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Abstract

The spatial modulation of the Fermi velocity for gapless Dirac electrons in quantum materials
is mathematically equivalent to the problem of massless fermions on a certain class of curved
spacetime manifolds. We study null geodesic lensing through these manifolds, which are
dominated by curvature singularities, such as nematic singularity walls (where the Dirac cone
flattens along one direction). Null geodesics lens across these walls, but do so by perfectly
collimating to a local transit angle. Nevertheless, nematic walls can trap null geodesics into
stable or metastable orbits characterized by repeated transits. We speculate about the role
of induced one-dimensionality for such bound orbits in 2D dirty d-wave superconductivity.
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1 Introduction

Many of the most important quantum materials discovered in the past several decades feature
electrons, confined to two spatial dimensions, with effective ultrarelativistic band structures.
Massless 2D Dirac electrons arise as quasiparticles in the d-wave cuprates [1], in monolayer
graphene [2], as surface states of bulk topological insulators [3], and in twisted bilayer graphene
[4]. Massless Dirac or Majorana quasiparticles are also predicted to form at the surface of
topological superfluids and superconductors [5, 6, 7].

Recently, the focus has begun to shift from discovering Dirac materials to precisely ma-
nipulating them. In twisted bilayer graphene, for example, the moiré potential flattens the
Dirac cones near the magic angle, facilitating Mott insulating and superconducting phases [4].
Since massless Dirac carriers are a fermionic analogue of photons, an interesting question is
whether gravitational effects like lensing or trapping behind an event horizon can occur with
suitable modifications. Artificial quenched gravity (QG) can arise whenever a static source
couples to components of the Dirac-electron stress tensor [8]. Coupling to the off-diagonal
time-space components breaks time-reversal symmetry (T ) (as in the Kerr metric [9]) and
induces a “tilt” in the Dirac cone [10, 11], an effect that is realized in type-II Weyl semimet-
als [12]. By contrast, we focus here on a static coupling to the spatial-spatial components of
the stress tensor that preserves T , but modulates the components of the Dirac velocity (the
effective “velocity of light”), see Fig. 1.

While it is possible to deform the velocity in normal Dirac materials like graphene using
strain [13, 14], it is particularly natural in Dirac superconductors (SCs). For example, a
charged impurity placed on the surface of class DIII topological SC is predicted to isotropically
steepen or flatten the Dirac cone of the surface Majorana fluid [15]. In 2D d-wave SCs such
as the cuprates, a modulation of the pairing amplitude translates into a nematic deformation
of the Dirac cone (along the Fermi surface). Nematicity and emergent one-dimensionality
have been argued to play a key role in the physics of high-temperature superconductivity

Figure 1: Introduction to the gravitational view of Dirac-carrier velocity modulation. A:
Cartoon depicting a random spatial modulation of a 2D Dirac cone (QGD—see text). B-E:
Heat maps on a spatial [−5, 5] × [−5, 5] grid, depicting four randomly-generated (Gaussian)
disorder potentials, corresponding to the velocity components vb

a(x); these couple to the spa-
tial components of the Dirac-electron stress tensor in Eq. (1). F: Heat map depicting the
gravitational time-dilation factor, relative to the flat case [a proxy for curvature, see Eq. (28)
and surrounding discussion], for the manifold corresponding to the disorder potentials in B-E.
Note the visible domain walls corresponding to 1D nematic curvature singularities.
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Figure 2: Generic null geodesic trajectories in the spatial plane for purely isotropic or purely
nematic QGD. As discussed in the text, we consider quenched random spacetimes with a
special temporal flatness condition, which means that 2+1-D Dirac carriers are modulated
by perturbations that artificially mimic gravity, but in samples defined in physically flat
spacetime. It means that physical distances in a solid-state realization correspond to the
Euclidean measure in the plane, rather than to the geodesic one. A: Null geodesics for a purely
isotropic QGD realization. Trajectories with different initial conditions (initial position and
launch angle) appear with different colors. Note the qualitative resemblance to uncorrelated
2D random walks (diffusion). B: Null geodesics for a purely nematic QGD realization. Nearby
geodesics are highly correlated in their direction, and tend to exhibit near-retracing orbits that
bounce back and forth along nematic curvature singularity contours. Note that only in case
B do singularities arise along 1D curves (domain walls).

[16, 17,18,19].
Random quenched gravity arises when the Dirac velocity modulation occurs due to disor-

der (“quenched gravitational disorder,” QGD). Nanometer-scale inhomogeneity observed by
tunneling into BSCCO [20] could imply that QGD plays a role in high-temperature super-
conductivity; it has recently been demonstrated that increasing disorder can raise the critical
temperature in these materials [21]. QGD might also arise due to twist disorder in bilayer
graphene [22,23]. The physics of QGD has only recently been investigated theoretically. Ex-
act diagonalization studies of a 2D Dirac cone subject to different varieties of QGD revealed a
surprisingly robust incarnation of quantum criticality. In Ref. [15], nematic QGD was shown
to produce an entire spectrum of quantum-critical single-particle wave functions, with uni-
versal critical spatial fluctuations analogous to those found at an Anderson metal-insulator
transition. Spectrum-wide quantum criticality has also been observed in non-gravitational
models of topological superconductor surface states, where it was linked to quantum Hall
plateau transitions [24,25,26].

Motivated by the prospects for inducing gravitational effects in 2D Dirac materials, and by
the numerical observation of robust quantum criticality induced by QGD [15], this paper inves-
tigates the geometry of 2+1-D Lorentzian manifolds with quenched gravitational singularities,
corresponding to gravitationally modulated Dirac materials. We study the semiclassical limit
of massless Dirac carriers lensing through static gravitational landscapes by computing null
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geodesic trajectories. Null geodesics play a crucial role in informing the solution to the wave
equation on curved manifolds [27]. Moreover, geodesics can form the basis for a sensible
semiclassical expansion of the Dirac equation, which governs a consistent single-particle rela-
tivistic quantum mechanics (unlike the Klein-Gordon equation). These points are formalized
by the fact that null geodesics are exactly the bicharacteristics for the Dirac equation on a
Lorentzian manifold. Bicharacteristics determine the propagation of discontinuities of partial
differential equations and very generally correspond to a “geometric optics” viewpoint of a
generic field equation [28].

To be precise, we consider only artificial gravitational potentials, i.e. perturbations that
mimic gravity by coupling to the stress tensor, but for Dirac electrons propagating through
physically flat spacetime. Technically, this translates into a special temporal flatness condition,
which simplifies the metric and the analysis of null geodesics. It also means that there is a
preferred coordinate system that measures physical Euclidean distances in the plane; geodesic
distances are “experienced” by the Dirac carriers, but would not be easily extracted from an
experiment. Examples of the static gravity studied here include nematic deformations of the
Dirac cone, as can arise from spatial inhomogeneity in the pairing potential of a d-wave SC,
or isotropic flattening of the Majorana cone due to impurities at the surface of a topological
SC [15]. By contrast, our results are not applicable to a macroscopically curved sheet of
graphene. A geodesic approach previously was combined with kinetic theory to compute
scattering off of random height variations on the surface of a three-dimensional topological
insulator [29].

In the gravitational language, curvature singularities arise whenever one or both com-
ponents of the Dirac carrier velocity vanish. We study two different types of singular loci.
Nematic singularities occur when only one component of the Dirac velocity passes through
zero, and arise along 1D curves in a d-wave superconductor whenever the pairing amplitude
changes sign (i.e., separates pairing domains with a π phase shift). We also study isotropic
curvature singularities, where the entire Dirac cone is flattened at a point.

We find that there are strong qualitative differences between the geodesics corresponding

Figure 3: Example depicting metastable null geodesic bound states along nematic singulari-
ties. The spacetime manifold is defined by vD = cos[0.2πr]x, vN = cos[0.2πr]y in the purely
nematic model of Eqs. (58)–(59). A: Time dilation heat map of the manifold [Eq. (28)], de-
picting concentric circular contours of curvature singularity. B: Null geodesics shortly after
release from the origin. We see that the geodesics tend to travel along the singular contours.
C: Null geodesics in the long-time limit, showing that the geodesic dynamics are dominated
by metastable orbits along these singularities.
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to nematic and isotropic QGD, as shown in Fig. 2. Moreover, we show that null geodesics
are profoundly influenced by isotropic and nematic curvature singularities, though these give
rise to different effects. Isotropic singularities are strongly attractive and asymptotically
capture geodesics that pass sufficiently close. Conversely, nematic singularities do not capture
geodesics; instead, they drive all impinging geodesics to a unique velocity, dependent only on
the disorder potentials at the singularity, at which the geodesics are allowed to pass through
the singularity. We call this effect geodesic collimation. The collimation angle is simply
determined by the local dispersive direction of the Dirac cone at the singularity wall.

Although the null geodesics do not “stick” to singular nematic contours, there is a horizon
effect due to the latter. In particular, nematic singularity walls can produce stable and
metastable gravitationally bound orbits, wherein null geodesics repeatedly lens back and forth
across the wall (at the local geodesic collimation angle). This is illustrated for a “nematic
circular billiard” spacetime shown in Fig. 3.

1.1 Outline

Our manuscript is organized as follows. Sec. 2 introduces the 2D Dirac Hamiltonian for
artificial quenched gravity. Mapping this to the covariant formulation of massless fermions
on curved spacetime, we extract an associated metric. We discuss symmetries and describe
the nature of curvature singularities that can arise in this spacetime. In Sec. 3, we develop
the geodesic equation and reformulate it several times to gain insight into the geometric
properties of geodesics, especially in the vicinity of curvature singularities. The most useful
formulation employs the projection of the tangent vector onto the local dreibein. Sec. 4
introduces the purely isotropic and purely nematic submodels, which allow separate study
of nematic and isotropic Dirac cone modulation. Finally, in Sec. 5 we present an array of
simple, highly-symmetric but singular spacetime geometries that admit analytical solutions
and give a window into properties of the null geodesic interactions with singularities. Sec. 6
summarizes our results and discusses future directions.

Many supporting details and calculations are relegated to appendices. Appendix A sum-
marizes various useful reformulations of the geodesic equation. Appendix B explains that the
geodesic dynamics do not depend qualitatively on the length scale of a QGD potential, and
Appendix C introduces two other submodels that aid connection with previous work [15]. In
addition to the analytical calculations described in Sec. 5, we compute numerical results for
regular and random quenched gravitational potentials, exhibited in various figures displayed
throughout the paper.

2 Model and analogy to gravitation

2.1 Hamiltonian

Our focus is a 2+1-dimensional massless Dirac model in the presence of artificial quenched
gravity: perturbations that mimic gravity by coupling to the spatial-spatial components of the
stress tensor, and which preserve time-reversal symmetry. These flatten, steepen, or rotate the
components of the Dirac velocity. Despite the spatial modulation of the Dirac cone, we assume
that the Dirac electrons propagate through physically flat spacetime; in practice, this means
that we exclude transport across a curved 2D sample (such as a corrugated graphene sheet).
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As explained in the Introduction 1, this is hardly a restriction in the context of 2D Dirac
materials. As an example, for Dirac or Majorana quasiparticles that arise at the boundary of
3D topological or in 2D d-wave superconductors, inhomogeneity due to charged impurities or
modulation of the pairing gap can both manifest as quenched gravitational coupling to the
stress tensor [15].

Our model is defined by the Hamiltonian

H = − i
2

∑
a,b=1,2

∫
d2x vb

a(x)
[
ψ̄(x) σ̂a←→∂b ψ(x)

]
, (1)

where x = {x, y} are Cartesian coordinates that measure physical Euclidean distances in the
sample plane, ψ = ψσ is a two-component spinor, σ̂1,2 are Pauli matrices, and the double-
directed derivative is defined by (f

←→
∂ g) ≡ f(∂g) − (∂f)g. The functions {vb

a(x)} couple to
the spatial components of the Dirac-electron stress tensor T a

b. In the unperturbed limit, we
can take {v1

1 = v2
2 = 1, v2

1 = v1
2 = 0}.

We will find it useful to define the “disorder vectors”:

vj(x) =

[
vj
1(x)
vj
2(x)

]
, (2)

which will let us write the action of our fermion theory as

S = i

∫
dt

∫
d2x

ψ̄(t,x)∂tψ(t,x) +
1
2

∑
a,b=1,2

vb
a(x)

[
ψ̄(t,x) σ̂a←→∂b ψ(t,x)

] , (3)

= i

∫
dt

∫
d2x ψ̄(t,x)


∂t +

[
v1(x) · σ̂

]
∂1 +

1
2
[
∂1v1(x) · σ̂

]
+

[
v2(x) · σ̂

]
∂2 +

1
2
[
∂2v2(x) · σ̂

]
ψ(t,x), (4)

where σ̂ = [σ̂1, σ̂2]T . In going from Eq. (3) to Eq. (4), we integrate by parts to remove
the double-directed derivative in Eq. (3), which we see gives rise to a spatially-dependent
imaginary vector potential in the Lagrangian. Hermiticity requires that such terms exist to
balance the spatially modulated Dirac velocity; preserving Hermiticity is crucial, since non-
Hermitian versions of the spatial stress tensor arise instead for reparameterization ghosts in
2+0-D [30]. The Hermitian counterterms in Eq. (4) form the spin connection of the covariant
Lagrangian for a theory of massless fermions on a curved spacetime manifold.

It will also be helpful to define [u1,u2] = [v1,v2]T , which allows us write the Hamiltonian
as

H =
∫
d2x ψ̄

−i∑
j

σ̂j

[
(uj ·∇) +

1
2
(∇ · uj)

]ψ. (5)

In momentum space, the Dirac cone is spanned by the vectors {uj}.

2.2 Mapping to gravity

We pursue a gravitational analogy to shed light on the Dirac Hamiltonian in Eq. (1). Using the
vielbein formalism [9], the action for a system of massless Dirac fermions on a 2+1-dimensional
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spacetime is given by [31]

S =
∫ √

|g| d3x ψ̄(x)Eµ
A(x)γ̂A

[
i∂µ −

1
2
ωBC

µ (x)ŜBC

]
ψ(x), (6)

where x = {t, x, y}, µ ∈ {0, 1, 2} is a coordinate index, A,B,C ∈ {0, 1, 2} are local Lorentz
indices, the 2×2 Dirac matrices satisfy the Clifford algebra

γ̂A γ̂B + γ̂B γ̂A = −2ηAB 1̂,

ηAB → diag(−1, 1, 1) is the flat Minkowski metric, gµν is the spacetime metric and g is its
determinant. Further, Eµ

A is the dreibein, central to the tetrad (here: “triad”) formalism,
defined by the relation

ηABEµ
A(x)Eν

B(x) = gµν(x). (7)

Finally, ŜBC generates local Lorentz transformations on the spinor index of ψ, and ωBC
µ is

the spin connection, defined by

ωA
µB = EA

ν Γν
µλE

λ
B − (∂µE

A
λ )Eλ

B. (8)

Our goal is to identify a spacetime metric [gµν(x)] such that Eqs. (4) and (6) are identical.
After shifting ψ̄ → ψ̄γ̂0 in Eq. (6) [such that ψ̄ ↔ ψ†, implicitly assumed in the “non-
relativistic” notation of Eq. (4)], we can identify γ̂0γ̂a = σ̂a. Consistency between Eqs. (4)
and (6) requires setting E0

A6=0 = 0, due to the absence of time-space mixing terms. For static
{vj(x)}, this is equivalent to enforcing time-reversal symmetry. Further, as explained above
and in the Introduction, the Dirac electrons are assumed to propagate through physically
flat 2+1-D spacetime, with effective gravitation arising solely due to the spatial variation in
vb
a(x). Then, the coefficient of the time-derivative term in Eq. (6) can be chosen equal to one,

a condition that we call temporal flatness,√
|g|E0

0 ≡ 1. (9)

With this choice, the Cartesian coordinates x in Eqs. (4) and (6) measure physical Euclidean
distances in the plane. Temporal flatness allows the identification of the disorder potentials
directly in terms of the dreibein,

vb
a =

Eb
a

E0
0

. (10)

We may then construct the metric in terms of vb
a and E0

0 via Eq. (7). If we bring the dreibein
in line with the potentials in Eq. (10), then the spin connection will match the imaginary
vector potential terms in Eq. (4).

To determine E0
0 , we take the determinant of the metric and again invoke temporal flatness

to compute

1 =
1

(E0
0)2|g|

= [E1
2E

2
1 − E1

1E
2
2 ]2 = (E0

0)4(v1 × v2)2. (11)

8
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We thus find that Eq. (6) is equivalent to the Hamiltonian system in Eq. (1) if the dreibein
and spacetime metric are given by the mapping dictionary

E0
0 =

1√
|v1 × v2|

, (12)

Eµ
A →

1√
|v1 × v2|

1 0 0
0 v1

1 v1
2

0 v2
1 v2

2

 , (13)

gµν →
1

|v1 × v2|

−(v1 × v2)2 0 0
0 |v2|2 −v1 · v2

0 −v1 · v2 |v1|2

 . (14)

The result in Eq. (14) defines the quenched gravitational metric. This metric is quite
general, although it has three important structural properties that constrain the geometry:
(1) it is everywhere block-diagonal in time and space [a consequence of time-reversal symmetry
for static potentials {vj(x)}], (2) the temporal flatness condition [Eq. (9)] fixes g00 in terms of
the determinant of the spatial-spatial subblock of the metric, and (3) it is time-independent
[∂tgµν = 0]. We note that if one wanted to consider time-dependent gravitational disorder
by allowing for explicit time-dependence of the disorder vectors {vj}, only the last of these
conditions is removed [allowing for the generalization presented in Eq. (41)]. We also note that
metric is expressed entirely in terms of the relative geometry of the disorder vectors, a fact
that will be important for establishing the invariance of the geodesic dynamics to pseudospin
rotations in Sec. 2.4.

Our theory can thus be studied in two different settings. On one hand, it is an effective
low-energy Dirac theory due to perturbations that couple to spatial-spatial stress tensor com-
ponents in a condensed matter system. On the other hand, we can study it as a theory of
free massless fermions on a corresponding curved spacetime.

2.3 Curvature and singularities

The metric in Eq. (14) becomes ill-defined at points where the cross-product v1×v2 vanishes.
This condition corresponds to a failure of the temporal flatness condition [Eq. (11)], divergence
of the dreibein [Eq. (13)], and the non-invertibility of the inverse metric. The Ricci scalar
curvature takes the form

R =
N

(
vb
a, ∂v

d
c

)
|v1 × v2|3

, (15)

where N
(
vb
a, ∂v

d
c

)
is a (complicated) homogeneous quadratic polynomial in spatial derivatives

of the disorder-vector components. While it is possible for the numerator to vanish so as to give
finite curvature at a point where v1 × v2 = 0, we will generically find curvature singularities
along the sets defined by this condition.

We can characterize singularities in terms of Dirac cone geometry: at a point where
v1 × v2 = 0, we have

v1 = cos θ∗ v,

v2 = sin θ∗ v,
(16)

9
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for some v ≡ [v1, v2]T and an angle θ∗ = arctan(|v2|/|v1|). In the notation of Eq. (5),
u1 = v1θ̂

∗ and u2 = v2θ̂
∗, where θ̂∗ = [cos θ∗, sin θ∗]T . It follows that

H =
∫
d2x ψ̄ [−i(v · σ̂)∂θ∗ + S.C.]ψ, (17)

where S.C. is the spin connection term. At the singularity, the energy only depends on the
derivative of the field in the direction of θ̂∗: there is a flat band in the perpendicular direction,
forming a “Dirac canyon.”

A singularity can thus be partially characterized in terms of the angle θ∗ and the vector
v, as defined above. At a singularity point, we have a flattening of at least one axis of the
Dirac cone, in the direction perpendicular to θ̂∗. We see that there are two types of possible
curvature singularities: nematic singularities correspond to nonzero v [Eq. (16)] and give rise
to a local Dirac canyon, while isotropic singularities correspond to v = 0, and locally flatten
the entire Dirac cone. We note that isotropic deformations of the Dirac cone can only produce
isotropic singularities. On the other hand, nematic singularities can only be formed by the
breaking of rotational symmetry of the electron band structure.

We can gain more insight with some topological reasoning. The quantity v1 × v2 can
vary continuously with x, taking on both negative and positive values. Thus, the regular
singularities will generally form 1-manifolds that act as domain walls, partitioning the plane
into regions of v1×v2 > 0 and v1×v2 < 0. Even at a singular point |v| ≥ 0, and so isotropic
singularities will generally arise only at isolated points.

We will see in latter sections that both flavors of singularity strongly impact geodesic
behavior. Geodesics that collide with an isotropic singularity are arrested and remain captured
for the rest of time. These isotropic singularities also turn out to exert a strong pull on nearby
geodesics. Conversely, geodesics that collide with a nematic singularity pass through in finite
time; they are all driven to pass through the singularity in the direction θ̂∗ and at the speed
|v|, a singularity-induced geodesic collimation effect. We stress that, unintuitively, this fixing
of both the geodesics’ direction and speed does not uniquely define the geodesic.

2.4 Pseudospin rotations

Before moving on to a study of the spacetime manifolds defined by the metric in Eq. (14),
we pause to consider the properties of the quantum theory [Eq. (4)] under a local pseudospin
rotation. We claim that the dynamics of the theory are invariant under a local U(1) pseudospin
symmetry.

Specifically, let the unitary transformation

U(x) = exp
[
i

2
θ(x)σ̂3

]
(18)

encode the in plane rotation v→ R̂(v) via the canonical SU(2) → SO(3) double cover. That
is,

U†
[
v · σ̂

]
U = R̂(v) · σ̂, (19)

where the rotation operator R̂ is given by

R̂(v) = cos θv − sin θv⊥. (20)

10
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(Our convention is that v⊥ = [v2,−v1]T .)
The unitary fermion field transformation ψ → Uψ sends the action [Eq. (4)] to

S =
∫
dt

∫
dx ψ̄(t,x)


i∂t +

[
R̂(v1) · σ̂

]
i∂x +

i

2
[
∂xR̂(v1) · σ̂

]
+

[
R̂(v2) · σ̂

]
i∂y +

i

2
[
∂yR̂(v2) · σ̂

]
ψ(t,x). (21)

While the action is not invariant, the new theory is not qualitatively different from the old.
The disorder vectors have been rotated through the same angle and their relative geometry
is preserved. Since the metric for the corresponding spacetime manifold [Eq. (14)] depends
only on the lengths and relative angles of the disorder vectors, it is explicitly invariant under
the transformation. It follows that the geodesic dynamics are invariant as well.

The quantum dynamics are also invariant under the transformation. To see this, note that
the quantum states of the original theory can be recovered from knowledge of the quantum
states of the pseudospin-rotated theory by enacting the inverse pseudospin rotation [U†(x)] on
the eigenstates. The same can be said of the time-dependent wave function. Since the time-
dependent wave functions are related by a unitary pseudospin rotation, the corresponding
time-dependent density functions are identical.

3 Geodesics

The main focus of this paper is the study of the geodesics on the manifolds defined by the
quenched gravitational metric in Eq. (14). In this section, we introduce the geodesic equation
and reformulate it into a more manageable form that allows an analytical understanding of
the effects of curvature singularities, and also facilitates efficient numerical evaluation.

3.1 Geodesic equation

The geodesic equation is given by the second order ODE [9]

d2xµ

ds2
= −Γµ

αβ [x(s)]
dxα

ds

dxβ

ds
, (22)

where s is an affine parameter for the curve and {Γµ
αβ} are the Christoffel symbols derived

from the metric [Eq. (14)]. In our case, these take the form

Γ0
µν(x) =

 0 ∂1 ∂2

∂1 0 0
∂2 0 0

 1
2

log |v1 × v2|, (23)

Γ1
µν(x) =

Γ1
00(x) 0 0
0 Γ1

11(x) Γ1
12(x)

0 Γ1
12(x) Γ1

22(x)

 , (24)

Γ2
µν(x) =

Γ2
00(x) 0 0
0 Γ2

11(x) Γ2
12(x)

0 Γ2
12(x) Γ2

22(x)

 . (25)

The Christoffel symbols {Γρ
µν} left undefined above are complicated functions of v1,2 and

derivatives thereof.
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3.2 Temporal first integral

The structure of the quenched spacetime in Eq. (14) yields a general first integral for the time
coordinate along a geodesic. Inserting Eq. (23) into the geodesic Eq. (22) gives

d2t

ds2
= − (∂1 log |v1 × v2|)

dx

ds

dt

ds
− (∂2 log |v1 × v2|)

dy

ds

dt

ds
. (26)

This is integrable and the first integral for time follows:

dt

ds
=

(E/m)∣∣v1[x(s)]× v2[x(s)]
∣∣ . (27)

Above, E/m is the constant of integration, which we identify as the energy of the geodesic
according to an observer at rest at the same location. To see this, note that the standard
expression for this is E/m = −g00[x(s)](dt/ds). The fact that energy is conserved along a
generic geodesic is due to the fact that the “at rest” three-vector t̂ ≡ [1, 0, 0]T gives a global
timelike Killing field for the quenched gravitational manifold. For null geodesics, the constant
E/m formally diverges, but it can be scaled arbitrarily without affecting the geodesic.

3.3 Reparametrization by global time

In light of Eq. (27), it will be useful to define

γ(x) ≡ 1∣∣v1(x)× v2(x)
∣∣ . (28)

which is the gravitational time-dilation factor.
Since dt/ds = γ[x(s)] > 0 [setting E/m = 1 in Eq. (27)], the mapping between the affine

parameter s and global time t along a geodesic is invertible. There is thus a well-defined
reparametrization of the geodesic in terms of t [≡ x(t)]. Using Eq. (27), we have (j ≥ 1)

dxj

dt
=
dxj

ds

ds

dt
=

1
γ[x(s)]

dxj

ds
, (29)

so that tangent vectors of geodesics with respect to the global time coordinate are just
spatially-dependent dilations of the original tangent vectors with respect to the affine pa-
rameter. The geodesic equation in terms of the global time coordinate is [with ẋj ≡ dxj/dt]

ẍ(t) = −
[
Γ1

00 + (Γ1
11 + ∂1 log[γ])ẋ2 + (2Γ1

12 + ∂2 log[γ])ẋẏ + Γ1
22ẏ

2
]
, (30a)

ÿ(t) = −
[
Γ2

00 + Γ2
11ẋ

2 + (2Γ2
12 + ∂1 log[γ])ẋẏ + (Γ2

22 + ∂2 log[γ])ẏ2
]
. (30b)

These equations offer some interesting interpretations. Firstly, the Γ00 terms appear as poten-
tials in what is effectively a Hamiltonian dynamics problem with many friction-like dissipative
terms. We note that the global time reparametrization introduces several new terms combin-
ing with the Christoffel symbols, adding new friction-like terms to the geodesic equation. The
dissipative terms play a key role in the geodesic capture by isotropic curvature singularities,
as we discuss in Sec. 4.1.

12
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3.4 Reformulation of the geodesic equation

Along a geodesic (expressed in terms of the proper time or an affine parametrization), the
spacetime interval is constant, gµν(dxµ/ds)(dxν/ds) ≡ ∆. Introducing notation for the speed
[σ ≡ |ẋ|] and velocity angle [θ(t) ≡ arctan[ẏ(t)/ẋ(t)]], we can use this to relate a geodesic’s
speed, position, energy, and mass. Eqs. (27) and (28) imply that(

E

m

)2 {
1− γ2(x)σ2(x)

[
(u1 × θ̂)2 + (u2 × θ̂)2

]}
= − ∆

γ(x)
, (31)

where again, θ̂ ≡ [cos θ, sin θ]T and [u1,u2] = [v1,v2]T . Solving instead for the squared-speed
of the geodesic, we find

σ2
∆[θ,x] =

1
γ(x)2

1
(u1 × θ̂)2 + (u2 × θ̂)2

[
1 +

∆
γ(x)

(m
E

)2
]
. (32)

In the flat-space limit, these reduce to the familiar equations of special relativity: E2(1−σ2) =
m2 for a timelike geodesic. Note also that if m = 0, then E plays no role, reflecting that fact
that null geodesics are unaffected by a scaling of the affine parameter. Eq. (32) can be used
to rewrite the geodesic equation in an angular formulation; this is presented in Appendix A.

While our focus is on null geodesics, we see that timelike and spacelike geodesics have
speed-position relations derived from those of null geodesics by a simple multiplicative factor.
From Eq. (32), we can see that while null [∆ = 0] and tachyonic [∆ > 0] geodesics have a
well-defined speed at every point of the manifold, massive geodesics [∆ < 0] are restricted
from the regions of the manifold with −∆ < (E/m)2 γ(x).

Equation (32) with ∆ = 0 also offers an insight into the null geodesic collimation effect
alluded to in Sec. 2.3. At a singularity, the factor γ−2 necessarily vanishes, pushing the
speed of the geodesic towards zero. The geodesic may only pass through the singularity if
the denominator in Eq. (32) diverges simultaneously. This can happen only if u1 and u2 are
parallel (automatic for the singularity), and if the velocity vector of the geodesic is driven to
point in their common direction, θ̂ → θ̂∗ [see the discussion around Eq. (17)]. Though it is
not obvious from Eq. (32), we will see that all geodesics impinging on a nematic singularity
are in fact always driven to the correct direction, θ̂∗.

While Eq. (32) offers some physical insight into the dynamics, a significantly more useful
reformulation is possible. The geodesic equation may be expressed directly in terms of the
dreibein [Eq. (13)]. This is natural in this setting, since the dreibein (and not the metric)
is fundamental to the formulation of the Dirac field on curved spacetime, Eq. (6). The
structure of the quenched gravitational spacetime [Eq. (14)] allows even further simplification.
Relegating the details to Appendix A, we find that the equation for null geodesics can be
expressed as

ẋ(t) = φ̂ · v1, (33)

ẏ(t) = φ̂ · v2, (34)

φ̇(t) = φ̂×
[

∂1v1 + ∂2v2

]
− 1

v1 × v2

[
[v1∂1 + v2∂2][v1 × v2]

] , (35)

where φ̂ ≡ [cosφ, sinφ]T is an auxiliary unit vector that rotates along the geodesic trajectory.
In the zero-disorder limit, φ̂ reduces to the velocity unit vector θ̂. The angle φ expresses the

13



SciPost Physics Submission

Figure 4: Example of null geodesic collimation. We use a spacetime defined by vD = x
and vN = y in the purely nematic model of Eqs. (58) and (59). A: Heat map of the time-
dilation factor γ [Eq. (28)], depicting curvature singularities along unit circle. B: Heat map
annotated to mark the collimation angles of the singularities. C: Heat map with null geodesic
trajectories superimposed. Note that the geodesics pass through the singular manifold at the
correct collimation angles. We can also see some geodesics arc back into metastable orbits
along the singular manifold.

alignment of the tangent vector relative to the spatial components of the dreibein triad. We
note that the implementation of the null geodesic constraint reduces our two second-order
geodesic equations [Eqs. (22), (30a), and (30b)] to three first-order equations.

The form of the geodesic equation in Eqs. (33)–(35) is useful for numerical simulation;
while it is not divergence-free at a curvature singularity, it avoids the singularities in the
Christoffel symbols and in the denominator of Eq. (32). Further, the nullity condition
[gµν(dxµ/ds)(dxν/ds) = 0] is implemented automatically by the use of the unit vector φ̂,
providing numerical stability. Eqs. (33)–(35) also allow easy insight of the geodesic collima-
tion effects of singularities mentioned above; we discuss these next.

3.5 Geodesic collimation at nematic singularities

From Eq. (33)–(35), we can now better understand geometric features displayed by geodesics in
the vicinity of a nematic curvature singularity, what we have been calling geodesic collimation.
As discussed in Secs. 2.3 and 3.4, all geodesics impinging on a nematic singularity are driven
to pass through at the direction defined by the angle θ̂∗ and at the speed |v|. This is depicted
for a simple circular geometry in Fig. 4, and for random (quenched disorder) geometry in
Fig. 5.

We have seen that at a singularity, the vectors v1 and v2 are parallel, and can be
parametrized as in Eq. (16). Plugging this into Eqs. (33) and (34) then gives dy/dx = tan θ∗,
fixing the direction of the geodesic at the singularity. This is the collimation angle θ∗ of the
curvature singularity.

Via Eqs. (16), (33), and (34), we also have that, at a singularity, the geodesic speed is
given by |ẋ| = v · φ̂. From Eq. (35), we see that for φ to have a finite derivative at the
singularity, we must have strong driving of φ̂ → v̂ so that at the singularity, φ̂ is parallel to
the vectors v1,v2. The geodesic equation thus locks the speed of the geodesic through the
singularity to |v|.

14
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3.6 Geodesic coincidence at singular points

A geodesic on a Riemannian differentiable manifold is uniquely specified if its position and
velocity (tangent vector) at a point are given. Since geodesic collimation at a nematic curva-
ture singularity dictates the velocity of a geodesic at a specific singular point, it would appear
that only a single geodesic may pass through each nematic singular point. This turns out not
to be the case. A continuum of distinct geodesics may pass through the same singular point
at the same time, coinciding in both position and velocity, without contradiction, as shown in
Fig. 6. This is possible because our space is only piece-wise a Riemannian differentiable man-
ifold, i.e. when restricted to the connected, open sets that are non-singular. As we approach
a singularity, the form of the geodesic equation allows it to avoid specifying the value of φ̇
at the singularity, despite the fact that {x, y, φ, ẋ, ẏ} are completely determined, allowing for
distinct geodesics to have the same instantaneous position and velocity (but different values
of φ̇). In turn, the value of φ̇ at the singularity uniquely characterizes the geodesic; all higher
derivatives of x, y and φ at the singularity can be computed in terms of φ̇ and the values (and
derivatives) of the disorder potentials at the singularity.

To see how geodesic collimation avoids uniquely specifying the geodesics, we linearize
Eqs. (33)–(35) about a singular point to first order in t. This linearization requires the use of
a convective derivative; we evaluate potentials along the geodesic and take a total derivative
with respect to t. We let v and θ∗ correspond to the singularity as defined by Eq. (16), and
(without loss of generality) we take the singularity to be at the origin and the collision to
occur at time t = 0. We have

ẋ(0) = cos θ∗|v|+O(t),
ẏ(0) = sin θ∗|v|+O(t),

v1[x(0)] = cos θ∗v + t|v|(θ̂∗ · ∂)v1|x=0 +O(t),

v2[x(0)] = sin θ∗v + t|v|(θ̂∗ · ∂)v2|x=0 +O(t),

(v1 × v2)[x(0)] = t|v|(θ̂∗ · ∂)(v1 × v2)|x=0 +O(t2).

(36)

Figure 5: Example of null geodesic collimation in a random quenched gravitational disorder
realization. We use the same manifold depicted in Fig. 1. A: Heat map of time-dilation factor
γ [Eq. (28)], depicting domain walls of singularities. B: Heat map annotated to mark the colli-
mation angles of the singularities. C: Heat map with null geodesic trajectories superimposed.
We see both that the geodesics pass through the singular manifold at the correct collimation
angles, and that geodesics have a tendency to cross singular manifolds multiple times.
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Figure 6: Example demonstrating that distinct geodesics can agree in both position and
velocity (orientation of the tangent vector) at a singular point. The manifold is the “linear
dreibein wall” treated in Sec. 5, and the null geodesics have the closed form solution given by
Eqs. (74a) and (74b). A: Several geodesics are launched at t = 0 (launch points marked with
circles) in the vicinity of a nematic singularity wall along the line x = 0, with a horizontal
collimation direction (marked with arrows). B: At t = 1, all geodesics simultaneously pass
through the origin at the correct collimation velocity, as dictated by singularity. All 25 distinct
geodesics have the same instantaneous position and velocity at t = 1. After traversing the
singularity, these mutually diverge (remain distinct) in their subsequent evolution along the
manifold.

We also expand the unit vector φ̂ about a singularity with collimation angle θ:

φ̂(t) = v̂ − tφ̇(0)v̂⊥ +O(t2). (37)

Plugging these expansions into Eq. (35), we obtain

φ̇(t) =
[
v̂ − tφ̇(0)v̂⊥ +O(t2)

]
×

[
v̂

(
−1
t

+O(1)
)

+ D +O(t)
]
, (38)

where

D =
(
∂1v1 + ∂2v2 −

[(θ̂∗ · ∂v1)∂1 + (θ̂∗ · ∂v2)∂2](v1 × v2)
(θ̂∗ · ∂)(v1 × v2)

)∣∣∣∣
x=0

. (39)

Carrying out the cross products, we find that v̂×D = 0 and that Eq. (35) simply reduces to

φ̇(t) = φ̇(0) +O(t). (40)

The t→ 0 limit leaves φ̇(0) completely undetermined.
The fact that φ̇(0) is left undetermined at the singularity opens up the possibility that

distinct geodesics can share an instantaneous position and velocity. To see that this actually
happens, we construct explicit examples from an exactly solvable model—this is done in Sec. 5,
but the results are plotted in Fig. 6.

3.7 Time-dependent potentials

The form of the geodesic equation in Eqs. (33)–(35) provide such a simplification that it
is worth checking how this approach fares for time-dependent gravitational potentials. We
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surprisingly find that this leaves the geodesic equations are almost unaltered. With vj →
vj[t,x(t)], we still have ẋj(t) = φ̂ · vj. The equation for φ is slightly modified,

φ̇(t) = φ̂×


[
∂1v1 + ∂2v2

]
− 1

v1 × v2

[
[v1∂1 + v2∂2][v1 × v2]

]
− 1

v1 × v2

[
v1(φ̂× ∂0v2)− v2(φ̂× ∂0v1)

]
 . (41)

We see that the time-dependent generalization of the geodesic equation is relatively simple
as well, including only a single correction term with a quadratic φ̂ dependence. Further, this
form makes it apparent that the singularity-collimation effect survives to the time-dependent
generalization. At a singular point, we still have strong driving of φ̂ to v̂. While our focus
in this paper is on quenched (static) potentials, this result applies generally to any time-
dependent gravitational spacetime expressible in the from given by Eq. (14), and could have
potentially useful applications in future work. We will revisit this in our concluding discussion
Sec. 6.

4 Isotropic and nematic submodels

In order to qualitatively differentiate the effects of isotropic and nematic fluctuations on the
geodesics, we identify two subclasses of quenched gravitation that we will study alongside the
general metric in Eq. (14).

4.1 Pure isotropic model

The pure isotropic model will be defined by

v1(x) =
[
1 + vD(x)
vN (x)

]
, (42)

v2(x) =
[
−vN (x)

1 + vD(x)

]
, (43)

where vD, vN are the diagonal and off-diagonal potentials, respectively. This model has been
designed so that v1 · v2 = 0 and |v1| = |v2| at every point; it encodes isotropic fluctuations
and pseudospin rotations, but does not allow for nematic compression of the Dirac cone. In
particular, there will be no nematic singularities—all singular points will host a fully flat local
Dirac cone.

In light of the pseudospin invariance of the theory, the dynamics of this model are fully
determined by the related model with vj = v(x)êj, where êj is a coordinate unit vector and
v(x)2 = |vj|2 = v1 × v2 = (1 + vD)2 + v2

N = 1/γ ≥ 0. Singularities occur only at points
where {vD = −1, vN = 0}, as depicted in Fig. 7. Plugging the disorder vectors of Eqs. (42)
and (43) into the constant-interval speed condition [Eq. (32)], we have σ(θ,x) = v(x) for null
geodesics. For the isotropic model, there is no angular dependence of σ; all geodesics that hit
a singularity are stopped, in line with the remarks about isotropic singularities in Sec. 3.5.

In the case of the isotropic model, we find a dramatically simpler form of the metric and
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Christoffel symbols,

gµν(x)→

−v(x)2 0 0
0 1 0
0 0 1

 , (44)

Γ0
µν(x)→

 0 ∂1 ∂2

∂1 0 0
∂2 0 0

 log[v(x)], (45)

Γ1
µν(x)→

v(x)∂1v(x) 0 0
0 0 0
0 0 0

 , (46)

Γ2
µν(x)→

v(x)∂2v(x) 0 0
0 0 0
0 0 0

 . (47)

From Eq. (27), we have dt/ds = v(x)−2 (setting the constant E/m = 1). The spatial geodesic
equations are

d2x
ds2

= ∇
[

1
2v(x)2

]
= ∇

[
γ(x)

2

]
. (48)

With respect to the affine parameter s, these equations represent a non-relativistic classical-
Hamiltonian system with the effective potential

U(x) = −1
2
γ(x). (49)

Conservation of energy for the Hamiltonian system takes the form

1
2

∣∣∣∣dxds
∣∣∣∣2 = E +

1
2
γ(x). (50)

Figure 7: Curvature in the pure isotropic model. A: Heat map of the time-dilation factor γ
[Eq. (28)] for the “disorder space” isotropic manifold, with vD = x and vN = y in Eqs. (42)
and (43). We note that there is a single isolated curvature singularity. B: A heat map of the
time-dilation factor for a random realization of pure isotropic quenched gravity. C: The heat
map in B annotated to mark the locations of isotropic singularities.
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Above, E determines both the Hamiltonian energy of the classical system and the length of
the spacetime interval:

∆(s) = gµν [x(s)]
dxµ

ds

dxν

ds
= 2E . (51)

A null geodesic is a trajectory with E = 0.
In this picture, the factor γ = 1/v2(x) [Eq. (28)] enters acts as a potential energy U(x),

and singularities are infinitely deep potential wells. Conservation of the energy E would seem
to prevent geodesics from terminating at an isotropic singularity, but this is true only in
terms of the affine parameterization. Because U → −∞ corresponds to infinitely strong time
dilation, when reparametrized in terms of time, the spatial coordinates x(t) instead slow upon
approaching the singular point, and collide with it only as t → ∞. This can be attributed
to the additional (non-Christoffel) “friction terms” appearing on the right-hand side of (30)
that arise due to the time reparametrization. In Sec. 5.1, we consider a highly symmetric
geometry with an isotropic singularity at the origin that can be solved exactly. In that case,
we will see explicitly how geodesic capture occurs.

The analogue of Eqs. (33)–(35) for the isotropic model is also much simpler,

ẋ = v(x)φ̂ (52)

φ̇ = [∇v(x)]× φ̂. (53)

In this case, we see that φ̂ simply gives the velocity direction of the geodesic, and v(x) is the
speed. The velocity vector rotates when it is not aligned with the gradient of v(x).

Finally, in the case of the isotropic model the Ricci scalar curvature is simple enough to
state:

R(x) = −2∇2v

v
. (54)

The fully quantum-mechanical formulation of the pure isotropic model can be re-written so
that its time-dependent wave function is determined by the solution of an auxiliary Hermetian
differential equation. To see this, note that pseudospin invariance asserts that the dynamics
of the general isotropic model can be studied by the action

S = i

∫
dt

∫
d2x ψ̄(t,x)

 ∂t + v(x)σ̂1∂1 + v(x)σ̂2∂2

+
1
2
[∂1v(x)]σ̂1 +

1
2
[∂2v(x)]σ̂2

ψ(t,x), (55)

from which we can extract the Schrödinger equation. We can deal with the spin connection
terms [the second line in Eq. (55)] by introducing ψ̃(t,x) =

√
v(x)ψ(t,x), which satisfies{

i∂t + v(x)[σ̂1i∂1 + σ̂2i∂2]
}
ψ̃(t, r) = 0. (56)

Dividing by v(x), we see the energy eigenstates are determined by the equation

−i
[
σ̂1∂1 + σ̂2∂2

]
ψ̃E(x) =

E

v(x)
ψ̃E(x). (57)
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Figure 8: Curvature in the pure nematic model. A: Heat map of the time-dilation factor γ
[Eq. (28)] for the “disorder space” nematic manifold, with vD = x and vN = y in Eqs. (58) and
(59). We note the singularities lie along the unit circle, with the collimation angle marked in
red. B: A heat map of the time-dilation factor for a random realization of pure nematic QGD.
C: The heat map in B annotated to mark the collimation angles of the nematic singularities.
Numerically computed null geodesics are displayed in Fig. 4 for this geometry.

4.2 Pure nematic model

The pure nematic model will be defined by

v1(x) =
[
1 + vD(x)
vN (x)

]
, (58)

v2(x) =
[

vN (x)
1− vD(x)

]
, (59)

where vD, vN are the diagonal and non-diagonal potentials, respectively.
This model has been designed to encode nematic fluctuations, but does not allow for

isotropic compression of the Dirac lightcone. In particular, there can be no isotropic singu-
larities. We note that v1 × v2 = 1− (v2

D + v2
N ) = 1/γ, so that the curvature singularities fall

along the unit circle in {vD, vN}-space, as depicted in Fig. 8. Plugging the disorder vectors
of Eqs. (58)–(59) into the constant-interval speed condition [Eq. (32)], for null geodesics we
have

σ(θ,x) =
|1− (v2

D + v2
N )|√

[vD − cos(2θ)]2 + [vN − sin(2θ)]2
. (60)

We see that for the nematic model, there is an angular dependence of σ and the collimation
angle of a singularity is closely tied to the geometry of the unit circle in {vD, vN}-space.

Unlike the pure isotropic model, the pure nematic model neither yields a significantly sim-
plified form of the geodesic equation nor a partial solution to the quantum problem analogous
to Eq. (57). It is related to the T T̄ deformation of 2D quantum field theories [15, 32]. The
Ricci scalar curvature is extremely unwieldy and not particularly useful.

5 Solvable manifolds with curvature singularities

In this section we present several “toy models” of quenched gravitation, that is, highly sym-
metric realizations of the velocity potentials v1,2(x) in Eq. (14) that allow (full or partial)
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analytical solution to the geodesic equation. We have several motivations here. Firstly, we
observe in numerical solutions that geodesics are often captured by isotropic singularities
or drawn into meta-stable gravitationally bound orbits along nematic singularity walls. We
would like to understand these phenomena through the lens of some exactly solvable models.
In particular, we want closed form solutions that shed light on the nature of bound state
orbits and on the asymptotic approach to a singular point. Further, we can use analytical
solutions to benchmark our numerical solver.

5.1 Isotropic power-law model

We observe in numerical results that isotropic singularities tend to be highly attractive, and
that geodesics can be captured by these. One may ask if this is an artifact of the numerical
solver or if the geodesics truly asymptote to the singularities. Here we study a family of
integrable examples of the purely isotropic model to see how the geodesics approach such a
singularity.

We will consider the pure isotropic model with v(r) = rα for α > 0 (in the notation
of Sec. 4.1). Adapting to polar coordinates (r, θ) in the plane, one finds that the geodesic
equations read

ṙ(t) = rα cos
[
φ(t)− θ(t)

]
, (61a)

θ̇(t) = rα−1 sin
[
φ(t)− θ(t)

]
, (61b)

φ̇(t) = αrα−1 sin
[
φ(t)− θ(t)

]
. (61c)

We stress that here θ denotes the positional angle in the plane, not the orientation of the
tangent (velocity) vector, as employed elsewhere in this paper. The Eqs. (61) are easy to
solve; integrating gives φ(t) = αθ(t) + c0 for some initial-value constant c0.

In the marginal α = 1 case (see below), the null geodesics are given by

r(t) = r0e
cos(c0)t (62a)

θ(t) = sin(c0)t+ θ0. (62b)

These geodesics rotate with a constant angular velocity and they either decay towards the
origin or explode outwards exponentially. Geodesics that start out heading towards the sin-

Figure 9: Null geodesic trajectories for the isotropic power-law model with α = 1. A:
Geodesics released at (3, 3) with various angles. B: Long-term geodesic dynamics, in agree-
ment with Eqs. (62a) and (62b).
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Figure 10: Geodesic trajectories for the isotropic power-law model with α = 2. A: Geodesics
released at (3, 3) with various angles. B: Long-term geodesic dynamics, in agreement with
Eqs. (64a) and (64b).

gularity are always captured and those that start out heading away always escape. This is
depicted in Fig. 9.

For a generic potential that can be Taylor-expanded in r about an isotropic singularity,
the α = 1 case considered above captures the lowest-order term in the expansion. This result
provides intuition that a geodesic that enters a sufficiently small neighborhood of an isotropic
singularity heading towards it will be asymptotically captured.

We can also treat the general case. For α 6= 1, define the function β(t) ≡ φ(t) − θ(t) =
(α− 1)θ(t) + c0. With this, the geodesic equations then have a first integral of the form

sin[β(t)]
sinβ0

=
[
r(t)
r0

]α−1

. (63)

We can see from this formula that for α > 1, all geodesics with sinβ0 6= 0 are bound for these
manifolds. This allows to solve for β(t) and r(t):

cot[β(t)] = (1− α)
rα−1
0

sinβ0
t+ cotβ0, (64a)

r(t) =

sinβ0

rα−1
0

√
1 +

[
(1− α)

rα−1
0

sinβ0
t+ cotβ0

]2

+ c1


−1/(α−1)

, (64b)

where c1 is a constant determined by the t → 0 limit. We see from Eq. (64) that r(t)
approaches zero in an α-dependent power law for α > 1, and that the asymptotic angle of
approach to the singularity is only dependent on θ0, φ0. This is depicted in Fig. 10.

This model allows us to understand how isotropic singularities can capture geodesics. The
pure isotropic model is described by a Hamiltonian system in terms of the affine parameter
[Eqs. (48) and (49)]. For the isotropic power-law model γ(r) = 1/r2α, we have the conservation
law

1
2

(
dr

ds

)2

+
l2

2r2
− 1

2r2α
= E , (65)

where l = r2(dθ/ds) is the angular momentum. For α < 1, the effective radial potential
diverges to +∞ as r → 0, and no trajectories cross the singularity. For α > 1, the effective
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potential diverges to −∞, and all trajectories cross the singularity. This all agrees with the
closed form solution for null geodesics, Eqs. (64a) and (64b). While Eq. (65) implies that the
kinetic term diverges when a geodesic crosses a singularity, this is only with respect to the affine
parametrization; time dilation effects overwhelm that divergence and when parameterized in
terms of global coordinate time t, the geodesics slow and asymptote to the singularity.

The case α = 1 is marginal, and only trajectories with l2 > 1 are blocked from the
singularity by the centrifugal barrier. We can see how this works from the solution in Eq. (62).
Naively calculating l2 from these would give a non-constant angular momentum, because these
solutions are given in terms of the global coordinate time. Re-expressing Eq. (62) in terms of
the affine parametrization, we have

dr

ds
=

1
r

cos(c0),

dθ

ds
=

1
r2

sin(c0).
(66)

We see that l2 = sin(c0)2 ≤ 1, so that in this case, none of our geodesics are centrifugally
prevented from crossing the singularity. As a result, the solution in Eq. (62) asymptotes to
r = 0 in either the infinite future or past. The exception is the l2 = 1 orbit, with cos(c0) = 0,
which orbits at fixed radius.

5.2 xy-factored model

In this section, we present a class of 2D toy models that is solvable due to a “factorization”
into independent 1D structures. It provides a class of example manifolds on which both ne-
matic and isotropic singularities attract geodesics; all geodesics asymptote towards nematic
singularity walls, and run along these walls until finally being captured by an isotropic singu-
larity.

We are interested in the class of models with v1 · v2 = 0 and ∂2|v1| = ∂1|v2| = 0
everywhere. In light of the pseudospin invariance of the geodesic dynamics, we may reduce
to the model defined by the disorder vectors v1 = v1

1(x)ê1 and v2 = v2
2(y)ê2. We then have

|v1×v2| = v1
1(x)v

2
2(y), so that singularities fall along the vertical and horizontal lines defined

by the zeros of {v1
1, v

2
2}. Let {xj} and {yj} denote the zeros of v1

1 and v2
2, respectively; we

note that they partition the plane into rectangular boxes, Bij = (xi, xi+1) × (yj , yj+1) (see
Fig. 11), separated by walls of nematic singularities and with isotropic singularities at the
corners.

We solve for the geodesic dynamics. In this setting, the geodesic equations (33)–(35)]
reduce to

ẋ(t) = v1
1(x) cosφ, (67a)

ẏ(t) = v2
2(y) sinφ, (67b)

φ̇(t) = 0. (67c)

That φ is constant along all geodesics allows the geodesics to be written in closed form. We
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Figure 11: Geodesic trajectories in the xy-factored model. We use a manifold with v1
1(x) =

p(x), v2
2(y) = p(y) with p(x) = x3 + x2 − 6x, creating curvature singularities along the lines

{x = −3, x = 0, x = 2, y = −3, y = 0, y = 2}. A: Heat map of the time-dilation factor
γ [Eq. (28)], depicting curvature singularities along vertical and horizontal walls. B: Heat
map annotated to mark the collimation angles of the nematic singularities and the locations
of isotropic singularities. C: Heat map with geodesic trajectories superimposed. Note that
the geodesics are trapped in the box in which they start and asymptote towards isotropic
singularities at the corners.

define the functions

Fj(x) =
∫ x

(xj+xj+1)/2

dz

v1
1(z)

, (68a)

Gj(y) =
∫ y

(yj+yj+1)/2

dz

v2
2(z)

. (68b)

The mapping (x, y)↔ (Fi(x), Gj(y)) provides a diffeomorphism between the box Bij and the
plane. Geodesics in the box Bij are described by

x(t) = F−1
i [t cosφ0 + Fi(x0)] (69a)

y(t) = G−1
j [t sinφ0 +Gj(y0)], (69b)

which we see implies that geodesics never escape the Bij regions that they originate in; they
asymptotically approach the isotropic singularities in the corners of the Bij regions, riding
along the nematic singularity walls. We plot an example in Fig. 11

Here we have a concrete example of null geodesics asymptotically approaching both ne-
matic singularity walls and isotropic singularities, with capture by isotropic singularities, and
a new perspective on the interactions between nematic and isotropic singularities in models
where both are allowed. It also offers perspective on what happens when the collimation angle
of a nematic singularity is fixed to be parallel to the singularity manifold: such singularities
seem to be impossible for geodesics to cross.

5.3 Dreibein wall model

We next consider a model with a dreibein wall. The goal is to understand gravitationally
bound orbits of geodesics that cross a nematic singularity wall many times, as observed often
in numerical solutions (e.g., Fig. 3). We define the model by the disorder vectors v1 = ê1 and
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v2 = m(x) ê2. We choose m(x) such that m(0) = 0 to place the nematic singularity wall along
the y-axis. The model has geodesic collimation angle θ∗ = 0 (perpendicular to the dreibein
wall); walls with other collimation angles are easily constructed, but exhibit qualitatively
similar physics.

The null geodesic equations (33)–(35) reduce to

ẋ(t) = cos[φ(t)], (70a)
ẏ(t) = m[x(t)] sin[φ(t)], (70b)

φ̇(t) =
m′[x(t)]
m[x(t)]

sin[φ(t)], (70c)

which admit a general first integral of the form

sin[φ(t)]
sinφ0

=
m[x(t)]
m0

. (71)

We note that along a trajectory we must have |m[x(t)]| < |m0/ sinφ0|. This condition will
provide a very simple way to understand and compute trapping horizons for gravitationally
bound orbits. In particular, we can see that for unbounded m(x), all geodesic trajectories
with sinφ0 6= 0 are bound.

We may use Eq. (71) to reformulate the geodesic equations as a first order system in the
position variables:

ẋ(t) = ±

√
1−

[
sinφ0

m(x)
m0

]2

, (72a)

ẏ(t) = sinφ0
m[x(t)]2

m0
. (72b)

We can extract the behavior of null geodesics near a trapping horizon by linearizing Eq. (72)
around a point x∗ such that m(x∗) = |m0/ sinφ0|. Assuming (without loss of generality) that

Figure 12: Null geodesic trajectories for the linear dreibein wall, with m(x) = x. A: Geodesics
launched near the wall of singularities. The singular manifold has been labeled with collima-
tion arrows. B: The long-time geodesic dynamics. Note that all geodesics are in permanent
bound states along the singular wall, see Eq. (74). All crossings of the singular wall occur at
the collimation angle θ∗ = 0 (or π).
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Figure 13: Null geodesic trajectories for the dreibein wall, with m(x) = tanh(x). A: Geodesics
launched near the wall of singularities. The singular manifold has been labeled with collima-
tion arrows. B: The long-time geodesic dynamics. Note that some geodesics are in permanent
bound states along the singular wall, while others escape to infinity. The separation between
bound and free orbits is determined by Eq. (75). All crossings of the singular wall occur at
the collimation angle θ∗ = 0 (or π).

m′(x∗) > 0 gives

x(t∗) = x∗ −
∣∣∣∣sinφ0

2m0

∣∣∣∣m′(x∗)t2∗, (73)

where t∗ is a shifted time coordinate defined so that the impact with the horizon occurs at
t∗ = 0. Importantly, we see that the trapping horizon is not an asymptote, but a turning point
that sends the geodesic back the other way in finite time. This gives an example by which we
can understand gravitational bound-state orbits of geodesics along singularity walls.

We consider the case of a linear dreibein wall, with m(x) = x. In this case, we can directly
integrate Eq. (72) to obtain

x(t) =
x0

sinφ0
sin

[
φ0 +

sinφ0

x0
t

]
, (74a)

y(t) = y0 +
x0

2 sinφ0

[
t+

x0

2 sinφ0

(
sin[2φ0]− sin

[
2φ0 +

2 sinφ0

x0
t

])]
. (74b)

All geodesics (with sinφ0 6= 0) are bound states, oscillating back and forth across the singu-
larity wall while drifting along it, as shown in Fig. 12. This is a particularly nice example
for constructing distinct geodesics that have equal instantaneous positions and velocities at a
singularity crossing, and is used to generate the example given in Fig. (6).

We also consider the case m(x) = tanh(x). This model still has a nematic singularity wall
along the y-axis, but since m(x) is bounded, not all trajectories will be bound states. In fact,
the condition for a bound-state null trajectory is∣∣∣∣ tan(θ0)

tanh(x0)

∣∣∣∣ 1√
tanh(x0)2 + tan(θ0)2

≥ 1, (75)

where θ0 is the initial launch angle of the geodesic, initially located at x0. We see that
the initial launch angle and initial distance from the singularity wall together determine if a
geodesic is asymptotically bound or free. We plot geodesic trajectories in Fig. 13.
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Again, these toy model solutions add perspective to the results of numerical simulation.
They give an analytical understanding of the ability of nematic singularity walls to trap
geodesics into oscillatory, gravitationally bound orbits. We expect that the linear profile
represents the lowest-order approximation to the curvature profile in the vicinity of a generic
nematic singularity wall. These models are designed so that the collimation angle of the
geodesics is orthogonal to the singularity manifold at all points, and we see that these orbits
are fully stable.

5.4 Circular nematic model

The previous section on dreibein wall geometries shows that nematic singularity walls can host
states of permanently bound geodesics. An interesting question is whether this is a feature
unique to infinite singular walls. In this section, we construct a class of geometries hosting
gravitationally bound geodesics along a finite, closed contour.

Our model will be a rotationally symmetric version of the purely nematic model defined
by Eqs. (58) and (59), with

vD = ρ(r) cos(2θ), (76a)
vN = ρ(r) sin(2θ). (76b)

Here θ denotes the positional polar angle in the plane, not the orientation of the tangent
(velocity) vector, as employed elsewhere in this paper. The metric [Eq. (14)], converted to
polar spacetime coordinates (t, r, θ), takes the form

gµν =
1

1− ρ2(r)

−
[
1− ρ2(r)

]2 0 0
0 [1− ρ(r)]2 0
0 0 r2 [1 + ρ(r)]2

 , (77)

which becomes singular at ρ(r) = 1. The metric is invariant under rotations θ → θ + θ0; the
angular θ-direction is flattened along each radial contour with ρ(r) = 1, corresponding to a

Figure 14: Null geodesic trajectories for the rotationally symmetric nematic model defined by
Eq. (76), with ρ(r) = r. A: The singular manifold r∗ = 1, labeled with collimation arrows.
B: Geodesic dynamics. Note that many geodesics are in bound states along the singular wall,
and all wall crossings occur at the correct collimation angle. The condition for bound-state
null geodesics is e < 1, where the eccentricity e is defined in Eq. (82).
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nematic curvature singularity. The Ricci scalar curvature is given by

R(r) = − 2
[1− ρ(r)]3

{
[3− ρ(r)] [1− ρ(r)] ρ′(r)

r
+

[ρ′(r)]2

1 + ρ(r)
+ [1− ρ(r)]2 ρ′′(r)

}
, (78)

where ρ′(r) = dρ/dr.
Converting the geodesic equations (33)–(35) to polar coordinates, we find

ṙ = [1 + ρ(r)] cos[θ − φ], (79a)

θ̇ = −
[
1− ρ(r)

r

]
sin[θ − φ], (79b)

φ̇ =
[
1 + ρ(r)
1− ρ(r)

ρ′(r) + 2
ρ(r)
r

]
sin[θ − φ]. (79c)

Defining β ≡ θ− φ, as before, these equations are separable. The orbit equation relating r to
β can be directly integrated, yielding(

sinβ
sinβ0

)
=
r0
r

[
1− ρ(r)
1− ρ(r0)

]
. (80)

For the case ρ(r) = r, which hosts a singularity wall at r∗ = 1, the orbit equation becomes

r(β) =
[
1 +

1− r0
r0

(
sinβ
sinβ0

)]−1

. (81)

This is a conic section orbit in the (r, β) plane with semilatus rectum α = 1 and eccentricity

e =
|1− r0|

r0 |sin(θ0 − φ0)|
. (82)

The condition for a bound orbit is e < 1. This model shows that closed, finite singular
manifolds can host permanent bound states.

6 Conclusion

The effects of “artificial” quenched gravity (as defined in the Introduction) on 2D massless
Dirac carriers could have important consequences for understanding and manipulating low-
dimensional Dirac materials. The action in Eq. (4) is equivalent to a theory of massless
electrons on a certain class of static, curved spacetime manifolds, described by the metric
in Eq. (14). The geometry of null geodesic trajectories is heavily affected by the presence of
both isotropic and nematic curvature singularities that can arise in these spacetimes. Isotropic
singularities can asymptotically capture geodesics that pass sufficiently close. On the other
hand, null geodesics can traverse nematic singularity domain walls, but experience a geodesic
collimation effect that fixes their transit velocity. These domain walls can exhibit a horizon
effect, trapping null geodesics as bound states that perpetually lens back and forth across the
nematic singularity line.

In a semiclassical picture of the quantum dynamics, the influence of nematic singularity
walls on null geodesics presents a compelling potential mechanism for pairing enhancement

28



SciPost Physics Submission

in Dirac superconductors along these singular manifolds. On one hand, states gravitationally
bound to domain wall horizons could provide a link to quasi-1D physics. The latter has been
long suspected to play a role in enhancing strong correlations in quantum materials, and
possibly in the mechanism for high-Tc superconductivity in particular [16, 17, 18, 19]. States
gravitationally bound to the singular manifolds will feel the effects of an interaction-enhancing
flat band dispersion. On the other hand, the collimation phenomenon drives particles at the
same spatial location to equal or opposite momenta, a geometric effect reminiscent of the
dynamics induced by kinematical constraints and attractive interactions in BCS theory.

If singularity walls in the spacetime manifold could enhance or even induce superconduct-
ing pairing, then quenched artificial gravity could underlie a simple, universal mechanism
for gap enhancement in 2D Dirac superconductors (SCs). In the scenario where quenched
gravitational disorder arises from gap fluctuations in a d-wave SC, the prevalence of nematic
singularities is dictated by the ratio of gap fluctuations to the size of the gap. Therefore,
singularities could be more common in a weak-pairing SC state given a fixed degree of fluctu-
ation, possibly induced by a low-temperature pairing mechanism. Pairing enhancement due
to nematic singularity walls could then create a negative feedback loop, terminating when the
gap has hardened sufficiently so as to suppress singularities and their concomitant 1D bound
states. This paradigm allows disorder to play a constructive role, which could offer insight
into the puzzling indifference of the cuprates to dopant-induced disorder [20].

Finally, while static gravity is the focus of this paper, Eq. (41) shows that the geodesic
collimation effect of nematic singularities survives a generalization to time-dependent fluctu-
ations of the Dirac cone. Since the collimation effect can provide a mechanism for interesting
physics, Eq. (41) could serve as the foundation of an attempt to relate this to time-dependent
fluctuations of a superconducting gap. This could connect with popular theories of strong cor-
relation physics based on fluctuation-driven competing orders and proximate quantum critical
points [33]. An approach that passes all sources of “fluctuation” (both ordered and disordered)
through the intermediary step of (spatial and temporal) gap modulation has the potential to
unify several competing frameworks into a single mechanism for superconductivity. Exploring
these possibilities is a goal for future work.
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A Reformulation of the geodesic equation

This appendix outlines useful reformulations of the geodesic equation. First we give an angu-
lar, first-order formulation based on Eq. (32). We then explain the derivation of Eqs. (33)–(35).
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A.1 Angular reformulation

We can use the nullity condition, Eq. (32) with ∆ = 0, to reformulate the geodesic equation
in terms of the spatial velocity-vector angle θ:

ẋ(t) = σ(θ,x) cos θ, (83a)
ẏ(t) = σ(θ,x) sin θ, (83b)

θ̇(t) =
1

σ(θ,x)
[a2(x) cos θ − a1(x) sin θ] , (83c)

so that dy/dx = tan(θ), and where the {aj} are taken from the right-hand side of Eqs. (30a)–
(30b) so that ẍj(t) = aj [x(t)].

The angular formulation has a built-in error-resistance for numerical solution. By using
the nullity condition to reduce the equations to first order, we guarantee that the particle
moves along a null geodesic. Even as the solver inevitably accumulates errors due to the
angular update, the particle may move along a different geodesic than the one it started on,
but it will still be on a null geodesic.

A.2 Tangent vector projected onto the dreibein

We can express the geodesic equation concisely in terms of the dreibein. We project the
tangent (3-velocity) vector onto the dreibein,

uA(s) ≡ EA
µ [x(s)]

dxµ

ds
. (84)

We can then re-express the geodesic equation as the time-evolution equation for u, which can
be written simply in terms of EA

µ as

duJ

ds
= ηJMηAP

[
Eµ

BE
ν
M − Eν

BE
µ
M

] (
∂νE

P
µ

)
uAuB,

=
1
2
ηJMηAP (Eµ ∧ Eν)BM

(
dEP

)
νµ
uAuB. (85)

For null geodesics, we have

ηABu
AuB = gµν(dxµ/ds)(dxν/ds) = 0, (86)

so that we may parametrize the vector u as

uA(s)→ u0(s)

 1
cos[φ(s)]
sin[φ(s)]

 . (87)

A.3 Derivation of Eqs. (33)–(35)

The special structure of the quenched gravitational metric in Eq. (14) allows us to make
further progress. In particular, using the temporal first integral equation (27) and the time-
space block diagonality of the dreibein, we have

dt

ds
= E0

0 [x(s)]u0(s) = γ[x(s)] =
{
E0

0 [x(s)]
}2
, (88)
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[see Eq. (28)], and where we have set the constant E/m = 1. In this equation, E0
0 is the

A = 0, µ = 0 component of Eµ
A, which is the inverse of the same component of EA

µ [Eq. (84)].
We conclude that u0(s) = E0

0 [x(s)] = 1/
√
|v1 × v2| [Eq. (12)].

As before, we implement the global time reparametrization via Eq. (29). Combining this
with Eq. (84) and projecting out the spatial components of the geodesic equation, we obtain

ẋ(t) =
[
v1
1(x) v1

2(x)
v2
1(x) v2

2(x)

]
φ̂(t) ≡ V̂ (x)φ̂(t), (89)

where φ̂ ≡ [cosφ, sinφ]T is a unit vector. This gives Eqs. (33) and (34), but it remains to
determine the dynamics of φ(t). We may use the parametrization of uA [Eq. (87)] and the
time evolution equation for uA [Eq. (85)] together to find that

dφ̂j

dt
=

∑
a,b,t,l∈{1,2}

[VlbVtj − VtbVlj ]
(
∂tV

−1
al

)
φ̂aφ̂b. (90)

[We note that the term in brackets in Eq. (90) vanishes for most index assignments.] Backing
out the implied ODE for φ(t) finally gives Eq. (35).

B Length-scale dependence

Let a denote the length scale on which the lightcone modulations fluctuate, for example in a
random quenched gravitational potential (QGD). We will extract the dependence of geodesic
trajectories on a. Let g(a)

µν be the metric corresponding to disorder potentials fluctuating on
length scale a, and let g(1)

µν be the metric corresponding to the same potential, but scaled so
that a = 1 :

g(a)
µν [x] = g(1)

µν

[x
a

]
. (91)

Next, let Γ(a)ρ
µν be the Christoffel symbols corresponding to the metric g(a)

µν . Since the Christof-
fel symbols are related to the metric via spatial derivatives, we find

Γ(a)µ
αβ [x] =

1
a
Γ(1)µ

αβ

[x
a

]
. (92)

Now, let [t(a)(s),x(a)(s)] denote a solution to the geodesic equation at length scale a:

∂2
sx

ρ(s) + Γ(a)ρ
µν [x] [∂sx

µ(s)] [∂sx
ν(s)] = 0. (93)

The variable transformations s = as̃, xµ = ax̃µ and Eq. (92) map Eq. (93) to

1
a
∂2

s̃ x̃
ρ(s̃) +

1
a
Γ(1)ρ

µν [x̃] [∂s̃x̃
µ(s̃)] [∂s̃x̃

ν(s̃)] = 0. (94)

Thus, if [t(a),x(a)] is a geodesic with metric length scale a, then [t̃, x̃] = (1/a)[t(a),x(a)] =
[t(1),x(1)] is a solution with length scale a = 1, so that geodesics on different length scales are
related by a simple inflation transformation.
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C Other submodels: diagonal and off-diagonal

The pure isotropic and nematic models introduced in Sec. 4 are studied alongside the general
QGD Hamiltonian in the quantum setting via numerical exact diagonalization in Ref. [15].
In that paper, these are referred to as models “c” and “d,” respectively. That work also
introduces two other models [“a,” “b”]. While these models aren’t of primary interest for us
here in light of the pseudospin invariance of Sec. 2.4, we introduce them here and present
some properties of their geodesics, for comparison with Ref. [15].

C.1 Pure diagonal model

The pure diagonal model is defined by the disorder vectors

v1(x) =
[
1 + δv1

1(x)
0

]
, (95)

v2(x) =
[

0
1 + δv2

2(x)

]
. (96)

This corresponds to “model a” in Ref. [15]. We note that by pseudospin invariance, its
properties generalize to all models with v1 · v2 = 0 everywhere. The time-dilation factor is
given by

γ(x) =
1

|(1 + δv1
1(x))(1 + δv2

2(x))|
, (97)

so that we have a nematic singularity when either δv1
1 = −1 or δv2

2 = −1, and an isotropic
singularity when both δv1

1 = δv2
2 = −1. In this model, all isotropic singularities lie at an

intersection of nematic singularity manifolds—see Fig. 15. The squared speed-of-light in
Eq. (32) (with ∆ = 0) reduces to

σ2(θ,x) =
|(1 + δv1

1(x))(1 + δv2
2(x))|2

(1 + δv1
1(x))2 sin2 θ + (1 + δv2

2(x))2 cos2 θ
. (98)

Figure 15: Curvature in the pure diagonal model. A: Heat map of the time-dilation factor γ
[Eq. (97)] for the “disorder space” diagonal manifold, with δv1

1 = x and δv2
2 = y. We note the

singularities lie along the lines {x = −1, y = −1}. B: A heat map of the time-dilation factor
for a random realization of purely diagonal QGD. C: The heat map in B annotated to mark
the collimation angles of the nematic singularities, which we note are all either horizontal or
vertical.
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Figure 16: Curvature in the pure off-diagonal model. A: Heat map of time-dilation factor γ
[Eq. (101)] for the “disorder space” off-diagonal manifold, with v12 = x and v21 = y. We note
the singularities lie along the hyperbola {xy = 1}. B: A heat map of time-dilation factor for
a random realization of purely off-diagonal QGD. C: The heat map in B annotated to mark
the collimation angles of the nematic singularities, which we note are clustered around ±π/4.

We see from Eq. (98) that the geodesic collimation effect takes a simple form for these models:
if the singularity corresponds to δv1

1 = −1 (δv2
2 = −1), then the geodesic may only pass

through vertically (horizontally).

C.2 Pure off-diagonal model

The pure off-diagonal model is defined by

v1(x) =
[

1
v1
2(x)

]
, (99)

v2(x) =
[
v2
1(x)
1

]
. (100)

This corresponds to “model b” in Ref. [15], and we note that it is equivalent to the pure
nematic model by pseudospin invariance. The time-dilation factor is given by

γ(x) =
1

|1− v2
1(x)v1

2(x)|
, (101)

so that we have singularities whenever v2
1v

1
2 = 1. The constant-interval speed condition

[Eq. (32)] reduces to (for null geodesics with ∆ = 0)

σ2(θ,x) =
|v12(x)v21(x)− 1|2

[sin θ − v21(x) cos θ]2 + [cos θ − v12(x) sin θ]2
. (102)

We can parametrize a point on the singularity manifold by (v2
1, v

1
2) = (cotφ, tanφ) [Fig. (16)].

Eq. (102) then shows that a geodesic can pass through a curvature singularity if and only if it
is at the angles φ (or φ+π), relating the collimation angles to the geometry of the singularity
manifold in {v2

1, v
1
2}-space.
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