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Abstract

The prediction of differential cross-sections in hadron-hadron scattering pro-
cesses is typically performed in a scheme where the heavy-flavour quarks (c, b, t)
are treated either as massless or massive partons. In this work, a method to
describe the production of colour-singlet processes which combines these two
approaches is presented. The core idea is that the contribution from power
corrections involving the heavy-quark mass can be numerically isolated from
the rest of the massive computation. These power corrections can then be
combined with a massless computation (where they are absent), enabling the
construction of differential cross-section predictions in a massive variable fla-
vour number scheme. As an example, the procedure is applied to the low-
mass Drell-Yan process within the LHCb fiducial region, where predictions
for the rapidity and transverse-momentum distributions of the lepton pair are
provided. To validate the procedure, it is shown how the nf -dependent coef-
ficient of a massless computation can be recovered from the massless limit of
the massive one. This feature is also used to differentially extract the massless
N3LO coefficient of the Drell-Yan process in the gluon-fusion channel.
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1 Introduction

The prediction of high-energy scattering processes which involve initial-state hadrons is
crucial for understanding the physics of hadron collisions in both controlled environments
(such as the LHC) as well as a range of naturally occurring scattering processes (such as
those involving cosmic rays). In general, the starting point for the theoretical description
that describes high-energy interactions in these collisions is a factorisation theorem [1] of
the form

dσ
dQ2 dX ∼

∑
a,b

∫
dξA dξBfa/A(ξA, µ)fb/B(ξB, µ)

× dσ̂ab
(
xA
ξA
,
xB
ξB
, Q;αs(µ), µ

Q

)
. (1)

This theorem separates the full scattering process into a partonic scattering process in-
volving the scattering of the hadron constituents a, b (e.g. quarks and gluons), and a set
of parton distribution functions (PDFs) f(x,Q) which describe the probability distribu-
tion of the internal content of the hadron as a function of hadron momentum-fraction
and virtuality carried by the constituent particle. The energy-scale Q denotes a repres-
entative scale of the scattering process, e.g. the dilepton invariant mass in the Drell-Yan
(DY) process [2], and X is a hadronic level observable such as the rapidity of the dilepton
system.

A primary consideration when applying a factorisation theorem of this form is the
treatment of heavy-flavour quarks (e.g. charm and beauty). For example, if/when it is
a good approximation to consider these quarks as massless partons, or whether to retain
the exact mass dependence of the heavy quarks. When treated as a massless parton, the
heavy-flavour quark can be considered as an active parton in the perturbative evolution
of PDFs as well as the strong-coupling αs. This approach is often convenient as, through
this evolution, it allows to account for (to all orders) a class of logarithmic corrections
to the scattering process of the form αis ln[m/Q]j for i ≥ j, where m is the heavy-flavour
quark mass. Instead, when considered as a massive parton, the impact of the heavy-quark
mass can be incorporated exactly up to the known perturbative (fixed order) accuracy of
the partonic cross-section dσ̂. This allows for the computation of the same logarithmic
corrections as in the massless case outlined above (limited to fixed-order accuracy only),
and in addition power corrections of the form m/Q which are absent in the massless
calculation.

Alternatively one can develop a scheme which combines these approaches, providing
a uniform description of the scattering process across arbitrary energy scales—such a
description is provided by a massive variable flavour number scheme. This topic has been
studied in various contexts in the past [3–21], and with particular focus on the process of
lepton-nucleon scattering [22–31]. In the latter case, it is well understood how to apply
such a formalism to the description of nucleon structure functions. Due to the more
rich structure of hadron-hadron scattering processes, the development and application of
such a formalism is relatively less mature. It has been discussed for identified-hadron
production [6, 8, 20, 32], processes with flavoured-jets [33–35], inclusive quantities [15, 36–
39], exclusive quantities in the framework of SCET [40], and also within the context of
Parton Showers [34,41,42].
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The goal of this work is to revisit this topic for the production of colour-singlet pro-
cesses, focussing on the neutral-current DY process. LHC measurements of this process
have now reached per-mille level accuracy [43], massless N3LO predictions of such processes
have now been obtained [44–46], and precise computations of the transverse-momentum
spectrum are available at fixed-order [47, 48] and beyond [49–55]. Given this progress,
I believe it is important to unambiguously assess the importance of heavy-quark mass
effects for fully differential collider physics predictions. To do so, I develop a method that
allows to numerically extract (at the differential level) the contribution of massive power-
corrections to the hadronic cross-section. The method is applicable to arbitrary processes,
provided the considered observables are inclusive in QCD radiation and/or infrared and
collinear safe. In anticipation of a measurement, and as an application and validation of
the procedure, the low-mass Drell-Yan process is considered within the fiducial volume
of the LHCb experiment. As a by-product of this work, I also show how the presented
method can be used to obtain differential information on the DY cross-section, which is
used to extract the N3LO contribution to this process in the gg-channel.

2 (De)constructing the massive calculation

The general structure of the prediction of a differential hadronic-level cross-section in-
volving a single massive quark can be written as

dσM = dσm=0,nf + dσln[m] + dσpc . (2)

The three contributions on RHS of Eq. (2) are: the nf -dependent part of the calculation
which is present when m = 0; those terms which depend logarithmically on m which
diverge in the limit m → 0; and all remaining contributions that take the form of power
corrections (labelled ‘pc’), and which vanish in the limit m → 0. The first two terms on
the RHS of Eq. (2) are also present in a massless calculation (as they define the m → 0
limit of the massive calculation), while the power corrections are uniquely described by
the massive calculation. The core idea of this work is that the contribution dσpc can
be numerically isolated by directly calculating all other terms appearing in Eq. (2). At
fixed-order accuracy, this isolation procedure should be applicable to arbitrarily differential
observables, provided they are inclusive with respect to QCD radiation and/or are infrared
and collinear safe such that the zero-mass limit is well defined. This includes the differential
description of a colour-singlet system (which will be the focus of this work), but also
applies to processes involving hadronic jets (including those with identified flavour [56]).
The application to identified hadron production is slightly different (due to the presence
of final-state mass singularities), and has been discussed in the past [6, 8, 20,32].

To illustrate how the procedure is performed, the neutral-current DY process (i.e.
pp → `¯̀+ X) will be considered, and a description of how to evaluate each of the terms
appearing in Eq. (2) is given. The current availability and the perturbative accuracy of
these terms is also described.
Massive computation, dσM. The cross-section dσM appearing on the LHS of Eq. (2)
denotes the contribution from a single massive quark with mass m to the hadronic scat-
tering process. For the DY process, the presence of a massive quark alters the calculation
starting at O(α2

s). The mass enters the calculation explicitly in subprocesses of the form
ab → `¯̀+ QQ̄ (where a, b denote massless partons and Q the massive quark), but also
implicitly enters the lower multiplicity subprocesses ab → `¯̀(+c) either in double-virtual
corrections or through the definition of UV renormalisation counter-terms—see the Ap-
pendix of [57] for a detailed discussion. It should be clear that it is necessary to consider
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all contributions of the massive quark (whether they appear explicitly or not).
A massive calculation of the DY process is not available at O(α3

s). This requires
perturbative ingredients, such as various two and three-loop corrections involving a closed
massive fermion loop, which are currently unknown.
Zero mass computation, dσm=0,nf . When considered massless, the quark Q still con-
tributes to the same subprocesses as in the massive computation described above (but with
zero mass). This contribution can be computed directly after extracting the nf -dependent
part of the massless partonic cross-section at this order. Due to the presence of single-
and double-unresolved emissions in the differential calculation, this extraction must also
be applied to the (integrated) subtraction/slicing terms which are required to regulate
these emissions.

While first differential results for the massless DY cross-section at O(α3
s) have been

presented [46] (relying on the NNLO QCD calculation for Zj [47] reported in [52]), a
careful (and lengthy) computation is required to extract the O(α3

snf ) component. A
differential calculation of the massless O(α3

snf ) contribution to DY is therefore currently
unavailable.
Logarithmic computation, dσln[m]. Provided that QCD inclusive and/or infrared- and
collinear-safe observables are considered, the logarithmic dependence of the massive cross-
section on the heavy-quark mass m is of collinear origin. This behaviour is universal, and
it can be described with knowledge of a set of decoupling relations which describe how
parameters (e.g. αs and PDFs) in a theory with a massive quark are mapped (at fixed-
order accuracy) into an effective theory where that quark is treated as massless. With this
information, it becomes possible to construct the logarithmic behaviour of the differential
cross-section using only massless inputs.

This construction requires the decoupling relation for αs (and m) which is known
analytically to high perturbative-order [58], and also available with public software (see
for example [59]). The corresponding relations for the PDFs are provided in the form of
massive Operator Matrix Elements (OMEs, and denoted Âab) which describe the transition
between the partonic states a → b. The perturbative structure of these objects has been
studied at great length in the past, and calculations of the massive OMEs are available at
two-loop [10,24,60–65], and three-loop [66–70] order. Notably, these OMEs also define the
matching conditions/decoupling relations which allow to construct a VFNS for PDFs—see
for example Eq. (12-15) of [70] (and originally [24]).

To construct the logarithmic cross-section for the DY process, one has to consider
convolutions of the form

Â
(i)
ab ⊗ Â

(j)
cd ⊗ dσ̂(k),m=0

bd→`¯̀+X , (3)

where the superscripts (i−k) denote the perturbative order of the OMEs and the massless
partonic scattering cross-section (dσ̂(k),m=0

bd→`¯̀+X). All of the Â(i)
ab inputs required to construct

dσln[m] up to O(α2
s) (i.e. i + j ≤ 2) have been presented in [24]. The results presented

in [66–70] should also allow to extend this calculation to O(α3
s). For (k) ≥ 1, the de-

coupling relation for the strong coupling ∆(i)
nf (αs) is also required, which can be applied

as a multiplicative factor to Eq. (3). The perturbative expansion for ∆(i)
nf (αs), in the MS

scheme, is equivalent to that reported in Eq. (20) of [59].
Constructed in this way (i.e. using massless inputs) the logarithmic calculation will

also contain the constant terms which are present in both Âab and ∆nf
(αs), which are

required to reconstruct the zero-mass limit of the massive computation.
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3 Heavy-quark mass slicing to O(α3
s)

Following from the discussion in the previous Section, it is clear that all ingredients re-
quired to extract the power corrections for the DY process are known up to O(α2

s). This
extraction is achieved numerically by evaluating the first three terms appearing in Eq. (2)
and solving for dσpc. To validate this procedure, is it important to test that the extrac-
ted power corrections vanish in the limit m → 0, which can be done by performing the
extraction for decreasing values of m. Extracted in this way, the power corrections will
only vanish provided that dσln[m] reproduces the logarithmic behaviour of the massive
cross-section in the limit m → 0, and that the calculation of the constant term dσm=0,nf

is correct.
Viewed in another way, one can also use the small-mass limit to numerically extract

dσm=0,nf when it is unknown. This can be achieved if both massive and logarithmic cal-
culations are known at the desired perturbative order, by performing a fit to the constant
difference

(
dσM − dσln[m]

)
in the limit m → 0. Once this constant is known, the power

corrections can also extracted at the physical value of the heavy-quark mass. In practice,
this corresponds to a global slicing method, where the heavy-quark mass parameter m
acts as a collinear regulator.

This technique is noteworthy, as it can be used to extract differential results for the
DY cross-section at O(α3

s) in the gluon-fusion channel. This is possible because both the
massive and logarithmic calculations are available at this order. The massive calculation
is simply the NLO QCD correction to the subprocess gg → `¯̀QQ̄ which can be obtained
with automated codes such as aMC@NLO [71, 72], and the logarithmic cross-section can
be constructed using the two-loop OMEs given in [24]. While a detailed discussion of
the construction of dσln[m] will be postponed to future work, it is worth noting a minor
complication which was encountered at O(α3

s). At this order, it is necessary to consider
convolutions of the form

Â
(1)
gQ ⊗ dσ̂(2),m=0

Qg→`¯̀+X , (4)

where dσ̂(2),m=0
Qg→`¯̀+X is the second-order massless partonic cross-section and Â

(1)
gQ the one-

loop OME in the Qg channel. The partonic cross-section appearing in this convolu-
tion contains contributions from double-real, real-virtual, and double-virtual phase-space
configurations—with (integrated) subtraction terms appearing at each level. It is therefore
necessary to convolute Â(1)

gQ with all terms at all levels, involving iterated convolutions with
integrated subtraction terms. For all appearances of such iterated convolutions, analytic
results were derived to ease the numerical integration stage of the calculation.

4 Intrinsic charm contributions

So far, the discussion has implicitly assumed that the contribution from massive initial-
state quarks is absent. This is consistent with the assumption that there are no intrinsic
heavy-flavour PDFs, which is the set-up of most modern global PDF fitting groups. In
contrast, the NNPDF collaboration have relaxed this assumption [73] (see also [74]), and
now fits for an intrinsic charm quark PDF as part of the nominal fit. In this case, the
formalism outlined above can also be applied to extract the massive power-corrections
associated to initial-state charm quarks. This is done in this work, extending the previous
results for DIS [30, 75] and inclusive observables [21], to the fully differential level. This
requires the use of the OMEs for massive initial states originally computed in [4] which
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have also been presented in the Appendix of [21].
As an aside, I note that the general factorisation theorem for the computation of

hadronic-level cross-section predictions involving massive-initial state quarks is known to
be violated at O(α2

s). This topic has been studied in the past [76–87], and has received
recent attention in [88] in the context of the Drell-Yan process. A deeper theoretical
understanding of factorisation theorems for massive-initial states remains desirable today.

5 Constructing the M-VFNS

The massive variable flavour number scheme (M-VFNS) is constructed by combining a
massless calculation with that of the massive power-corrections outlined above, for differ-
ential predictions, according to

dσM−VFNS = dσm=0 +
nmax

f∑
i=c,b,...

dσpc
i . (5)

In this matching formula, the first term dσm=0 is the massless computation (i.e. that
in a zero mass variable flavour number scheme with nmax

f flavours, ZM-VFNS), and the
second term denotes the power corrections which are obtained by re-arranging Eq. (2).
The power corrections can be evaluated separately for each of the heavy-flavour quarks (at
higher-orders, one could also extend the formalism to deal with the presence of two-mass
contributions). The master formula Eq. (5) is similar to those which have been presented
for DIS Structure Functions (e.g. [29]), where dσpc is often written as the difference dσpc =(
dσM − dσM→0

)
.

With respect to either a massive or a massless approach, the benefits of this construc-
tion are that a resummation of a class of collinear logarithms involving the heavy-quark
mass m (through PDF and αs Renormalisation Group evolution) are included to all or-
ders, and the exact heavy-quark mass dependence is included to the fixed-order accuracy
to which dσpc

i is known.
Details of the computational set-up used for this work are provided in the following

Section, before providing a numerical validation of the procedure and phenomenological
results relevant for a measurement by the LHCb collaboration.

6 Computational set-up.

Theoretical implementation. The predictions of the various differential cross-sections
which enter the construction of the M-VFNS for the DY process are provided with a
specialised Monte Carlo programme. It was originally purposed to enable the construction
of a M-VFNS for the pp→ Z+b-jet process [35]. The programme has since been extended
to contain all ingredients which are required for the computation of the process pp→ `¯̀+X
up to O(α2

s), which may involve involve massless or massive heavy-flavour QCD partons.
The exception are processes involving massive initial states, which are limited to O(αs).

These computations are performed using a combination of Dipole subtraction [89] to
treat the presence of single unresolved emissions (see [18, 90] for massive initial-states),
and N-jettiness slicing for double unresolved emissions [91]. This implementation relies on
many existing results, which include: amplitudes [57, 92–97]; N-jettiness inputs [98–105];
several OpenLoops libraries for tree-level amplitudes [106]; as well as a number of results
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manually computed with the aid of FeynArts [107] and FormCalc [108]. Beyond fixed-
order, the programme also facilitates the computation of resummed predictions of the
pT,`¯̀ spectrum at NNLL accuracy using a combination of results from [109–111]. The
numerical integration of all contributions in the Monte Carlo programme are performed
with the VEGAS algorithm as implemented in CUBA [112].
Numerical inputs. All predictions are provided with the NNPDF3.1 NNLO PDF set [73]
with αs(MZ) = 0.118 (with nmax

f = 5), where the PDF and αs values are accessed via
LHAPDF [113]. These PDFs are used as an input to all calculations, which requires the
application of a renormalisation scheme change to some of the inputs which enter the
O(α3

s) calculation in the gg-channel. The values of the on-shell heavy quark masses are
mpdf
c,b,t = 1.51, 4.92, 172.5 GeV. It should be noted that the boundary condition for the

PDF set is defined at Q0 = 1.65 GeV, which is larger than mpdf
c . This information is

relevant as it is used to derive the the static charm-quark PDF fc(x), according to the
de-coupling relations calculated in [4].

All calculations are performed in the Complex Mass Scheme [114], with Electroweak
inputs defined in the Gµ-scheme following [106]. The following values for the numerical
inputs are used Mos

Z = 91.1876 GeV, Γos
Z = 2.4952 GeV, Mos

W = 80.379 GeV, Γos
W =

2.085 GeV, and Gµ = 1.16638 × 10−5 GeV−2. The massless DY computations at O(α2
s)

use the N-jettiness slicing method with a technical parameter of τcut = 10−3 GeV. Such a
small value was chosen (at substantial CPU cost) to suppress the impact of missing power
corrections beyond those included via [105] (see also [115] for a recent discussion).

For the results shown in the following Sections, an uncertainty due to the impact of
missing higher-order corrections is assessed by varying the values of µR and µF by a factor
of two around the dynamical scale µ0 ≡ ET,`¯̀ (the transverse mass of the dilepton pair),
with the constraint that 1

2 ≤ µF /µR ≤ 2. When the M-VFNS is constructed according
to Eq. (5), the scale uncertainties are correlated between the power corrections and the
massless computations. Where shown, PDF uncertainties have been computed at O(αs),
with a K-factor applied to the individual replica predictions obtained from the central
member at O(α2

s).
LHCb fiducial definition. In anticipation of a measurement of the process pp→ `¯̀+X
by the LHCb collaboration at

√
S = 13 TeV, the procedure outlined in the previous

Section is both validated and applied in the fiducial region of the LHCb experiment. The
predictions will be performed double differentially with respect to the invariant mass of
the dilepton pair within the range m`¯̀ ∈ [4, 200] GeV and either the transverse momentum
(pT,`¯̀) or rapidity (y`¯̀) of the dilepton pair. The following set of cuts are applied to the
charged leptons: pT,` > 1.5 GeV, |p`| > 20 GeV, 2.0 < η` < 4.5

Predictions have been generated at fixed-order accuracy for both pT,`¯̀ and y`¯̀ distri-
butions in 20 invariant mass bins (a total of 400 bins). In this work, I have chosen to
present the results within the invariant mass region of m`¯̀ ∈ [12.5, 13.5] GeV. This region
is of phenomenological interest as it provides sensitivity to the input PDFs at small-x,
without being overwhelmed by perturbative uncertainties which grow in the very low m`¯̀
regime. At the same time, this invariant mass region is sufficiently small that the fixed-
order predictions within the range of pT,`¯̀ ∈ [2.5, 11.0] GeV (which will be the focus of the
pT,`¯̀ measurement) are expected to be reliable. At higher values of m`¯̀, a resummation
of Sudakov logarithms of the form ln[pT,`¯̀/m`¯̀] is clearly necessary.

The numerical validation of the theoretical procedure (to follow) will be performed in
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the following kinematic regimes:

Fiducial : pT,`¯̀ inclusive ,
plow

T,`¯̀ : pT,`¯̀≤ 2.5 GeV ,

phigh
T,`¯̀ : pT,`¯̀≥ 2.5 GeV . (6)

The inclusion of this additional restriction in pT,`¯̀ is relevant as this defines the bin edge
of the on-going pT,`¯̀ measurement. Clearly, the Fiducial volume is the sum of the latter
contributions.

7 Numerical validation and O(α3
s) results

Validation at O(α2
s). To first validate the procedure, the small-mass limit of the massive

cross-section dσM appearing in Eq. (2) is considered within the LHCb Fiducial region.
This contribution is computed at O(α2

s) and is compared to the logarithmic cross-section
dσln[m] at the same order. In both cases, the scales are set to µF = µR = ET,`¯̀ and
the contribution from b-quarks are considered. The results for c-quarks are qualitatively
similar, and differ in magnitude due to the coupling of the quarks with the exchanged
gauge-boson.

The results are shown in Fig. 1 with a breakdown into qq̄- and gg-initiated chan-
nels (q indicating a light-flavour quark). In the lower-panel, the cross-section difference(
dσM − dσln[m]

)
is shown alongside the direct calculation of dσm=0,nf . The direct and in-

direct (obtained via the m→ 0 limit) methods of calculating dσm=0,nf coincide, confirming
the structure of the massive calculation presented in Eq. (2).

It is important to highlight that the massive calculation necessarily includes a sum over
all contributions of the massive quark. To understand why this is critical, one can consider
the double-real subprocess qq̄ → `¯̀+QQ̄. When the heavy-quark pair is emitted in a soft
and double-collinear configuration, a triple-logarithmic contribution of the form α2

s ln[m]3
is generated. This triple logarithm is cancelled (at the level of the differential cross-
section) by the exchange of a virtual soft and double-collinear massive quark-pair which
is present in the two-loop form factor for a massless quark pair. Which is to say, without
including all contributions involving the massive quark, the cross-section prediction will
contain logarithmic sensitivity to the heavy-quark mass which is not described by universal
structure of the OMEs and αs decoupling relations. This is effectively a statement of the
KLN theorem [116,117].
Extension to O(α3

s). As discussed, the perturbative ingredients required to extend the
procedure to O(α3

s) are available only for the gg-channel. In this case, no direct calculation
of dσm=0,nf is available, but it can be extracted from a numerical fit to the difference(
dσM − dσln[m]

)
in the m→ 0 limit.

This is done by generating data for the quantity
(
dσM − dσln[m]

)
for several values of

m in the range of m ∈ [0.5, 12] GeV, and subsequently performing a numerical fit. By
inspecting Eq. (2), the resultant distribution should be equal to the sum of the contribu-
tions from power corrections and the zero mass computation. An ansatz of the following
form is therefore used for the numerical fit

f(m) = a0,0 +
∑

i=1,j=0
ai,jm

(2 i) lnj [m] . (7)

The m-independent constant a0,0 should be equivalent to dσm=0,nf , while the remaining
terms describe the power corrections.
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Figure 1: Upper panel: absolute cross-section for the full massive and logarithmic cal-
culations at O(α2

s). Lower panel: the cross-section difference (massive-logarithmic) as
compared to the direct computation of the massless nf -dependent cross-section. A break-
down into partonic channels is provided.

The results are shown in Fig. 2, where a total four fitted curves are displayed corres-
ponding to the two kinematic regimes of plow

T,`¯̀ and phigh
T,`¯̀ at O(α2

s) and O(α3
s). In addition

to the fitted central value, the fitted value of a0,0 and its corresponding uncertainty (in-
dicated by a solid filled band) is displayed for each of the curves. As noted, a0,0 should
correspond to dσm=0,nf , and it is therefore compared to the direct computation of this
quantity available at O(α2

s). The fit leads to a result which is consistent with the direct
calculation, providing confidence that the fitting procedure leads to reliable results.

From the fitted values of a0,0 (which were produced for b quarks), it is possible to
construct the full nf -dependent massless cross-section in the gg-channel. This is done by
multiplying these results by a factor of F = nd + nu(Qu/Qd)2, where nu and nd are the
number of down- and up-type quarks. This relation holds (at the per-mille level) for the
gg-channel as there is a direct coupling of the heavy-quark line to the gauge-boson (which
is dominated by photon exchange for m`¯̀ ∈ [12.5, 13.5] GeV). The fitted (and, where
available, direct computation) are summarised in Table 1.

Order Fiducial [pb] plow
T,`¯̀[pb] phigh

T,`¯̀[pb]

dσm=0
gg α2

s 0.51(2) 3.96(2) -3.45(0)

dσm=0
gg,fit α2

s 0.49(4) 3.97(4) -3.49(4)

dσm=0
gg,fit α3

s 0.10(6) 4.11(5) -4.01(4)

Table 1: Predicted and fitted values of the coefficient of the zero-mass computation up to
O(α3

s) in the gg-channel. The results are for the central scale, and include an uncertainty
due to the fitting procedure and the statistical error.

Impact of massive power-corrections. To provide another validation of the procedure,
it is also useful to directly show the contribution from the massive power-corrections dσpc

(including scale variation).
A selection of such results are shown in Fig. 3, indicating that the power corrections
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1 10
m [GeV]

0.4−

0.2−

0
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0.8
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σd

 + Xl l →pp 
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lT,l
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 coefficient, fit3
sα
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Figure 2: The same as the lower panel of Fig. 1, focussing on the gg-channel in two pT,`¯̀
regions. The result of a numerical fit to the difference between the massive and logarithmic
cross-sections is shown, and compared to the direct calculation of the zero mass constant
at O(α2

s).

vanish in the limit m → 0 for arbitrary scale choices. These results include those from
qq̄ and gg channels (where the heavy-flavour quarks are produced in the final state) at
O(α2

s), as well as O(αs) contributions from massive initial-state charm quark contributions
in the cg channel. In the gg and cg channels, the results are displayed for the plow

T,`¯̀ and
phigh

T,`¯̀ regions to indicate large cancellations which occur for the power corrections when
integrated in pT,`¯̀. It is worth noting that the power corrections in the gg-channel have a
different sign at the on-shell value of the c- and b-quark mass, which leads to an additional
source of cancellation. The results from massive cc̄-initiated states were negligibly small
(due to the small value of the static charm PDF), and are not shown here.

1 10
m [GeV]
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]
pc σd
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cm bm
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sαMassive power corrections (b-quark) [

 qq

 < 2.5 GeV
lT,l

gg, p

 > 2.5 GeV
lT,l

gg, p

]1
sαIntrinsic massive power corrections [

 < 2.5 GeV
lT,l

cg, p

 > 2.5 GeV
lT,l

cg, p

Figure 3: Massive power-corrections to the DY cross-section within the LHCb fiducial
region with m`¯̀ ∈ [12.5, 13.5] GeV. The partonic-channels, perturbative orders, and con-
sidered pT,`¯̀ regions (unless inclusive) are highlighted. The scale uncertainty of each of
these predictions is shown.

So far, the results presented as a function of m are used to validate the general proced-
ure introduced in this paper. The actual impact of the power-corrections should be studied
at the values of m = mpdf

c,b . As an additional note, the construction of the logarithmic
cross-section should be performed in the same that it is done for the massless calcula-
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tion. For example, the logarithmic contribution generated by the PDFs and αs is only
present when evaluated above heavy-flavour threshold (typically mpdf). This approach
ensures that in the limit of m = mpdf → ∞ (where the massive cross-section vanishes),
the massive power corrections obtained via Eq. (2) exactly cancel those contributions from
the zero mass computation.

To place these results of Fig. 3 in context, the magnitude of the power corrections
(evaluated at mpdf

c,b ) should be compared to that of the (total) massless computation. The
results of this comparison are summarised in Table 2. The first column indicates results
within the Fiducial region, while the second column shows results in the phigh

T,`¯̀ region which
includes the constraint pT,`¯̀≥ 2.5 GeV. The reference calculation dσm=0 (which includes
scale uncertainties) is NNLO QCD accurate within the Fiducial region, and NLO QCD
accurate at finite pT,`¯̀. The α2

s and α3
s coefficients of the massive power-corrections are

shown in the same kinematic regions, where a breakdown into those contributions from
charm and beauty quarks is given. The α3

s results are obtained from the functional fits
shown in Fig. 2, evaluated at the on-shell mass values for each quark (with an appropriate
normalisation correction for the up-type quark).

Prediction Order Fiducial [pb] phigh
T,`¯̀[pb]

dσm=0 O(α2
s) 59.9+2.0

−5.6 46.2+5.1
−8.1

dσpc
c α2

s 0.07 −0.04

dσpc
b α2

s 0.23 0.19

dσpc
c (gg) α3

s +0.09(2) −0.04(2)

dσpc
b (gg) α3

s +0.05(1) +0.10(0)

Table 2: Predictions for the DY cross-section within the LHCb fiducial region with
m`¯̀ ∈ [12.5, 13.5] GeV. The contributions from the massless calculation and the massive
power-corrections are shown for the central scale. The scale uncertainties of the massless
O(α2

s) prediction are indicated, and the uncertainties in parenthesis correspond to the fit
uncertainties of the α3

s coefficients.

When compared to the massless prediction, the massive power-corrections introduce
a correction which is typically at the level of ≈ 0.5%. These corrections are small in
general, and there are a number of cancellations which occur between different partonic
channels, different quark flavours (charm vs. beauty), and also across the pT,`¯̀ spectrum
(see Fig. 2 and 3). Overall, the sum of these corrections is negligible compared to the size
the perturbative uncertainty of the massless calculation. Similar behaviour was found to
persist for the entire m`¯̀ range up to 200 GeV.

8 Differential distributions

This work focusses on improving our understanding the role of massive quarks in hadron-
hadron scattering processes. However, in view of the on-going measurement of low-mass
DY at LHCb, I also take this opportunity to provide some phenomenological results and
recommendations.
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As highlighted in Table 2, the overall normalisation of the massless cross-section has
a uncertainty due to scale variation as large as 9%. It is therefore useful to consider
normalised differential measurements where this theoretical uncertainty is reduced, but
sensitivity to the input PDFs is retained. Such an example is

1
σ

dσ
dy`¯̀

, (8)

where σ is the rapidity integrated cross-section for a given m`¯̀ region. This observable is
also experimentally well motivated as systematic uncertainties due to lepton reconstruction
are strongly correlated in rapidity (at fixed m`¯̀).

Theoretical predictions for this quantity are shown in upper panel of Fig. 4 at O(α2
s).

In the lower panel, the various predictions and uncertainties are shown normalised to
that of the central M-VFNS prediction constructed using Eq. (5). The power corrections
are small, and further cancel when constructing the normalised cross-section (as the cor-
rections are approximately flat in rapidity) resulting in a negligible contribution. The
PDF uncertainties are dominant in the region of forward-rapidity, which is driven by PDF
sampling in the region of small-x. An improved description of PDFs in this region has
important consequences for neutrino astronomy [118–124], and may also provide a cross-
check of those results which have been obtained using forwardD- and B-hadron production
data [118,123,125,126]. It is therefore recommended that the experiment publishes a cor-
relation matrix for the rapidity distributions which also includes the rapidity-integrated
distribution as an entry (for a given m`¯̀ region). As a final observation, the NNLO cor-
rection for this quantity is ≈ 5% at large y`¯̀ which may indicate the contribution of
large ln[x] corrections. It could be interesting to investigate the impact of resumming
these corrections, such as in [127,128] for the DIS process, using the formalism presented
in [129–132].
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Figure 4: Differential prediction for the normalised y`¯̀ distribution within the LHCb
fiducial region for m`¯̀ ∈ [12.5, 13.5] GeV.

The theoretical study of the pT,`¯̀ distribution is a little more delicate (particularly
at large m`¯̀) as a reliable description of the kinematic region of small pT,`¯̀ relies on
the resummation of Sudakov logarithms of the form 1

p2
T,`¯̀

lnn[pT,`¯̀/m`¯̀]. The situation

is tricky because the massive power-corrections obtained from applying Eq. (2) contain
contributions which have the same form as this, and diverge in the limit pT,`¯̀→ 0. This
feature prohibits a straightforward matching of the fixed-order M-VFNS prediction with
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a (Sudakov) resummed calculation (and potentially also joint small-x resummation [133]).
This issue has been addressed and will be detailed in future work, where a dedicated study
of the impact of heavy-quark mass effects on the transverse-momentum distributions of
gauge-bosons will be presented.

In the region of small m`¯̀ the fixed-order results are likely sufficient, and certainly
useful to indicate the phenomenological (ir)relevance of the massive power-corrections.
These results are shown in Fig. 5 for m`¯̀ ∈ [12.5, 13.5] GeV, where the pT,`¯̀ distribution
is shown normalised to the integrated cross-section. The impact of the massive power-
corrections can be inferred by comparing the central prediction of the M-VFNS (dash-
dotted red) compared to that of the massless calculation (dashed blue). The corrections
amount to ≈ 1% at small pT,`¯̀, leading to a slight change in the slope of the normalised
pT,`¯̀ distribution. Overall, these effects are small compared to the either PDF or scale
uncertainties (which were, for visual clarity, not shown in the lower panel).
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Figure 5: Differential prediction for the normalised pT,`¯̀ distribution within the LHCb
fiducial region for m`¯̀ ∈ [12.5, 13.5] GeV.

9 Conclusions

The main goal of this work is to provide a deeper theoretical understanding of the treat-
ment and role of massive quarks in predicting hadron-hadron scattering processes.

This has been achieved by studying the general structure of calculations which involve
a single massive quark, and presenting a formalism to construct differential cross-section
predictions in a massive variable flavour number scheme. The formalism can be applied
to colour-singlet production processes as well as those involving (flavoured) hadronic jets,
provided the differential observables are inclusive with respect to QCD radiation and/or
are infrared and collinear safe. Hopefully, these developments will help to clarify several
issues regarding heavy-quark mass effects in hadron-hadron scattering processes.

As a practical application, results have been provided for the low-mass DY rapidity
distribution within the LHCb fiducial region, and I have demonstrated how a normalised
distribution can give important information on the structure of the proton at low-x.

Finally, the formalism presented here represents an important step towards construct-
ing a scheme which can be applied to predict the transverse-momentum distribution of
gauge bosons, that includes the impact of heavy-flavour massive power-corrections and a
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resummation of Sudakov logarithoms in a consistent way. This is a critical development
towards reducing the theory systematic related to the modelling of the pT,` distribution
in the charged-current DY process, which will in turn improve the sensitivity of LHC
measurements to extract the W boson mass [134].
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[69] A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, K. Schönwald and
C. Schneider, The polarized transition matrix element Agq(N) of the vari-
able flavor number scheme at O(α3

s), Nucl. Phys. B 964, 115331 (2021),
doi:10.1016/j.nuclphysb.2021.115331, 2101.05733.
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