coupling. ~Φ is absent for FH order, but is generic for AFH
order. tf is required for gauge invariance, and consequentially ~Φ is smaller than ~Ψ
by tf/D, where D is the conduction electron bandwidth. Note that the emergent tf
is proportional to THO.

Note that the original hastatic proposal [31] has only ~Ψ, and does not actually break
double-time-reversal symmetry. The original hybridization structure had four sublattices,
naively breaking inversion symmetry. The additional signs were absorbed into the f -
fermions via a gauge transformation, and the transformed fs were assumed to have a
simple tf hopping, which implies that the original, untransformed fs had an inversion
symmetry breaking tf hopping. Essentially, the symmetry breaking of the hybridization

and the f-hopping canceled to give a singlet Φ, while ~Ψ remained. The resulting dispersion
was doubly degenerate, reflecting the double-time-reversal symmetry. In principle, this
phase is always possible, but there is no a priori reason to expect it to be favored over the
spinorial phases with both ~Ψ and ~Φ. Its Landau-Ginzburg physics is fully captured by ~Ψ.

4 Broken symmetries and moments

Now we discuss these order parameters in the context of URu2Si2. The hidden order is
thought to have the same wave-vector as the antiferromagnetism found under pressure, as
the Fermi surfaces found in de Haas-van Alphen change very little. This order is staggered
between the planes, with Q = Z = [001]. We similarly stagger ~Ψ, with ~Ψ = mZ+

2 ⊕mZ
+
5 ,

which indicates that these moments are staggered by Q. This ~Ψ order corresponds to
multiple spinor arrangements differentiated by ~Φ, see Fig. 1(b) for two examples. Here,
we consider two examples that are also uniform in the plane, but with different ĉ axis
behaviors. First we consider the naive two sublattice (2SL) case, with the spinors on
the two sublattices defined as bA and bB = θbA, where θ = iσ2K is the time-reversal
operator, with K indicating complex conjugation. As these are spinors, θ2bA = −bA,
this order is not invariant under time-reversal followed by translation (or any symmetry
operation). To preserve a time-reversal-like symmetry, four sublattices (4SL) are required,
with bC = θ2bA = −bA and bD = θ3bA = −bB. Both 2SL and 4SL orders are plausible,
with one breaking time-reversal uniformly and the other breaking inversion. Analogues of
both appear in cubic hastatic order [50]. ~Ψ and ~Φ are then,

~Ψ = 〈b†A~σbA〉 − 〈b†B~σbB〉, ~Φ = tf 〈b†A~σbB〉, (4)

with corresponding momentum space versions presented in Appendix A.
We identify ~Φ2SL = (mΓ+

2 ⊕ mΓ+
5 ) ⊕ Z+

5 , and ~Φ4SL = (mZ−2 ⊕ mZ
−
5 ) ⊕ Γ−5 , where

the first (second) terms are the real (imaginary) components. Again, Γ and Z indicate
uniform or c-axis staggered moments, m indicates moments that break time-reversal, and
± indicates moments even or odd under inversion symmetry.

Table 1 gives the four possible order parameters and associated moments in region IV
(where both ~Ψ and ~Φ are nonzero); regions II and III have subsets of these, as ~Φ or ~Ψ are
zero, respectively.

As all region IV phases have an in-plane dipolar component, tetragonal symmetry
breaking is ubiquitous when both ~Ψ and ~Φ are nonzero, even for ~Ψ along ĉ. These moments
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Ψz = mZ+
2

~Ψ⊥ = mZ+
5

staggered mz staggered ~m⊥

2SL [Im~Φ = Z+
5 ] Re~Φ = mΓ+

2 Re~Φ = mΓ+
5

staggered (Qxz, Qyz) uniform ~m⊥ uniform mz

4SL [Im~Φ = Γ−5 ] Re~Φ = mZ−5 Re~Φ = mZ−2
uniform ~p⊥ staggered ~Ω⊥ staggered Ωz

Table 1: Possible AFH phases and associated moments in region IV of Fig. 1. In region II,
only ~Ψ moments are present, while in region III only Re~Φ or Im~Φ moments are nonzero.
m, p,Ω refer to magnetic, electric and toroidal dipoles, respectively, while Q indicates
electric quadrupoles. In-plane moments are susceptible to being washed out by disorder.
The full set of primary and secondary order parameters is given in Appendix C.

are all susceptible to being washed out by disorder, and so we highlight the robust conse-
quences of ~Φ in the ~Ψ⊥ phase, where uniform magnetic dipoles, mz or staggered toroidal
dipoles, Ωz are expected in 2SL and 4SL, respectively. Microscopic theory suggests that
these moments are tiny, ∼ THOtf/D2. Fortunately, Kerr effect or second harmonic gener-
ation measurements should be sufficiently sensitive, and Kerr measurements tantalizingly
suggest that mz develops slightly above THO [12].

5 Antiferrohastatic Landau theory

Having understood the symmetries, we now turn to the Landau theory to discuss the
thermodynamic and other responses. As tf/D suppresses the effects of ~Φ, we focus on

the ~Ψ transition from region I to II. The additional transition to region IV is also sec-
ond order, but is practically undetectable, as the specific heat jump is suppressed by
∼ (tf/D)2 compared to the first jump, and is expected to be within the experimental
noise, . 3mJ mol−1K−1 (see Appendix D). We therefore consider,

FΨ = α⊥(T − T⊥c )|~Ψ⊥|2 +αz(T − T zc )Ψ2
z + u⊥|~Ψ⊥|4 + uzΨ

4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2. (5)

FΨ describes two independent order parameters, Ψz and ~Ψ⊥ that couple quadratically,
and Ψ2

Γ4
= 2ΨxΨy.

The parameter choices are guided by the microscopic calculations [33,41], as discussed
in Appendix E. We know that T⊥c = T zc ≡ THO and that the order parameters repel
(v2 � 1). A first order transition between Ψz and ~Ψ⊥ can be induced by varying uz−u⊥ =
u(p− p0

c); pressure tunes V6/V7, which induces just such a transition microscopically. The
sign of v1 determines the pinning of φ and nature of the tetragonal symmetry breaking.

As tetragonal symmetry is generically broken, we consider secondary ferroquadrupolar
order parameters, RΓ3 , RΓ4 and ~RΓ5 that couple linearly to strain as shown in Appendix
E:

εx2−y2 =
g3RΓ3

c11−c12
, εxy=

g4RΓ4

2c66
, (εxz, εyz)=

g5
~RΓ5

2c44
. (6)

RΓ3 and RΓ4 occur naturally in the Γ5 doublet, and couple to bilinears of ~Ψ⊥: Ψ2
Γ3

=

Ψ2
x −Ψ2

y and Ψ2
Γ4

= 2ΨxΨy, while ~RΓ5 shear strain couples to Ψz
~Ψ⊥. These give,

FR =
∑

i=3,4,5

(
α

(i)
R R

2
Γi + u

(i)
R R

4
Γi

)
, FΨ−R = γ3RΓ3Ψ2

Γ3
+γ4RΓ4Ψ2

Γ4
+γ5Ψz

~Ψ⊥× ~RΓ5 . (7)
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Finally, we consider the coupling to magnetic field, ~h, which has mΓ+
2 ⊕mΓ+

5 symmetry,

like FH order. Bilinears of ~h⊥ also break tetragonal symmetry: h2
Γ3

= h2
x − h2

y and
h2

Γ4
= 2hxhy. The additional free energy terms are,

FΨ-h= u
(1)
h h2

zΨ
2
z+u

(2)
h |~h⊥|

2Ψ2
z+u

(3)
h h

2
z|~Ψ⊥|2+u

(4)
h |~h⊥|

2|~Ψ⊥|2+v
(3)
h h2

Γ3
Ψ2

Γ3
+v

(4)
h h

2
Γ4

Ψ2
Γ4
. (8)

The ferroquadrupolar orders also couple to ~h via FR−h, as given in the Appendix E.
The physics of AFH order can be explored by fixing a set of parameters and mini-

mizing the free energy to obtain temperature, pressure and transverse/longitudinal field
phase diagrams, as well as thermodynamic responses across the various transitions (de-
tails in Appendix E). These quantities compare favorably to the experimental literature
on URu2Si2, where the HO may be identified with AFH⊥ (~Ψ⊥) order, and the antifer-
romagnet (AFM) identified with AFHz (Ψz) order. Remember, symmetry-wise, ~Ψ and
AFM orders are identical, but the microscopic origins give vastly different parameter sets.
Notably, the calculated U 5f2 moments in the AFHz phase are ∼ .5µB, consistent with
neutron measurements [51,52], while the AFH ~Ψ⊥ phase has much smaller in-plane U 5f3

moments . .01µB for a fairly substantial mixed valency (∼ 20%) [31,41].

5.1 Tetragonal symmetry breaking in URu2Si2.

There are two distinct in-plane AFH orders, AFHx2−y2 and AFHxy, with Ψ2
Γ3

Ψ2
Γ4

nonzero,
respectively. This tetragonal symmetry breaking actually has three experimental manifes-
tations with different Landau coefficients: the coupling to the lattice via ferroquadrupolar

order parameters (γ3,4); the coupling to magnetic field (v
(3,4)
h ) that yields anisotropic mag-

netic susceptibilities; and the coupling to an electronic nematic order parameter affecting
the resistivity (ζ3,4, not shown; see Appendix G). The connection to microscopics is par-
ticularly useful here, as the induced electric quadrupolar moments, R3,4 = γ3,4Ψ2

Γ3,4
are

tiny, even when Ψ2
Γ3,4

is relatively large, suggesting that the coupling constants are of or-

der (THO/D)2 ∼ .001. The anisotropic field couplings, v
(3,4)
h are similarly suppressed [33],

although typically found to be an order of magnitude larger microscopically [41]. At the
same time, the tetragonal symmetry breaking near the Fermi surface is of order one, which
would give substantial resistivity anisotropy signatures. As we discuss below, the tetrago-
nal symmetry breaking may be washed out by disorder, but the signals at and above the
transition remain, and tetragonal symmetry breaking may be restored by applied field or
strain.

The coupling to the lattice (γ3,4) manifests both as tiny jumps in the relevant elastic
coefficients that have not been seen [18] (see Appendix F for details), and tiny direc-
tional jumps in the thermal expansion or magnetostriction (see Appendix E); higher order
terms like R2

Γi
|Ψ|2, neglected here are not necessarily small and give kinks in all elas-

tic coefficients [18]. Below the transition, the small ferroquadrupolar moments lead to
a orthorhombic distortion. The experimental evidence here is mixed. One x-ray experi-
ment [15] has observed a Γ4 (=B2g = Fmmm space group) distortion, but other results do
not find a distortion in the HO region, but instead find the opposite (Γ3 = B1g = Immm)
distortion at higher pressures, with TR � THO [17,40] developing rapidly near the critical
pressure between the HO and AFM. As an aside, we can straightforwardly consider this
additional orthorhombicity, shown in Fig. 2(a) by giving RΓ3 a transition temperature
TR3(p) that vanishes at p = pR. This independent orthorhombic transition leads to ad-
ditional transitions within the ~Ψ⊥ phase where φ changes; specific heat and structural
signatures are weak due to the near constant |~Ψ⊥| and small γ3,4, respectively, but the
transition would be visible in elastoresistivity. The close coincidence of orthorhombic and
AFM transitions in pressure would be accidental in this scenario.
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Unlike the small coupling to the lattice, the large coupling to electronic nematicity gives
significant jumps in the elastoresistivity at THO, in m11−m12 (Ψ2

Γ3
), or m66 (Ψ2

Γ4
) [16,19]

(see Appendix G); and Γ4 nematicity captures the cyclotron mass anisotropy with heavier
masses along [110] [53].

1.0

3.0

2.0

4.0

0.0

4.0

2.0

2.0

4.0

1.0

1.0 2.0

1.0

0.0
0.0 1.0

1.0

0.0
0.40.2 0.80.60.00.5 1.5

Figure 2: Transitions in the in-plane moment direction due to field or independent or-
thorhombic order parameters. (a) T −p phase diagram including the onset of independent
orthorhombicity (RΓ3) at p ≈ 0.5; white dashed lines correspond to the original transitions.
(b) T − hx phase diagram at p = 0, showing the field-locking transition. (c) Magnetic
torque curves for different in-plane fields at T/T⊥c = 0.4, with and without small external
εΓ4 strain. (d) Thermal expansion coefficients are sensitive to both transitions, at main
hastatic transition (THO) and the field-locking transition for hx/h

d
x = 0.1 (T ′c ≈ 0.96THO).

Parameters for all plots are given in Appendix E.

The coupling to magnetic field allows the magnetic susceptibility to break tetragonal
symmetry, with either χxx−χyy or χxy nonzero for Ψ2

Γ3,4
, respectively, as found in torque

magnetometry measurements [14]. The magnetic susceptibility [14] and elastoresistivity
[16] data suggest that Γ4 symmetry breaking is favored by v1 > 0.

5.2 Finite field behavior: field locking transition and torque magnetom-
etry

To properly understand the torque magnetometry, we consider finite transverse magnetic
fields in the absence of disorder. As the pinning is weak, it is possible to reorient ~Ψ⊥ via

the quadratic coupling v
(3,4)
h . If the zero-field order is Γ4 (AFHxy), ~h = hxx̂ favors the

“field-locked” Γ3 (AFHx2−y2) at temperatures and fields beyond T ′c(hx). Above T ′c, only
Ψ2

Γ3
is present and Ψ2

Γ4
turns on via a second order transition, as shown in Fig. 2 (b).

To estimate the field-locking transition temperature and model response functions to
lowest order in hx, we use the simplified free energy,

Fm =α⊥(T − T⊥c )|~Ψ⊥|2 + u⊥|~Ψ⊥|4 − v1(Ψ2
Γ4

)2 − v(3)
h h2

Γ3
Ψ2

Γ3
. (9)

We can minimize the free energy in both the high temperature field-locked phase,
where the order parameter is:

Ψ(0)
x |x2−y2 =

√
−
α⊥(T − T⊥c )− v(3)

h h2
x

2u⊥
, Ψ(0)

y |x2−y2 = 0. (10)
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In the lower temperature mixed phase, we acquire an additional component,

Ψ(0)
x |⊥,mix =

√√√√
−
α⊥(T − T⊥c )− v(3)

h h2
x

(
u⊥
v1
− 1
)

4u⊥ − v1
,

Ψ(0)
y |⊥,mix =

√√√√
−
α⊥(T − T⊥c ) + v

(3)
h h2

x

(
u⊥
v1
− 1
)

4u⊥ − v1
. (11)

The second order transition occurs when Ψ
(0)
y becomes nonzero, at

T ′c
T⊥c

=1−
v

(3)
h h2

x

α⊥T⊥c

(
1 +

4u⊥
|v1|

)
≈ 1−

(
hx
hcz

)2

. (12)

We estimate the O(1) prefactor of the field dependent term from the microscopics, as

4u⊥/|v1| ∼ (D/THO)2, while v
(3)
h /(α⊥T

⊥
c ) ∼ v

(3)
h /[u

(3)
h (hcz)

2] ∼ (THO/D)2. This critical
field is thus proportional to the c-axis critical field, hcz ≈ 35T [54], and hx ≥ 10T is likely
required to distinguish the two transitions.

In fact, the overall magnitude of |Ψ| across the phase transition is almost perfectly
smooth, despite large changes in Ψx,y. Standard bulk probes, like specific heat, are there-
fore unlikely to detect this transition. Indeed, the specific heat jumps at two transitions
are given by,

∆C|THO =

(
−T

∂2Fm|x2−y2

∂T 2

)
Tc

, ∆C|T ′c =

(
−T

∂2
(
Fm|⊥,mix − Fm|x2−y2

)
∂T 2

)
T ′c

, (13)

which indicates that the ratio of the two,

∆C|T ′c
∆C|Tc

=
v1

4u⊥ − v1
≈ v1

4u⊥
≈
(
THO
D

)2

, (14)

is very small, and ∆C|T ′c/T
′
c . 0.2mJ mol−1 K−2 will be within experimental noise [55,56]

and thus undetectable.
While standard bulk probes will be blind to this transition, properties sensitive to

either Ψ2
Γ3

or Ψ2
Γ4

, like elastoresistivity will have larger jumps at both transitions. There
will be a jump in m11−m12 at THO and in both m11−m12 and m66 at T ′c. These behave
similarly to the thermal expansion, although the thermal expansion itself is likely difficult
to detect due to the smallness of ferroquadrupolar couplings (γ3,4 ∼ (THO/D)2) and the
possibility of multi-domain cancellation below THO.

To treat these directionally dependent quantities analytically, we include the ferro-
quadrupolar terms,

δFm = α
(3)
R R2

Γ3
+ α

(4)
R R2

Γ4
+ γ3RΓ3Ψ2

Γ3
+ γ4RΓ4Ψ2

Γ4
, (15)

and calculate the thermal expansion coefficients according to Appendix E to leading order
in γ3 and γ4. Using Eq. (10)-(12), we find jumps of the same magnitude (but opposite
sign) in α100 at both the main transition and at the field-locking one:

∆α100|THO,T ′c ≈
γ3

α
(3)
R

(
∂Ψ2

Γ3

∂T

)
THO,T ′c

≈ ± γ3

α
(3)
R

α⊥
2u
, (16)

9
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while α110 shows a (T ′c − T )−1/2 divergence only below the field-locking transition,

∆α110|THO =0, α110|T→T ′c+ = 0,

α110|T→T ′c− ≈
γ4

α
(4)
R

(
∂Ψ2

Γ4

∂T

)
T→T ′c−

≈ γ4

α
(4)
R

α⊥

2
√

2u

√
T⊥c − T ′c
T ′c − T

. (17)

These are calculated numerically for the full Landau free energy and shown in Fig. 2(d).
The pinning also affects the torque magnetometry at lower fields, which is used to

measure the magnetic susceptibility matrix elements. We numerically simulate torque
curves with our full ~Ψ free energy using:

~τ = ~M × ~h = −∂F
∂~h
× ~h, (18)

with results shown in Fig. 2(c). For a system with pure Z4 pinning, hysteretic behavior
is found for hx < hdx(T ). For larger fields, above the field-locking critical field there is no
longer a two-fold component of the torque and the torque curves are entirely four-fold in
character as the order parameter ”follows” the field. Experiments, however, have shown
a substantial, but smooth two-fold anisotropic response, although only in small crystals,
where it has been attributed to the Z2 pinning effects of surface strains. We include these
strains as an external Γ4 strain (εextxy ) that couples as δF extε = −λxyεextxy Ψ2

Γ4
and replaces

the hysteresis by a two-fold anisotropic response similar to the experiment.

6 Fluctuations and disorder

While the weak pinning already affects the mean-field physics, it is even more important
when discussing fluctuations. The in-plane moments are governed by a 3D XY model with
weak Z4 pinning [57], where we estimate the pinning for URu2Si2, v1/u⊥ ∼ (THO/D)2 ∼
.001 for THO/D ∼ 1/30 [31, 41]. The 3D XY model is well known to be disordered by
infinitesimal random fields that couple linearly to the massless transverse fluctuations
[58, 59], and here we will show that the AFH ~Ψ⊥ does couple linearly to random strains:
the fluctuations of Γ4 order (AFHxy) couple to uniform Γ3 strains, and vice versa for Γ3

(AFHx2−y2) order. Thus, we expect the in-plane order to be lost if disorder is stronger
than the pinning [60–62]. It is important to note that hastatic order itself survives, even
in the XY limit, as the moments are not pre-formed, like in the pure XY spin model.
Instead, the hastatic moment magnitude develops (〈b†b〉) and choose to lie in the XY
plane (|~Ψ⊥|) at Tc, with large barriers for out of plane fluctuations. Even the barriers for
translation symmetry breaking are large, and so the AFH nature is also robust. Therefore,
most signatures of hastatic order will remain, with only the tetragonal symmetry breaking
washed out by disorder.

We can examine this process within Landau-Ginzburg theory, where we will focus on
only the ~Ψ terms,

L =c⊥

∣∣∣∇~Ψ⊥∣∣∣2 + cz (∇Ψz)
2 + r⊥|~Ψ⊥|2 + rzΨ

2
z −

∑
i=3,4

(
λiεΓi + v

(i)
h h2

Γi

)
~Ψ2

Γi

+ u⊥|~Ψ⊥|4 + uzΨ
4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2, (19)

where r⊥ = α⊥(T − T⊥c ) and rz = αz(T − T zc ). We expand around the AFHxy ground

state, initially with no external strain, εΓi or field, ~h. We write ~Ψ = (Ψ0 + δΨl+ δΨt,Ψ0 +

10
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δΨl − δΨt, δΨz), with Ψ0 =
√
− r⊥

4u⊥−v1
. Here, we have decomposed the fluctuations into

longitudinal (δΨl), in-plane transverse (δΨt) and out of plane transverse (δΨz). Note that
expanding around the AFHx2−y2 state gives similar results, where the role of Γ3 and Γ4

strains will be swapped. We now expand to second order in the fluctuation fields, using∣∣∣~Ψ⊥∣∣∣2 ≈2Ψ2
0 + 2(δΨl)

2 + 2(δΨt)
2 + 4Ψ0δΨl,∣∣∣~Ψ⊥∣∣∣4 ≈4Ψ4

0 + 24Ψ2
0(δΨl)

2 + 16Ψ3
0δΨl + 8Ψ2

0(δΨt)
2,

(Ψ2
Γ4

)2 ≈Ψ4
0 + 6Ψ2

0(δΨl)
2 − 2Ψ2

0(δΨt)
2 + 4Ψ3

0δΨl. (20)

The three fluctuation fields completely decouple, L = L[δΨz] + L[δΨl] + L[δΨt], with

L[δΨz] =cz (∇δΨz)
2 +

(
rz − 2v2

r⊥
4u⊥ − v1

)
(δΨz)

2,

L[δΨl] =c⊥(∇δΨl)
2 − 2r⊥(δΨl)

2,

L[δΨt] =c⊥(∇δΨt)
2 − r⊥v1

4u⊥ − v1
(δΨt)

2. (21)

The masses of the fluctuation fields can be read off directly, using that an action with
c(∇φ)2 + βφ2 corresponds to scalar field of mass m[φ] =

√
β/c. We find two “heavy”

fluctuation fields with comparable masses (δΨz and δΨl) and one “light” field (δΨt), with
mass ratios,

mz

ml
=

√√√√∣∣∣rz − 2v2
r⊥

4u⊥−v1

∣∣∣
|2r⊥|

c⊥
cz
≈

√(
2v2

4u⊥ − |v1|
− 1

2

)
c⊥
cz
∼ O(1),

mt

ml
=

√
|v1|

4u⊥ − |v1|
≈

√
|v1|
4u⊥

∼ O
(
THO
D

)
. (22)

These fluctuations have large coherence lengths, ξt/ξl = ml/mt ∼ O(D/THO) ∼ 100 unit
cells. 2. Note that a similar analysis can also be done in the AFHz phase including ~Φ,
where ~Φ breaks tetragonal symmetry and has similarly light transverse in-plane fluctua-
tions.

Next we consider the coupling of these light transverse fluctuations to strain,

LΨ−ε = λ3εΓ3Ψ2
Γ3

+ λ4εΓ4Ψ2
Γ4
. (23)

Expanding in terms of light fluctuations using Ψ2
Γ3
≈ 4Ψ0δΨt and Eq. (20) for Ψ2

Γ4
, we

find that the light transverse fluctuations couple linearly to Γ3 strain, as

LδΨt−εΓ3
= 4λ3Ψ0εΓ3δΨt, (24)

to leading order in δΨt. Thus, for [110] pinning, we find that the light transverse fluctu-
ations couple linearly to random εΓ3 strain, but quadratically to random εΓ4 strain; the
situation is reversed for [100] pinning.

Following the original argument of Imry and Ma [58], we consider how random strains
can disorder the in-plane order. While the overall mean 〈εΓ3〉 = 0, the local average
over any finite region of volume Ld is nonzero and scales as 〈∆ε2Γ3

〉 ∼ α2Ld, where α

parameterizes the disorder strength. This finite region can therefore gain an energy aLd/2

(with a ∼ λ3Ψ0α) by forming a domain where δΨt aligns with the average local random

2We expect THO/D to take values in range 0.01-0.03 as it determines the degree of mixed valence.
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field. Domain walls of length L cost an energy cLd−1, where c ∼ m2
t , giving an overall

domain cost, ∆Ed(L) = −aL3/2 + cL2, where we set d = 3. As long as disorder is
sufficiently weak, for L < L0 ∼ (a/c)2, the transverse fluctuations, δΨt align with the
local average strain and order is lost on these shorter length scales, where L0 acts as a
new, larger coherence length. For stronger disorder, the full random field four-state clock
model should be treated [61]; we simply assume that the tetragonal ordering temperature,
TI(α) decreases monotonically from THO for α = 0 to zero at αc, where αc ∼ c ∼ m2

t .
Therefore, as external Γ4 or h[110] are applied, mt increases and TI(~h⊥) can rise from zero
beyond a critical field to eventually meet THO, as shown in Fig. 3. Note that the field-
locking transition previously discussed is completely washed out if the zero-field ground
state is disordered, as the smaller barrier does not increase with field.

If samples are sufficiently disordered, α > αc the in-plane moments will be disordered,
consistent with neutron measurements [37–39] and the absence of χxy and similar signals
in larger samples [14]. Moreover, the remaining random local fields would be consistent
with µSR [63] and NMR [42].

Most interestingly, mt and thus αc can be enhanced substantially by external strain
(εi) or transverse field (~h⊥), making it possible to increase αc > α. This increase causes
a transition where ~Ψ⊥ itself orders, always breaking more symmetries than were applied.
We label this transition with TI(εi,~h⊥) This transition is likely difficult to observe with
non-symmetry-breaking signals, just like the field locking transition, but should be visible
in torque magnetometry, elastoresistivity and neutron diffraction, although the staggered
moments remain very small.

Figure 3: (Top) A cartoon phase diagram in transverse field (hx) with random strain
disorder (α) strong enough to wash out the zero-field tetragonal symmetry breaking. In-
plane moments form at THO, where most hastatic signatures onset, but do not order until
the magnetic field sufficiently increases the largest barrier between minima in F (φ), which
occurs at TI(hx). (Bottom) Sketches of the free energy dependence as a function of φ for
different hx, showing the evolution of the barrier heights.

7 Conclusion

In this paper, we showed that AFH order supports not a single, spinorial order parameter,
〈bjσ〉 but three conventional order parameters: the scalar amplitude, nb that develops as a

crossover and induces a heavy Fermi liquid; the on-site moment, ~Ψ that breaks symmetries
like an AFM, but with significantly different Landau parameters; and intersite interference
terms, ~Φ that isolate the signatures of the underlying spinorial nature. We discussed how

12
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the weak coupling of ~Ψ to the lattice compared to electronic quantities reconciles disparate
experimental measurements of tetragonal symmetry breaking at the transition. Finally,
we argued that weak pinning leads to soft transverse fluctuations that couple linearly to
random strains and may disorder the in-plane moments, without totally destroying the
order. We predict that the moments can be restored by stiffening the fluctuations via
transverse field, with a new transition visible in elastoresistivity and neutron diffraction.

Our Landau-Ginzburg theory is consistent with previous experiments on URu2Si2, and
additionally predicts:

• If ~Φ orders, we expect small, but robust uniform magnetic dipoles, mz or staggered
toroidal dipoles, Ωz in the HO, for 2SL and 4SL orders, respectively; these could
be seen with Kerr effect or second harmonic generation. They may onset above or
below THO, and may be sample dependent, as the barriers between 2SL and 4SL are
weak [41,50].

• We predict new transitions within the HO phase for large transverse fields. If the
disorder is strong enough to wash out the tetragonal symmetry breaking at zero
field, there will generically be an ordering temperature, TI where the applied Z2

pinning overcomes the Imry-Ma disordering mechanism. Alternately, if the disorder
is not so strong, for applied strain, [100] perpendicular to the preferred [110] orien-
tation, there will be a field-locking transition, Tm above which the moments align
with the field and below which they take an intermediate angle. Both transitions
break symmetries, and give the strongest signals in elastoresistivity, not traditional
thermodynamic probes.

Hastatic order is theoretically fascinating, as the spinor order breaks not only single,
but double-time-reversal. Signatures of double-time-reversal symmetry breaking were ab-
sent in previous work, but are now captured by ~Φ. This new order parameter can also be
present in cubic hastatic order, which may be relevant for PrTi2Al20 under pressure [50,64]
or other materials. Future work may explore the interplay of double-time-reversal sym-
metry breaking with superconductivity and defects [49].
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A Momentum space order parameters

In the main text, we derived the antiferrohastatic (AFH) order parameters in real space,
but it is often convenient to derive them instead in momentum space, where the Q of the
order can easily narrow down plausible order parameters. We begin with the real space
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gauge invariant quantities, ~Ψi = 〈b†i~σbi〉 and ~Φij = tf,ij〈b†i~σbj〉 and Fourier transform:

~Ψq =
1

Ns

∑
k

〈b†k+q~σbk〉 =
1

Ns

∑
i

〈b†i~σbi〉eiq·Ri , (25)

~Φq =
1

N2
s

∑
k1,k2

tf,k1k2〈b
†
k1+q~σbk2〉 =

1

N2
s

∑
i,j

tf,ij〈b†i~σbj〉eiq·Ri , (26)

where ~Ri denotes the real space lattice vectors, Ns the number of sites, and we used the
Fourier transforms,

bk =
1√
Ns

∑
i

eik·Ribi,

tf,k1k2 =
1

Ns

∑
i,j

ei(k1·Ri−k2·Rj)tf,ij . (27)

For simplicity, we assume that tf,ij = tf
∑
η δ(Ri+η−Rj) is uniform and only nonzero

between nearest-neighbors indicated by η. This makes tf,k1,k2 = tf
∑
η e−ik1·ηδ(k1 − k2),

and
~Φq =

tf
Ns

∑
k,η

〈b†k+q~σbk〉e−ik·η. (28)

Now we turn to the specific case of URu2Si2, where we assume that the spinor is uniform
in the plane and modulated along ẑ as shown in Fig. 1 in the main text. Knowing that
Q = [001], we expect that only 〈b0〉 is nonzero for uniform, ferrohastatic (FH) order [65],
while for the two sublattice (2SL) AFH order, 〈b0〉 and 〈bQ〉 are nonzero and for the
four sublattice (4SL) AFH, 〈b±Q/2〉 are nonzero (with 〈b0〉 and 〈bQ〉 vanishing due to
the preservation of time-reversal). In simplifying the expressions, we use 2Q = 0. It is
convenient to rewrite these non-zero Fourier components in terms of the real space bA and
bB = θ̂bA for the 2SL/4SL cases:

b0 =
1√
2

(bA + bB) , bQ =
1√
2

(bA − bB) , (29)

bQ
2

=
1√
2

(bA + ibB) , b−Q
2

=
1√
2

(bA − ibB) .

Now we can evaluate the nonzero order parameters ~Ψq and ~Φq. For the FH case, only
~Ψ0 = 〈b†A~σbA〉 is nonzero, as expected. The nonzero contributions for 2SL order are:

~Ψ2SL = Re〈b†Q~σb0〉,

Re~Φ2SL = tf

(
〈b†0~σb0〉 − 〈b†Q~σbQ〉

)
,

Im~Φ2SL = tf Im〈b†Q~σb0〉, (30)

which are equivalent to real space ~Ψ = 〈b†A~σbA〉 − 〈b†B~σbB〉, Re~Φ = Re〈b†A~σbB〉 and

Im~Φ = Im〈b†A~σbB〉, respectively.
The 4SL order parameters are instead:

~Ψ4SL = Re〈b†
−Q

2

~σbQ
2
〉,

Re~Φ4SL = tf Im〈b†Q
2

~σbQ
2
〉,

Im~Φ4SL = tf Im〈b†
−Q

2

~σbQ
2
〉, (31)
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which again correspond exactly to the real space ~Ψ = 〈b†A~σbA〉 − 〈b†B~σbB〉, Re~Φ =

Re〈b†A~σbB〉 and Im~Φ = Im〈b†A~σbB〉, respectively. Thus, the real space and momentum
space analyses agree.

B Composite order parameters

The complications of tetragonal symmetry make it difficult to relate ~Ψ and ~Φ to the more
familiar composite order parameter discussed in the SU(2) two-channel Kondo model [46],
as in tetragonal symmetry the spin and channel SU(2)’s are entangled. Here, we turn to
the simpler two-channel Kondo model, valid for cubic symmetry, and discuss the composite
forms of ~Ψ and ~Φ. The two-channel Kondo-Heisenberg model is [50],

H =
∑
kσα

εkc
†
kσαckσα + JK

∑
jσαβ

c†jσα~ταβcjσβ · ~τf,j + JH
∑
〈ij〉

~τf,i · ~τf,j (32)

Here, ~τf are the local pseudospin moments (in cubic symmetry these originate from the
Γ3 non-Kramers doublet and are mainly quadrupolar), with the pseudospin degrees of
freedom labeled by α, β = ±. The channel degrees of freedom are labeled by σ =↑
, ↓ and channel moments will be labeled by ~σ. The local moments may be represented
by ~τf = 1

2f
†
α~ταβfβ (introducing Einstein summation notation), which leads to a quartic

Hamiltonian. In the SU(N) large-N limit, this Hamiltonian can be decoupled by two kinds

of Hubbard-Stratonovich fields, bjσ ∝ 〈f †jαcjσα〉 and tf,ij ∝ 〈f †iαfjα〉. Now, the composite
order parameter can be roughly derived as,

Ψa
j = 〈: b†jσσ

a
σσ′bjσ′ :〉

∝ 〈: c†jσαfjασ
a
σσ′f

†
jβcjσ′β :〉

∝ 〈: c†jσασ
a
σσ′cjσ′βf

†
jβfjα :〉

∝ 〈: c†jσσ
a
σσ′~τcjσ′ · ~τf,j :〉. (33)

Here, we are evaluating the normal ordered operator, 〈: O :〉, and in the last line we

recombine f †βfα = ~τf · ~τβα, use Trτaτ b = 2δab and suppress the α, β indices in the on-
site conduction electron spin density. Here, we have recovered the familiar composite
order parameter [46], which is interpreted as a channel dependent Kondo singlet - e.g. -
the conduction electron pseudospin density screens the local moment, but has a leftover
SU(2) channel degree of freedom. Now we can perform the same procedure for ~Φ.

Φa
ij = 〈: tf,ijb†iσ~σσσ′bjσ′ :〉

∝ 〈: f †iαfjαc
†
iσβfiβσ

a
σσ′f

†
jγcjσ′γ :〉

∝ 〈: f †iαfiβc
†
iσβσ

a
σσ′cjσ′γf

†
jγfjα :〉

∝ i〈: ~τf,i ·
(
c†iσσ

a
σσ′~τcjσ′ × ~τf,j

)
:〉 (34)

We now use Trτaτ bτ c = 2iεabc. The relevant conduction electron quantity is now a pseu-
dospin dependent hopping term that forms a triple product with the local pseudospin
moments at each site.
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C Secondary order parameters and moments

The primary order parameters (~Ψ and ~Φ) and the associated broken symmetries and
moments were discussed in the main text. Here we report the secondary order parameters
coming from ~Ψ⊗ ~Ψ, ~Φ⊗ ~Ψ and ~Φ⊗ ~Φ, which could be used to construct a more general
AFH free energy. Table 2 contains all of the secondary order parameters, their symmetries
and associated moments, for the FH, simple AFH (tf = 0), 2SL and 4SL phases. There
are no new symmetries that can be constructed from three or more order parameters.
Note that ~Φ is expected to be smaller than ~Ψ by a factor of tf/D, which also suppresses
the secondary moments and makes them more difficult to detect.

~Ψ⊗~Ψ contains only non-time-reversal symmetry breaking electric quadrupole moments
that capture the broken tetragonal symmetry, and have been substantially discussed in
the main text.

~Ψ⊗ ~Φ is substantially redundant with ~Φ itself, however, in the XY AFH phases, there
are additional moments. Particularly, for the 2SL XY phase, the uniform time-reversal
symmetry breaking is additionally indicated by mΓ+

1 (a dotriacontapolar order parameter)
and tetragonal symmetry breaking octupolar moments, mΓ+

3,4. For the 4SL XY phase, the
inversion symmetry breaking is indicated by staggered magnetic quadrupoles that both
break (mZ−3,4) and preserve (mZ−1 ) tetragonal symmetry. These higher order moments
might be useful signatures of the inversion symmetry breaking, as the uniform electric
dipole moments, pz of the phase will be screened in a metal.

~Φ ⊗ ~Φ contains the smallest secondary order parameters, suppressed by (tf/D)2, but
are particularly interesting in the 2SL/4SL Z phases, which would correspond to the large
moment antiferromagnet. Here, the ~Φ ⊗ ~Φ moments break tetragonal symmetry even
though ~Ψ does not, with the same uniform quadrupole moments as contained in ~Ψ⊗ ~Ψ for
the XY phases. Note that these moments are also susceptible to the Imry-Ma disordering
mechanism, and are unlikely to be detectable.

When considering moment directions, it is useful to keep in mind that in the large-N ,
mean-field limit, the angular dependence of the order parameters can be written explicitly
as:

~Ψ = |b|2(sin θ cosφ, sin θ sinφ, cos θ)

Re~Φ = tf |b|2(cos θ cosφ, cos θ sinφ,− sin θ)

Im~Φ = tf |b|2(sinφ,− cosφ, 0). (35)

These are mutually orthogonal, although this condition may be relaxed for finite N ,
where they may also develop at different temperatures. The triple product of these is an
angle-independent scalar, and there are in fact two distinct third order invariants (Γ+

1 ) that

can be constructed in tetragonal symmetry: Ψz(Re~Φ⊥ × Im~Φ)z and ReΦz(~Ψ⊥ × Im~Φ)z,
which are relevant for either the Z or XY phases respectively. These third order terms
cause the hastatic order transition to be first order at the multicritical point, but do not
generically lead to first order transitions and have no other qualitative effects.

D Specific heat jump upon transition to region IV

In the main text, we mainly consider the signatures of TΨ and neglect signatures at
TΦ. Here we justify this. If we assume TΨ > TΦ, the second specific heat jump asso-
ciated with TΦ is expected to be reduced by at least a factor of (tf/D)2, as ∆CV =

α2
Ψ,ΦTHO/uΨ,Φ = αΨ,Φ(Ψ,Φ)2

T=0, and we know ΦT=0 ≈
tf
DΨT=0. We roughly estimate
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tf/D ≈ THO/D ≈ 1/30 for URu2Si2, which means ∆CV |TΦ
. .001∆CV |TΨ

≈ 3mJ/mol K,
within the experimental noise. The moments are also suppressed, but may be detected by
more sensitive techniques.

E Free energy parameter choices and details of the hastatic
transitions

In this section we present the details of the free energy used for numerical calculation
of phase diagrams and thermodynamic response across the AFH transitions. Particular
emphasis is given to the parameter choices made with microscopic results [33] in mind. We
also show additional details of the hastatic order transitions, including the field-locking
transition.

Here, we repeat the free energy given in the main text:

F = FΨ + FR + FΨ−R + FΨ−h + FR−h, (36)

which governs the response of the order parameter, Ψ and internal strains/ferroquadrupolar
order parameters, R. The ferroquadrupolar order parameters are proportional to the elas-
tic strain, and we derive them in detail here. The strain components in tetragonal symme-
try are

[
εz2 , εx2−y2 , εxy,~ε = (εxz, εyz)

]
which transform as Γ1g(A1g)⊕Γ3g(B1g)⊕Γ4g(B2g)⊕

Γ5g(Eg) and are described by the Landau free energy,

Fel =
c11 − c12

2
ε2x2−y2 + c66ε

2
xy + c44|~ε|2 − g3εx2−y2RΓ3 − g4εxyRΓ4 − g5~ε · ~RΓ5 , (37)

where we omit the bulk(volume) terms. After integrating out the strains from the elastic
free energy we find the corresponding ferroquadrupolar orders:

εx2−y2 =
g3RΓ3

c11 − c12
, εxy =

g4RΓ4

2c66
, ~ε =

g5
~RΓ5

2c44
, (38)

which interact with the order parameter, ~Ψ and external field, ~h and are described by the
resulting Landau theory,

FΨ = α⊥(T − T⊥c )|~Ψ⊥|2 + αz(T − T zc )Ψ2
z + u⊥|~Ψ⊥|4

+ uzΨ
4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2, (39)

FR =
∑

i=3,4,5

(
α

(i)
R R

2
Γi + u

(i)
R R

4
Γi

)
, (40)

FΨ−R = γ3RΓ3Ψ2
Γ3

+ γ4RΓ4Ψ2
Γ4

+ γ5Ψz
~Ψ⊥ × ~RΓ5 . (41)

Note that third order terms in R are allowed by symmetry, but we drop them as well as
the biquadratic couplings and anisotropic fourth order terms in Eq. (7). Although allowed
by symmetry, they do not qualitatively affect the physics of interest. The couplings to
external field are,

FΨ−h =u
(1)
h h2

zΨ
2
z + u

(2)
h |~h⊥|

2Ψ2
z + u

(3)
h h2

z|~Ψ⊥|2 (42)

+ u
(4)
h |~h⊥|

2|~Ψ⊥|2 + v
(3)
h h2

Γ3
Ψ2

Γ3
+ v

(4)
h h2

Γ4
Ψ2

Γ4
,

FR−h =γ
(3)
hRh

2
Γ3
RΓ3 + γ

(4)
hRh

2
Γ4
RΓ4 + γ

(5)
hRhz

~h⊥ × ~R5g. (43)
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In order to facilitate relevant discussion for the physics of hidden order in URu2Si2,
our parameter choices for numerical optimization of free energy were heavily influenced
by microscopic theories [33].

First, we discuss the parameters for FΨ, as given in Eq. (39). We chose parameters
to reproduce the temperature-pressure phase diagram of URu2Si2, which is one of many
microscopic possibilities. However, once chosen, we use these parameters for the rest of
our calculations. As such, we fix:

• α⊥ = αz = 1, u⊥ = 4 and uz = u⊥+u′(p−pc), with T⊥c = 1 and T zc = T⊥c +δ(p−p′c)3,
where u′ = 1., δ = .1, p0

c = 2 and p′c = 1.5. These choices reproduce the pressure
dependence of the transition temperatures, with p′c < p0

c necessary to reproduce the
rightward curvature of the XY/Z transition at higher temperatures. A large value
of v2 = 12 ensures that the transition between XY and Z orders is first order, with
no coexistence. Microscopically, the pressure dependence can be induced by tuning
the ratio V6/V7, which tunes the relative energy of XY and Z orders.

• v1 tunes the tetragonal symmetry breaking, where v1 > 0 gives the [110] in-plane
pinning consistent with experiment. The pinning can be calculated in the micro-
scopic theory, where v1

4u⊥
∼ (THO/D)2 ∼ .001. However, this small value makes

numerical calculations difficult, and so we have chosen the unphysically large value
v1 = 1 for convenience.

The parameters for the ferroquadrupolar components were chosen:

• α
(4)
R = .5 and α

(3)
R = α

(4)
R + δR(T −TR tan−1[10(p− pR)]), where δR = 0 except when

we considered the independent Γ3 orthorhombic order, with δR = .5, pR = .5 < p0
c

and TR = 5, where these parameter choices give a very sharp second order transition

to the RΓ3 6= 0 order at pQ. Additionally, we took u
(3,4)
R = 16.

• While we included ~RΓ5 for completeness, it is only relevant if there is XY and Z phase
coexistence, which is not found experimentally (and rarely found microscopically).
As such, we drop these contributions entirely.

• The coupling between strain and Ψ2
Γ3,4

is given by γ3,4, which is found microscopically

to manifest as tiny quadrupolar moments proportional to (THO/D)2 ∼ .001. As
with v1, this small value would make numerical calculations difficult, and so we have
chosen γ3,4 = −.5.

Finally, the field coupling parameters were chosen primarily based on the relatively
weak coupling of perpendicular compared to c-axis fields, as the c-axis field splits the
non-Kramers doublet linearly, while the perpendicular fields only split it quadratically.
Previous microscopic calculations [33] found that the in-plane couplings were suppressed
by (THO/D)2 compared to the out of plane couplings.

• The longitudinal field (hz) coupling to Ψz, u
(1)
h = 3.3 is slightly larger than the

coupling to ~Ψ⊥, u
(3)
h = 3. This difference reproduces the experimental phase diagram

in hz, where the hidden order phase is favored over the local moment antiferromagnet
[66,67]. This phase diagram was also generically obtained in microscopic calculations
[41].

• The isotropic in-plane field couplings were both chosen to be an order of magnitude

smaller, u
(2,4)
h = .1. The difference between them is not important for any of the

interesting physics. The anisotropic couplings, v
(3,4)
h = −.3 give a Z2 pinning of the
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hastatic spinor in transverse field, which governs the maximum magnitude of the
torque magnetometry. Again, we have chosen these parameters to be an order of
magnitude larger than expected from the microscopics for ease of numerical calcu-

lations, where based on the torque results [14], we expect |vh|/u
(1)
h ∼ χxy/χzz & .01.

Note that this is likely an overestimate, as the Landau theory is only valid near the
transition and the linear component of χxy in (THO − T ) should be extracted.

• The coupling of field to ferroquadrupolar orders was fixed to be γ
(3,4)
hR = −.5 and has

little qualitative effect.
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Figure 4: Antiferrohastatic phase diagrams in pressure and c-axis field, and thermodynamic
responses across the AFHxy transition. (a) Temperature versus pressure phase diagram in zero
external field, where the dashed (solid) lines indicate second (first) order phase transitions. The
AFHxy phase captures the hidden order behavior, while the AFHz phase behaves like the local
moment antiferromagnet. (b) hz field suppresses the c-axis AFHz order in favour of AFHxy order.
(c) Thermal expansion jumps across T⊥c . (d) The basal plane susceptibility acquires a linear χxy

below the transition. (e) The nonlinear susceptibility jumps show a large anisotropy, which is
actually expected to be significantly larger for more realistic parameter choices.

The parameters given above reasonably reproduce the experimental phase diagrams
in pressure and c-axis field, as shown in Fig. 4(a) and (b). We have also explored sev-
eral characteristic response functions across the hastatic transitions, mainly anisotropic
thermal expansion coefficients (α) and linear and nonlinear magnetic susceptibility matrix
elements (χ and χ(3)), as well the magnetostriction tensor, but found that magnetostric-
tion involved higher order effects that make it a much less sensitive probe. These response
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functions are defined as follows (up to dimensionful constants for the thermal expansion):

α100 =
1

L

∆L

dT

∣∣∣∣
x

− 1

L

∆L

dT

∣∣∣∣
y

∝ ∂RΓ3

∂T
, (44)

α110 =
1

L

∆L

dT

∣∣∣∣
[110]

− 1

L

∆L

dT

∣∣∣∣
[110]

∝ ∂RΓ4

∂T
, (45)

χxx − χyy = −∂
2F

∂h2
x

+
∂2F

∂h2
y

, χxy = − ∂2F

∂hx∂hy
, (46)

χ(3)
xxxx = −∂

4F

∂h4
x

, χ(3)
zzzz = −∂

4F

∂h4
z

. (47)

The thermal expansion coefficients are a proxy for the elastic tetragonal symmetry
breaking response and with the [110] pinning of the order parameter, there is a jump in
α110, as shown in Fig. 4 (c). As already noted in the main text, the jump is difficult to
detect, due to (THO/D)2 suppression of the elastic couplings (γ3,4) and effects of multiple
domains. The tetragonal symmetry breaking is also seen by the onset of χxy linear sus-
ceptibility, shown in Fig. 4 (d), however torque magnetometry measurements of χxy are
more subtle and treated in the main text. Finally, the nonlinear susceptibility coefficients
are shown in Fig. 4 (e), and exhibit a large Ising anisotropy due to the anisotropic field
couplings, as has been observed experimentally [4].

The prediction of a thus far unobserved field-locking transition in large transverse
fields provides a key experimental test for hastatic order. In the main text we treat the
transition in a simplified model and here we show additional numerical results obtained
by the optimization of the full free energy from Eq. (39)-(42) in Fig. 5.
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0.0
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0.0
0.0

1.0
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Figure 5: (a) p-T phase diagram in hx field. The high temperature in-plane phase is field-locked
(AFHx2−y2), thus fully Ψ2

Γ3
, while the low temperature phase (AFH⊥,mix) is characterized by

the onset of Ψ2
Γ4

component in a second order transition. (b) Order parameter components (Ψx

and Ψy) show changes across both primary hastatic and field-locking transitions, while the over-
all magnitude changes changes significantly only for the main hastatic transition, with important
consequences on bulk thermodynamic properties. (c) Susceptibility matrix elements showing di-
vergence across field-locking transition. The change of slope of χxx−χyy across the main transition
is hard to distinguish due to the small size and originally non-zero χxx − χyy in the presence of
external hx field. Parameters used for obtaining plots are standard quoted in this Appendix.
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F Discussion of elastic coefficients and resonant ultrasound
spectroscopy

Recent resonant ultrasound (RUS) experiments [18] set limits on the existence of two-
component order parameters in URu2Si2 through the absence of observable jumps in
symmetry breaking elastic coefficients. In this section, we argue that our two-component
order parameter, ~Ψ⊥ lies comfortably within these limits and as such is not excluded as a
hidden order candidate by RUS experiments.

As shown in [18], while any OP has jumps in the compressional (Γ1) elastic moduli,
only multi-component OPs lead to jumps in (Γ3, Γ4) shear moduli. The magnitudes of
elastic moduli jumps (∆ci) expected are proportional to the square of OP elastic couplings
(γ3,4 in our theory), more precisely from [18]:

∆cΓ1 ∼
γ2

1

u⊥
, ∆cΓ3 ∼

γ2
3

v1
, ∆cΓ4 ∼

γ2
4

u⊥
. (48)

The denominator in the expressions above is closely related to the mass of the fluctuation
field that couples linearly to the relevant strain component, thus Γ3 strain has the weak
transverse pinning, v1 in the denominator.

From the microscopic theory, we expect that in the basal plane phases, γ3,4/γ1 ∼
(THO/D)2, and v1/u⊥ ∼ (THO/D)2. While ∆cΓ4/∆cΓ1 ∼ (THO/D)4, due to small in-
plane pinning, ∆cΓ3/∆cΓ1 ∼ (THO/D)2. ∆cΓ3 = ∆(c11 − c12) is therefore the largest
predicted jump in our theory, but it is still suppressed by (THO/D)2 ∼ .001, corresponding
to relative RUS frequency shifts of at best 10−8, while detected Γ1 jumps are 10−5− 10−6

and the level of noise is at least 10−7. Thus, even though the hastatic order parameter has
multiple components, the weak coupling to the lattice ensures the absence of observable
jumps in the shear elastic moduli.

G Nematic susceptibility

The nematic susceptibility associated with our two component in-plane order parameter
has already been considered by [16], and so here we simply reproduce their calculations
and discuss how it applies to our particular system. The nematic order parameter is the
electronic manifestation of the broken tetragonal symmetry, and can generically be treated
by adding the free energy,

FN =
aN
2

(T − TN )N 2 +
bN
4
N 4 − ηN εΓ4 − ζNΨ2

Γ4
(49)

Here, we have chosen the Γ4 nematic order parameter associated with Ψ2
Γ4

. It has an

independent transition temperature, TN that arises from fluctuations of ~Ψ⊥; in principle,
TN can be larger or smaller than THO, but here we assume that it is smaller. The relevant
component of the elastoresistivity is proportional to the nematic susceptibility, ∂N/∂εΓ4 ,
which contains a jump at THO. The nematic susceptibility is calculated by first solving
∂F/∂Ψx,y = 0 for ~Ψ⊥ as a function of N and εΓ4 . This solution is inserted into the
total free energy, and we then take ∂F/∂N = 0, and take ∂/∂εΓ4 implicitly to solve for
∂N/∂εΓ4 . As in [16], we find,

χnem =
∂N
∂εΓ4

=


η

aN (T−TN ) T > THO
η+

2γ4ζ
4u⊥−v1

aN (T−TN )− 2ζ2

4u⊥−v1

T = T−HO
. (50)
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Below T−HO, the nematic order parameter, N also comes into the denominator and affects
the temperature dependence, however, we are mainly interested in the jump. We can
use the mean-field specific heat jump results, ∆CV = α2

⊥/(8u⊥ − 2v1)THO (or jump in
∂Ψ2

Γ4
/∂T equivalently) to rewrite the jump in the nematic susceptibility to second order

in γ4 and ζ as,

∆χnem =
4∆CV

α2
⊥THOaN (T − TN )

[
γ4ζ +

ηζ2

aN (T − TN )

]
+O

(
γ2

4ζ
2, ζ3

)
. (51)

While the microscopics suggested that γ4 is suppressed by (THO/D)2, the electronic ne-
matic order parameter associated with ~Ψ⊥ is expected to be of order one, as estimated by
the tetragonal symmetry breaking distortion of the Fermi surface [33, 41]. Therefore the
second term gives a significant jump in the elastoresistivity at THO that is significantly
enhanced if TN is close to THO. Note that this analysis is only for the main transition; the
behavior will be different at the field-locking transition, for example, where the jump is no
longer proportional to the (tiny) specific heat jump, but it is still related to the behaviour
of ∂Ψ2

Γi
/∂T .
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