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Abstract

We find the complete family of many-body quantum Hamiltonians with ground-state of Jas-
trow form involving the pairwise product of a pair function in an arbitrary spatial dimen-
sion. The parent Hamiltonian generally includes a two-body pairwise potential as well as
a three-body potential. We thus generalize the Calogero-Marchioro construction for the
three-dimensional case to arbitrary spatial dimensions. The resulting family of models is
further extended to include a one-body term representing an external potential, which gives
rise to an additional long-range two-body interaction. Using this framework, we provide the
generalization to an arbitrary spatial dimension of well-known systems such as the Calogero-
Sutherland and Calogero-Moser models. We also introduce novel models, generalizing the
McGuire many-body quantum bright soliton solution to higher dimensions and consider-
ing ground-states which involve e.g., polynomial, Gaussian, exponential, and hyperbolic pair
functions. Finally, we show how the pair function can be reverse-engineered to construct
models with a given potential, such as a pair-wise Yukawa potential, and to identify models
governed exclusively by three-body interactions.
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1 Introduction

Exactly solvable models play a prominent role in many-body physics. Their study has guided the
exploration of strongly correlated states of matter, superconductivity, and other rich phenomena. It
has been key to the discovery of Bose-Fermi duality and its generalizations [1] and has motivated
new concepts such as the generalized exclusion statistics [2, 3]. Solvable models are also utilized
as test-bed for approximations and are useful in the development of nonperturbative methods [4].

Most known exact solutions are confined to one spatial dimension, in which the scattering
between particles is highly constrained by conservation laws [5]. Powerful mathematical methods
such as the Bethe ansatz and the quantum inverse scattering technique have been developed for
their description [6–9]. The availability of solvable models in higher spatial dimensions is however
scarce. A successful strategy to discover them consists of choosing the ground-state in a given
form. A widely used choice is the so-called Jastrow form in which the many-body wavefunction
is expressed as the pair-wise product of a two-body pair function f of the interparticle distance
ri j [10]

Φ0(~r1, . . . ,~rN) =
∏
i< j

f (ri j), (1)

which captures spatial two-body correlations and has proved useful in the description of superfluid
Helium and quantum solids. Slater determinants of such Jastrow functions are also widely used in
and quantum chemistry. The Jastrow form can be easily modified to account for external one-body
potentials (such as an optical lattice or a harmonic trap) by multiplying it by a product of one-body
terms. Similarly, generalizations of the Jastrow form to include higher-order correlations have also
been proposed. One can thus consider an expansion of the form [10]

Φ0(~r1, . . . ,~rN) =
∏
i< j

f (ri j) ×
∏

i

g(~ri) ×
∏
i jk

h(~ri,~r j,~rk) × · · · (2)

Once the ground-state wavefunction Φ0 is chosen, one can consider the explicit action of the ki-
netic T̂ operator on it. Whenever it is possible to identify the terms resulting from the explicit
evaluation as an interaction potential acting on Φ0, T̂Φ0 = −VΦ0, the parent Hamiltonian Ĥ0 of
Φ0 follows, with the Schrödinger equation Ĥ0Φ0 = (T̂ + V)Φ0 = 0. This ‘optimistic’ approach
to identifying exact solutions of many-body quantum systems was pioneered by Sutherland in the
derivation of the Calogero-Sutherland model [11,12]. The parent Hamiltonian of (1) generally in-
cludes two-body and three-body interactions. The conditions under which the parent Hamiltonian
involves only two-body interactions have been studied under periodic boundary conditions in one
spatial dimension and restrict the form of the two-body function f to be a Jacobi theta function in
one spatial dimension [13].

The analogous construction in one-spatial dimension without imposing periodic boundary
conditions has recently been presented in [14] for Jastrow wavefunctions (2) including one and
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two-body functions. For many relevant choices of the pair function, the three-body term van-
ishes, becomes constant, or reduces to a two-body term. As a result, Jastrow ground-states are
common in one-dimensional models containing only two-body interactions. Examples include
the paradigmatic Lieb-Liniger model [15, 16] describing one-dimensional Bose gas with contact
interactions of relevance to ultracold gases confined in tight-waveguides [17]. While in general
eigenstates take the form of the Bethe ansatz, for attractive interactions the Jastrow form appears
in the McGuire bright quantum soliton solution [18]. This feature is preserved upon embedding
in a harmonic trap, provided the Hamiltonian is supplemented with long-range interactions [19].
In the case of hard-core repulsive interactions known as the Tonks-Girardeau gas [1], the Jastrow
form is well known under harmonic confinement [20]. The latter is a specific instance of the cele-
brated Calogero-Sutherland model with inverse-square interactions [11,21,22]. This structure also
appears in states of systems related by Bose-Fermi duality [1] and anyonic generalizations [23,24].

Beyond the one-dimensional case, restricting the Jastrow form to the pair-wise product, Calogero
and Marchioro [25] identified the family of parent Hamiltonians with a ground state of the form
(1) in three spatial dimensions. The latter generally include two-body and three-body interactions.

In two spatial dimensions, Jastrow wavefunctions are ubiquitous in the description of quantum
Hall physics with effective complex coordinates of the form z j = x j − iy j [26]. For example,
the Laughlin state [27] can be seen as a deformation of the ground state of the one-dimensional
Calogero-Sutherland model [28]. Such Jastrow wavefunctions are related to models of anyons
including a relative angular momentum term [29]. For real coordinates (i.e., ~r j = (x j, y j)) and
in the absence of momentum-dependent terms (other than the kinetic energy contribution), few
instances of quantum many-body solvable models are available [30, 31].

In arbitrary spatial dimension, Gambardella used a group theoretical approach to identify the
family of parent Hamiltonian of Jastrow ground-state wavefunctions in translationally invariant
systems with S U(1, 1) symmetry [32]. The latter applies to Calogero-like models with inverse-
square interactions but it is rather restrictive and excludes relevant cases involving, e.g., contact
and Coulomb interactions. A closely related and more general result was reported by Kane et
al. [33] who considered bosonic models with translational invariance and identified the structure
of the parent Hamiltonian including two and three-body terms. Further, they showed that the
long-wavelength physics of these models is independent of the three-body interactions. However,
the interaction terms were expressed merely in terms of gradients of the pair function, i.e., as
momentum-dependent interactions. The accumulated results in different dimensions indicate that
the parent Hamiltonian with ground-state of Jastrow form is generally not exactly solvable, and
only part of the spectrum is available.

In this work, we provide explicitly the complete family of parent Hamiltonian in arbitrary
spatial dimension d with ground state of Jastrow form including one and two-body pair functions,
i.e., Ψ0(~r1, . . . ,~rN) =

∏
i g(~ri)

∏
i< j f (ri j). It is shown that such models generally involve two-body

and three-body interaction terms. In addition, the one-body function g can be used to account for
an external one-body potential such as a harmonic trap, but only when the parent Hamiltonian
is supplemented with a long-range two-body contribution. Our results thus pave the way to the
systematic construction of quasi-solvable models in an arbitrary spatial dimension.

2 Parent Hamiltonians in d-spatial dimensions

In arbitrary spatial dimension d, we denote the spatial coordinate of a particle with index i by a

vector ~ri ∈ R
d with components ri,α (α = 1, . . . , d) and norm ri = ‖~ri‖ =

√∑d
α=1 r2

i,α. The kinetic
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energy operator is given in terms of the Laplace operator,

∆i =

d∑
α=1

∂2

∂r2
i,α

. (3)

In hyperspherical coordinates for a system of N particles, the explicit form of the kinetic term
reads

T̂ = −
~2

2m

N∑
i=1

∆i

= −
~2

2m

N∑
i=1

 1
rd−1

i

∂

∂ri
rd−1

i
∂

∂ri
+

1
r2

i

∆S d−1

i

 , (4)

where the Laplace-Beltrami operator on the sphere S d−1 is denoted by ∆S d−1

i . We consider ground-
states described as the pair-wise product of pair functions, that depend exclusively on the relative
distance between particles ri j = ‖~ri − ~r j‖, i.e.,

Φ0(~r1, . . . ,~rN) = 〈~r1, . . . ,~rN |Φ0〉 =
∏
i< j

f (ri j), (5)

which describes bosons, being symmetric with respect to permutation of particles. For this choice
of Φ0, an important simplification occurs as

∆S d−1

i Φ0 = 0. (6)

We are interested in finding the many-body quantum parent Hamiltonian satisfying the time-
independent Schrödinger equation

Ĥ0|Φn〉 = En|Φn〉. (7)

In one [14] and three [25] spatial dimensions, it is known that H0 involves exclusively two-body
and three-body interactions

Ĥ0 = T̂ + V2 + V3. (8)

We next show that the form of the parent Hamiltonian (8) holds in arbitrary spatial dimension
d. To identify it, we explicitly compute the action of the kinetic energy operator on the Jastrow
wavefunction (5). For compactness, we denote f (ri j) = fi j and similarly for the first and second
derivatives of the function f . As shown In Appendix A, explicit evaluation of the action of the
Laplacian yields:

∑
i

∆iΦ0 =
∑

i

∑
j,i

 f ′′i j

fi j
+

d − 1
ri j

f ′i j

fi j

 Φ0 +
∑

i

∑
j,k,i

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik

Φ0 .

After noticing that the functions fi j and f ′′i j are symmetric with respect to permutations ~ri ↔

~r j, we rewrite the first sum as
∑

i, j = 2
∑

i< j. For the second term, we use the following sum
decomposition∑

i, j,k

Ai jk = 2
∑

i< j<k

Ai jk + 2
∑
j<k<i

Ai jk + 2
∑

k<i< j

Ai jk = 2
∑

i< j<k

(
Ai jk + A jki + Aki j

)
,
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to obtain

∑
i

∆iΦ0 = 2
∑
i< j

 f ′′i j

fi j
+

d − 1
ri j

f ′i j

fi j

 Φ0

+ 2
∑

i< j<k

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik
−
~ri j

ri j
·
~r jk

r jk

f ′i j

fi j

f ′jk
f jk

+
~rik

rik
·
~r jk

r jk

f ′ik
fik

f ′jk
f jk

 Φ0 . (9)

where we use ~ri j = −~r ji.
As an upshot, the parent Hamiltonian of a Jastrow wavefunction in dimension d takes the

explicit form

Ĥ0 = T̂ + V2 + V3, (10)

V2 =
~2

m

∑
i< j

[
f ′′(ri j)
f (ri j)

+ (d − 1)
f ′(ri j)

ri j f (ri j)

]
, (11)

V3 =
~2

2m

∑
i

∑
j,k,i

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik

(12)

=
~2

m

∑
i< j<k

[
~ri j · ~rik

ri jrik

f ′(ri j) f ′(rik)
f (ri j) f (rik)

−
~ri j · ~r jk

ri jr jk

f ′(ri j) f ′(r jk)
f (ri j) f (r jk)

+
~rik · ~r jk

rikr jk

f ′(rik) f ′r jk)
f (rik) f (r jk)

]
, (13)

with zero ground-state energy E0 = 0, i.e., Ĥ0|Φn〉 = 0. We note the presence of a three-body term
that does not vanish in general (unless f is constant), as we shall see.

For d = 3, equations (10)-(12) reduce to the Calogero-Marchioro complete family of parent
Hamiltonians in three spatial dimensions [25]. Similarly, equations (10)-(12) generalize the com-
plete family of parent Hamiltonians in one spatial dimension identified in [14]. The d = 1 case is
indeed better discussed as a separate instance, due to the appearance of contact interactions. In this
sense, our current work focuses on d > 1. In what follows we proceed to the construction of in-
stances of this family by considering relevant choices of the pair function f (ri j), i.e., by specifying
the ground-state Jastrow wavefunction. But first, we discuss how to include a one-body potential
such as external confinement. To this end, we include a product over single-particle terms in the
Jastrow wavefunction.

3 Localized Jastrow wavefunctions and confining potentials

The Jastrow form (1) is exclusively given as the pairwise product of a pair correlation function. In
many applications, a one-body term is added to the Hamiltonian to account for an external potential
to which all particles are subject. This is particularly relevant in the description of ultracold gases
confined in a trap. In paradigmatic instances of one-dimensional integrable models such as hard-
core bosons in the Tonks-Girardeau regime and the (rational) Calogero-Sutherland model, the
effect of an external harmonic trap on the ground-state wavefunction is to modify the Jastrow form
by including the product of a one body-term [14].

We thus consider a ground-state of the form

Ψ0 =
∏

k

g(rk)
∏
i< j

f (ri j) =
∏

k

g(rk)Φ0. (14)

In spite of the fact that we know the parent Hamiltonian of Φ0, derived in the previous section, it
proves convenient to perform an explicit computation making use of the Jastrow form of Φ0. The
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detailed calculation is shown in the Appendix A, where the Laplacian is found to be

∆iΨ0 =
∑
j,i

d − 1
ri j

f ′i j

fi j
+

f ′′i j

fi j

 Ψ0 +
∑
j,k,i

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik

 Ψ0

+ 2
∑
j,i

~ri j

ri j

f ′i j

fi j
·
~ri

ri

g′i
gi

 Ψ0 +

[
d − 1

ri

g′i
gi

+
g′′i
gi

]
Ψ0 .

To find the parent Hamiltonian, we evaluate the kinetic term and deduce the form of the po-
tential V using the identity

ĤΨ0 = 0 , (15)

where

Ĥ = −
~2

2m

∑
i

∆i + V = Ĥ0 + V1 + V2LL. (16)

Using the equation above, we find that the potential V includes the two-body and three-body terms
V2 and V3 of Ĥ0, as well as an external one-body potential V1, and a mixed coupling between the
two-body and external potential that we denote by V2LL as it generally describes a long-range two
body contribution:

V1 =
~2

2m

∑
i

(
d − 1

ri

g′i
gi

+
g′′i
gi

)
, (17)

V2LL =
~2

m

∑
i, j

~ri j

ri j
·
~ri

ri

f ′i j

fi j

g′i
gi

 =
~2

m

∑
i< j

f ′i j

fi j

~ri j

ri j
·

~ri

ri

g′i
gi
−
~r j

r j

g′j
g j

 . (18)

As a particular example, we consider the presence of an isotropic harmonic trap, that corre-
sponds to the choice

gi = e−
mω
2~ r2

i . (19)

In this case

V1 =
1
2

mω2
N∑

i=1

r2
i − dN

~ω

2
, (20)

which represents a harmonic trap minus the zero-point energy contribution. The coupling term
reads in this case

V2LL = −~ω
∑
i, j

~ri j

ri j
· ~ri

f ′i j

fi j

 = −~ω
∑
i< j

f ′i j

fi j
ri j. (21)

This term is the generalization to arbitrary spatial dimension of the two-body function long-range
term found in the long-range Lieb-Liniger model [14,19]. We also note that this term reduces to a
constant in the case of S U(1, 1) systems considered by Gambardella [32].

More generally, the role of an external spatially isotropic confining potential can be associated
with the one-body function g(ri) = exp[v(ri)], provided that the Hamiltonian is supplemented with
the V2LL term. Specifically, the one-body external potential reads

V1 =
~2

2m

N∑
i=1

[
d − 1

r
v′(ri) + v′(ri)2 + v′′(ri)

]
, (22)
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while the two-body long-range potential reads

V2LL =
~2

m

∑
i, j

~ri j

ri j
·
~ri

ri

f ′i j

fi j
v′(ri)

 =
~2

m

∑
i< j

f ′i j

fi j

~ri j

ri j
·

(
~ri

ri
v′(r j) −

~r j

r j
v′(r j)

)
. (23)

These equations for V1 and V2LL generalize the results for the embedding of Jastrow ground-states
in external potentials in [14] from one to an arbitrary spatial dimension d.

Summarizing this section, if a wavefunction Φ0(~r1, . . . ,~rN) =
∏

i< j f (ri j) fulfills the Schrödinger
equation (T̂ + V2 + V3)Φ0 = 0, then the modified wavefunction Ψ0 =

∏
i ev(ri)Φ0 obeys the

Schrödinger equation

ĤΨ0 = (T̂ + V1 + V2 + V2LL + V3)Ψ0 = 0, (24)

with V1 and V2LL given by Eqs. (22) and (23), respectively.

4 List of models

The family of parent Hamiltonians of Jastrow wavefunction is infinite. To determine specific in-
stances within this family it suffices to specify a valid pair function f . We next discuss some
specific examples, partially motivated by the existence of analogous models in one spatial dimen-
sion:

• Calogero-Moser (CM) model: fi j = rλi j.

• Calogero-Sutherland (CS) model: fi j = rλi je
−ω2 r2

i j .

• McGuire model: fi j = e−cri j , c > 0.

• Hyperbolic (inverse-sinh-square) model: fi j = sinh(ri j/r0)λ, λ > 0.

• New model 1: McGuire-Calogero-Sutherland: fi j = ecri je−
ω
2 r2

i j

• New model 2: McGuire-Calogero-Moser model: fi j = rλi je
−cri j , c > 0.

• New model 3: Hyperbolic McGuire model: fi j = sinh(ri j/r0)λe−cri j , c > 0.

• New model 5: Hyperbolic Calogero-Sutherland model: fi j = sinh(ri j/r0)λe−
ω
2 r2

i j .

• New model 6: Model with Yukawa-like pairwise interactions: fi j = rλi je
ari j+br2

i j+cr3
i j .

4.1 Calogero-Moser model in d-spatial dimensions

In one spatial dimension, the pair function

f (ri j) = rλi j, (25)

for the Jastrow wavefunction is associated with the celebrated Calogero-Moser model as parent
Hamiltonian. For this choice V3 = 0, and the CS Hamiltonian exclusively involves two-body
interactions that decay with the square of the interparticle distance.

The d-dimensional case, obtained from Eqs. (11)-(12), and described by the Hamiltonian

Ĥ0 = −
~2

2m

N∑
i=1

∆i +
~2

m

∑
i< j

λ(λ + d − 2)
|ri j|

2 + V3, (26)

7



SciPost Physics Submission

with

V3 =
~2λ2

m

∑
i< j<k

~ri j · ~rik

r2
i jr

2
ik

−
~ri j · ~r jk

r2
i jr

2
jk

+
~rik · ~r jk

r2
ikr2

jk

 . (27)

In the d = 1 case, the latter reduces to a constant term. In arbitrary d, the Hamiltonian preserves
S U(1, 1) symmetry. Embedding in a harmonic trap results in an additional long-range pairwise
interaction term (Eq. (23) that in this case takes becomes a constant

V2LL = −
~ωλ

2
N(N − 1). (28)

The resulting Hamiltonian was discussed by Khare and Ray in [30,31], who also provided a tower
of excited states. We note that the interaction terms of the Hamiltonian have the same scaling
dimension as the kinetic energy operator. Under variations of the trap-frequency ω → ω(t), the
time-evolution is thus self-similar. Exact coherent states can thus be constructed following [12,
34, 35]. In addition, the homogeneous character of f (ri j) makes it possible to study a wide range
of properties including the mean energy [36] and energy fluctuations [37], as well as information-
theoretic quantities such as the time-dependent fidelity and Bures angle [38].

4.2 Calogero-Sutherland model d-spatial dimensions

Consider the two-body function of the Calogero-Sutherland (CS) model

fi j = rλi je
−
µΩ
2~ r2

i j . (29)

The corresponding two-body term involves harmonic and inverse-square interactions

V2 = −
~µΩN(N − 1)

2m
(2λ + d) +

∑
i< j

µ2

m
Ω2r2

i j +
~2

m
λ(λ + d + 2)

r2
i j

 . (30)

The three-body term, written in compact form, reads

V3 =
~2

2m

∑
i

∑
j,k,i

~ri j · ~rik

µ2Ω2

~2 +
λ2

r2
i jr

2
ik

−
µΩ

~

 1
r2

i j

+
1
r2

ik


 . (31)

In this case, embedding in a harmonic trap of frequency ω results in an additional harmonic con-
tribution

V2LL = µωΩ
∑
i< j

r2
i j −
~ωλ

2
N(N − 1). (32)

4.3 Bose gas with contact and Coulomb-like inverse-distance interactions in d-
spatial dimensions

In d = 1, the attractive one-dimensional Bose gas with contact interactions, known as the Lieb-
Liniger model [15, 16], supports quantum bright soliton states described by the McGuire wave-
function Φ0 = e−c

∑
i< j |xi j | [18]. We next consider the generalization to d > 1, in which Φ0 is

determined by the pair function

fi j = e−cri j , c > 0. (33)

8
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Explicit computation yields

V2 =
~2N(N − 1)

2m
c2 − (d − 1)c

∑
i< j

1
ri j
. (34)

Note that V2 takes the form of a gravitational or Coulomb-like potential in d = 3. However, we
recall that in d = 2 the latter involves a logarithmic dependence on the relative coordinate, rather
than an inverse power-law. In the d = 1 case, the Coulomb and gravitational potentials are linear
on the relative distance between particles. As a result, for d , 3, the power-law interaction ∼ 1/ri j

does not admit an analogy with electromagnetism or Newtonian gravity.
Regarding the three-body contribution, it takes a particularly simple form given by

V3 =
~2c2

m

∑
i< j<k

[
~ri j · ~rik

ri jrik
−
~ri j · ~r jk

ri jr jk
+
~rik · ~r jk

rikr jk

]
,

=
~2c2

m

∑
i< j<k

(
cos(θi, jk) + cos(θ j,ki) + cos(θk,i j)

)
, (35)

where θi, jk =
~ri j·~rik
ri jrik

is the angle between the relative positions ~ri j and ~rik. Interestingly, the sum of
the cosines varies between 1 and 3/2 depending on the relative positions of three particle, e.g., it
takes unit value if the three particles are aligned and equals 3/2 if they form an equilateral triangles.
This observation brings us to find the lower and the upper bound of the three-body potential

~2c2

m
N(N − 1)(N − 2)

6
≤ V3 ≤

~2c2

m
N(N − 1)(N − 2)

4
, (36)

which is consistent with [32] (equation (27) and comment before that). Notice that for d = 1,
we find that the three-body term is constant and is equal to the lower bound above [19]. From
the observation above, the ground-state energy is minimized in a classical configuration in which
particles are located at the apex of d-dimensional regular simplex blocks (e.g., equilateral triangles
for d = 2, tetrahedron for d = 3) with edges of characteristic length a = 1/c.

The embedding of such state in an isotropic harmonic trap (20) is characterized by the wave-
function

Ψ0 = e−c
∑

i< j ri je−
mω
2~

∑
i r2

i , (37)

whenever the Hamiltonian is supplemented by the long-range two-body term

V2LL = ~ωc
∑
i, j

(
~ri j

ri j
· ~ri

)
= ~ωc

∑
i< j

ri j. (38)

and by the external potential (20). This can be seen as a higher-dimensional generalization of the
confinement-induced long-range term in the modified Lieb-Liniger model [14, 19].

4.4 Inverse-sinh-square potentials in d-spatial dimensions

In d = 1, the pair correlation function sinh(|xi − x j|) constitutes a relevant example and is associ-
ated with a parent Hamiltonian characterized by an inverse-sinh-square pairwise potential, often
referred to as a hyberbolic potential for short [13, 14]. It is natural to consider its higher dimen-
sional generalization associated with the pair function

fi j = sinh(ri j/r0)λ, (39)

9
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where r0 as units of length. This choice imposes a hard-core constraint on Φ0 which vanishes
as ri j → 0. Further, at long distances the pair function behaves as an exponential function fi j ∼

exp(λri j/r0) over the range r0/λ. In this case, the two-body term reads

V2 =
~2λ2N(N − 1)

2mr2
0

+
~2

m

∑
i< j

 λ(λ − 1)
r2

0 sinh(ri j/r0)2
+
λ(d − 1)

r0

1
ri j

coth(ri j/r0)

 , (40)

Interestingly, at short distances, this potential behaves as

V2 =
~2λ(2λ + d)N(N − 1)

6mr2
0

+
~2

m

∑
i< j

λ(λ + d − 2)
r2

i j

+
λ(3λ − d − 2)

45r4
0

r2
i j

 , (41)

which effectively takes the form of that in the Calogero-Sutherland model. By contrast for ri j/r0 �

1,

V2 =
~2λ2N(N − 1)

2mr2
0

+
~2

m

∑
i< j

λ(d − 1)
r0ri j

, (42)

which takes the form of the Coulomb-like inverse-distance interaction.
In addition, the three-body contribution reads

V3 =
~2λ2

2mr2
0

∑
i

∑
j,k,i

~ri j · ~rik
coth(ri j/r0) coth(ri j/r0)

ri jrik
. (43)

Regarding the embedding in a harmonic trap of frequency ω, it gives rise to the additional
interaction term

V2LL = −
~ωλ

r0

∑
i< j

ri j coth(ri j/r0), (44)

which is continuous and effectively harmonic near the origin, as in the d = 1 case [14], given that
(r/t0) coth(r/r0) ≈ 1 + (r/r0)2/3 + O(r/r0)2).

4.5 McGuire-Calogero-Sutherland model (MCS)

Consider the pair correlation function

fi j = ecri je−µΩr2
i j/(2~), (45)

with first and second spatial derivatives given by

f ′i j = c f −
µΩ

~
ri j fi j = (c −

µΩ

~
ri j) fi j, (46)

f ′′i j = −
µΩ

~
fi j + (c −

µΩ

~
ri j)2 fi j =

−µΩ

~
+ c −

2µΩc
~

ri j +

(
µΩ

~

)2

r2
i j

 fi j. (47)

We note the following identities

d − 1
ri j

f ′i j

fi j
= c

d − 1
ri j
−
µΩ

~
(d − 1), (48)

f ′i j

fi j

f ′ik
fik

= (c − µΩri j)(c −
µΩ

~
rik) = c2 +

(
µΩ

~

)2

ri jrik −
µΩc
~

(ri j + rik), (49)

~ri j · ~rik

ri jrik

f ′i j

fi j

f ′ik
fik

= c2~ri j · ~rik

ri jrik
+

(
µΩ

~

)2

~ri j · ~rik −
µΩc
~

(
~ri j ·

~rik

rik
+ ~rik ·

~ri j

ri j

)
. (50)

10
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Using the first one in combination with equation (11), we find

V2 = V (1)
2 + V (2)

2 ,

where

V (1)
2 =

~2

2m
N(N − 1)

(
c −

µΩ

~

)
− 2γ~Ωc

∑
i< j

ri j + γµΩ2
∑
i< j

r2
i j, (51)

V (2)
2 =

~2c
m

(d − 1)
∑
i< j

1
ri j
−
~Ω

2
γ(d − 1)N(N − 1) , (52)

where γ = µ/m. As for the three-body term, using equations (49) and (50) together with (12), we
find

V3 = V (1)
3 + V (1)

3 + V (1)
3 , (53)

where

V (1)
3 =

~2c2

m

∑
i< j<k

(
~ri j · ~rik

ri jrik
−
~ri j · ~r jk

ri jr jk
+
~rik · ~r jk

rikr jk

)
, (54)

V (2)
3 = γµΩ2

∑
i< j<k

(
~ri j · ~rik − ~ri j · ~r jk + ~rik · ~r jk

)
, (55)

V (3)
3 = −γ~Ωc

∑
i< j<k

(
~ri j · ~rik

(
1
rik

+
1
ri j

)
− ~ri j · ~r jk

(
1
ri j

+
1

r jk

)
+ ~rik · ~r jk

(
1
rik

+
1

r jk

))
. (56)

As we have seen above, the first three-body term reduces to

V (1)
3 =

~2

m
(c2 + δ2)

N(N − 1)(N − 2)
6

, (57)

where we emphasize that δ is coordinate-dependent 0 ≤ δ2 ≤ c2

2 . The other three-body terms
reduce to two-body interactions of the form

V (2)
3 = γ

µΩ2

2

∑
i< j<k

(
r2

ik + r2
i j + r2

jk

)
= γ

(N − 2)µΩ2

2

∑
i< j

r2
i j , (58)

and

V (3)
3 = −γ~Ωc

∑
i< j<k

(
rik + ri j + r jk

)
= −γ~Ωc(N − 2)

∑
i< j

ri j. (59)

Now, combining the equations above, we find(
~2

2m
∆ + V2MCS + V3MCS

)
φ0 = E0φ0, (60)

with the effective two-body potential

V2MCS = −γ~ΩcN
∑
i< j

ri j +
~2c
m

(d − 1)
∑
i< j

1
ri j

+ γ
µΩ2

2
N

∑
i< j

r2
i j , (61)

and the three-body interactions

V3MCS =
~2

m
(c2 + δ2)

N(N − 1)(N − 2)
6

, (62)

11
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where the coordinate-dependent potential term fulfills 0 ≤ δ2 ≤ c2

2 , and the effective zero-point
energy reads

E0 = γ
~Ωd

2
N(N − 1) −

~2c
2m

N(N − 1). (63)

Interestingly, the model is equivalent to the model described in section 4.3 for γ = 0 or Ω = 0
and to the latter model in an external harmonic trap (with the additional two-body interaction (38))
for γ = 1, µ = m, and Ω = ω0/N. To see that, one can use the identity∑

i

r2
i = NR2 +

1
N

∑
i< j

r2
i j ,

~R =
1
N

∑
i

~ri , (64)

and multiply the wavefunction (45) by the independent center of mass contribution e−N(mω/~)R2
,

which cancels out and gives the wavefunction (37).

4.6 McGuire-Calogero-Moser model in d-spatial dimensions

The preceding examples provide d-dimensional generalizations of well-known models. The po-
tential of our framework to guide the discovery of new quasi-exactly solvable models is apparent
from the following example. Consider a two-body function

fi j = rλi je
−cri j , c ≥ 0, λ > 0, (65)

which yields to Jastrow ground-state wavefunctions which is the product of the McGuire solution
of the attractive Lieb-Liniger model and that in the Calogero-Moser model. In this case

V2 =
~2cN(N − 1)

2m
+
~2

m

∑
i< j

−c(2λ + d − 1)
ri j

+
λ(λ + d − 2)

r2
i j

 , (66)

which includes a inverse-distance interaction term (matching the Coulomb/gravitational one in d =

3) together with an inverse-square interaction. This combination is reminiscent of the Kratzer’s
molecular potential [39].

Given the fact that f ′/ f = −c + λ/r, the three-body term admits the form

V3 =
~2c2

6m
N(N − 1)(N − 2) +

~2

2m

∑
i

∑
j,k,i

~ri j · ~rik

−2cλ

 1
r2

i jrik
+

1
ri jr2

ik

 +
λ2

r2
i jr

2
ik

 . (67)

The long-range two-body term stemming from the embedding in a harmonic trap of frequency
ω takes the form

V2LL = ~ωc
∑
i< j

ri j −
~ωλ

2
N(N − 1), (68)

which is precisely the sum of the corresponding V2LL in Eq. (28) and Eq. (38).
The one-dimensional case seems not to have been discussed in the literature and merits some

specific attention as the three-body contribution identically vanish. In particular, one finds

Ĥ0 = −
~2

2m

N∑
i=1

∆i +
~2

m

∑
i< j

2cλ
ri j

+
λ(λ − 1)

r2
i j

 +
~2c2

2m
(N2 − 1)N, (69)

with the last term accounting for the ground-state energy of the McGuire quantum soliton. We
note however that the inverse square interactions involve a hard-core constraint and thus the case
λ = 0 is to be treated independently as in Sec. 4.3.

12
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4.7 Hyperbolic McGuire model in d-spatial dimensions

Consider a two-body function

fi j = sinh(ri j/r0)λe−cri j , c > 0, (70)

which is the product of the pair functions in the McGuire solution and the hyperbolic model. We
identify the two-body interaction term

V2 =
~2N(N − 1)

2m

c2 +
λ

r2
0


+
~2

m

∑
i< j

λ(d − 1)
r0ri j

coth(ri j/r0) +
λ(λ − 1)

r2
0

coth(ri j/r0)2 −
c(d − 1)

ri j
+

2cλ
r0

coth(ri j/r0)

 , (71)

while the three-body term reads

V3 =
~2

2m

∑
i

∑
j,k,i

~ri j · ~rik

ri jrik

c2 +
λ2

r2
0

coth(ri j/r0) coth(rik/r0) −
cλ
r0

(
coth(ri j/r0) + coth(rik/r0)

) . (72)

4.8 Hyperbolic Calogero-Sutherland model in d-spatial dimensions

For completeness, we consider the modification of the predecing model in which the exponential
decay of the pair function fi j is replaced by a Gaussian function. Consider a two-body function

fi j = sinh(ri j/r0)λe−
µΩ
2~ r2

i j , c > 0, (73)

The two-body interaction term has multiple contributions

V2 =
~2N(N − 1)

2m

−dµΩ

~
+
λ

r2
0


+
~2

m

∑
i< j

λ(d − 1)
r0ri j

coth(ri j/r0) +
λ(λ − 1)

r2
0

coth(ri j/r0)2 +
µ2Ω2

~2 r2
i j −

2µΩλ

~r0
ri j coth(ri j/r0)

 ,
(74)

which differs from that in the preceding model in the first contribution to the zero-point en-
ergy and the last two terms proportional to ri j. Likewise, given the identity f (r)′ = −µΩr/~ +

λ coth(r/r0)/r0, the three-body potential reads

V3 =

~2

2m

∑
i

∑
j,k,i

~ri j · ~rik

ri jrik

µ2Ω2

~2 ri jrik +
λ2

r2
0

coth(ri j/r0) coth(rik/r0) −
µΩλ

r0

(
rik coth(ri j/r0) + ri j coth(rik/r0)

) .
(75)

4.9 Model with Yukawa-like pairwise interactions

The Yukawa potential has the form [40]

VYuk(r) = −α
e−r/D

r
= −V0

e−δρ

ρ
, (76)
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where D and α are two constants and r is the relative radius between two particles, a0 = ~2/(mα) is
the Bohr radius, δ = a0/D is a dimensionless parameter, ρ = r/a0, and V0 = ~2

ma2
0

is the amplitude
of energy of the potential. In most physical systems where the Yukawa potential is introduced, one
considers the constant D to be large compared to the Bohr radius, i.e., δ � 1. Then, the Yukawa
potential can be approximate as

VYuk(r) ≈ −V0

(
1
ρ

+ δ −
δ2

2
ρ +

δ3

6
ρ2 + O(δ4)

)
, (77)

where we neglect the terms of order higher than four.
In this section, we propose to use our technique to find an approximation of the ground state

of the Hamiltonian

H =
~2

2m
∆~r + VYuk(r) ≈ V0

[
−

∆~ρ

2
−

(
1
ρ

+ δ −
δ2

2
ρ +

δ3

6
ρ2

)]
, (78)

where we rescaled the relative position ~ρ = ~r/a0. Furthermore, we propose to generalize to N
particles with the following pairwise function

fi j = eaρi j+bρ2
i j+cρ3

i j , (79)

where a, b, c are three real constant and where ρi j is the dimensionless relative distance between
two particles with indices i and j, respectively. Using the identities

f ′i j =
(
a + 2bρi j + 3cρ2

i j

)
fi j , (80a)

f ′′i j =
(
a + 2bρi j + 3cρ2

i j

)2
fi j +

(
2b + 6ρi j

)
fi j , (80b)

we find
2 f ′i j

ρi j fi j
=

2a
ρi j

+ 4b + 6cρi j , (81a)

f ′′i j

fi j
= (a2 + 2b) + (4ab + 6c)ρi j + (4b2 + 6ac)ρ2

i j + 12bcρ3
i j + 9c2ρ4

i j , (81b)

whence it follows that the two-body rescaled potential v2 = V2/V0 equals

v2(ρi j) =

[
a
ρi j

+
1
2

(a2 + 6b) + (2ab + 6c)ρi j + (2b2 + 3ac)ρ2
i j + 6bcρ3

i j +
9
2

c2ρ4
i j

]
. (82)

As we did in the previous sections, the three-body potential V3 can be obtained from equation (12)
in a similar fashion.

Let us now take N = 2 and find the coefficients a, b, c. After identifying the coefficients in
equations (78) and (82), we obtain

a = −1

b = 1
4

(
1 −

√
1 + 4

3δ
3 − 2δ2

)
≈ 1

4δ
2 − 1

6δ
3

c = − 1
2δ

2 + 2b ≈ − 1
18δ

3 ,

(83)

which leads to the potential given by equation (77) and to the ground-state energy

E = V0ε0 , ε0 = −
1
2

a2 − 3b = −
1
2
−

3
4
δ2 +

1
2
δ3 . (84)
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This is consistent with results recently reported in [41], where the authors used the quantum su-
persymmetry approach. The advantage of our present method is that it works for any dimensions
d ≥ 1 and that it can easily extended to higher order of δ as well as to non-zero angular momentum
l > 0. Indeed, to incorporate the angular momentum, it suffices to multiply the pairwise function
(79) by rl

i j

fi j = rl
i je

aρi j+bρ2
i j+cρ3

i j . (85)

We then find an additional effective potential Vl = V0l(l + 1)/r2
i j and modified two-body potentials.

Using similar method, we identify the constants to find
a = − 1

1+l

b ≈ 1+l
4 δ

2 −
(2+l)(1+l)2

12 δ3

c ≈ −1+l
18 δ

3 ,

(86)

and the energy level El = V0εl with

εl = −
1
2

a2 − 3b − 2bl = −
1

2(1 + l)2 −
3
4

(1 + l)
(
1 +

2
3

l
)
δ2 +

1
4

(2 + l) (1 + l)2
(
1 +

2
3

l
)
δ3 (87)

= −
1

2n2 −
1
4

n(2n + 1)δ2 +
1
12

(n + 1)n2(2n + 1)δ3 , (88)

where the quantum number n = 1 + l. Notice that for δ = 0, we find that En =
E0
n2 where

E0 = −V0/2 = −~2/(2ma2
0) as expected. Notice that using our technique we find the same energy

levels and wavefunction as in [41]. It is also possible to find the approximate solution for the
higher order terms in δ. The general method consists of adding power of ρ in the exponential in
equation (85):

fi j = rl
i je

∑∞
k=1 akρ

k
, (89)

and to identify the coefficients in front of the two-body potential. One can use analytical or nu-
merical methods to find the coefficients ak, k = 1, 2, 3, . . . up to a certain order M > 3. Once we
identify the coefficients, we can easily find the expression of the energy levels En,l for n = l+1. To
find the eigenstates for other degeneracies (such as n = 1 + p + l, p = 1, 2, . . . ), we have to mul-
tiply the pairwise functions (85) (for M = 3) or (89) (for M > 3) by some polynomials

∑s
j=1 c jr j

and find for which values of the coefficients c j the function satisfies the Schrödinger equation. In
the limit δ → 0, these polynomial should approach the Laguerre polynomials [42]. This detail
analysis is beyond the scope of this paper and would require further investigation. We note that
this technique could be also used to find solutions of Schrödinger equations with potential written
as a Taylor series V(r) =

∑∞
j=0 b jr j.

5 Reverse-engineering pair function for given interactions

The models discussed have been derived making a choice of the pair function that singles out a
given Jastrow wavefunction. Such choice can be motivated on physical grounds, by analogy with
other models, etc. In other applications, one may be interested in studying models with a given
kind of interaction. It is then possible to reverse engineer the form of the pair function fi j. Indeed,
by looking at the general expression of the two-body potential (11), we consider the differential
equation [

f ′′(ri j)
f (ri j)

+ (d − 1)
f ′(ri j)

ri j f (ri j)

]
=

1
r2

0

v(ri j/r0), (90)
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where v(ri j/r0) is a dimensionless potential function. Such ordinary second-order differential
equation can be integrated numerically. In some cases, it admits an analytical solution.

For the sake of illustration let us consider models with vanishing two-body potential. As an
interesting precedent in the literature, we note that systems of bosons dominated by three-body
hard-core interactions have been introduced by Paredes et al. [43] in the quest of non-Abelian
anyons in one dimension. The latter were further discussed in Girardeau’s last solo paper [44].

In what follows we consider parent Hamiltonians of Jastrow wavefunctions in d spatial dimen-
sions with vanishing V2 and governed by V3. Let us first look into the case of N = 2 particles in
d = 3, in which there are no interactions, i.e., the particles are free. According to the symmetry
with respect to the center of mass, the solution looks like A

r e−cr, where c =
√

2mE/~2. This is
nothing but the solution of the free Schrödinger equation using spherical symmetry. It motivates
the choice of the pairwise function

fi j =
A
ri j

e−cri j . (91)

Interestingly, this is an specific instance of the case discussed in section 4.6, see equation (65) with
λ = −1. Indeed, plugging λ = −1 into equation (66), we find that V2 = 0, which is consistent
with the reasoning above. In this case, the three-body potential is given by equation (67) (again
for λ = −1) and the total three-dimensional Hamiltonian reads

Ĥ0 = −
~2

2m

N∑
i=1

∆i +
~2c2

6m
N(N − 1)(N − 2) +

~2

2m

∑
i

∑
j,k,i

~ri j · ~rik

2c

 1
r2

i jrik
+

1
ri jr2

ik

 +
1

r2
i jr

2
ik

 . (92)

The family of models introduced is infinity and we conclude here our investigation of quasi-
exactly solvable many-body quantum models in spatial dimension d. Many other models can be
found, such as those with pair-wise function given in terms of products of elementary functions

(e.g. fi j = rλi je
−cri je−

µΩ
2~ r2

i j), considering other elementary functions (e.g. e−crαi j), etc. The identi-
fication of these models may be assisted by making use of methods in supersymmetric quantum
mechanics [45].

6 Discussion and conclusions

We have identified the complete family of Hamiltonians with a ground-state of Jastrow form,
involving one and two-body functions. These models describe particles of equal mass in d-spatial
dimensions with kinetic energy and one-, two- and three-body local potentials, that neither involve
a magnetic field nor momentum-dependent interactions. For d = 3 this family corresponds to the
Calogero-Marchioro models [25] while the corresponding family in d = 1 has been discussed
in [14]. For arbitrary d our results provide the complete family of parent Hamiltonians of Jastrow
wavefunction without restriction to Calogero-like models associated with S U(1, 1) symmetry [32]
or the nonlocal momentum dependent terms [33]. Further, while these models generally involve
three-body interactions, their long-wavelength behavior is independent of the latter [33].

Our construction readily provides the generalization to arbitrary spatial dimension of known
models, such as the Calogero-Sutherland, Calogero-Moser, and inverse-sinh-square models. In
addition, our results greatly facilitate the identification of new specific instances within this fam-
ily of models. To this end, it suffices to choose the pair function entering the Jastrow form and
to evaluate its first and second derivatives. As an example, motivated by the many-body quan-
tum bright soliton found by McGuire state in the attractive Lieb-Liniger model, we have shown
that its generalization to higher dimensions has a parent Hamiltonian involving inverse distance
interactions. Similarly, we have constructed novel models by considering wavefunctions func-
tions that are the product of the corresponding ground state of some of these models. The parent
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Hamiltonians of the resulting models (for which we use a hybrid notation e.g., McGuire-Calogero-
Sutherland, hyperbolic McGuire, etc.) have a hybrid structure with pairwise interactions inherited
from the constituent models and additional cross terms. This construction can be generalized to
higher-order hybrids involving more than two reference models.

Importantly, our results allow reverse-engineering the pair function that gives rise to a given
pairwise potential. As an example, we have identified the ground-state of a Hamiltonian with
Yukawa two-body interactions, and an additional model with a vanishing two-body term that is
governed exclusively by three-body interactions.

Our results can be extended to models that are supersymmetric [45], include spin degrees of
freedom, as well as multiple species [46–48], and truncated interactions [49, 50]. Likewise, one
can envision the extension to account for anyons with two-body interactions involving the relative
angular momentum [29]. Yet another generalization is suggested by considering more general
Jastrow wavefunctions of the type in Eq. (2). An exciting prospect is offered by considering
Nosanov-Jastrow wavefunctions used to describe quantum solids, as this may allow the identifi-
cation of quasi-exactly solvable many-body quantum systems with a lattice structure [14, 51, 52].
While we have focused on ground-state wavefunctions and the identification of the corresponding
parent Hamiltonians, an interesting outlook concerns the identification of excited states and their
corresponding energy eigenvalues. The systems discussed are generally quasi-exactly solvable in
the sense that only part of the spectrum may be derived. It is thus of interest to explore whether one
can establish the integrability of the parent Hamiltonian from the properties of the ground-state
Jastrow wavefunction.
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A Laplacian of Jastrow wavefunctions

The action of the Laplacian yields on a Jastrow wavefunction of the form Φ0(r1, . . . , rN) =
∏

i< j f (ri j)
is given by∑

i
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A similar derivation holds for the generalized Jastrow wavefunction Ψ0 =
∏

i< j f (ri j) =∏
k g(rk)Φ0. We first evaluate the gradient:

~∇iΨ0 =
∑
j,i
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Using this expression, the Laplacian is found to be
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