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Abstract

We advance holographic constructions for the entanglement negativity of bipar-
tite states in a class of (1+1)−dimensional Galilean conformal field theories dual
to asymptotically flat three dimensional bulk geometries described by Einstein
Gravity and Topologically Massive Gravity. The construction involves specific
algebraic sums of the lengths of bulk extremal curves homologous to certain
combinations of the intervals appropriate to such bipartite states. Our analy-
sis exactly reproduces the corresponding replica technique results in the large
central charge limit. We substantiate our construction through a semi classi-
cal analysis involving the geometric monodromy technique for the case of two
disjoint intervals in such holographic Galilean conformal field theories
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1 Introduction

In recent years quantum entanglement has emerged as a fundamental issue connecting
diverse areas of physics from many-body condensed matter systems to black holes and
quantum gravity. It is well known in quantum information theory that bipartite pure state
entanglement is characterized by the entanglement entropy which is the von Neumann en-
tropy of the corresponding reduced density matrix. However the entanglement entropy is
not a valid measure for mixed state entanglement due to contributions from irrelevant cor-
relations. To address this significant issue several entanglement and correlation measures
were introduced in quantum information theory. However most of these were not easily
computable as they involved extremization over LOCC protocols. Vidal and Werner [1]
in a classic work introduced a computable measure for mixed state entanglement termed
entanglement negativity (logarithmic negativity) which was defined as the trace norm of
the partial transpose of the density matrix with respect to one of the subsystems and
provided an upper bound to the distillable entanglement. Despite its non-convexity [2],
entanglement negativity was proved to be an entanglement monotone and is widely used
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to characterize mixed state entanglement.
For extended quantum many-body systems with infinite degrees of freedom such en-

tanglement measures are usually computationally intractable although a formal definition
may be attempted. Significantly, it was shown in [3, 4] that the entanglement entropy of
bipartite states in (1 + 1)-dimensional relativistic conformal field theories (CFT1+1) may
be explicitly computed through a replica technique. Remarkably the replica technique de-
scribed above could also be modified to compute the entanglement negativity of bipartite
states in such relativistic CFT1+1 described in [5–7].

Over the last decade there has been intense focus on the holographic characterization
of entanglement in conformal field theories dual to bulk AdS geometries in the framework
of the AdS/CFT correspondence [8]. This was pioneered by the classic work of Ryu and
Takayanagi (RT) in [9, 10] where it was conjectured that the universal part of the entan-
glement entropy of a subsystem in a relativistic CFTd was proportional to the area of a
bulk static codimension two minimal surface homologous to the subsystem. A covariant
generalization of the above holographic conjecture was proposed by Hubeny, Rangamani
and Takayangi (HRT) for relativistic CFTd dual to bulk non-static AdS geometries in [11].
The above conjectures were subsequently proved in a series of significant works in [12–18].

In the above context, it was natural to seek a corresponding holographic characteriza-
tion for the entanglement negativity of such bipartite states in dual CFTds. This was ini-
tially attempted for the pure vacuum state of dual CFTds in [19]. Subsequently a compre-
hensive holographic construction for the entanglement negativity of both pure and mixed
states in dual CFT1+1s was advanced in the context of the AdS3/CFT2 [20–23] scenario.
These proposals were substantiated by a large central charge analysis of the entanglement
negativity for CFT1+1s utilizing the monodromy technique in [13, 24–26]. Subsequently,
the covariant extension of the holographic entanglement negativity constructions described
above were advanced for bipartite states in CFT1+1s dual to non-static AdS3 backgrounds
following the HRT construction [11] in [23, 27–29]. Higher dimensional generalizations
of the above holographic constructions for bipartite states described by configurations of
subsystems with long rectangular strip geometries in CFTds dual to bulk static AdSd+1 ge-
ometries were proposed in [30–32]. We should mention here that an alternate holographic
construction based on the entanglement wedge cross-section [33,34], for the entanglement
negativity of bipartite states in the AdSd+1/CFTd scenario was developed in [35, 36]. It
has been shown in [37] that this proposal is completely equivalent to the earlier construc-
tion for the holographic entanglement negativity upto certain overall multiplicative factors
arising from the backreaction of cosmic branes associated with bulk conical defects.1

In a separate context, a class of (1 + 1) dimensional field theories with Galilean confor-
mal symmetries obtained through a parametric İnönü-Wigner contraction of the usual rel-
ativistic conformal algebra were investigated in [40–54]. The authors of [43, 44] developed
a replica technique for computing the entanglement entropy of such Galilean conformal
field theories (GCFT1+1). Following this a replica technique to compute the entanglement
negativity of bipartite states in a class of such GCFT1+1 was established in [55].

The above class of GCFT1+1s was proposed as possible holographic duals to bulk
three-dimensional gravity in asymptotically flat space-times [56] in the framework of flat
space holography [57,58]. The asymptotic symmetry algebra of the bulk geometry was de-
scribed by the infinite dimensional Bondi-Metzner-Sachs (BMS3) algebra isomorphic to the
Galilean conformal algebra in 1+ 1 dimensions (GCA2). The authors of [59] computed the
holographic entanglement entropy of a single interval in the corresponding dual BMS3 field
theory located at the null infinity of the bulk asymptotically flat geometry. Interestingly
in [60], the authors established a holographic construction for the entanglement entropy

1For more recent developments see [38,39].
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in the dual BMS3 field theories described above, through a generalization of the covariant
HRT construction [11]. From a different perspective, the authors of [43] obtained the above
flat space holography results utilizing the Chern-Simons formulation of three-dimensional
gravity [61] and the Wilson line prescription [62].

The above developments bring the critical issue of a holographic description of mixed
state entanglement for these dual GCFT1+1 into sharp focus. In this article we address
this issue through the BMS3/GCA2 correspondence [58–60]. In this context we establish
holographic constructions to compute the entanglement negativity of bipartite states in
GCFT1+1s dual to bulk asymptotically flat (2+1) dimensional Einstein Gravity and Topo-
logically Massive Gravity (TMG) [59,60,63–66], following the corresponding constructions
for relativistic CFT 1+1s described in [20, 21, 55]. Interestingly our results match exactly
with the universal parts of the corresponding replica technique results obtained in [55].
For the mixed state of disjoint intervals in proximity we substantiate our results through
a rigorous geometric monodromy analysis [67] to obtain the corresponding large central
charge limit.

This article is organized as follows. In section 2 we briefly recollect the salient features
of GCFT1+1s and the BMS3/GCA2 correspondence. The replica techniques developed
in [43, 44, 55] for computing the entanglement entropy and negativity respectively in such
GCFT1+1s are reviewed in section 3. In section 4 we describe the covariant construction for
computing the entanglement entropy in [59,60]. In particular, we apply this covariant pre-
scription to obtain the entanglement entropy for a single interval in a GCFT1+1 describing
a finite-sized system and find perfect agreement with [43,44]. In section 5, we establish our
flat-holographic constructions for computing the entanglement negativity for a single and
two adjacent intervals in GCFT1+1s dual to Einstein gravity in the bulk asymptotically flat
spacetimes. The holographic construction for computing the entanglement negativity for
the case of two disjoint intervals along with the large central charge analysis is described in
section 6. In section 7 we generalize the above constructions to the case of GCFT1+1s dual
to bulk geometries described by TMG. The special case of the entanglement negativity in
flat chiral gravity is discussed in appendix A. We conclude in section 8 with a summary of
our results and discuss future open issues.

2 Review of GCFT1+1

In this section we review the basics of (1 + 1) dimensional Galilean conformal field the-
ories (GCFT1+1) [40–54]. Interestingly the Galilean conformal algebra (GCA2) may be
obtained via an İnönü-Wigner contraction of the usual relativistic conformal algebra in
two dimensions:

t→ t , x→ εx , (1)

with ε → 0. This is equivalent to the non-relativistic small velocity limit v ∼ ε. The
Galilean conformal transformations acts on the coordinates as

t→ f(t) , x→ f ′(t)x+ g(t) , (2)

which can be thought of as diffeomorphisms and t-dependent shifts, respectively. These
are generated by the Nöether charges which, in the plane representation, are given by

Ln = tn+1∂t + (n+ 1)tnx∂x , Mn = tn+1∂x, (3)
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which obey the Lie algebra with different central extensions in each sector2:

[Ln, Lm] = (m− n)Ln+m +
cL
12

(n3 − n)δn+m,0,

[Ln,Mm] = (m− n)Mn+m +
cM
12

(n3 − n)δn+m,0,

[Mn,Mm] = 0,

(4)

where cL and cM are the central charges for the GCA. The cylinder and plane representa-
tions are related via the transformation [45,67]

x = eiφ , t = iu eiφ . (5)

The maximally commuting subalgebra is that of the generators {L0,M0} and the repre-
sentations are labelled by their eigenvalues (the conformal weights) hL and hM in order to
construct the highest weight representation.

L0 |hL, hM 〉 = hL |hL, hM 〉 , M0 |hL, hM 〉 = hM |hL, hM 〉 . (6)

The two point correlator of primary fields may be written down utilizing the Galilean
conformal symmetry as [42,55]

〈
V1(x1, t1)V2(x2, t2)

〉
= C(2)δh1Lh

2
L
δh1Mh

2
M
t
−2h1L
12 exp

(
−2h1

M

x12

t12

)
, (7)

where (h1
L, h

1
M ) and (h2

L, h
2
M ) are the conformal weights of the primary fields V1 and V2

respectively, C(2) is a normalization constant and x12 = x1−x2, t12 = t1− t2. In a similar
manner it is easy to determine the three point function of primary fields in a GCFT1+1 to
be [42,55]

〈V1(x1, t1)V2(x2, t2)V3(x3, t3)〉 = C(3)t
−(h1L+h2L−h

3
L)

12 t
−(h2L+h3L−h

1
L)

23 t
−(h1L+h3L−h

2
L)

13 ×

exp
[
− (h1

M + h2
M − h3

M )
x12

t12
− (h2

M + h3
M − h1

M )
x23

t23

− (h1
M + h3

M − h2
M )

x13

t13

]
,

(8)

where the Vi’s are primary fields with weights {(hiL, hiM )} and xij = xi − xj , tij = ti − tj
with (i = 1, 2, 3) respectively and C(3) is a constant. Similarly, the four-point function of
primary fields in the GCFT1+1 may be expressed as [55]〈

4∏
i=1

Vi(xi, ti)

〉
=

t
h1L+h3L
13 t

h2L+h4L
24

t
h1L+h2L
12 t

h2L+h3L
23 t

h3L+h4L
34 t

h1L+h4L
14

exp
[x13

t13
(h1
M + h3

M ) +
x24

t24
(h2
M + h4

M )

− x12

t12
(h1
M + h2

M )− x23

t23
(h2
M + h3

M )− x34

t34
(h3
M + h4

M )

− x14

t14
(h1
M + h4

M )
]
G(t,

x

t
),

(9)

where {(hiL, hiM )} are the weights of the primary fields Vi(xi, ti) with (i = 1, 2, 3, 4) and

t =
t12t34

t13t24
,

x

t
=
x12

t12
+
x34

t34
− x13

t13
− x24

t24
, (10)

2Note that we are working in the plane representation which differs from the familiar cylinder repre-
sentation used in [41,42] by a negative sign in the GCA.
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are the non-relativistic counterparts of the cross ratio x in the relativistic CFT1+1s. In eq.
(9), G(t, xt ) is a non-universal function of the cross ratios that depends on the full operator
content of the specific field theory.

Interestingly the GCFT1+1s are equivalent to the BMS3 field theories at the level of
the algebra [58]. This leads to a conjectured GCA2/BMS3 correspondence between the
asymptotic symmetry algebra of three dimensional Minkowski spacetime at null infinity and
the above class of GCFT1+1 [44,45,58]. Note that the central charges of these contracted
algebras are related with the parent Virasoro central charges as [58]

cL = c+ c̄ , cM = ε(c− c̄) , (11)

for GCA2, and as
cL = ε(c− c̄) , cM = c+ c̄ , (12)

for BMS3. Also, the kinematics in the two sectors are related by the replacement x←→ t [44].
We will be using the BMS3/GCA2 correspondence for the computations in the context of
flat holographic entanglement in sections 5 to 7.

3 Entanglement measures in GCFT1+1

In this section we briefly review the replica techniques employed to compute the entan-
glement entropy and entanglement negativity, in the special class of GCFT1+1 described
above. As in the case of relativistic CFT1+1s [3, 4], the entanglement entropy for a bi-
partite state in these GCFT1+1s may be computed using a replica technique developed
in [43,44]. To this end, one considers n-copies of the GCFT1+1 plane sewed together along
cuts describing the intervals (subsystems) under consideration. The partition function on
this replica manifold then computes the Renyi entropy S(n)

A for the boosted interval A 3, in
terms of the two-point function of twist fields Φ±n inserted at endpoints ∂iA of the interval
A as

(1− n)S
(n)
A = TrρnA = 〈Φn(∂1A)Φ−n(∂2A)〉 , (13)

where the twist fields are primary fields of the GCFT1+1 with scaling dimensions

∆n =
cL
24

(
n− 1

n

)
, χn =

cM
24

(
n− 1

n

)
, (14)

and ρnA is the reduced density matrix corresponding to the subsystem A. The entanglement
entropy for the bipartite state corresponding to the interval A in the GCFT1+1 may now
be obtained by taking the replica limit n→ 1 as

SA = lim
n→1

S
(n)
A = lim

n→1
∂n 〈Φn(∂1A)Φ−n(∂2A)〉 . (15)

Interestingly it was possible to compute the entanglement negativity for mixed states in
relativistic CFT1+1s through a related replica technique [5–7]. To define the entanglement
negativity in quantum information theory a tripartite system in a pure state consisting
of subsystems A1, A2 and B is considered. Subsequently the degrees of freedom of the
subsystem B are traced over to obtain the reduced density matrix of the mixed state
configuration described by A = A1 ∪ A2, as ρA = TrBρ, where ρ describes the tripartite

3 Note that in the case of GCFT1+1s one cannot consider subsystems at a fixed time slice due to
the lack of Lorentz invariance. Therefore one must consider Galilean boosted intervals of the form A =
[(x1, t1), (x2, t2)] [43, 55].
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state A ∪ B. The entanglement negativity of the bipartite mixed state described by the
reduced density matrix ρA is then defined as the trace norm of the partially transposed
density matrix ρT2A [1, 5–7]

E = ln Tr ||ρT2A || , (16)

where the trace norm is defined as the sum of absolute eigenvalues of ρT2A . The operation
of partial transpose is described as〈

e
(1)
i e

(2)
j |ρ

T2
A |e

(1)
k e

(2)
l

〉
=
〈
e

(1)
i e

(2)
l |ρA|e

(1)
k e

(2)
j

〉
, (17)

where |e(1)
i 〉 and |e

(2)
j 〉 are the basis elements for the Hilbert spacesH1 andH2 corresponding

to A1 and A2, respectively.
Next we briefly discuss the replica construction for computing the entanglement neg-

ativity of bipartite states in a GCFT1+1 developed in [55] which closely follows [5, 6] for
relativistic CFT1+1.

As for the relativistic CFT1+1, in this case one considers a replicated manifold described
by ne-copies (with ne even) of the GCFT1+1 plane glued together in an appropriate fashion
[55]. The entanglement negativity for the bipartite mixed state configuration A ≡ A1 ∪A2

may then be obtained through a replica technique as

E = lim
ne→1

log Tr(ρT2A )ne . (18)

In eq. (18), we have used the replica limit ne → 1 and the quantity Tr(ρT2A )ne can be
expressed in terms of a four-point correlator of twist fields Φ±ne inserted at the endpoints
of the intervals as

Tr(ρT2A )ne = 〈Φne(x1, t1)Φ−ne(x2, t2)Φ−ne(x3, t3)Φne(x4, t4))〉 . (19)

The authors of [55] computed the entanglement negativity for various bipartite pure and
mixed state configurations involving a single interval and two adjacent intervals in a
GCFT1+1. In the subsequent sections, we will develop holographic constructions to com-
pute the entanglement negativity for such configurations in a GCFT1+1. Furthermore,
in section 6 we will describe a geometric monodromy technique to obtain the universal
part of the four-point twist correlator in (19) from which it is possible to establish a holo-
graphic construction for the entanglement negativity of the mixed state configuration of
two disjoint intervals in proximity.

4 Entanglement in flat holography

In this section we review the salient features of the covariant construction in [59, 60] for
computing entanglement entropy in flat holography in the spirit of the HRT prescrip-
tion [11] in the usual AdS/CFT scenario. The entanglement entropy of a bipartite state
described by a single interval in the BMS3/GCA2 field theory located at the null infinity of
the dual asymptotically flat bulk geometry will be given by the length of a bulk extremal
geodesic homologous to the interval. We first consider the case of the BMS3/GCA2 field
theory dual to bulk asymptotically flat (2 + 1)-dimensional Einstein Gravity for which
the Brown-Henneaux symmetry analysis at null infinity leads to the infinite dimensional
BMS3/GCA2 algebra. For the appropriate boundary conditions, the general solution to
Einstein equations in the Bondi gauge is [59]

ds2 = Θ(φ)du2 − 2 dudr + 2
[
Ξ(φ) +

u

2
∂φΘ(φ)

]
dudφ+ r2dφ2 , (20)
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where u = t − r in the (retarded) Eddington-Finkelstein time, r is the holographic co-
ordinate, and Θ(φ) and Ξ(φ) are arbitrary functions of the angular coordinate φ. It is
interesting to note that by construction the holographic direction is null.

As stated earlier the flat space holographic principle requires a dual BMS3/GCA2

field theory located at the null infinity of the bulk asymptotically flat spacetime. The
corresponding central charges for this dual field theory are obtained from the asymptotic
symmetry analysis as [59,67–69]

cL = 0 , cM =
3

G
. (21)

It is interesting to note that the global subalgebra of the BMS3 group is identical to the
Poincare algebra. Therefore the corresponding conformal weights ∆ and χ which label
the representations of the BMS3/GCA2 must correspond to the quadratic Casimirs of the
Poincare algebra. This indicates the presence of a massive particle with spin propagating
in the bulk geometry. For Einstein gravity in the bulk however the equations (14) and (21)
indicate that ∆ = 0, which corresponds to the propagation of a spinless massive particle
in the bulk spacetime [60].

4.1 Holographic entanglement in flat Minkowski space

We start with the holographic computation of the entanglement entropy for a single interval
in the vacuum state of a GCFT1+1. To this end we consider the dual geometry of the bulk
flat (2 + 1) dimensional Minkowski spacetime in Eddington-Finkelstein coordinates which
is given as

ds2 = dr2 − du2 + r2dφ2 , (22)

where the coordinates are as described earlier. We consider an intervalA = [(u∂1 , φ
∂
1), (u∂2 , φ

∂
2)]

on the dual GCFT1+1 plane located at the null infinity of the flat spacetime. It was shown
in [60] the length of the bulk extremal curve joining the endpoints ∂iA (i = 1, 2) of the
interval, is given by

Lextr
tot =

∣∣∣∣∣ u∂12

tan
φ∂12
2

∣∣∣∣∣ . (23)

Note that the bulk extremal curve consists of two null curves descending from the endpoints
∂iA which do not intersect and a third extremal curve is required to connect them. Recall
that for Einstein gravity in the bulk we have cL = 0 from eq. (21). Therefore, as described
in [60], in the large cM limit, the twist fields inserted at the endpoints of the interval
correspond to a bulk propagating particle of mass mn = χn. Consequently the two point
correlator (13) of these twist fields can be expressed as the exponential of the on-shell
action of such a particle propagating along an extremal trajectory Xµ(s) homologous to
the interval. With such an identification we write following [60]:

〈Φn(∂1A)Φ−n(∂2A)〉 = e−mn Son-shell , (24)

where mn = χn and

Son-shell =

√
ηµνẊµẊν = Lextr

tot . (25)

Therefore the entanglement entropy for the single interval A in eq. (15) is given by the
flat space analog of the HRT formula [59,60,70]

SA =
1

4G
Lextr
tot =

1

4G

∣∣∣∣∣ u∂12

tan
φ∂12
2

∣∣∣∣∣ , (26)

where we have used eq. (21).
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4.2 Holographic entanglement in global Minkowski orbifolds

Next we focus on a GCFT1+1 compactified on a spatial circle of circumference L. The
dual geometry is the global Minkowski orbifold, which is described as the quotient of the
usual Minkowski spacetime with the compact spatial circle [59]:

(u, φ) ∼ (u, φ+ Lφ) . (27)

The metric for global Minkowski orbifolds reads [59]

ds2 = −
(

2π

Lφ

)2

du2 − 2du dr + r2dφ2 . (28)

The holographic entanglement entropy of the boosted interval A = [(u∂1 , φ
∂
1), (u∂2 , φ

∂
2)] is

obtained from the length of a bulk extremal curve homologous to the interval in the dual
field theory. Note that the bulk geodesics are not necessarily straight lines for this case
which renders the analysis to be more involved than for the bulk flat Minkowski spacetime.
To this end we compute the geodesic length in the Cartesian coordinates and map the
endpoints to the global Minkowski orbifold through the the coordinate transformations
which implements the quotienting [59,60]. These coordinate transformations are given as

r =
2π

Lφ

√
x2 − t2 ,

u =

(
Lφ
2π

)2 [2πi

Lφ
y − r

]
,

φ =
Lφ
2πi

log

[
2πi

Lφ

(t− x)

r

]
=
Lφ
2π

sin−1

[
π(t− x)

Lφr
+

Lφr

4π(t− x)

]
.

(29)

Inverting these relations, we obtain

x =
Lφr

2π
sin

(
2πφ

Lφ

)
, t =

Lφr

2π
cos

(
2πφ

Lφ

)
, y =

Lφ
2πi

r − 2πi

Lφ
u . (30)

The length of the bulk geodesic from y1 to y2 obtained through this procedure is expressed
as

L(y1, y2) =
Lφ
2π

[
2r1r2

(
1− cos

2π(φ1φ2)

Lφ

)
− 8π2

L2
φ

(r1 − r2)(u1 − u2)−
(

2π

Lφ

)4

(u1 − u2)2

]1/2

.

(31)
Similar to the previous case of the bulk pure Minkowski spacetime [60], we have null
hypersurfaces on which the null curves descending from the endpoints (u∂i , φ

∂
i ) of the

boundary interval lie:

Ni :
2π

Lφ
(u∂i − ui)− 2ri sin2

(
π(φi − φ∂i )

Lφ

)
= 0 . (32)

The invariant length between yi ∈ Ni and the boundary endpoint ∂iA is given by

L(yi, ∂iA) =
Lφ
2π
ri sin

[
2π(φi − φ∂i )

Lφ

]
. (33)

The null lines now correspond to ui = u∂i , φi = φ∂i which usually do not intersect and
another extremal curve connecting the null lines is required. The total length of the
extremal curve may then be expressed as follows

Ltot = Lextr(y1, ∂1A) + Lextr(y1, y2) + Lextr(y2, ∂2A) = Lextr(y1, y2) . (34)

9
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The extremization of the length in eq. (31) with respect to the position of the endpoints
leads to

∂Ltot

∂ri
= 0 =⇒ r2 =

4π2u∂12/L
2
φ

1− cos
(

2πφ∂12
Lφ

) = −r1 . (35)

Substituting this back into the expression (34) we obtain the length of the extremal curve
homologous to the interval as

Lextr
tot =

2πu∂12

Lφ
cot

(
πφ∂12

Lφ

)
. (36)

Consequently the holographic entanglement entropy for the interval A in the dual field
theory is given by

SA =
1

4G
Lextr
tot =

cM
6

πu∂12

Lφ
cot

(
πφ∂12

Lφ

)
, (37)

where in the last expression we have used eq. (21). This matches with the cL = 0 part
of the entanglement entropy of the single interval in the BMS3/GCA2 field theory dual to
the global Minkowski orbifold obtained in [43].

4.3 Holographic entanglement in flat space cosmologies

In this subsection we will consider a finite temperature GCFT1+1 with a compactified
thermal cycle (u, φ) ∼ (u + iβu, φ + iβφ). The corresponding holographic dual is another
interesting quotient of Minkowski spacetime called Flat Space Cosmology (FSC), with the
metric [43–45]

ds2 = Mdu2 − 2 dudr + J dudφ+ r2dφ2 , (38)

where the temperatures in the dual field theory at null infinity are related to the ADM
mass and angular momentum of the spacetime as βu = πJM−3/2 and βφ = 2πM−1/2. For
this geometry a similar computation of the geodesic length as above yields the following
expression for the geodesic length [60]

Lextr
tot =

√
M

(
u∂12 +

J

2M
φ∂12

)
coth

(√
Mφ∂12

2

)
− J

M
. (39)

We are mainly interested in the non-rotating geometry, therefore putting J = 0 and writing
β for βφ, we obtain

Lextr
tot =

2πu∂12

β
coth

(
πφ∂12

β

)
, (40)

and consequently the holographic entanglement entropy for the boundary interval A in the
thermal GCFT1+1 is given by

SA =
cM
6

πu∂12

β
coth

(
πφ∂12

β

)
. (41)

5 Holographic entanglement negativity in flat Einstein grav-
ity

In this section we detail the holographic constructions for computing the entanglement
negativity of bipartite states in the class of GCFT1+1s dual to bulk asymptotically flat

10
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geometries using results from the flat space holography described in the last section 4. In
particular we will consider the asymptotically flat bulk spacetimes described by Einstein
gravity for which the asymptotic symmetry analysis reveals that the dual GCFT1+1s pos-
sess only one non zero central charge cM (cf eq. (21)). We will first describe the holographic
construction to compute the entanglement negativity of various bipartite states described
by a single interval in the dual GCFT1+1. These include a single interval for a GCFT1+1

in its ground state, a GCFT1+1 describing a finite-sized system and a GCFT1+1 at a finite
temperature respectively. Next we turn our attention to the configuration of two adjacent
intervals in the dual GCFT1+1 and establish holographic constructions to compute the
entanglement negativity for the configurations described above using the results of flat
space holography. The case of the two disjoint intervals will require an analysis of the
semi-classical Galilean conformal blocks in the large central charge limit of the GCFT1+1.
We will postpone the discussion of such configurations till section 6.

5.1 Holographic entanglement negativity for a single interval

In this subsection we will consider various bipartite pure and mixed states consisting of a
single interval in a large system described by a GCFT1+1. We start with the simplest con-
figurations of bipartite pure states described by a single interval A ≡ [(x1, t1), (x2, t2)]. As
described in [55], the corresponding entanglement negativity involves a two-point correlator
of composite twist fields, given by

E = lim
ne→1

log
〈
Φ2
ne(x1, t1)Φ2

−ne(x2, t2)
〉
. (42)

We now apply the flat space holographic dictionary in eqs. (24) and (25) to obtain the
following form for the above twist correlator:〈

Φ2
ne(x1, t1)Φ2

−ne(x2, t2)
〉

=
(〈

Φne/2(x1, t1)Φ−ne/2(x2, t2)
〉)2

= e−2χne/2 L
extr
12 , (43)

where χne/2 is the non-trivial scaling dimension of the twist fields Φ±ne/2 and Lextr
12 is the

length of the bulk extremal curve homologous to the interval in question. In obtaining
eq. (43), we have made use of the fact that for pure states the two point correlator of
composite twist operators factorizes into that of usual twist operators spanning half of the
replica geometry [55]. From eq. (14), in the replica limit ne → 1 , we have χne/2 → −

cM
16

4,
and therefore we obtain the following expression for the entanglement negativity of a pure
state described by a single interval A in a holographic GCFT1+1:

E =
3

8G
LA , (44)

where we have made use of eq. (21). In the following, we will employ our holographic
proposal in eq. (44) to compute the holographic entanglement negativity in some pure
quantum states in a holographic GCFT1+1. Particularly we will investigate the case of a
single interval in the ground state of the GCFT1+1, which is dual to the asymptotically flat
pure Minkowski spacetime. Then we will turn our attention to the pure state described
by the single interval in a finite-sized system described by a GCFT1+1 compactified on
a spatial cylinder, which is dual to the boost orbifold of Minkowski spacetime. We will
find that the results obtained using our holographic formula will reproduce the universal
behaviour of the entanglement negativity for both of these configurations [55]. Later,
in subsection 5.1.3 we will consider the mixed state configuration of a single interval at
a finite temperature which involves a particular four-point twist correlator in the large
central charge limit.

4 Note that the negative scaling dimension of the twist fields Φ2
ne

and Φne/2 in the replica limit ne → 1
has to be understood only in the sense of an analytic continuation.

11
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5.1.1 Single interval at zero temperature

To obtain the entanglement negativity in the bipartite pure state configuration described
by a single boosted interval in a GCFT1+1 (cf. footnote 3) at zero temperature we use
the results from the flat space holography reviewed in section 4 . At this point, we recall
that the computation of the length of the extremal geodesic in the dual gravity theory
in cylindrical coordinates (u, φ) results in eq. (23) [60]. In the planar coordinates in eq.
(5) [45, 60] this translates to

Lextr
12 = 2

x12

t12
. (45)

Therefore, using the above expression for Lextr
12 , we obtain the entanglement negativity for

a single interval in a GCFT1+1 at zero temperature from eq. (44) to be

E =
3

8G
LA =

cM
4

x12

t12
. (46)

This is precisely the result obtained in [55] using field theory methods, for cL = 0. It is
interesting to note that we may recast the above expression for entanglement negativity in
the form

E =
3

2
SA , (47)

using the flat space analogue of the HRT formula in eq. (26), where SA is the entanglement
entropy for the single interval A in the GCFT1+1 vacuum. This indicates that for pure
states the holographic entanglement negativity is given by the Rënyi entropy of order half
as in the case of quantum information theory [6].

5.1.2 Single interval in a finite-sized system

Next we turn our attention to the computation of holographic entanglement negativity for
the pure state configuration of a single boosted interval in a finite-sized system admitting
periodic boundary conditions described by a GCFT1+1 defined on an infinite cylinder with
circumference Lφ. The bulk gravity dual is the global Minkowski orbifold described by the
metric in eq. (28). The extremal geodesic length was computed in section 4 and is given
by

Lextr
ij =

2πuij
Lφ

cot

(
πφij
Lφ

)
, (48)

where uij = ui−uj and φij = φi−φj are the differences in the coordinates of the endpoints
of the boundary interval.

We may now employ our holographic proposal in eq. (44) to compute the holographic
entanglement negativity for the single boosted interval in a finite-sized system. Utilizing
eq. (48) we obtain

E =
cM
4

π u12

Lφ
cot

(
πφ12

Lφ

)
, (49)

which matches exactly with the universal part of the dual field theory result for cL = 0 [55].
Again using the flat holographic HRT formula in (26) we may express the above result in
the form (47).

5.1.3 Single interval at a finite temperature

The mixed state configuration described by a single interval in a finite temperature GCFT1+1

requires a more careful analysis. To start with we recall that a GCFT1+1 at a finite tem-
perature is defined on an infinite cylinder of circumference equal to the inverse temperature

12
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β. The corresponding entanglement negativity involves a four-point twist correlator on the
infinite cylinder arising from the configuration of a single interval sandwiched between two
adjacent large but finite intervals [55]. The entanglement negativity may then be obtained
through a bipartite limit subsequent to the replica limit. Therefore in order to understand
the configuration described by a single interval at a finite temperature, we first consider a
four-point twist correlator on the GCFT1+1 plane [55] (cf. eq. (9)):

〈
Φne(x1, t1) Φ2

−ne(x2, t2) Φ2
ne(x3, t3) Φ−ne(x4, t4)

〉
=

kne k
2
ne/2

t
2∆ne
14 t

2∆
(2)
ne

23

Fne(t, x/t)
t∆

(2)
ne

× exp

[
− 2χne

x14

t14
− 2χ(2)

ne

x23

t23
− χ(2)

ne

x

t

]
,

(50)
where kne is a constant that depends on the full operator content of the theory. The
corresponding weights of the twist fields Φ±ne are given in eq. (14), from which one can
determine the weights of the composite twist fields Φ2

±ne as [55]:

∆(2)
ne = 2∆ne/2 =

cL
12

(
ne
2
− 2

ne

)
, χ(2)

ne = 2χne/2 =
cM
12

(
ne
2
− 2

ne

)
. (51)

Equipped with eq. (7) for the two-point twist correlators, the universal part of the four-
point function (which is dominant in the large central charge limit of the GCFT1+1) in eq.
(50) can be factorized as〈

Φne(x1, t1) Φ2
−ne(x2, t2) Φ2

ne(x3, t3) Φ−ne(x4, t4)
〉

=
(〈

Φne/2(x2, t2)Φ−ne/2(x3, t3)
〉)2 〈Φne(x1, t1)Φ−ne(x4, t4)〉

×
〈
Φne/2(x1, t1)Φ−ne/2(x2, t2)

〉 〈
Φne/2(x3, t3)Φ−ne/2(x4, t4)

〉〈
Φne/2(x1, t1)Φ−ne/2(x3, t3)

〉 〈
Φne/2(x2, t2)Φ−ne/2(x4, t4)

〉 +O
(

1

c

)
.

(52)

Note that the arbitrary non-universal function of the GCFT1+1 cross ratios Fne(t, x/t) has
been neglected in the above factorization. We may justify this as follows. In the semi-
classical limit (G → 0) of the bulk asymptotically flat gravity, the flat space holographic
dictionary described in section 4 dictates that the dual GCFT1+1 theory has a large central
charge cM → ∞ (cf. eq. (21)). Hence, we require a large central charge analysis of the
twist-correlator in eq. (50) for the entanglement negativity before giving its holographic
description. In section 6 we will develop a monodromy technique to understand the large
central charge behaviour of a specific four-point function of twist fields relevant to the
computation of entanglement negativity for the mixed state configuration of two disjoint
intervals. There we will show that in the large central charge limit cM → ∞ the non-
universal part of the four-point twist correlator is sub-leading in comparison to the universal
part. In the present context, we assume that the four-point twist correlator in (50) has
a similar large-cM structure and therefore the subleading contributions from the non-
universal function Fne(t, x/t) in eq. (50) is neglected as shown by the O(1/c) contribution
in eq. (52).
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Figure 1: Schematics of the extremal geodesics anchored on different subsystems corre-
sponding to the computation of entanglement negativity for a single interval in a finite
temperature GCFT1+1. The null planes descending from the boundary endpoints are
shown. The non-trivial contributions to the geodesic lengths land on the crossings of the
corresponding null planes.

Now we utilize the flat space holographic dictionary in eqs. (24) and (25) to find that
the four-point function in eq. (52) may be written in the following form〈

Φne(x1, t1) Φ2
−ne(x2, t2) Φ2

ne(x3, t3) Φ−ne(x4, t4)
〉

= exp
[
−χne Lextr

14 − χne/2
(
2Lextr

23 + Lextr
12 + Lextr

34 − Lextr
13 − Lextr

24

)]
,

(53)

where Lextr
ij denotes the length of the extremal geodesic in the bulk, which connects the

points (xi, ti) and (xj , tj) on the boundary. Figure 1 shows the schematics for the config-
uration of a single interval A = [(x2, t2), (x3, t3)] sandwiched between two large auxiliary
intervals B1 = [(x1, t1), (x2, t2)] and B2 = [(x3, t3), (x4, t4)] with B1 ∪ B2 ≡ B. As briefly
alluded to in section 4 the orientations of extremal geodesics anchored on different subsys-
tems follow the construction in [60].

From fig. 1 we identify that

Lextr
12 = LB1 , Lextr

23 = LA, Lextr
34 = LB2 ,

Lextr
13 = LA∪B1 , Lextr

24 = LA∪B2 , Lextr
14 = LA∪B. (54)

In the replica limit ne → 1, we have from eq. (14) χne → 0 and χne
2
→ − cM

16 . Therefore,
eq. (53) leads to the following expression for the holographic entanglement negativity

E = lim
B→Ac

3

16G
(2LA + LB1 + LB2 − LA∪B1 − LA∪B2) . (55)

In writing eq. (55) from eq. (53) we have first taken the replica limit ne → 1 and subse-
quently taken the bipartite limit B → Ac in which the intervals B1 and B2 are extended
to infinity such that B1 ∪ B2 = Ac [55]. We have also utilized the fact that for Einstein
gravity the asymptotic symmetry analysis following the Brown-Henneaux procedure [71]
dictates that the central charges of the dual GCFT1+1 are given by (21). Therefore we
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conclude that the holographic formula for the entanglement negativity of a single interval
in a finite temperature dual GCFT1+1 relies on a specific linear combination of the lengths
of bulk extremal surfaces homologous to the boundary intervals, as shown in fig. 1. Re-
markably the flat-holographic proposal for the entanglement negativity for asymptotically
flat gravity in eq. (55) has exactly the same structure as in the AdS/CFT scenario obtained
in [20]. Interestingly, implementing the flat-holographic counterpart of the HRT formula
in eq. (26) we may rewrite our proposal in eq. (55) in the following form

E = lim
B→Ac

3

4
(2SA + SB1 + SB2 − SA∪B1 − SA∪B2)

= lim
B→Ac

3

4
(I(A;B1) + I(A;B2)) ,

(56)

which shows a particular connection between two different entanglement measures, namely
the entanglement negativity and the mutual information, in holographic theories. Note
however that these measures are quite distinct in the quantum information theory. It
is important to mention here that this specific relation in eq. (56) seems to be unique
to the configurations described by single intervals in holographic GCFT1+1s at a finite
temperature.

We now perform an explicit holographic computation of the entanglement negativity
for the finite temperature mixed state configuration described by a single Galilean boosted
interval in a thermal GCFT1+1, using our proposal in eq. (55). The finite temperature
field theory is dual to the Minkowski orbifold describing the locally flat geometry of Flat
Space Cosmologies (FSC). The length of the extremal geodesic in the FSC geometry with
the metric in eq. (38) is given in eq. (39). To relate with the field theory computations
in [55] we will consider the non-rotating geometry with J = 05. In this non-rotating limit,
we obtain another Minkowski orbifold, namely the boosted null orbifold. In this case,
the expression for the length of the extremal geodesic homologous to the interval at the
boundary in eq. (39) simplifies to eq. (40), namely

Lextr
ij =

√
M u12 coth

(√
Mφij
2

)
=

2π uij
β

coth

(
πφij
β

)
, (57)

where we have simply written β for βφ = 2πM−1/2 and uij = ui−uj and φij = φi−φj are
the differences in the coordinates of the endpoints of the interval at the boundary. Now
substituting for the extremal geodesic length in eq. (55) the holographic entanglement
negativity for a single interval in a GCFT1+1 at a finite temperature is obtained as

E =
cM
4

[
π u12

β
coth

(
πφ12

β

)
− π u12

β

]
. (58)

In obtaining eq. (58) we have used the understanding that B → Ac corresponds to taking
the lengths of B1 and B2 to infinity. This matches exactly with the cL = 0 version of the
universal part of the result obtained from the dual field theory in [55]. Although this stands
as a strong consistency check for our proposal, it is important to mention that the analysis
leading to eq. (55) relies on the large central charge behaviour of the dual GCFT1+1 and
a bulk proof remains an open issue.

Finally, it is interesting to note that using the flat space analogue of the HRT formula
(26), the expression for the holographic entanglement negativity for a single interval in a

5Note that the FSC geometry is defined for non-vanishing angular momentum J . Switching off the
angular momentum leads to a Big-Bang like naked singularity [45]. The limit of J → 0 has to be understood
in the sense of an analytic continuation.
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GCFT1+1 at a finite temperature obtained in eq. (58) can be rewritten in the following
form

E =
3

2

(
SA − Sth) , (59)

where SA and Sth are the entanglement entropy and the thermal entropy respectively, for
the single interval A in the holographic GCFT1+1.

5.2 Holographic entanglement negativity for adjacent intervals

Having computed the holographic entanglement negativity for various bipartite mixed
states involving a single interval in the dual GCFT1+1, we now proceed to advance a simi-
lar holographic construction for the bipartite states described by two adjacent intervals in
a holographic GCFT1+1. As described before, the large central charge behaviour for the
entanglement negativity in a GCFT1+1 indicates the plausibility of a holographic charac-
terization for the entanglement negativity in a dual asymptotically flat spacetime through
flat space holography. To this end, we consider two Galilean boosted adjacent intervals
A = [(x1, t1), (x2, t2)] and B = [(x2, t2), (x3, t3)], as depicted in fig. 2, where the system
A ∪ B is in a mixed state. We start with the following three-point twist correlator on
the GCFT1+1 plane relevant to the computation of the entanglement negativity of two
adjacent intervals [55] (cf. eq. (8)):〈

Φne(x1, t1)Φ2
−ne(x2, t2)Φne(x3, t3)

〉
= k2

ne KΦneΦ2
−neΦne

t
−∆

(2)
ne

12 t
−∆

(2)
ne

23 t
−(2∆ne−∆

(2)
ne )

13

exp

[
− χ(2)

ne

x12

t12
− χ(2)

ne

x23

t23
− (2χne − χ(2)

ne )
x13

t13

]
.

(60)
Utilizing equations (43) and (51) the three-point twist correlator in eq. (60) can be rewrit-
ten in the following form〈

Φne(x1, t1)Φ2
−ne(x2, t2)Φne(x3, t3)

〉
= K 〈Φne(x1, t1)Φ−ne(x3, t3)〉

(〈
Φ2
ne(x1, t1)Φ2

−ne(x2, t2)
〉 〈

Φ2
ne(x2, t2)Φ2

−ne(x3, t3)
〉〈

Φ2
ne(x1, t1)Φ2

−ne(x3, t3)
〉 )1/2

,

(61)
where the constant K is given by

K = k2
ne KΦneΦ2

−neΦne
k(1)

√
k(2) . (62)

Now using the relation (cf. eq.(43))〈
Φ2
ne(x1, t1)Φ2

−ne(x2, t2)〉 =
(
〈Φne/2(x1, t1)Φ−ne/2(x2, t2)

〉)2
, (63)

the universal part (which gives the dominant contribution to the entanglement negativity
in the large-cM limit) of the three-point twist correlator may be written as〈

Φne(x1, t1)Φ2
−ne(x2, t2)Φne(x3, t3)

〉
= K 〈Φne(x1, t1)Φ−ne(x3, t3)〉

〈
Φne/2(x1, t1)Φ−ne/2(x2, t2)

〉 〈
Φne/2(x2, t2)Φ−ne/2(x3, t3)

〉〈
Φne/2(x1, t1)Φ−ne/2(x3, t3)

〉 .

(64)
Finally using the flat holographic dictionary in eqs. (24) and (25), we obtain the universal
part of the three-point twist correlator as〈

Φne(x1, t1)Φ2
−ne(x2, t2)Φne(x3, t3)

〉
= exp

[
−χneLextr

13 − χne/2
(
Lextr

12 + Lextr
23 − Lextr

13

)]
,

(65)
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where Lextr
ij denotes the length of the extremal curve connecting the endpoints (xi, ti) and

(xj , tj) of an interval on the boundary. In figure 2, we show the schematics of the extremal
curves anchored on the subsystems A, B and A∪B respectively, where we have identified

Lextr
12 = LA , Lextr

23 = LB , Lextr
13 = LA∪B . (66)

Figure 2: Holographic construction for the computation of the entanglement negativity for
two Galilean boosted adjacent intervals A = (x1, t1) and B = (x2, t2). Extremal geodesics
anchored on different subsystems are shown in: red - Lextr

12 ≡ Lextr
A , yellow - Lextr

23 ≡ Lextr
B ,

green- Lextr
13 ≡ Lextr

A∪B

In the replica limit ne → 1, from eq. (14) we obtain χne → 0 and χne
2
→ − cM

16 (cf. foot-
note 4). Note that the large central charge limit has to be taken prior to the replica limit.
This order of limits is critical since the scaling dimension of the twist field Φne vanishes in
the replica limit and has to be understood in the sense of an analytic continuation. Hence,
eq. (65) leads to the following expression for the holographic entanglement negativity for
adjacent intervals

E =
3

16G

(
Lextr

12 + Lextr
23 − Lextr

13

)
, (67)

where we have again used the fact that for Einstein gravity the central charges of the
dual GCFT1+1 are given by eq. (21). Therefore we conclude that the flat holographic
entanglement negativity for two adjacent intervals in the class of holographic GCFT1+1s
that we consider in the present article, is expressed in terms of a specific algebraic sum of
the lengths of bulk extremal geodesics anchored on the endpoints of the intervals at the
boundary. Remarkably the flat space holographic formula in eq. (67) has exactly the same
structure as its relativistic counterpart obtained in [21].

It is interesting to note that the holographic entanglement negativity formula in eq.
(67) may be recast, using the flat holographic HRT formula of [60] in eq. (25), in the
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form of another entanglement measure in such holographic GCFT1+1s, namely the mutual
information :

E =
3

4
(SA + SB − SA∪B) =

3

4
I(A : B) . (68)

Note that this particular connection between the two different entanglement measures is
special to the configuration of two adjacent intervals in holographic GCFT1+1s.

5.2.1 Adjacent intervals at zero temperature

We start with the mixed state configuration of two adjacent intervals in the vacuum state of
the boundary GCFT1+1 for which the bulk dual geometry is that of Minkowski spacetime.
Substituting eq. (45) for the length of the extremal geodesic in pure Minkowski spacetime
dual to the GCFT1+1 vacuum, in the expression (67) for the holographic entanglement
negativity for adjacent intervals, we obtain

E =
cM
8

(
x12

t12
+
x23

t23
− x13

t13

)
. (69)

This matches exactly with the dual field theory result for cL = 0 in [55].

5.2.2 Adjacent intervals at a finite temperature

Next we turn our attention to the holographic computation of the entanglement negativity
for the bipartite mixed state configuration of two adjacent intervals in a thermal GCFT1+1

defined on an infinite cylinder compactified in the timelike direction. The corresponding
bulk dual is the J = 0 FSC geometry described in section 4. Substituting eq. (57) for the
length of the extremal geodesic, in eq. (67), we obtain

E =
cM
8

[
π u12

β
coth

(
πφ12

β

)
+
π u23

β
coth

(
πφ23

β

)
− π u13

β
coth

(
πφ13

β

)]
. (70)

Again this matches exactly with the dual field theory result for cL = 0 in [55].

5.2.3 Adjacent intervals in a finite-sized system

Finally we compute the holographic entanglement negativity for the bipartite mixed state
configuration of two adjacent intervals in a finite-sized system described by a GCFT1+1

with periodic boundary conditions defined on a spatially compactified cylinder. The bulk
dual is the global Minkowski orbifold in eq. (28) described in section 4. Utilizing the length
for extremal geodesics given in eq. (36), we obtain from eq. (67)

E =
cM
8

[
π u12

Lφ
cot

(
πφ12

Lφ

)
+
π u23

Lφ
cot

(
πφ23

Lφ

)
− π u13

Lφ
cot

(
πφ13

Lφ

)]
, (71)

which is exactly the result in [55] obtained from the dual field theory computations, for
cL = 0.

6 Holographic entanglement negativity for two disjoint in-
tervals

In this section we proceed to establish a holographic conjecture for computing the entan-
glement negativity in the context of flat space holography for the bipartite mixed state

18



SciPost Physics Submission

configuration of two disjoint intervals in the dual GCFT1+1. As briefly alluded to in
subsection 5.1.3, the computation of the entanglement negativity for such configurations
involves the large central charge analysis of a particular four-point twist correlator. From
eq. (9), it is clear that the GCFT1+1 four-point function involves an arbitrary function
of the cross ratios which depends on the full operator content of the specific field theory
under consideration. Also, for Einstein gravity in the bulk the semi-classical limit in the
gravitational theory (G→ 0) corresponds to the large central charge limit cM →∞ in the
dual GCFT1+1. Motivated by these considerations, in the following we advance a holo-
graphic proposal for computing the entanglement negativity for two disjoint intervals in a
GCFT1+1.

Before proceeding, we briefly review the computation of entanglement negativity for
two disjoint intervals in the AdS3/CFT2 scenario performed in [23]. In [25], the authors
demonstrated that the entanglement negativity for two disjoint intervals in a CFT2 vanishes
in the s-channel (x → 0) where the two intervals are far away, while remains non-trivial
in the t-channel (x → 1) which corresponds to the two intervals being in close proximity.
Inspired by these findings, the authors in [23] performed a monodromy analysis of the
semi-classical structure of the following four-point function in the vacuum state of a generic
CFT2:〈
Tne(z1) T̄ne(z2) T̄ne(z3) Tne(z4)

〉
= z

−2∆ne
13 z

−2∆ne
24 x−2∆neGne(x), x =

z12z34

z13z24
, (72)

where Tne and T̄ne are respectively the twist and anti-twist fields inserted at the endpoints
of the two disjoint intervals [z1, z2] and [z3, z4]. In eq. (72), x is the usual CFT2 cross ratio
and Gne(x) is an arbitrary function of the cross ratio. Subsequently, it was found in [23] that
the entanglement negativity for the two disjoint intervals in proximity obtained through
this procedure has a holographic description in terms of a particular linear combination of
the lengths of bulk spacelike geodesics homologous to specific subsystems.

In the following we will utilize similar semi-classical techniques developed in [67] to
compute the entanglement negativity for two disjoint intervals A1 = [(x1, t1), (x2, t2)] and
A2 = [(x3, t3), (x4, t4)]. This involves an analysis of the large-central charge behaviour of
the following four-point twist-correlator in a GCFT1+1 vacuum 6:

〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉 = t
−2∆ne
23 t

−2∆ne
14 t−2∆ne

exp

[
−2χne

x23

t23
− 2χne

x14

t14
− 2χne

x

t

]
F(t,

x

t
) .

(73)
In eq. (73), t, x/t are the non-relativistic cross ratios given in eq. (10) and F(t, xt ) is
a non-universal function of cross ratios that depends on the specific operator content of
the field theory. In particular, we will focus only on the behaviour of the four-point twist
correlator in eq. (73) in the t-channel defined as t → 1 , x → 0 7, which renders the two
disjoint intervals in close proximity. We will be working with the GCFT1+1s with only one
non-vanishing central charge cM for which the dual bulk geometry is described by Einstein
gravity.

6We have employed a shorthand notation for describing the coordinates Xi = (xi, ti).
7This has to be contrasted with the t-channel x → 1, t → 0 for the BMS3 field theory considered

in [67]. We will use the methods developed in [67] to compute the Galilean conformal block utilizing the
BMS3/GCA2 correspondence briefly discussed in section 3 which essentially demonstrates the equivalence
of the two field theories under x↔ t [44].
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6.1 Four-point twist correlator at Large cM

In this subsection we explicitly compute the large central charge limit cM → ∞ of the
Galilean conformal block corresponding to the four-point function in eq. (73). To proceed,
we recall some salient features of GCFT1+1s relevant for the semiclassical large central
charge analysis. There are two types of energy-momentum tensors in a GCFT1+1 and
the corresponding Galilean conformal Ward identities [67] look quite different from their
relativistic counterparts. The finite GCA2 transformations

t→ f(t) , x→ f ′(t)x+ g(t) , (74)

are generated by the Nöether charges [67]

Mn =

∮
dt Ttx t

n+1 , Ln =

∮
dt
(
Ttt t

n+1 + (n+ 1)Ttx t
nx
)
, (75)

where Tµν are the components of the GCFT1+1 energy-momentum tensor. Inverting these
relations, we obtain the components of the energy-momentum tensor as [67]

M≡ Ttx =
∑
n

Mn t
−n−2 , L ≡ Ttt =

∑
n

[
Ln + (n+ 2)

x

t
Mn

]
t−n−2 , (76)

where Ln andMn are the usual generators of GCA. Note that unlike the relativistic CFT2s
the two independent components of the energy-momentum tensor L andM have distinct
functional forms in a GCFT1+1. This is a reflection of the fact that the GCA2, unlike
the relativistic Virasoro algebra, does not decompose into two identical holomorphic and
anti-holomorphic copies. The Galilean conformal Ward identities obeyed by these two of
energy-momentum tensors are given by [67,72]:

〈M(x, t)V1(x1, t1) . . . Vn(xn, tn)〉 =
n∑
i=1

[
χi

(t− ti)2
+

1

t− ti
∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

〈L(x, t)V1(x1, t1) . . . Vn(xn, tn)〉 =
n∑
i=1

[
∆i

(t− ti)2
− 1

t− ti
∂ti +

2χi(x− xi)
(t− ti)3

+
x− xi

(t− ti)2
∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

(77)
where Vi are GCFT1+1 primaries, and χi and ∆i are the corresponding scaling dimensions.
We wish to analyze the large-cM limit of the following four-point function of twist operators
in the t-channel described by T → 1, X → 0 8

〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉

=
∑
α

〈Φne(X1) Φne(X4) |α〉 〈α|Φ−ne(X2) Φ−ne(X3)〉 ≡
∑
α

Fα . (78)

In eq. (78), Fα are the GCA2 conformal blocks corresponding to the t-channel and we have
expanded the the four-point function into a basis of GCFT1+1 primary operators denoted
by the index α. Figure 3 shows this expansion of the four-point function (78) in terms of
Galilean partial waves.

8X ,T are the usual cross ratios for the GCFT1+1.
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Figure 3: Galilean conformal block expansion of a four-point twist correlator in the t-
channel. The choice of channel corresponds to two operators interchanging a GCA2 highest
weight representation with the other two. The exchanged representation is labeled by α
which denotes primary operators in the theory.

In the large central charge limit cM → ∞ the blocks Fα are expected to have an
exponential structure similar to their relativistic counterparts [26, 73]. In the following,
we are going to perform a geometric monodromy analysis9 in the semi-classical limit to
obtain a large central charge expression for the Galilean conformal block Fα. Recall that
unlike in the relativistic CFT1+1s, the functional forms of the two energy-momentum tensor
components in eq. (76) for a GCFT1+1 are not identical and therefore we have to perform
a separate monodromy analysis corresponding to each of them.

6.1.1 Monodromy of M

In this subsection we will solve the differential equation for the expectation value of the
energy-momentum tensor component M. Subsequently we will utilize the monodromy
technique developed in [67] to obtain a partial expression for the Galilean conformal block
in eq. (78). Using the Ward identities in eq. (77) we obtain for the expectation value of
the energy-momentum tensorM as

M(Xi;X) ≡ 〈M(X)Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉
〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉

=

4∑
i=1

[
χi

(t− ti)2
+
cM
6

ci
t− ti

]
,

(79)

where the auxiliary parameters are given by

ci =
6

cM
∂xi log 〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉 . (80)

The four-point function is not completely fixed by the conformal symmetry, and not all
the auxiliary parameters ci are known. We will place the operators at t1 = 0 , t3 = 1 , t4 =
∞ and leave t2 = T free. Requiring that the expectation value M(Xi;X) vanishes as

9Note that the monodromy analysis can also be formulated using the GCA2 null vectors. The analysis
will be a bit more involved than the relativistic case due to the presence of the so called GCA2 multiplets
[67]. Nevertheless the differential equations obtained via this technique will be the same as in the geometric
monodromy method.
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M(T ; t) ∼ t−4 as t→∞ we obtain the conditions∑
i

ci = 0 ,
∑
i

(cM
6
ci ti + χi

)
= 0 ,

∑
i

(cM
6
ci t

2
i + 2χi ti

)
= 0 . (81)

Using the approximation that χi ≡ χΦ, being the conformal dimension of the so called
’light’ operator Φne , vanishes when we take the replica limit ne → 1. This allows us to
determine three of the auxiliary functions in terms of the remaining one as

c1 = c2(T − 1) , c3 = −c2T , c4 = 0 . (82)

This leads to the following expression for the energy-momentum tensor expectation value

6

cM
M(T ; t) = c2

[
T − 1

t
+

1

t− T
− T

t− 1

]
. (83)

The component M of the energy-momentum tensor transforms under a generic Galilean
conformal transformation x→ x′ , t→ t′ in eq. (74) as [67]

M′(t′, x′) = (f ′)2M(t, x) +
cM
12

S(f, t) , (84)

where S(f, t) is the Schwarzian derivative for the coordinate transformation t → f(t).
Requiring the expectation valueM(Xi;X) to vanish on the GCFT1+1 plane for the ground
state, this will lead to the condition

1

2
S(f, t) = c2

[
T − 1

t
+

1

t− T
− T

t− 1

]
. (85)

Eq. (85) is equivalent to the differential equation

0 = h′′(t) +
1

2
S(f, t)h(t) = h′′(t) +

6

cM
M(T, t)h(t) , (86)

with f = h1/h2, h1 and h2 being the two solutions of the above differential equation. We
will solve this equation by the method of variation of parameters up to linear order in the
parameter εα = 6

cM
χα. To zeroth order, settingM(0) = 0 , the solutions are given by

h(0)(t) = 1 , t . (87)

Therefore expanding up to linear order in εα

hi = h
(0)
i + εα h

(1)
i , M =M(0) + εαM(1) , (88)

the differential equation to solve up to this order is given by

h
(1)′′
i (t) = − 6

cM
M(1)(T, t)h

(0)
i (t) . (89)

After solving eq. (89) we compute the monodromy of the solutions by going around the
light operators at t = 1 , T as described in [67] which leads to the following monodromy
matrix:

M =

(
1 2πi c2T (T − 1)

2πi c2(T − 1) 1

)
. (90)

Now we utilize the monodromy condition for the three point twist correlator obtained
in [67] √

I1 − I2

2
= 2πεα , (91)
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where I1 = trM and I2 = trM2 are invariant under global Galilean conformal transfor-
mations. Using eq. (91) we can find the remaining auxiliary parameter c2 as

c2 = εα
1√

T (T − 1)
. (92)

Therefore the conformal block for the four-point function in eq. (78) may be obtained as:

Fα = exp

[
cM
6

∫
c2 dX

]
= exp

[
χα

(
X√

T (T − 1)

)]
F̃(T ) .

(93)

Expression (93) for the Galilean conformal block still has an unknown function F̃(T ).
To determine F̃(T ) we need to perform the monodromy analysis for the other energy-
momentum tensor L, which we will do in the next subsection. For the particular four-
point function of twist correlators we consider in this section, we do not need to explore
the monodromy for L. The reason is that, since the conformal dimensions ∆Φ = ∆ne ∝ cL,
they will vanish as long as we consider Einstein gravity for which eq. (21) gives cL = 0.
Therefore the monodromy problem for the energy-momentum tensor L becomes trivial
and leads to F̃(T ) = 1. Nevertheless, in the next subsection we will explicitly solve the
differential equation for L monodromy and show that this is indeed the case.

6.1.2 Monodromy of L

To get the full expression of the Galilean conformal block, we will next focus on the
monodromy problem for the energy-momentum tensor L. We start with the expectation
value of the energy-momentum tensor L inside the four-point correlator [67]

L(Xi;X) ≡ 〈L(X)Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉
〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉

. (94)

Using the shorthands δi = cM
6 ∆i and εi = cM

6 χi, eq. (94) can be rewritten utilizing the
Ward identities in eq. (77) as

6

cM
L(Xi; (x, t)) =

4∑
i=1

[
δi

(t− ti)2
− 1

t− ti
di +

2εi(x− xi)
(t− ti)3

+
x− xi

(t− ti)2
ci

]
, (95)

where the auxiliary parameters ci are defined in eq. (80) and di admit similar definitions
[67]:

di =
6

cM
∂ti log 〈Φne(X1) Φ−ne(X2) Φ−ne(X3) Φne(X4)〉 . (96)

The smoothness of the expectation value L(Xi, X) requires L(T, t) → t−4 as t → ∞.
Together with the freedom provided by global Galilean conformal transformations, this
fixes all of the auxiliary parameters di except one. Using the global Galilean conformal
symmetry, we will place the operators at t1 = 0 , t2 = T , t3 = 1 , t4 = ∞ and x1 =
0 , x2 = X , x3 = 0 and x4 = 0. This leads to the following values for three of the auxiliary
parameters di in terms of the remaining one:

d1 = c2X + d2(T − 1)− 2δL ,

d3 = c2(−X)− d2T + 2δL ,

d4 = 0 ,

(97)
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where δL = cM∆ne/6 and εL = cMχne/6 denote the rescaled scaling dimensions of the
twist operator Φne . Substituting equations (97) and (80), into eq. (95) we obtain the
expectation value L(Xi, (x, t)) as

6

cM
L(Xi; (x, t)) = −c2X + d2(T − 1)− 2δL

t
+
c2X + d2T − 2δL

t− 1
+
c1x

t2

+
c2(x−X)

(t− T )2
+

c3x

(t− 1)2
− d2

t− T
+

2xεL
t3

+
δL
t2

+
δL

(t− 1)2
+

δL
(t− T )2

+
2εL(x−X)

(t− T )3
+

2xεL
(t− 1)3

.

(98)
The transformation of the energy-momentum tensor L under the finite Galilean conformal
transformation in eq. (2), leads to the following differential equation

6

cM
L(Xi; (x, t)) =

g′
(
f ′f ′′ − 3 (f ′′)3

)
+ f ′ (3g′′f ′′ − g′′′f ′)

2 (f ′)3

−
x
(

3 (f ′′)2 + f ′′′ (f ′)2 − 4f ′′′f ′f ′′
)

2 (f ′)3 .

(99)

As in [67], we now take the following combination of the expectation values

6

cM
L̃(Xi; (x, t)) =

6

cM

[
L(Xi; (x, t)) +XM′(Xi; (x, t))

]
= c2X

(
− 1

(t− T )2
− 1

t
+

1

t− 1

)
− d2(T − 1)T

(t− 1)t(t− T )

+ δL

(
1

t2
+

1

(t− T )2
+

2

t
− 2

t− 1
+

1

(t− 1)2

)
+

2XεL
(T − t)3

.

(100)

Next we choose the ansatz g(t) = f ′(t)Y (t) for the coordinate transformation to reduce
the differential equation in (99) to the following form:

6

cM
L̃ = −1

2
Y ′′′ − 2Y ′

6

cM
M− Y 6

cM
M′ . (101)

We can solve the above differential equation using the method described in [67] upto linear
order of εα and δα. The scaling dimensions of the light operator Φne vanishes when we
take the replica limit ne → 1. After computing the monodromy by going around the light
operators at t = 1, T , we obtain the auxiliary parameter d2 as

d2 =
(1− 3T )Xεα + 2(T − 1)Tδα

2(T − 1)2T 3/2
. (102)

It is easy to check that the following is true from equations (80) and (96):

∂

∂X
d2 =

∂

∂T
c2 . (103)

Finally, we obtain the full Galilean conformal block using eq. (96) as

Fα = exp

[
χα

(
X√

T (T − 1)

)]
, (104)

where we have used the fact that for cL = 0, δα vanishes. The complete Galilean conformal
block in eq. (104) exactly matches with theM monodromy result in eq. (93) for F̃(T ) = 1
as anticipated before.
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6.1.3 Entanglement negativity in the large-cM limit

In this subsection, we will use the large-cM limit of the t-channel Galilean conformal block
in eq. (104) to compute the entanglement negativity for the bipartite mixed state of two
disjoint intervals in proximity. Note from eq. (14) that, in the replica limit ne → 1 the
scaling dimension of the twist field Φne vanishes rendering it to be a light operator in the
large-cM limit. Following [25] we now utilize the fact that in the t-channel T → 1 , X → 0
the dominant contribution to the four-point twist correlator in eq. (78) in the large-cM limit
comes from the GCA2 conformal block corresponding to the primary field Φ2

ne . Note that
the twist operator Φ2

ne remains heavy in the replica limit, χne/2 → −
cM
16 (cf. footnote 4).

Therefore, the partial wave expansion for the four-point twist correlator in eq. (78) is
dominated by the exchange of Φ2

ne :

F
χ
(2)
ne

= exp

(
−cM

8

X√
T (T − 1)

)
. (105)

Finally, using equations (18), (19) and (78), we obtain the negativity in the large cM -limit
to be

E = log
(
F
χ
(2)
ne

)
≈ cM

8

X

1− T
, (106)

where, we have used the fact that in t−channel T → 1, and neglected the square-root in
the denominator. Note that this expression is in terms of the cross ratio in the t-channel,
X/(1−T ). In terms of the coordinates (xi, ti) of the endpoints of the two disjoint intervals
under consideration, the cross ratio is given by

X

1− T
=
x13

t13
+
x24

t24
− x14

t14
− x23

t23
. (107)

Therefore the entanglement negativity for two disjoint intervals A1 = [(x1, t1), (x2, t2)] and
A2 = [(x3, t3), (x4, t4)] in proximity is given by

E =
cM
8

(
x13

t13
+
x24

t24
− x14

t14
− x23

t23

)
. (108)

We may now utilize the Galilean conformal transformations from the GCFT1+1 plane to
the spatially compactified cylinder to obtain the entanglement negativity in the finite-sized
system described by a GCFT1+1 defined on a cylinder with circumference Lφ. The result
is

E =
cMπ

8Lφ

[
u13 cot

(
πφ13

Lφ

)
+ u24 cot

(
πφ24

Lφ

)
− u14 cot

(
πφ14

Lφ

)
− u23 cot

(
πφ23

Lφ

)]
.

(109)
Finally we compute the entanglement negativity for the two disjoint intervals in a thermal
GCFT1+1 living on a cylinder of circumference β, where β is the inverse temperature. We
obtain the following expression for the entanglement negativity

E =
cMπ

8β

[
u13 coth

(
πφ13

β

)
+ u24 coth

(
πφ24

β

)
− u14 coth

(
πφ14

β

)
− u23 coth

(
πφ23

β

)]
.

(110)
We will use these expressions for the entanglement negativity of two disjoint intervals in
proximity to propose a holographic conjecture to obtain the same from the bulk computa-
tions.
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6.2 Holographic entanglement negativity for two disjoint intervals in
proximity

In this subsection we will advance a holographic proposal for computing the entanglement
negativity of the bipartite mixed state configuration of two disjoint intervals in proximity
in a holographic GCFT1+1. According to the flat space holography, the GCFT1+1 is
dual to a bulk asymptotically flat spacetime. As before, we consider two disjoint Galilean
boosted intervals A1 = [(x1, t1), (x2, t2)] and A2 = [(x3, t3), (x4, t4)] in the ground state of a
holographic GCFT1+1. The subsystem A = A1∪A2 is in a mixed state, and the separation
between A1 and A2, denoted As, belongs to the complementary subsystem B = Ac. As the
flat holographic proposals in equations (55) and (67) for a single and two disjoint intervals
turned out to have exactly the same functional form as their relativistic counterparts
in [20,21], we expect a similar holographic connection for the present configuration as well.

We will make use of the monodromy computations in the previous subsection 6.1.3 to
justify our proposal. To this end we start with the following expression for the two point
twist correlator in a holographic GCFT1+1 on the plane (cf. eq. (7)):

〈Φne(x1, t1)Φ−ne(x2, t2)〉 ∼ exp

(
−2χne

x12

t12

)
, (111)

where we have used eq. (21) and eq. (14) to set ∆ne = 0. Now we utilize the holographic
dictionary in eqs. (24) and (25), to write eq. (105) as

〈Φne(x1, t1) Φ−ne(x2, t2) Φ−ne(x3, t3) Φne(x4, t4)〉 ' exp

[
cM
8

(
x13

t13
+
x24

t24
− x14

t14
− x23

t23

)]
= exp

[cM
16

(
Lextr

13 + Lextr
24 − Lextr

14 − Lextr
23

)]
,

(112)
where in the second equality we have made use of eq. (45). We now propose, based on
the monodromy computations in section 6.1.3, the following conjecture for the holographic
entanglement negativity of two disjoint intervals in proximity located at the null infinity
of the bulk asymptotically flat spacetime dual to a GCFT1+1:

E =
3

16G

(
Lextr

13 + Lextr
24 − Lextr

14 − Lextr
23

)
=

3

16G

(
Lextr
A1∪As + Lextr

As∪A2
− Lextr

A1∪A2∪As − Lextr
As

)
,

(113)

where cL = 0 and cM = 3
G . Once again we observe that the holographic entanglement neg-

ativity for the mixed state configuration of two disjoint intervals in a holographic GCFT1+1

involves a specific linear combination of the lengths of bulk extremal curves homologous to
the intervals as shown in figure 4. Remarkably our flat holographic conjecture in eq. (113)
has exactly the same structure as its relativistic counterpart in the AdS3/CFT2 scenario
obtained in [23,29].
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Figure 4: Schematics of the holographic construction for the computation of entanglement
negativity of two disjoint intervals. The entanglement negativity is obtained via a specific
linear combination of the lengths of the bulk extremal curves situated at the crossings of
the null planes descending from the endpoints of the two intervals.

It is interesting to note that, in the limit of adjacent intervals x23 → ε, where ε is the
UV cut-off (Lextr

As → 0 in the bulk), we get back our formula for two adjacent intervals in
eq. (67). This serves as a strong consistency check of our proposal. Now we make use
of the flat version of the HRT formula in eq. (26) to recast our formula for holographic
entanglement negativity in the following instructive form

E =
3

4
(SA1∪As + SAs∪A2 − SA1∪A2∪As − SAs)

=
3

4
(I(A1 ∪As;A2) + I(As;A2)) .

(114)

Therefore we see that our holographic conjecture relates two very different entanglement
measures, namely, entanglement negativity which is the upper bound of distillable entan-
glement, and the mutual information which measures entanglement correlation between
two subsystems. Again, this particular connection seems unique for the specific configu-
ration of two disjoint intervals on the boundary field theory. Interestingly, in the limit of
adjacent interval As → ∅ we get back the adjacent formula in eq. (68).

In the following, we are going to employ our holographic conjecture to compute the
entanglement negativities in various configurations described by two disjoint intervals in
proximity in different mixed states of a holographic GCFT1+1. Remarkably our formula
reproduces the universal behaviour of the holographic entanglement negativity at the large
central charge limit of the holographic GCFT1+1.

6.2.1 Two disjoint intervals in vacuum

We start with the mixed state configuration of two disjoint intervals A1 = [(x1, t1), (x2, t2)]
and A2 = [(x3, t3), (x4, t4)] in the ground state of a holographic GCFT1+1. The dual
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bulk geometry is that of pure Minkowski spacetime. Utilizing eq. (45) for the length
of the extremal geodesics in locally Minkowski geometry, one obtain for the holographic
entanglement negativity from eq. (113) as

E =
3

8G

(
x13

t13
+
x24

t24
− x14

t14
− x23

t23

)
=
cM
8

(
l1 + ls
t1 + ts

+
l2 + ls
t2 + ts

− l1 + l2 + ls
t1 + t2 + ts

− ls
ts

)
,

(115)

where we have denoted l1 = x1 − x2 , ls = x2 − x3 and l2 = x3 − x4 for the lengths of the
respective intervals (cf. figure 4) and similarly for t1 , t2 and ts. remarkably this matches
exactly with the large central charge behaviour of the entanglement negativity in eq. (108)
obtained using the monodromy method in subsection 6.1.3. Considering the adjacent limit
ls → ε and ts → ε (where ε is the UV cut-off) and taking the leading order terms in ε, we
get back the result for entanglement negativity for adjacent intervals in eq. (69).

6.2.2 Two disjoint intervals at a finite temperature

Next we will consider the mixed state configuration of two disjoint intervals in a thermal
GCFT1+1 living on a cylinder compactified in the timelike direction with circumference β.
The dual spacetime is the locally FSC geometry described in subsection 5.1.3. Substituting
eq. (57) for the length of the extremal curve in FSC geometry in our holographic conjecture
in eq. (113) we obtain for the holographic entanglement negativity of two disjoint intervals
at a finite temperature

E =
3π

8Gβ

(
u13 coth

(
πφ13

β

)
+ u24 coth

(
πφ24

β

)
− u14 coth

(
πφ14

β

)
− u23 coth

(
πφ23

β

))
=
cM
8

π

β

[
(t1 + ts) coth

(
π(l1 + ls)

β

)
+ (t2 + ts) coth

(
π(l2 + ls)

β

)

− (t1 + t2 + ts) coth

(
π(l1 + l2 + ls)

β

)
− ts coth

(
πls
β

)]
,

(116)
where the lengths of the respective intervals are denoted by l1 = u1 − u2 , ls = u2 − u3

and l2 = u3 − u4, and the times are given by t1 , t2 and ts. Again this matches exactly
with the field theory computations at large central charge limit in eq. (109). We may take
the adjacent limit ls → ε and ts → ε, to show that the leading order expression matches
exactly with the result for two adjacent intervals given in eq. (70).

6.2.3 Two disjoint intervals in a finite-sized system

Finally we turn our attention to the holographic computation of the entanglement negativ-
ity for two disjoint intervals in a finite-sized system obeying periodic boundary conditions
described by a GCFT1+1 living on a cylinder of circumference Lφ compactified along the
spatial direction. The bulk dual is again asymptotically flat and is described by the global
Minkowski orbifold metric in eq. (28). We now employ the expression for the extremal
geodesic length in such spacetimes from eq. (36) to obtain the following expression for
the entanglement negativity of the mixed state configuration described by two disjoint
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intervals in a finite-sized system as

E =
3π

8GLφ

(
u13 cot

(
πφ13

Lφ

)
+ u24 cot

(
πφ24

Lφ

)
− u14 cot

(
πφ14

Lφ

)
− u23 cot

(
πφ23

Lφ

))
=
cM
8

π

Lφ

[
(t1 + ts) cot

(
π(l1 + ls)

Lφ

)
+ (t2 + ts) cot

(
π(l2 + ls)

Lφ

)

− (t1 + t2 + ts) cot

(
π(l1 + l2 + ls)

Lφ

)
− ts cot

(
πls
Lφ

)]
.

(117)
Remarkably this again matches exactly with the field theory result in eq. (110) obtained
through large central charge computations in subsection 6.1.3. Again in the adjacent limit
described by ls → ε and ts → ε, we get back the adjacent intervals result in eq. (71).

7 Holographic entanglement negativity in flat space TMG

In the previous sections we have computed the holographic entanglement negativity in
the case of Einstein gravity in the bulk for which the dual GCFT1+1 at the boundary
had only one non-vanishing central charge cM . At this point, we recall the fact that
the representations of the GCA2 algebra are labelled by the quantum numbers ∆ and χ.
Therefore a vanishing cL would correspond to ∆ = 0 which describes a spinless massive
particle propagating in the asymptotically flat bulk spacetime.

In this section we will incorporate the effects of a non-zero cL, and hence a non-zero
∆, in the bulk in order to see the agreement with the field theory results in [55] more
closely. We expect that a non-vanishing ∆ would introduce a spin for the massive particle.
In this context we modify the bulk picture by introducing Topologically Massive Gravity
(TMG) [59,60,63–66] which contains a gravitational Chern-Simons (CS) term. This Chern-
Simons term arises due to a gravitational anomaly present in the relativistic CFT2 whose
İnönü-Wigner contraction leads to the GCFT1+1s considered in the present article. From
the perspective of the bulk, the dual operation to this parametric contraction on the
boundary corresponds to taking the flat limit of the bulk AdS3 geometry. Therefore the
flat-holographic connection between TMG in asymptotically flat spacetimes and GCFT1+1s
with non-vanishing cL and cM comes from two equivalent parametric contractions of each
sector in the original TMG-AdS3/CFT2 correspondence [59,60,64–66].

We start by briefly reviewing the salient features of TMG in AdS3 spacetimes. The
action of TMG in AdS3 is the sum of the usual Einstein-Hilbert term, the cosmological
constant term and a gravitational Chern-Simons term [59,66] 10:

STMG = SEH +
1

µ
SCS

=
1

16πG

∫
d3x
√
−g

[
R+

2

`2
+

1

2µ
εαβγ

(
Γρασ∂βΓσγρ +

2

3
ΓρασΓσβηΓ

η
γρ

)]
,

(118)

where µ has mass dimension one and describes the coupling of the CS-term, and ` is the
AdS3 radius. In the limit µ→∞ one recovers Einstein gravity. The asymptotic symmetry
analysis of TMG in AdS3 shows that the algebra of the modes of the asymptotic Killing
vectors is isomorphic to two copies of Virasoro algebra with left and right moving central

10This should be contrasted with the Chern-Simons gauge theory of 3d gravity put forward by Witten
[61].
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charges [59,66]:

c+
TMG =

3`

2G
(1 +

1

µ`
) , c−TMG =

3`

2G
(1− 1

µ`
) . (119)

Now we will go to asymptotically flat spacetime by taking the flat limit `→∞ leading to
the flat space TMG. Remarkably the asymptotic symmetry group analysis at null infinity
leads to the Galilean conformal algebra, with both central charges non-vanishing [45, 48,
59,60]:

cL =
3

µG
, cM =

3

G
. (120)

Alternatively, these central charges can be obtained from AdS3 by taking İnönü-Wigner
contraction [59]: cL = c+

TMG − c
−
TMG, cM = (c+

TMG + c−TMG)/`. From eq. (120) it is easy to
see that in the limit µ→∞ we get back Einstein gravity in asymptotically flat spacetime.

7.1 Extrapolating the holographic dictionary

In [66], the authors computed the holographic entanglement entropy for a CFT2 with
gravitational anomaly using the theory of topologically massive gravity in AdS3. It was
found that the difference in the left and right moving central charges of the anomalous
CFT2 gives rise to a non-trivial spin of the twist operators in the replica manifold, which
in the context of AdS3/CFT2, corresponds to a massive spinning particle of mass m = χ
and spin s = ∆ moving in the bulk geometry of TMG-AdS3. As easily seen from the action
in eq. (118), the Chern-Simons term is unaffected by the flat limit ` → ∞ and therefore
the above discussion remains valid in the flat-holographic scenario as well [60]. The action
of such a particle was found to be [60,66]:

Sflat-TMG =

∫
C
ds

(
χ

√
ηµνẊµẊν + ∆ (ñ.∇n)

)
+ Sconstraints , (121)

where ñ and n are unit space-like and time-like vectors respectively, both normal at the
trajectory of the particleXµ, and Sconstraints is an action imposing these constraints through
Langrange multipliers [60, 66]. In eq. (121) C denotes the worldline of the particle. The
action (121) introduces two new vectors in the the 3-dimensional bulk, while the constraint
action Sconstraints imposes five constraints, leading to a single new degree of freedom. This
sets up a normal frame to each point in the bulk as shown in fig. 5, and particle worldlines
get broadened in the shape of ribbons [66].
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Figure 5: The topological Chern-Simons term in the TMG action introduces a normal
frame defined by two auxiliary normal vectors n and ñ at each point on the worldline of a
massive spinning particle. Figure modified from [66].

The equations of motion reveal that this is not a true degree of freedom in the sense
that the variations of the new vectors n and ñ along the worldline Xµ does not affect the
action (121) [60, 66]. It is also interesting to note that straight lines governed by Ẍµ = 0
in locally Minkowski spacetimes are still solutions of the equations of motion in the TMG
background [60]. It is important to note that our holographic constructions for computing
the entanglement negativity in terms of bulk geodesics rely heavily on the straight-line
nature of the geodesics. To proceed, we note that in order to compute the entanglement
entropy from the bulk perspective in a AdS/CFT setting, one considers the notion of
the generalized gravitational entropy [17]. The computation of generalized gravitational
entropy involves a replication of the dual gravitational geometry in the replica index n
followed by a quotienting through the replica symmetry Zn. In the quotient spacetime of
the replicated geometry, there are conical defects along the entangling surfaces, namely at
the endpoints of the boundary interval. We now propose, following [60, 66] that the two-
point function of the twist fields inserted at the endpoints of the interval on the boundary
of the quotient geometry is given by the exponential of the on-shell action of a massive
spinning particle with mass mn = χn and spin sn = ∆n. For such a particle propagating
along an extremal worldline in the bulk geometry from a point xi with a normal vector ni
to a point xf with normal vector nf , the two-point twist correlator has the form:

〈Φne(∂1A)Φ−ne(∂2A)〉 = e−χneS
EH
on-shell−∆neS

CS
on-shell , (122)

where
SEH
on-shell =

√
ηµνẊµẊν = Lextr(xi, xf ) , (123)

and SCS
on-shell is the topological Chern-Simons contribution to the on-shell action. As de-

scribed before, the effect of this topological action is to broaden the worldline in the shape
of a ribbon as the vectors n and ñ in eq. (121) define a normal frame to the curve C. In
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eq. (122) the Chern-Simons contribution to the on-shell action in eq. (121) is given by the
twist in the ribbon-shaped worldline as the particle moves along it [59,60,66]:

SCS
on-shell =

∫
C
ds (ñ.∇n) = cosh−1(−ni. nf ) . (124)

Equation (124) essentially computes the boost ∆η required to drag the orthonormal frame
generated by the vectors (Ẋ, ni, nf ) from the point xi to xf .

In the following subsection we will perform the computations of the spinning two-point
correlators for different bulk geometries in flat space-TMG using the modified holographic
dictionary in eqs. (122) to (124). With this generalized expression for the two point twist-
correlator in eq. (122) all our previous analysis in section 5 will simply follow and lead to
modified formulae for the holographic entanglement negativity in GCFT1+1 dual to bulk
geometries governed by TMG 11.

7.2 Two-point correlator of twist fields with spin

We start with TMG in a pure Minkowski spacetime. A schematics of the bulk geometry
corresponding a single interval A = [(x1, t1), (x2, t2)] in the boundary GCFT1+1 is shown in
fig. 6. We have two bulk normal vectors n∂i erected at each of the bulk points yi (i = 1, 2)
descending from the endpoints (ui, φi)

12 of the interval on the boundary, which were chosen
in [60] to be pointed along the directions of the corresponding null rays γi:

γ̇1 = ∂r

∣∣∣
γ1

= ∂t + cosφ1 ∂x + sinφ1 ∂y , γ̇2 = ∂r

∣∣∣
γ2

= ∂t + cosφ2 ∂x + sinφ2 ∂y . (125)

Since these two vectors are null, the authors in [60] introduced two timelike vectors:

n1 =
1

ε
γ̇1 −

ε

2

1

γ̇1.γ̇2
γ̇2 , n2 =

1

ε
γ̇2 −

ε

2

1

γ̇1.γ̇2
γ̇1 . (126)

Figure 6: Bulk setup for computing two-point correlator of twist fields with non-zero spin.
There are boundary normal vectors n∂i on each of the black points on the asymptotic
boundary. The black points are on the null curves descending from these boundary points
and they are equipped with normal vectors ni ∝ ∂r

∣∣∣
γi
. Figure modified from [60].

11All these results may be recast in the factorised Wilson line prescription in the Chern-Simons formu-
lation of 3d gravity developed in [66].

12(ui, φi) are the cylindrical coordinates related to the planar coordinates (xi, ti) via eq. (5).

32



SciPost Physics Submission

With these definitions we obtain from eq. (124) in the ε→ 0 limit

SCS
on-shell = ∆η12 = cosh−1(− γ̇1.γ̇2

ε2
) =

∣∣∣∣∣ log

(
−2γ̇1.γ̇2

ε2

) ∣∣∣∣∣ = 2 log

(
2

ε
sin

φ12

2

)
. (127)

In eq. (127) the boost ∆η12 may be interpreted as the difference in the twist of the
two endpoints of the ribbon-like geometries induced by the topological term in eq. (124).
Therefore the two-point spinning twist correlator in eq. (122) in the case of pure Minkowski
spacetime dual to a GCFT1+1 in its ground state is given by

〈Φne(∂1A)Φ−ne(∂2A)〉 =

(
2

ε
sin

φ12

2

)−2∆ne

exp

(
−χne

u12

tan φ12
2

)
, (128)

where we have used eq. (23) for the extremal geodesic length and ∂iA = (ui, φi) denotes
the entangling surfaces, namely, the endpoints of the interval at the boundary.

Next we proceed to compute the boost in the case of non-rotating FSC geometry. In
that case the bulk null vectors in eq. (125) become (cf. eq. (29))

γ̇1 =
β

2π
cosh

(
2πφ1

β

)
∂t +

β

2π
sinh

(
2πφ1

β

)
∂x −

β

2π
∂y ,

γ̇2 =
β

2π
cosh

(
2πφ2

β

)
∂t +

β

2π
sinh

(
2πφ2

β

)
∂x −

β

2π
∂y .

(129)

Therefore using eqs. (124) and (127) we obtain

∆ηFSC12 = 2 log

(
β

πε
sinh

πφ12

β

)
. (130)

Similar computations in the case of TMG in global Minkowski orbifold geometries yields

∆ηGM
12 = 2 log

(
Lφ
πε

sin
πφ12

Lφ

)
. (131)

In the following subsections we will utilize equations (127), (130) and (131) for the twists
in the ribbon to compute the topological CS contribution to the holographic entanglement
negativity for different sub-interval geometries in a holographic GCFT1+1.

7.3 Holographic entanglement negativity for a single interval

In this subsection we will generalize the proposals (44) and (55) for computing entangle-
ment negativity of various bipartite pure and mixed state configurations described by a sin-
gle interval in a GCFT1+1 to incorporate the non-vanishing cL effects. To this end, we first
consider the pure state configurations described by a single interval A = [(x1, t1), (x2, t2)]
in the ground state of a GCFT1+1 at zero temperature. To proceed, we replace eq. (44) for
the two-point function of twist operators by the corresponding expression with non-zero
spin in eq. (128). Now, using the modified holographic dictionary in equations (122), (123)
and (124) we write the two-point function of the composite twist operators Φ2

ne inserted
at the endpoints of the single interval A = [(x1, t1), (x2, t2)] as:〈

Φ2
ne(x1, t1)Φ2

−ne(x2, t2)
〉

= exp
[
−2χne/2 L

extr
12 − 2∆ne/2 ∆η12

]
, (132)

where Lextr
12 is the length of the extremal ribbon-shaped curve anchored on the entangling

surfaces, and ∆η12 denotes the difference in the twist at the endpoints of the ribbon. Now
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the entanglement negativity for the pure state configuration described by the single interval
in the GCFT1+1 vacuum may be obtained from eq. (42) as

E =
3

8G

(
Lextr

12 +
1

µ
∆η12

)
, (133)

where we have used equations (14) and (120) and subsequently took the replica limit. In
the following, we will make use of the holographic formula in eq. (133) to compute the
holographic entanglement negativity for the bipartite pure state configurations described
by a single interval in the vacuum state of a holographic GCFT1+1 as well as for a GCFT1+1

describing a system of finite size. Later, we will consider the mixed state configuration of a
single interval at a finite temperature which involves an analysis of a particular four-point
twist correlator in the large central charge limit in the spirit of subsection 5.1.3.

7.3.1 Single interval at zero temperature

We start with the simplest pure state configuration of a single interval in the vacuum
state of a holographic GCFT1+1 at zero temperature for which the dual bulk geome-
try corresponds to the pure Minkowski spacetime. Utilizing the transformations (5), the
CS-contribution to the two-point function in eq. (127) may be written in the planner
coordinates as:

∆η12 = 2 log

(
t12

ε

)
. (134)

We now substitute equations (23) and (134) in eq. (133) to obtain the holographic entan-
glement negativity as

E =
cL
4

log

(
t12

ε

)
+
cM
4

x12

t12
, (135)

where we have used eq. (120) for the central charges of the holographic GCFT1+1. Re-
markably, we have reproduced the universal part of the complete result obtained in [55]
via replica technique.

7.3.2 Single interval in a finite-sized system

Next we move on to the computation of the holographic entanglement negativity for the
bipartite pure state configuration of a single interval in a GCFT1+1 describing a finite-sized
system endowed with periodic boundary conditions. The corresponding bulk geometry is
described by the global Minkowski orbifold with metric (28). Using the expression for the
corresponding length of the extremal curve in eq. (36), and the twist in eq. (131), we
obain the holographic entanglement entropy from eq. (133) as

E =
cL
4

log

[
Lφ
πε

sin

(
πφ12

Lφ

)]
+
cM
4

π u12

Lφ
cot

(
πφ12

Lφ

)
. (136)

This matches exactly with the universal part of the complete field theory result in [55].

7.3.3 Single interval at a finite temperature

Finally we focus on the mixed state configuration of a single interval at a finite temperature.
The field theory is described by a thermal GCFT1+1 on a cylinder compactified along the
timelike direction with circumference β. As described in subsection 5.1.3, the definition
of the holographic entanglement negativity for this configuration involves two auxiliary
intervals B1 and B2 sandwiching the single interval A. This leads to a four-point twist
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correlator which admits a large central charge factorization of the form (52). For a thermal
GCFT1+1 with unequal non-vanishing central charges (119), the dual gravitational theory
is described by topologically massive gravity in FSC geometries. For such GCFT1+1s,
using the modified flat-holographic dictionary in eq. (122), the four-point twist correlator
in eq. (52) has the large-central charge structure:〈

Φne(x1, t1) Φ2
−ne(x2, t2) Φ2

ne(x3, t3) Φ−ne(x4, t4)
〉

= exp
[
− χne Lextr

14 − χne/2
(

2Lextr
23 + Lextr

12 + Lextr
34 − Lextr

13 − Lextr
24

)
−∆ne ∆η14 −∆ne/2

(
2∆η23 + ∆η12 + ∆η34 −∆η13 −∆η24

)]
,

(137)

where Lextr
ij are the lengths of the extremal ribbon-shaped curves anchored on various

subsystems constituted by the single interval A and the auxiliary intervals B1, B2, and
ηij are the corresponding twists in the ribbons. Taking the replica limit ne → 1 followed
by the bipartite limit B1 ∪ B2 → Ac, and utilizing the definitions of the central charges
in eq. (119), we obtain the following modified formula for computing the holographic
entanglement negativity for the bipartite mixed state configuration of a single interval in
a thermal GCFT1+1 with both central charges non-vanishing:

E = lim
B→Ac

3

16G
(2LA + LB1 + LB2 − LA∪B1 − LA∪B2) , (138)

where we have defined
LX = Lextr

X +
1

µ
∆ηX . (139)

where X is the specific subsystem under consideration. We now compute the holographic
entanglement negativity for a single interval located at the asymptotic null infinity of the
geometry described by TMG in FSC. The holographic computations are identical to those
in subsection (5.1.3) for the extremal geodesic lengths Lextr

ij and the remaining contribution
to the holographic entanglement negativity comes from the Chern-Simons term as

ECS =
cL
4

(
log

[
β

πε
sinh

(
πφ12

β

)]
− πφ12

β

)
. (140)

Together with the Einstein gravity result eq. (58), the total holographic negativity becomes

E =
cL
4

[
log

[
β

πε
sinh

(
πφ12

β

)]
− πφ12

β

]
+
cM
4

[
π u12

β
coth

(
πφ12

β

)
− π u12

β

]
. (141)

The above expression for the holographic entanglement negativity exactly matches with
the universal part of the complete field theory result obtained in [55] using the replica
technique. We may also rewrite eq. (141) in the instructive form eq. (59).

7.4 Holographic entanglement negativity for adjacent intervals

Next we turn our attention to the bipartite mixed state configuration of two adjacent
intervals in a GCFT1+1 with unequal non-vanishing central charges. The holographic
entanglement negativity for the case of Einstein gravity in the bulk was discussed in sub-
section 5.2. In this subsection we utilize the modified dictionary in eq. (122) to advance a
holographic proposal for computing the entanglement negativity for the mixed state con-
figuration of two adjacent intervals living at the null infinity of the geometries described
by flat space TMG. From equations (138) and (139), it is easy to see that the expression
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for the holographic negativity in such scenarios is simply obtained by replacing Lextr
X by

LX , for each subsystem X. Therefore our proposal for the entanglement negativity for two
disjoint intervals reads (cf. eq. (67)):

E =
3

16G
(LA1 + LA1 − LA1∪A2) , (142)

with LX given in eq. (139).

7.4.1 Adjacent intervals at zero temperature

We start with the bipartite mixed state configuration of two adjacent intervals in the
vacuum state of the boundary GCFT1+1. To compute the holographic entanglement neg-
ativity, we use eq. (127) in our modified holographic entanglement negativity formula eq.
(142) to obtain to topological contribution to the entanglement negativity as

ECS =
3

16G

1

µ
(∆ηA1 + ∆ηA2 −∆ηA1∪A2)

=
cL
8

log

[
t12t23

ε(t12 + t23)

]
,

(143)

where ε is identified as the UV cut-off. The expression for the total holographic entangle-
ment negativity, after including the Einstein gravity result eq. (69), becomes

E =
cL
8

log

[
t12t23

ε(t12 + t23)

]
+
cM
8

(
x12

t12
+
x23

t23
− x13

t13

)
, (144)

which matches exactly with the universal part of the field theory result in [55].

7.4.2 Adjacent intervals at a finite temperature

We next compute the holographic entanglement negativity for the bipartite mixed state
configuration of two adjacent intervals in a finite temperature GCFT1+1. Here, the bound-
ary theory is defined on an infinite cylinder compactified in the timelike direction leading
to a finite temperature GCFT1+1 and the dual gravitational theory is decribed by TMG
in FSC geometry. The Chern-Simons contribution to the holographic entanglement nega-
tivity, using eq. (142) and eq. (130), is given by

ECS =
cL
8

log

 β
πε

sinh
(
πφ12
β

)
sinh

(
πφ23
β

)
sinh

(
π(φ12+φ23)

β

)
 . (145)

The total holographic entanglement negativity after including the Einstein gravity result
eq. (70) becomes

E =
cL
8

log

 β
πε

sinh
(
πφ12
β

)
sinh

(
πφ23
β

)
sinh

(
π(φ12+φ23)

β

)
+

cM
8

[
π u12

β
coth

(
πφ12

β

)

+
π u23

β
coth

(
πφ23

β

)
− π u13

β
coth

(
πφ13

β

)]
.

(146)

Eq. (146) correctly reproduces the universal part of the result obtained in [55] using field
theoretic methods.
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7.4.3 Adjacent intervals in a finite-sized system

Finally, we focus on the computation of the holographic entanglement negativity for a
bipartite mixed state configuration of two adjacent intervals in a GCFT1+1 describing a
system with finite size. The boundary theory is described by a GCFT1+1 on an infinite
cylinder compactified in the spatial direction with circumference Lφ. The Chern-Simons
contribution to the holographic entanglement negativity is obtained using eq. (131) and
eq. (142) as

ECS =
cL
8

log

 β
πε

sin
(
πφ12
Lφ

)
sin
(
πφ23
Lφ

)
sin
(
π(φ12+φ23)

Lφ

)
 . (147)

The expression for the total holographic entanglement negativity after including the Ein-
stein gravity result eq. (70) becomes

E =
cL
8

log

Lφ
πε

sin
(
πφ12
Lφ

)
sin
(
πφ23
Lφ

)
sin
(
π(φ12+φ23)

Lφ

)
+

cM
8

[
π u12

Lφ
cot

(
πφ12

Lφ

)

+
π u23

Lφ
cot

(
πφ23

Lφ

)
− π u13

Lφ
cot

(
πφ13

Lφ

)]
.

(148)

This matches exactly with the universal part of the complete field theory result obtained
in [55] using replica technique.

7.5 Two disjoint intervals in proximity

Finally in this subsection, we compute the holographic entanglement negativity for the
bipartite mixed state configuration of two disjoint intervals in a GCFT1+1 with both cen-
tral charges non-vanishing. The entanglement negativity for such configurations involves
a four-point function of twist operators with non-zero spin. Therefore to obtain the en-
tanglement negativity via field theoretic methods, we need a semi-classical monodromy
analysis of the four-point twist correlator when both the central charges cL and cM are
non-zero. Note from eq. (120) that cL ∝ cM when the coupling of the gravitational Chern-
Simons term in the bulk dual theory remains finite. Therefore, the previous analysis in
subsection 6.1 for a large cM remains valid and we may obtain a closed form expression
of the complete conformal block in the large central charge limit 13. In the following, we
obtain the large central charge expression for the entanglement negativity for two disjoint
intervals in a GCFT1+1 with both central charges non-vanishing. Subsequently we propose
a bulk construction of the holographic entanglement negativity in the dual asymptotically
flat geometries incorporating the anomalous effects of the topologically massive gravity.

7.5.1 Large central charge negativity and the holographic proposal

In this subsection, we obtain the complete expression for the t-channel Galilean conformal
block in the large central large limit for the case where both the central charges of the
GCFT1+1 are non-zero. Using eqs. (96) and (102), we arrive at the following expression

Fα =

(
1−
√
T

1 +
√
T

)−∆α

exp

[
χα

(
X√

T (T − 1)

)]
. (149)

13Note that, even if both the central charges cL and cM are large, the ratio cM
cL

= µ remains finite and
therefore the dual anomalous gravitational theory is well defined. Interestingly, in the case of Einstein
gravity in the bulk as considered in subsection 6.1, the corresponding limit µ → ∞ of the TMG action in
eq. (118) is reminiscent of the central charge cL being zero as seen from eq. (120).
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To obtain the dominant contribution to the four-point function in eq. (78), we note that
the twist operator Φ2

ne remains heavy in the replica limit, χne/2 → −
cM
16 , ∆ne/2 → −

cL
16

(cf. footnote 4). Therefore, the partial wave expansion for the four-point twist correlator
is dominated by the exchange of Φ2

ne :

F
∆

(2)
ne ,χ

(2)
ne

=

(
1 +
√
T√

1− T

)cL/4
exp

(
−cM

8

X√
T (T − 1)

)
. (150)

Finally, using equations (18), (19) and (78), we obtain the entanglement negativity for two
disjoint intervals in proximity (T → 1) in the large central charge limit to be

E ' log
(
F

∆
(2)
ne ,χ

(2)
ne

)
≈ cL

8
log

(
1

1− T

)
+
cM
8

X

1− T
, (151)

The t-channel cross ratios appearing in the above equation may be expressed in terms of
the coordinates (xi, ti) of the endpoints of the two disjoint intervals in question as

1− T =
t14t23

t13t24
,

X

1− T
=
x13

t13
+
x24

t24
− x14

t14
− x23

t23
. (152)

Therefore the complete expression for the entanglement negativity for two disjoint intervals
A1 = [(x1, t1), (x2, t2)] and A2 = [(x3, t3), (x4, t4)] in proximity is given by

E =
cL
8

log

(
t13t24

t14t23

)
+
cM
8

(
x13

t13
+
x24

t24
− x14

t14
− x23

t23

)
. (153)

We may obtain the large central charge behaviours of the entanglement negativity for a
GCFT1+1 describing a finite-sized system as well as a thermal GCFT1+1 by performing
suitable conformal maps from the GCFT1+1 plane to the spatially and temporally com-
pactified cylinders respectively, as described before in subsection 6.1.3.

Having described the large central charge behaviour of the entanglement negativity for
two disjoint intervals, we now proceed to give a holographic description of such configura-
tions. Utilizing the expression for the two point twist correlator from eq. (7) and eq. (151),
the four-point twist correlator appearing in the definition of the entanglement negativity
for the two disjoint intervals, have the following large central charge behaviour〈

Φne(x1, t1) Φ−ne(x2, t2) Φ−ne(x3, t3) Φne(x4, t4)
〉

= exp
[cM

16
(L13 + L24 − L14 − L23)

]
,

(154)
where L is defined in eq. (113), and we have utilized the relation cM

cL
= µ. Therefore, for

two disjoint intervals A1 and A2 living at the null infinity of the geometries described by
TMG in asymptotically flat spacetimes, we propose the following holographic construction
for the entanglement negativity

E =
3

16G
(LA1∪As + LAs∪A2 − LA1∪A2∪As − LAs) , (155)

which tantamounts to replacing Lextr by L for the Einstein gravity counterpart in eq.
(113), where as before As describes another subsystem sandwiched between the two disjoint
subsystems in question. In the following, we will apply the above prescription to different
bipartite mixed state configurations involving two disjoint intervals in a GCFT1+1 and
find agreement with the large central charge results obtained above. Interestingly, all
these results may be checked against the İnönü-Wigner contractions of the corresponding
CFT2 results in [29]. This serves as another consistency check of our holographic proposal.
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7.5.2 Two disjoint intervals at zero temperature

We start with bipartite mixed state configuration of two disjoint intervals in proximity
A1 = (x1, t1) and A2 = (x2, t2) in the ground state of a holographic GCFT1+1 which is
dual to TMG in pure Minkowski spacetime. Using eq. (127) and eq. (23), the holographic
entanglement negativity proposal in eq. (155) reproduces the large central charge result in
eq. (153).

For comparison, we reproduce the corresponding expression in the context of AdS3/CFT2

from [29]:

E =
c

8
log

(
z13z24

z14z23

)
+
c̄

8
log

(
z̄13z̄24

z̄14z̄23

)
, (156)

where we have allowed for unequal central charges c and c̄ for the left and right moving
sectors, respectively. Now following eq. (1) we take the İnönü-Wigner contractions [40–42]

z = t+ εx , z̄ = t− εx, (157)

to obtain, up to first order in ε,

E =
(c+ c̄)

8
log

(
t13t24

t14t23

)
+
ε(c− c̄)

8

(
x13

t13
+
x24

t24
− x14

t14
− x23

t23

)
. (158)

Using eq. (11), we see that the GCFT1+1 result in eq. (153) is exactly reproduced. This
serves as a strong consistency check of our proposal.

7.5.3 Two disjoint intervals at a finite temperature

Next, we consider the bipartite mixed state configuration of two disjoint interval in a finite
temperature GCFT1+1. The boundary theory is living on a cylinder compactified in the
timelike direction with circumference β and the dual bulk theory is described by global
FSC geometry. Using eq. (39) and eq. (131) in the holographic entanglement negativity
formula in eq. (155) gives

E =
cL
8

log

sinh
(
πφ13
β

)
sinh

(
πφ24
β

)
sinh

(
πφ14
β

)
sinh

(
πφ23
β

)
+

cM
8

[
π u13

β
coth

(
πφ13

β

)

+
π u24

β
coth

(
πφ24

β

)
− π u14

β
coth

(
πφ14

β

)
− π u23

β
coth

(
πφ23

β

)]
.

(159)
It is easily verified that the above expression matches perfectly with the large central charge
results obtained in subsection 7.5.1.

7.5.4 Two disjoint intervals in a finite-sized systems

Finally, we consider the bipartite mixed state configuration described by two disjoint in-
tervals in the proximity in a finite-sized system. Using eq. (131) and eq. (36) we get the
holographic entanglement negativity from eq. (155) as

E =
cL
8

log

sin
(
πφ13
Lφ

)
sin
(
πφ24
Lφ

)
sin
(
πφ14
Lφ

)
sin
(
πφ23
Lφ

)
+

cM
8

[
π u13

Lφ
cot

(
πφ13

Lφ

)

+
π u24

Lφ
cot

(
πφ24

Lφ

)
− π u14

Lφ
cot

(
πφ14

Lφ

)
− π u23

Lφ
cot

(
πφ23

Lφ

)]
.

(160)

This may also be seen to match with the large central charge results in 7.5.1.
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8 Summary and conclusions

To summarize, we have established a holographic construction to obtain the entangle-
ment negativity for bipartite states in GCFT1+1s dual to bulk (2 + 1)-dimensional asymp-
totically flat Einstein gravity and topologically massive gravity (TMG). For the former
the bulk asymptotic symmetry analysis leads to dual GCFT1+1s with central charges
cL = 0, cM 6= 0. In this context, we have obtained the holographic entanglement negativity
for various bipartite pure and mixed states in a GCFT1+1 utilizing our construction. These
include the pure state of a single interval dual to a bulk (2 + 1)-dimensional Minkowski
spacetime and that in a finite-sized system dual to a bulk global Minkowski orbifold. The
corresponding mixed state of a single interval at a finite temperature is dual to a bulk non
rotating flat space cosmology described by a null orbifold. Subsequently, the holographic
entanglement negativity for the mixed state configuration of two adjacent intervals in a
GCFT1+1 was computed utilizing our construction. Our results for these bipartite states
exactly reproduce the corresponding replica technique results in the large central charge
limit.

Following the above computations, we used the geometric monodromy method [67] in
the BMS3 field theory to find the large central charge behaviour of the entanglement nega-
tivity for the mixed state configuration of two disjoint intervals in the GCFT1+1. Utilizing
theM and Lmonodromy for each of the two distinct components of the energy-momentum
tensor leads to second and third-order differential equations for the four-point twist corre-
lator. Solving these equations, it was possible to obtain the dominant conformal block for
the four-point twist correlator in the t-channel describing the intervals in proximity with
each other. This leads us to the entanglement negativity for the mixed state configuration
under consideration for zero and finite temperature and also finite-sized system described
by a GCFT1+1 at its large central charge limit. Subsequently we advance a construction to
compute the holographic entanglement negativity for this mixed state configuration in zero
and finite temperature and also finite-sized system described by a GCFT1+1 dual to appro-
priate bulk gravitational configurations. Interestingly our results exactly match with the
corresponding replica technique results in the large central charge limit obtained through
the geometric monodromy analysis described above. This constitutes a strong consistency
check of our holographic construction for the mixed state configuration in question and may
also be extended to the other configurations discussed here in a straightforward fashion.
Furthermore we demonstrate that in the limit of the two disjoint intervals being adja-
cent we retrieve the corresponding holographic entanglement negativity for two adjacent
intervals which further demonstrates the consistency of our holographic construction.

Subsequently we have extended our construction to obtain the holographic entangle-
ment negativity for the bipartite states described earlier, in a GCFT1+1 with non zero cL
dual to a bulk flat space topologically massive gravity. This describes massive particles
with spin propagating in the bulk and also renders both the scaling dimensions for the
twist fields to be non zero. Our results for the adjacent and the single intervals match ex-
actly with the corresponding replica technique results in the dual GCFT1+1 with both the
central charges being non zero. For the mixed state configuration of two disjoint intervals
we have extended the monodromy analysis discussed above to the case with a non-zero cL
and subsequently proposed a holographic construction to compute the entanglement neg-
ativity for such configurations. Interestingly the results for the holographic entanglement
negativity obtained through our construction is identical to the İnönü-Wigner limit for
the corresponding replica techniques results for a relativistic CFT1+1 which constitutes a
consistency check.

It is well known that flat space chiral gravity is a limit of the flat space topologically
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massive gravity for which the Newton constant G is taken to be infinity and such that the
product of G with the coupling constant µ of the topological term in the action is held
fixed. The corresponding dual GCFT1+1 in this case has the other central charge cL 6= 0
and the GCA is identical to the chiral part of a (relativistic) Virasoro algebra. In the Ap-
pendix utilizing our proposal, we have computed the holographic entanglement negativity
for the bipartite pure and mixed state configurations described by single, adjacent, and
disjoint intervals in the dual GCFT1+1 mentioned above and the results are similar to those
obtained earlier for a generic TMG. We would like to emphasize here that our construction
described in this work addresses the significant issue of the characterization of mixed state
entanglement for a class of dual GCFT1+1 in flat space holography. Furthermore it has
been shown in the literature that the GCFT1+1 dual to a bulk flat space chiral gravity
is related to a conformal quantum mechanics (CFT1). This is an extremely interesting
open avenue to explore in the future as described by the progress in the corresponding
AdS2/CFT1 correspondence. We hope to return to these exciting issues in the near future.

A Holographic entanglement negativity in flat chiral gravity

In this appendix, we will discuss a special case of flat-space TMG, namely the conformal
Chern-Simons gravity (also called flat space chiral gravity) [74]. The dual boundary theory
is described by GCA2 with central charges cL = 24k, cM = 0, where k is the Chern-Simons
level. The action for conformal Chern-Simons gravity is given by

SCSG =
k

4π

∫
d3x
√
−g

[
εαβγΓρασ

(
∂βΓσγρ +

2

3
ΓσβηΓ

η
γρ

)]
, (161)

with G→∞, keeping µG = 1
8k fixed (cf. eq. (118)).

Note that in this case the two-point correlator in (122) only gets a contribution from
the Chern-Simon term. In this context, we are looking at a massless spinning particle in
the bulk. All the previous analysis in flat-space TMG will now follow with cM = 0 and
holographic entanglement negativity formula for a single interval A becomes

E = lim
B→Ac

3kµ

2
(2XA + XB1 + XB2 −XA∪B1 −XA∪B2) , (162)

where we have defined
X =

1

µ
∆η . (163)

Therefore, using eqs. (127) and (162), the holographic entanglement negativity for a single
interval in the ground state of a chiral GCFT1+1 is obtained as

E =
3

8G
XA =

cL
4

log

(
t12

ε

)
. (164)

Similarly, we may compute the holographic entanglement negativity for a single interval
A = [(x1, t1), (x2, t2)] at a finite temperature or for finite-sized systems using eq. (130)
and eq. (131). The results match exactly with those in the flat-space TMG case as well as
the field theory results in [55] with cM = 0 which strongly substantiates our holographic
proposals.

Next, we modify our holographic entanglement negativity proposal for two adjacent
intervals A1 = [(x1, t1), (x2, t2)] and A = [(x2, t2), (x3, t3)] at the boundary of a manifold
accommodating flat chiral gravity:

E =
3kµ

2
(XA1 + XA1 −XA1∪A2) . (165)
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Using eq. (127) for the spinning contribution in pure Minkowski spacetime, eq. (165)
yields the following expression for the holograpic entanglement negativity for two disjoint
intervals in the chiral GCFT1+1 vacuum:

ECS =
3k

2
(∆ηA1 + ∆ηA2 −∆ηA1∪A2)

=
cL
8

log

[
t12t23

ε(t12 + t23)

]
,

(166)

which matches exactly with the cM = 0 version of the dual field theory result in [55].
Similarly, we can obtain the holographic entanglement negativity for adjacent intervals at
a finite temperature and for finite-sized systems in the present scenario using eq. (130)
and eq. (131).

Finally, for two disjoint intervals A = [(x1, t1), (x2, t2)] and B = [(x3, t3), (x4, t4)] in
proximity in the chiral GCFT1+1 with cM = 0, we write

E =
3k

2
(X13 + X24 −X14 −X23) , (167)

with X given in eq. (163). Using eq. (127) and eq. (167), we obtain the holographic
entanglement negativity in the ground state to be

E =
cL
8

log

[
t13t24

t14t23

]
. (168)

Similarly, we can obtain negativity for two disjoint intervals at a finite temperature and
for finite-sized systems using eq. (130) and eq. (131). Once again the results match with
the flat-space TMG results with cM = 0 as well as the corresponding İnönü-Wigner limits
of the relativistic field theory results [29].
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