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Abstract

We establish a construction for the entanglement wedge in asymptotically flat
bulk geometries for subsystems in dual (1+ 1)-dimensional Galilean conformal
field theories in the context of flat space holography. In this connection we
propose a definition for the bulk entanglement wedge cross section for bipar-
tite states of such dual non relativistic conformal field theories. Utilizing our
construction for the entanglement wedge cross section we compute the entan-
glement negativity for such bipartite states through the generalization of an
earlier proposal, in the context of the usual AdS/CFT scenario, to flat space
holography. The entanglement negativity obtained from our construction ex-
actly reproduces earlier holographic results and match with the corresponding
field theory replica technique results in the large central charge limit.
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1 Introduction

Quantum entanglement in extended many body systems has emerged as an exciting issue
attracting intense research attention in the recent past across a diverse variety of disci-
plines. We know from quantum information theory that the entanglement of bipartite pure
states is characterized by the entanglement entropy given by the von Neumann entropy
of the reduced density matrix. However the description of mixed state entanglement
is an involved issue as the entanglement entropy receives contributions from irrelevant
correlations and is not a suitable entanglement measure for such mixed states. Several
alternate measures to describe mixed state entanglement has been proposed in quantum
information theory but are usually difficult to compute as they involve optimization over
LOCC protocols. In this context Vidal and Warner in their seminal work [1] proposed a
novel computable measure for mixed state entanglement termed entanglement negativity
which provided an upper bound on the distillable entanglement for a bipartite mixed state.
Entanglement negativity was defined as the logarithm of the trace norm of the reduced
density matrix, partially transposed with respect to one of the subsystems. Remarkably,
in a series of communications [2–4], the authors computed the entanglement negativity for
various bipartite states in (1 + 1)-dimensional conformal field theories (CFT1+1) through
a replica technique similar to an earlier technique for the entanglement entropy described
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in [5, 6].
In the framework of the AdS/CFT correspondence, Ryu and Takayanagi [7, 8] (RT)

proposed a holographic conjecture to compute the universal part of the entanglement
entropy of a subsystem in CFTds dual to bulk static AdSd+1 geometries which was pro-
portional to the area of a bulk codimension-2 minimal surface (RT surface) homologous to
the subsystem. A generalization of this RT conjecture for CFTds dual to non-static bulk
AdSd+1 geometries was proposed by Hubeny, Rangamani and Takayanagi (HRT) in [9].
Both the RT and HRT conjectures were subsequently proved in a series of significant works
described in [10–16]. Following an earlier attempt described in [17], holographic proposals
for the entanglement negativity of various bipartite states in dual CFTds were proposed in
a series of interesting works [18–29] where the authors utilized algebraic sums of the areas
of the (H)RT surfaces homologous to certain combinations of subsystems relevant to the
mixed states in question. A substantiation for the holographic prescription in the context
of the AdS3/CFT2 scenario described in [18] was provided in [30] through a large central
charge analysis of the entanglement negativity for dual CFT1+1s using the monodromy
technique developed in [13, 31, 32] which may be also suitably extended to other subsys-
tem configurations. For the corresponding higher dimensional AdSd+1/CFTd scenario a
proof restricted to spherical entangling surfaces may be inferred from the arguments re-
cently described in [33] based on certain novel replica symmetry breaking saddles for the
bulk gravitational path integral [34]. However the corresponding arguments for general
subsystem geometries is still a non trivial open issue.

It should be noted here that the authors in [35] have advanced an alternative ap-
proach to compute the holographic entanglement negativity for bipartite states in the
AdSd+1/CFTd scenario, involving the backreacted bulk entanglement wedge cross section
(EWCS). Subsequently in another recent communication [36] a proof for this proposal
based on the reflected entropy [37] was advanced. Interestingly these two distinct pro-
posals for the holographic entanglement negativity were equivalent upto certain overall
multiplicative factors arising from the backreaction as discussed in [38]. A covariant ver-
sion of the proposal based on the entanglement wedge described above, was established
recently in [39] where the authors obtained the holographic entanglement negativity for
bipartite states in CFT1+1s dual to non-static bulk AdS3 geometries through the extremal
EWCS. Furthermore the entanglement wedge was proposed to be the bulk dual for the re-
duced density matrix of the corresponding CFT subsystem [40–43]. In [44,45] the EWCS
was conjectured to be equal to the holographic entanglement of purification (EoP) which,
in contrast to the entanglement negativity, receives contributions from both quantum and
classical correlations [46]. The EWCS has also been proposed to be holographically re-
lated to other entanglement measures such as the odd entanglement entropy [47], the
balanced partial entanglement entropy [48] and the reflected entropy [37, 49, 50] for dual
CFTds. This naturally makes the EWCS an interesting bulk quantity for investigation in
holographic quantum entanglement.

On a separate note non-relativistic version of (1+1)-dimensional field theories with
Galilean conformal symmetry were obtained in [51–54] through the İnönü-Wigner con-
traction of the relativistic conformal algebra for CFT1+1s. This involved different scalings
of the space and the time coordinates to arrive at the corresponding non relativistic limit.
A suitable replica technique was developed to compute the entanglement entropy of bipar-
tite states in such Galilean conformal field theories (GCFT1+1) in [54, 55]. Subsequently
another replica technique was established in [56] to compute the entanglement negativity
for bipartite states in such GCFT1+1s. In the framework of flat space holography [57,58],
it was proposed that the above mentioned GCFT1+1s are dual to gravitational theories in
(2+1)-dimensional bulk asymptotically flat spacetime [59]. The Galilean conformal algebra
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in (1+1)-dimensions (GCA1+1) was isomorphic to the infinite-dimensional Bondi-Metzner-
Sachs (BMS3) algebra which described the asymptotic symmetry of (2 + 1)-dimensional
bulk flat geometries. The holographic entanglement entropy for a single interval in the
BMS3 field theory located at the null infinity of the bulk asymptotically flat geometry
was computed in [60]. Remarkably, similar results were reproduced1 in [61] using a flat
holographic version of the HRT prescription first proposed in [60]. Their construction
utilized null geodesics dropping from the (properly regulated) end points of the interval
under consideration living at the asymptotic boundary of the bulk spacetime, which were
connected inside the bulk through an extremal curve. These null geodesics were shown to
be tangential to the bulk modular flow vector. The fixed points of the modular flow vector
constitute the connecting extremal curve which compute the holographic entanglement
entropy [60]. Subsequently in [62], a suitable bulk prescription to compute the generalized
gravitational entropy for generic spacetimes with non-Lorentz invariant dual field theories
was advanced which extended the causal structure of the boundary theory into the bulk.
Furthermore several subtleties involved in this construction were investigated in [63] with
subsequent generalization to higher dimensions.

As described earlier the entanglement entropy was not a viable measure for mixed
entanglement. In this context, given the developments described above, a holographic
description of mixed state entanglement in such GCFT1+1s dual to asymptotically flat
bulk geometries was a significant open issue. This interesting issue was investigated re-
cently in [64] where an elegant and clear holographic characterization for the entangle-
ment negativity of bipartite states in a class of GCFT1+1s dual to bulk asymptotically
flat (2+1)-dimensional Einstein gravity and topologically massive gravity (TMG) was es-
tablished. Their construction involved specific algebraic sums of the lengths of extremal
curves (HRT like surfaces termed swing surfaces [65]) homologous to certain combinations
of intervals appropriate to the bipartite state in question. Interestingly the holographic en-
tanglement negativity for such bipartite states in dual GCFT1+1s exactly reproduced the
corresponding replica technique results [56] in the large central charge limit. Their results
were further substantiated through a rigorous large central charge analysis utilizing the
geometric monodromy technique developed in [66]. Recently the above mentioned holo-
graphic proposals have been reformulated in the context of asymptotically flat generalized
minimal massive gravity in [67] where the authors have reproduced the corresponding field
theory results for the entanglement negativity [56]. This serves as yet another consistency
check for the above holographic proposals and also advances our understanding of the flat
space holography.

As mentioned earlier in the usual AdS/CFT framework the holographic entanglement
negativity for bipartite states in dual CFT1+1s could be characterized through the bulk
EWCS as described in [35, 36]. Naturally the extension of this construction to flat holog-
raphy is a significant issue which needs to be investigated. In this article, we address this
outstanding issue and establish a novel construction for the bulk entanglement wedge and
provide a definition for the EWCS in bulk asymptotically flat (2+1)-dimensional Einstein
gravity and TMG dual to GCFT1+1s. Subsequently we compute the holographic en-
tanglement negativity for various bipartite states in such GCFT1+1s through the EWCS
generalizing the construction of [35, 36] to the framework of flat holography. Remarkably
the holographic entanglement negativity computed through our construction matches up
to an additive constant with the results described in [64] from the alternative proposal
involving the algebraic sum of the lengths of specific combinations of bulk extremal curves
as well as with the field theory replica technique results described in [56] in the large cen-

1Interestingly, the consistency of such calculations may be checked against the Wilson line computations
in [55].
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tral charge limit. This provides an extremely strong substantiation and consistency check
for our construction of the bulk EWCS and the consequent computation for the entangle-
ment negativity in the context of flat holography. Recently in the context of AdS/CFT
framework, an interpretation for this additive constant was provided in [68] in terms of
the fidelity of a particular Markov recovery process which also has a consistent bulk de-
scription in terms of the number of (non-trivial) boundaries of the EWCS. Interestingly,
our findings conform to the above geometric interpretation which provides further sup-
port to our holographic construction. Note that this quantity was also examined in [48]
in the context of the canonical purification of a mixed state ρAB by introducing candidate
purifiers A′ and B′. The author furthermore defined and investigated a new quantum in-
formation theoretic measure called the balanced partial entanglement (BPE) and argued
for a putative duality with the EWCS. To this end, the above mentioned difference has
an alternative interpretation in terms of the partial entanglement entropy (PEE) between
A and B′ or equivalently B and A′, and was termed as the crossing PEE in [48].

This article is organized as follows. In section 2 we present a brief review of holographic
entanglement in flat geometries and collect certain results required for our purpose. Sub-
sequently in section 3 we propose a generalization of the relation between the EWCS and
the holographic entanglement negativity [35,36], to flat space holography. In section 4 we
describe our construction for the bulk EWCS in flat Einstein gravity dual to a GCFT1+1

and compute the holographic entanglement negativity for various bipartite states. Further-
more in section 5 we extend our construction for the EWCS to bulk topologically massive
gravities (TMGs) and subsequently compute the holographic entanglement negativity for
various bipartite states in the corresponding dual GCFT1+1s. We then summarize our
results and present our discussions in section 6. Additionally in Appendix A, we demon-
strate that the bulk EWCS for the asymptotically flat spacetimes may also be obtained
through a limiting analysis of the corresponding AdS3/CFT2 results. Finally in Appendix
B we obtain the entanglement negativity for bipartite states in GCFT1+1s dual to the
special case of bulk flat space TMG known as flat chiral gravity.

2 Review of Holographic Entanglement in flat geometries

In this section we briefly review the (1+1)-dimensional Galilean conformal field theory
(GCFT1+1). Subsequently, we review the computation of extremal curves homologous to
an interval at the asymptotic boundary in flat space holography. We finish this section
with a very short review of the entanglement negativity as an entanglement measure for
mixed state configurations.

2.1 Galilean Conformal Field Theory

In this subsection we will briefly review the silent features of the GCFT1+1. In this
context, the Galilean conformal algebra (GCA2) in two dimensions may be obtained from
the relativistic conformal algebra through İnönü-Wigner contraction, this requires the
rescaling of the space and the time coordinates as

t → t , x → ϵx , (1)

with ϵ → 0. This is equivalent to the small velocity limit v ∼ ϵ. In the plane representation,
the generators of the GCA2 are given as [55]

Ln = tn+1∂t + (n+ 1)tnx∂x , Mn = tn+1∂x. (2)
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These generators lead to the following Lie algebra with a central extension

[Ln, Lm] = (m− n)Ln+m +
cL
12

(n3 − n)δn+m,0 ,

[Ln,Mm] = (m− n)Mn+m +
cM
12

(n3 − n)δn+m,0 ,

[Mn,Mm] = 0 ,

(3)

where cL and cM are the central charges for the GCA2. In this work, we will also use the
cylinder representation of the algebra given by the generators [51]

Ln = einϕ (∂ϕ + inu∂u) , Mn = einϕ∂u. (4)

The plane and cylinder representations are related by the following transformation [69]

x = eiϕ , t = iu eiϕ . (5)

The highest weight representation of the GCA2 are labelled by the eigenvalues ∆ and χ
of the maximally commuting generators (L0,M0) [53] as

L0 |∆, χ⟩ = ∆ |∆, χ⟩ , M0 |∆, χ⟩ = χ |∆, χ⟩ . (6)

For the primary fields V (x, t), the four point function in the GCFT1+1 may be expressed
as [52]

〈
4∏

i=1

Vi(xi, ti)

〉
=

∏
1≤i<j≤4

t
1
3

∑4
k=1 ∆k−∆i−∆j

ij e
−

xij
tij

( 1
3

∑4
k=1 χk−χi−χj)GGCA

(
T,

X

T

)
, (7)

where (∆i, χi) are the conformal weights of the primary fields Vi(xi, ti) with (i = 1, 2, 3, 4)
and GGCA is the non-universal function of cross-ratio which depends on the full operator
content of the specific field theory. In eq. (7), T and X

T are the non-relativistic cross-ratios
that are given as

T =
t12t34
t13t24

,
X

T
=

x12
t12

+
x34
t34

− x13
t13

− x24
t24

. (8)

In the large central charge limit, GGCA has the following expression [52,61]

GGCA

(
T,

X

T

)
≈
∑
p

(1− T )∆p

(
1 +

√
T
)−2∆p

e
χp

X√
T (1−T ) , (9)

where the sum is over the Galilean conformal blocks corresponding to the complete set
of intermediate states. As described in [69], the GCFT1+1 primaries transform from the
plane to the cylinder representation as

V ′(ϕ, u) = A eiϕ∆ eiuχ V (x, t) , (10)

where A is a phase factor. Using eq. (10), one can deduce the correlation functions on the
cylinder. In the cylinder representation, the cross-ratios eq. (8) becomes

T =
sin ϕ12

2 sin ϕ34

2

sin ϕ13

2 sin ϕ24

2

,
X

T
=

1

2

(
u12

tan ϕ12

2

+
u34

tan ϕ34

2

− u13

tan ϕ13

2

− u24

tan ϕ24

2

)
. (11)

We will use eqs. (8) and (11) for the cross-ratios in respective representations to compute
the holographic entanglement negativity for various subsystem configurations in the dual
GCFT1+1s.

6



SciPost Physics Submission

2.2 Extremal curves in flat geometries

We now give a brief review of the construction for the extremal curves homologous to
an interval in a holographic GCFT1+1 in the context of asymptotically flat gravity. To
this end we consider an interval A in a (1 + 1)-dimensional GCFT dual to the (2 + 1)-
dimensional flat Einstein gravity for which the line element in the Eddington-Finkelstein
coordinates reads

ds2 = −du2 − 2 du dr + r2 dϕ2, (12)

with the retarded time u = t− r. The dual GCFT1+1 is at the future null infinity r → ∞
with u and ϕ fixed. The asymptotic symmetry analysis at null infinity of flat Einstein
gravity gives the Galilean conformal algebra with only one non-zero central charge given
as [54,70,71]

cL = 0 , cM =
3

GN
. (13)

The boosted interval A = [(u1, ϕ1), (u2, ϕ2)] is at the future infinity with endpoints denoted
by ∂iA (i = 1, 2). Since this interval is not at a constant time slice, we use a flat space
generalization of the HRT construction [9] which describes a bulk codimension-2 extremal
surface homologous to the boundary subsystem for non static bulk geometries [60,61].

Figure 1: Extremal curve homologous to an interval in a GCFT1+1 dual to Einstein gravity in asymptoti-
cally flat spacetime. Figure modified from [61].

The codimension-2 extremal surface in the (2+1)-dimensional asymptotically flat ge-
ometry becomes an extremal curve. The bulk extremal curve in this context of flat space
holography is segmented and consists of two null geodesics labelled as γi descending from
the endpoints ∂iA of the interval A. However these null geodesics do not intersect in
general, as shown in figure 1. A third bulk curve is required to connect them which is
uniquely specified by constraining the distance between the two null geodesics γis to be
extremal. Note that the extremal curve between any two points in the above construction
is a straight line as discussed in [61]. The extremal length of the curve segments homolo-
gous to the interval A at the null infinity is just given by the length of the extremal curve
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connecting the points yi ∈ γi which can be evaluated to be [61]

Lextr
total = Lextr(y1, y2) =

∣∣∣∣∣ u21

tan ϕ12

2

∣∣∣∣∣, (14)

where uij = ui − uj and ϕij = ϕi − ϕj . Note that the holographic entanglement entropy
may be computed using this extremal length as [60,61]

SA =
1

4GN
Lextr
total. (15)

Remarkably a bulk proof of the above geometric picture for the holographic entangle-
ment entropy involving gravitational path integrals was proposed in [62], following the
Lewkowycz-Maldacena procedure [14] in the context of flat space holography. For an
interval at the asymptotic boundary of the spacetime, their prescription involves a corre-
sponding bulk extremal curve located at the intersection of two associated null hypersur-
faces which extends the boundary causal structure to the bulk. In this geometric picture,
the null geodesics located on such null hypersurfaces are the lines emanating from the
boundary endpoints and moving along the bulk modular flow vector. The segment of
the extremal curve connecting the null geodesics corresponds to the fixed points of the
bulk modular flow vector. This construction provides a natural justification for the null
segments for the extremal curve homologous to the interval A described earlier.

In the following, we will only be interested in the length of the extremal curve homol-
ogous to an interval at the null infinity of the bulk flat gravitational theory and omit the
subsequent discussion of entanglement entropy.

We can similarly compute the length of the extremal curve homologous to a boosted
interval in a finite temperature GCFT1+1 dual to the bulk non-rotating flat space cos-
mologies (FSC) in (2+1)-dimensions whose metric is given by [54,55,69]

ds2 = M du2 − 2 du dr + r2dϕ2, (16)

where M is the ADM mass of the spacetime and is related to the temperature in the dual
GCFT1+1 at null infinity as

M =

(
2π

β

)2

. (17)

The length of the extremal curve homologous to an interval A in the thermal GCFT1+1

may then be computed to be [61]

Lextr
total =

2πu12
β

coth

(
πϕ12

β

)
. (18)

Finite sized version of this computation, as performed in [64], involves a GCFT1+1

compactified on a spatial circle of circumference Lϕ. The bulk dual geometry is the global
Minkowski orbifold, which is a quotient of the usual Minkowski spacetime with a compact
spatial circle (u, ϕ) ∼ (u, ϕ+ Lϕ), with the metric [60,61]

ds2 = −
(
2π

Lϕ

)2

du2 − 2du dr + r2dϕ2, (19)

where again the size of the subsystem Lϕ is related to the ADM mass of the spacetime M
as

M = −
(
2π

Lϕ

)2

. (20)
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The length of the extremal curve homologous to an interval A in the dual GCFT1+1 may
then be obtained following a similar procedure as the previous cases to be [64]

Lextr
total =

2πu12
Lϕ

cot

(
πϕ12

Lϕ

)
. (21)

This establishes the construction of the HRT-like extremal curves [61,64] homologous
to an interval in GCFT1+1s dual to (2 + 1)-dimensional asymptotically flat bulk theories
described by Einstein gravity. We will use some of the results mentioned above in our
computation of the EWCS in section 4.

2.3 Entanglement Negativity

As mentioned earlier, in quantum information theory the entanglement entropy is not a
valid measure for the entanglement of mixed state configurations. However the authors
in [1] proposed a computable measure for mixed state entanglement known as entanglement
negativity. This entanglement measure is defined as the trace norm of the partial transpose
of the density matrix with respect to one of the subsystems. In this context, we start
with a tripartite system in a pure state which involves the subsystems A1, A2 and B.
Subsequently we trace over the subsystem B to find the reduced density matrix of the
mixed state configuration (A = A1 ∪ A2) described as ρA = TrBρ, where ρ is the density
matrix of tripartite state A ∪ B. Therefore the entanglement negativity of the bipartite
mixed state is defined as

E = lnTr ||ρT2
A || , (22)

where the trace norm Tr ||ρT2
A || is defined as the sum of absolute eigenvalues of ρT2

A . The
partial transpose of the reduced density matrix ρA is described as〈

e
(1)
i e

(2)
j

∣∣∣ρT2
A

∣∣∣e(1)k e
(2)
l

〉
=
〈
e
(1)
i e

(2)
l

∣∣∣ρA∣∣∣e(1)k e
(2)
j

〉
, (23)

where the basis vectors
∣∣∣e(1)i

〉
and

∣∣∣e(2)j

〉
are the elements of the Hilbert spaces H1 and

H2 corresponding to the subsystems A1, A2.
Recently the authors of [56] constructed an appropriate replica technique to compute

the entanglement negativity in GCFT1+1, following the corresponding works [2–4] in the
relativistic scenario. Their analysis essentially involves a replica manifold Σne consisting
of ne copies (ne even) of the GCFT1+1 plane sewed together along branch cuts present on
the subsystems under consideration, in a particular orientation [3,56]. On Σne the replica
partition function Tr(ρT2

A )ne is given by a four point function of twist fields Φ±ne inserted
at the endpoints of the intervals A1 = [(x1, t1), (x2, t2)] and A2 = [(x3, t3), (x4, t4)]:

Tr(ρT2
A )ne = ⟨Φne(x1, t1)Φ−ne(x2, t2)Φ−ne(x3, t3)Φne(x4, t4)⟩ . (24)

Finally, the entanglement negativity between the two intervals A1 and A2 was computed
through the replica limit

E = lim
ne→1

lnTr(ρT2
A )ne . (25)

Subsequently in [64] the authors proposed several holographic constructions for the
entanglement negativity in the asymptotically flat spacetime for different bipartite pure
and mixed states. In particular their proposals involve specific linear combinations of the
lengths of the extremal curves homologous to various subsystems under consideration2.

2Such linear combinations of the extremal curve lengths may be re-expressed in terms of the holo-
graphic mutual information between various subsystems utilizing the flat holographic version of the HRT
prescription in eq. (15) [56,64].
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This is reminiscent of the earlier work on holographic entanglement negativity in the
relativistic setup [19–21]. In this work, we propose an alternative construction to compute
the holographic entanglement negativity through an entanglement wedge cross-section in
the asymptotically flat spacetimes based on similar reasoning in the relativistic scenario
[35,36].

3 Connection between the EWCS and the entanglement
negativity in flat geometry

In the proceeding subsection we briefly review the evaluation of the bulk entanglement
wedge cross section [37,44,45,47,49,50,72,73] for the AdSd+1/CFTd scenarios which has
been proposed to be dual to the entanglement of purification (EoP) [44, 45]. The au-
thors in [35, 36] proposed that the holographic entanglement negativity for subsystems
in CFTds dual to bulk static AdSd+1 geometries could be obtained through the EWCS.
Subsequently, we propose an extension of this connection between the holographic entan-
glement negativity and the EWCS in the context of flat space holography.

3.1 Entanglement Wedge Cross Section in AdSd+1/CFTd framework

We begin with a short review of the entanglement wedge and the entanglement wedge
cross section in the framework of AdSd+1/CFTd. To this end we consider the bipartite
mixed state of two disjoint subsystems A and B at a constant time slice in a CFTd dual to
the bulk static AdSd+1 geometry. Let the RT surface for the subsystem A∪B be labelled
as ΓAB. Then the entanglement wedge MAB for the subsystem A∪B on this constant time
slice is defined to be the codimension-1 spatial bulk region bounded by A∪B ∪ΓAB. The
field theory dual of the entanglement wedge was shown to be the corresponding reduced
density matrix ρAB [40–42]. Now the minimal entanglement wedge cross section (EWCS)
is described by the area of the bulk codimension-2 minimal surface Σmin

AB which bisects the

entanglement wedge MAB in two parts A ∪ Γ
(A)
AB and B ∪ Γ

(B)
AB containing the subsystems

A and B respectively as shown in figure 2. The entanglement wedge cross section EW for
the subsystem A ∪B is then defined as follows

EW (ρAB) = min
Γ
(A)
AB⊂Γmin

AB

[
Area (ΣAB)

4GN

]
, (26)

where GN is the Newton’s constant. The EWCS have been conjectured to be the bulk
dual to the entanglement of purification (EoP) as it satisfies identical properties [44,45].

Figure 2: Left: The green shaded region represents the entanglement wedge for the subsystem A ∪B. The
dotted line gives the EWCS. Right: If the subsystems A and B are sufficiently far away, their entanglement
wedge remains disconnected and the EWCS vanishes. (Adapted from [39])

It should be noted here that in [35, 36], it was proposed that one could obtain the
holographic entanglement negativity for subsystems in CFTds dual to bulk static AdSd+1

geometries, from the area of the backreacted minimal EWCS. For a special class of subsys-
tems having a spherical entangling surface in the CFTds for which the effect of backreaction
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is known, the holographic entanglement negativity is given in terms of the backreacted
EWCS as follows [35,36]

E(A : B) = XdEW (ρAB), (27)

where Xd is a dimension dependent constant which accounts for the backreaction of the
bulk cosmic brane for the conical defect in the replica limit (n → 1). The expression for
Xd for a pure vacuum state in a CFTd was determined to be [17,74]

Xd =

(
1

2
xd−2
d (1 + x2d)− 1

)
, xd =

2

d

(
1 +

√
1− d

2
+

d2

4

)
. (28)

The AdS3/CFT2 framework is a special case where the entangling surfaces of all sub-
systems in the dual field theory have spherical geometries. Therefore the holographic
entanglement negativity for such subsystems in AdS3/CFT2 scenario is given by

E(A : B) = X2EW (ρAB), (29)

with X2 = 3/2, as obtained from eq. (28).
On a related note, in [68] the authors have investigated a stronger bound for an in-

equality satisfied by the field theoretic dual of the minimal EWCS, namely the reflected
entropy [37] in the usual AdS/CFT framework. It was shown in [68] that the differ-
ence between the reflected entropy and the holographic mutual information was bounded
from below by the fidelity of a Markov recovery process related to the purification of the
mixed state under consideration. This difference, termed the Markov gap, possessed an
interesting geometric interpretation in terms of the number of non-trivial boundaries of
the EWCS which turned out to be a constant at the leading order. Also note that in
several earlier holographic proposals [19–21], the entanglement negativity was shown to
be proportional to holographic mutual informations between various combinations of the
subsystems involved. Hence, we expect that the above proposal in eq. (29) connecting the
holographic entanglement negativity with the minimal EWCS receives further correction
in terms of the aforementioned Markov gap. This quantity was also explored in [48] in
the context of the canonical purification of a given mixed state, where it was termed the
crossing partial entanglement entropy (PEE) and remarkably the computations led to the
same constant value as in [68]. Therefore, we speculate that a more correct version of the
proposal in eq. (29) should include the signature of the Markov gap.

3.2 EWCS and entanglement negativity in flat space holography

In our work, however, we are dealing with cases where taking the subsystems at a constant
time slice does not give the correct entanglement structure. So we use a non static version
of the EWCS given by the area of the bulk codimension-2 extremal surface Σextr

AB [44]. To
this end, we now explore the connection between the extremal EWCS and the holographic
entanglement negativity for the GCFT1+1 scenarios dual to the bulk (2+1)-dimensional
asymptotically flat gravity theories. In this context, in Appendix A, we consider a generic
bipartite mixed state of two disjoint intervals in CFT1+1s dual to the bulk AdS3 geometries
and perform a parametric İnönü-Wigner contraction of the EWCS computed for this
configuration in [35, 44]. Through this parametric contraction we obtain an expression
for the EWCS for the non relativistic scenario of bulk asymptotically flat spacetimes.
We find that the EWCS for flat gravity scenarios is proportional to the conformal block
in t-channel where the dominant contribution comes from the composite twist operator
Φ2
ne
. In [64], the monodromy analysis for the holographic entanglement negativity for

the same configuration discussed above in the context of the bulk asymptotically flat
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gravity was performed. They found that the associated 4-point function corresponds
to the same conformal block we encountered in our computation of EWCS. Comparing
the two results one could establish a relation between the EWCS and the holographic
entanglement negativity in the context of flat space holography as follows

E =
3

2
EW . (30)

Although the above proposal connecting a geometric quantity inside the entanglement
wedge to a mixed state entanglement measure looks promising, as discussed earlier in the
context of AdS3/CFT2 scenario, the works in [68] calls attention to some modifications
in terms of the Markov gap. As described in [56,64] the entanglement negativity between
two subsystems in a GCFT1+1 may be expressed in terms of the holographic mutual
information between various combinations of the subsystems involved. Therefore, given a
proper definition of the reflected entropy in such GCFT1+1s and its putative duality with
the EWCS, it is expected that a similar Markov gap will be involved in the comparison of
the EWCS and the holographic mutual information.

It should be noted here that in the context of AdS3/CFT2, the holographic entangle-
ment negativity for a mixed state of two disjoint intervals exhibits a phase transition [30,32]
while going from the s-channel where its value is trivially zero to the t-channel where the
dominant contribution to the conformal block comes from the aforementioned non-trivial
twist operator Φ2

ne
. We anticipate a similar phase structure for the flat holographic scenar-

ios as well. We expect that this transition from a zero to a non-zero value of entanglement
negativity corresponds in the bulk to the transition from a disconnected entanglement
wedge for which the EWCS is zero to a connected entanglement wedge where we get a
non-trivial EWCS3.

We now provide further reasoning in support of our proposal in eq. (30). We use the
fact that the HRT prescription used to compute the extremal EWCS where we extremize
the area of the corresponding bulk codimension-2 surface is equivalent to the maximin
construction [41] where we choose the maximum among multiple minimal area surfaces on
the achronal Cauchy slice homologous to the subsystem in question in the dual CFTd [44].
This equivalence between the HRT construction and the maximin construction for non
static AdSd+1/CFTd scenarios was demonstrated in [41].

Now it should be noted here that the holographic construction used in [60, 61] to
obtain the holographic entanglement entropy4 for subsystems in asymptotically flat ge-
ometries mimics the HRT construction for non-static bulk AdS geometries. And since a
HRT-maximin equivalence exists in the non-static AdSd+1/CFTd scenarios, we anticipate
that a similar equivalent maximin construction should also exist for asymptotically flat
geometries. So a maximin version of the covariant holographic entanglement negativity
introduced in [27–29] (where the HRT construction has been used) is expected to exist for
flat geometries as well. The covariant holographic entanglement negativity in AdS3/CFT2

scenario has been found to be related to the extremal EWCS through a generic factor of
3/2 [39]. On the basis of above mentioned equivalences for the AdSd+1/CFTd scenarios,
the same relation between the maximin EWCS and the covariant holographic entangle-
ment negativity obtained using the maximin construction should hold in AdS3/CFT2

framework. Now, this should translate in the flat limit without any modification as the
factor of Xd given in eq. (28) depends only on the bulk dimension and the geometry of

3This matching between the phase structure of the entanglement negativity and the transition from a
disconnected to a connected entanglement wedge was observed for the AdS/CFT scenarios in [11,13,49].

4The holographic construction used in [64] to compute the entanglement negativity also mimics the
HRT construction.
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the entangling surface which are not affected while taking the flat limit. This serves as a
further confirmation of our proposal in eq. (30) for flat space holography.

4 EWCS in flat Einstein gravity

Having established a connection between the EWCS and the holographic entanglement
negativity for asymptotically flat geometries in (1+1)-dimensions, we now proceed to
describe our novel construction for the entanglement wedge for the asymptotically flat
background geometry described by the Einstein gravity dual to a GCFT1+1. To this end,
we consider two intervals A and B with non-zero overlap in the dual GCFT1+1. According
to the flat-holographic version of the HRT formula in [61,64] the holographic entanglement
entropy for this configuration is given by the length of the extremal curves Γextr

A , Γextr
B and

Γextr
AB as shown in figure 3 and 4.

Figure 3: Two disjoint intervals A and B in a GCFT1+1 dual to Einstein gravity in asymptotically flat
spacetime, such that their entanglement wedge remains disconnected and correspondingly the EWCS is
identically zero.

We now follow the covariant prescription in [44] to define the entanglement wedge as
the codimension-1 region of the spacetime bounded by the union of the extremal curves
which give the dominant contribution to the covariant entanglement entropy. When the
size of the intervals A and B are very small such that the covariant entanglement entropy
is dominated by the combination of the HRT like curves Γextr

A and Γextr
B (figure 3), we get

a disconnected entanglement wedge as a codimension-1 surface bounded by the union of
curves

MAB = A ∪B ∪ Γextr
A ∪ Γextr

B . (31)

However when the intervals are big enough such that the covariant entanglement entropy
gets a dominant contribution from the HRT like curve Γextr

AB (figure 4), then a connected
entanglement wedge is formed and is bounded by the curves

MAB = A ∪B ∪ Γextr
AB . (32)

As described in [44], for the case of a connected entanglement wedge we divide the extremal
curve Γextr

AB into two parts as follows

Γextr
AB = Γ

(A)
AB ∪ Γ

(B)
AB . (33)

13
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The extremal entanglement wedge cross section is then defined in terms of the length of
the extremal curve Σextr

AB as

EW (ρAB) = min extr
Γ
(A)
AB⊂Γextr

AB

[
L (ΣAB)

4GN

]
, (34)

where the extremization is performed with respect to the division (33), and we have
minimized over the possibility of more than one extremal surface.

Figure 4: Schematics for the holographic construction of the EWCS for two disjoint intervals in a GCFT1+1

dual to Einstein gravity in asymptotically flat spacetime. The shaded region bounded by the red line segments
describing the extremal curves Γextr

AB and the boundary intervals A and B, is the entanglement wedge dual
to ρAB.

We will now describe an explicit construction of the entanglement wedge cross section
in flat holography for two Galilean boosted disjoint intervals A = [(x1, t1), (x2, t2)] and
B = [(x3, t3), (x4, t4)] on the boundary. We consider the intervals to have a connected
entanglement wedge to get a non-trivial entanglement wedge cross-section. In figure 4,
the shaded region bounded by the intervals at the boundary and the extremal curves
homologous to the complementary subregions is the corresponding entanglement wedge
of the density matrix ρAB. Before proceeding, we specify some properties of the extremal
curves homologous to A and B. The bulk points yis lie on the null planes Nis descending
from the endpoints of the intervals A and B on the boundary. Further, the points y1 and
y4 lie on the intersection of the null planes N1 and N4 and the corresponding extremal
curve connecting them is denoted by γ14. Similarly the points y2 and y3 lie on N2 ∩ N3

and the extremal curve connecting them is denoted by γ23. Since all these curves have
been extremized, all the bulk geodesics are straight lines [61]. We now consider two
arbitrary bulk points yb and y′b on the extremal curves γ14 and γ23 respectively. The
extremal entanglement wedge cross-section (EWCS) is then obtained by extremizing over
the position of these two arbitrary bulk points and is given as

EW = min extr
yb∈γ14
y′
b
∈γ23

[
L(yb, y

′
b)

4GN

]
. (35)
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We now proceed towards the computation of the EWCS for different cases of two
disjoint intervals in the GCFT1+1 vacuum, for a GCFT1+1 describing a finite sized system
and for a GCFT1+1 at a finite temperature in subsection 4.1. Subsequently, in subsection
4.2 we propose a similar holographic construction for the case two adjacent intervals and
compute the EWCS for all the above mentioned GCFT1+1 configurations. Further in
subsection 4.3 we compute the EWCS for the pure state configuration of a single interval in
the GCFT1+1 vacuum and for a GCFT1+1 describing a finite sized system. For the mixed
state configuration of a single interval in a thermal GCFT1+1 we obtain the holographic
entanglement negativity by utilizing a flat holographic version of the prescription advanced
in [38].

4.1 EWCS for Two Disjoint Intervals in Proximity

We first consider the mixed state configuration described by two disjoint intervals in
proximity in the GCFT1+1 dual to (2+1)-dimensional Einstein gravity in asymptotically
flat spacetime. In the following subsections we compute the EWCS for the configurations
involving a GCFT1+1 in its ground state, a thermal GCFT1+1 and a GCFT1+1 describing
a finite sized system on an infinite cylinder.

4.1.1 Two disjoint intervals in vacuum

In this subsection we compute the EWCS for the bipartite mixed state configuration of
two disjoint intervals in the GCFT1+1 vacuum dual to the bulk flat (2 + 1)-dimensional
Minkowski spacetime in Eddington-Finkelstein coordinates which is given as

ds2 = −du2 + dr2 + r2dϕ2 , (36)

where u = t− r is the (retarded) Eddington-Finkelstein time, r is the holographic coordi-
nate, and ϕ is the usual angular coordinate with ϕ ∼ ϕ+ 2π.

To this end, we consider the setup of two disjoint intervals A = [(u1, ϕ1), (u2, ϕ2)]
and B = [(u3, ϕ3), (u4, ϕ4)], in the cylindrical coordinates, which are related to the usual
planar coordinates at the boundary via eq. (5). The entanglement wedge of the mixed
state configuration A ∪ B is the shaded bulk codimension−1 region in figure 4 and the
length of the extremal curve connecting the geodesics γ14 and γ23 gives the EWCS.

We now choose the bulk points yb ∈ γ14 with coordinates (rb, ub, ϕb) and y′b ∈ γ23 with
coordinates (r′b, u

′
b, ϕ

′
b). We do so by introducing the parameters

sk = rb sin(ϕb − ϕk) for k = 1, 4,

sk = r′b sin
(
ϕ′
b − ϕk

)
for k = 2, 3,

(37)

where s1 and s4 correspond to the lengths on either sides of yb along γ14 and s2 and s3
correspond to lengths on either sides of y′b along γ23. On utilizing the expression for the
length of the extremal curve between two points given in eq. (14), and the constraint that
the parameters must add up to the geodesic length, we get

s1 + s4 = u41 cot
ϕ14

2
,

s2 + s3 = u32 cot
ϕ23

2
.

(38)

Note that the bulk point yb and y′b lives on the intersection of the null planes N1 ∩N4 and
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N2 ∩N3, respectively. This further gives us the following constraining equations

ub − ui + 2rb sin
2

(
ϕb − ϕi

2

)
= 0 , i = 1, 4,

u′b − ui + 2r′b sin
2

(
ϕ′
b − ϕi

2

)
= 0 , i = 2, 3.

(39)

Using eqs. (37), (38) and (39), we can compute the coordinates of yb in terms of the known
boundary coordinates (ui, ϕi) and the parameters s4 as [61]

xb = rb cosϕb =
u14 cosϕ4 + s4(sinϕ1 − sinϕ4)

1− cosϕ14
,

yb = rb sinϕb =
u14 sinϕ4 + s4(cosϕ4 − cosϕ1)

1− cosϕ14
,

tb = ub + rb =
u1 − u4 cosϕ14 + s4 sinϕ14

1− cosϕ14
.

(40)

And similar expressions for the coordinates of y′b can be obtained in terms of (ui, ϕi)
and the parameter s2. The extremal length between yb and y′b may then be obtained by
extremizing over the undetermined variables s2 and s4 to be

Lextr(yb, y
′
b) =

∣∣∣∣∣∣u23 sinϕ41 + u24 sinϕ13 + u12 sinϕ43 + u43 sinϕ12 + u31 sinϕ42 + u14 sinϕ32

8 sin ϕ32

2 sin ϕ14

2

√
sin ϕ13

2 sin ϕ12

2 sin ϕ43

2 sin ϕ42

2

∣∣∣∣∣∣ .
(41)

In our usual planar coordinates at the boundary in eq. (5), the above expression may
conveniently be put in terms of the GCFT1+1 cross ratios as5

Lextr(yb, y
′
b) =

∣∣∣∣ X√
T (1− T )

∣∣∣∣ , (42)

where the cross ratios T and X/T are as defined in eq. (11). In the t-channel T → 1, the
two disjoint intervals are in proximity, and we get the EWCS from eq. (35) as

EW =
1

4GN

X

1− T
=

1

4G

(
x13
t13

+
x24
t24

− x14
t14

− x23
t23

)
. (43)

Finally, substituting this result into our proposal in eq. (30), we obtain the holographic
entanglement negativity for the two disjoint intervals in proximity as

E =
cM
8

(
x13
t13

+
x24
t24

− x14
t14

− x23
t23

)
, (44)

where we have used the fact that for bulk Einstein gravity, the central charges in the dual
field theory are as given in eq. (13). The expression for the holographic entanglement
negativity in eq. (44) matches exactly with the result obtained in [64] using large cM
analysis and through a particular linear combination of the lengths of bulk extremal curves.
This serves as a strong consistency check for our holographic construction for the EWCS.

We note in passing that the connection between the holographic entanglement nega-
tivity and the extremal EWCS is exact in this case which leads us to speculate that the
Markov gap or the crossing PEE is vanishing. We reiterate that a proper understanding of
this behaviour requires a careful analysis of such quantities in the flat holographic setting.

5Compare this extremal length with eq. (9) to see the proportionality with the conformal block. Also
look at eq. (6.34) in [64] for comparison with the conformal block giving the dominant contribution in the
entanglement negativity computation.
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4.1.2 Two disjoint intervals at a finite temperature

In this subsection we perform the computation of the extremal EWCS for two disjoint
intervals in a thermal GCFT1+1 defined on a compactified cylinder of circumference equal
to the inverse temperature β. The dual asymptotically flat geometry is given by a non-
rotating Flat Space Cosmological (FSC) solution described by the metric given in eq. (16).
The temperature in the dual field theory at null infinity is related to the ADM mass of
the spacetime as in eq. (17).

As before we consider two disjoint intervals described by A = [(u1, ϕ1), (u2, ϕ2)] and
B = [(u3, ϕ3), (u4, ϕ4)]. In this case the analogue of eq. (37) is given by

sk =
rb√
M

sinh
(√

M(ϕb − ϕk)
)

for k = 1, 4,

sk =
r′b√
M

sinh
(√

M(ϕ′
b − ϕk)

)
for k = 2, 3,

(45)

which are constrained to add up to the lengths of the bulk extremal curves on which the
bulk points yb and y′b lives. As before the two points yb and y′b are chosen to be indigenous
to the intersection of the null planes N1∩N4 and N2∩N3, respectively which gives further
constraints similar to the ones given in eq. (39). On utilizing these constraints we may
now obtain the coordinates of the point yb in terms of the boundary coordinates (ui, ϕi)
and the auxiliary parameter s4 as follows

xb =

√
Mu14 sinh

(√
Mϕ4

)
+ s4

(
cosh

(√
Mϕ1

)
− cosh

(√
Mϕ4

))
cosh

(√
Mϕ14

)
− 1

,

tb =

√
Mu14 cosh

(√
Mϕ4

)
+ s4

(
sinh

(√
Mϕ1

)
− sinh

(√
Mϕ4

))
cosh

(√
Mϕ14

)
− 1

,

yb =
−
√
Mu1 +

√
Mu4 cosh

(√
Mϕ14

)
− s4 sinh

(√
Mϕ14

)
cosh

(√
Mϕ14

)
− 1

.

(46)

Similarly the coordinates of y′b may be expressed in terms of the boundary coordinates and
the auxiliary variable s2. The extremal length between yb and y′b may now be computed
by extremizing over the variables s2 and s4 to obtain

Lextr
FSC(yb, y

′
b) =

A

B
(47)

where A and B are given by

A =

√
M

8

∣∣∣∣∣u23 sinh(√Mϕ41

)
+ u24 sinh

(√
Mϕ13

)
+ u12 sinh

(√
Mϕ43

)
+ u43 sinh

(√
Mϕ12

)
+ u31 sinh

(√
Mϕ42

)
+ u14 sinh

(√
Mϕ32

)∣∣∣∣∣,
(48a)

B =

∣∣∣∣∣ sinh
√
Mϕ32

2
sinh

√
Mϕ14

2

√
sinh

√
Mϕ13

2
sinh

√
Mϕ12

2
sinh

√
Mϕ43

2
sinh

√
Mϕ42

2

∣∣∣∣∣.
(48b)
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In the t-channel (T → 1), the EWCS for two disjoint intervals in proximity in a thermal
GCFT1+1 may then be obtained using eq. (35) as

EW =
π

4GNβ

[
u13 coth

(
πϕ13

β

)
+ u24 coth

(
πϕ24

β

)
− u14 coth

(
πϕ14

β

)
− u23 coth

(
πϕ23

β

)]
,

(49)
where we have used the relation between the ADM mass of the spacetime and the tempera-
ture of the dual field theory

√
M = 2π

β . Utilizing the cross ratios for the finite temperature
GCFT1+1 given by

T̃ =
sinh

√
Mϕ12

2 sinh
√
Mϕ34

2

sinh
√
Mϕ13

2 sinh
√
Mϕ24

2

, (50a)

X̃

T̃
=

1

2

( √
Mu12

tanh
√
Mϕ12

2

+

√
Mu34

tanh
√
Mϕ34

2

−
√
Mu13

tanh
√
Mϕ13

2

−
√
Mu24

tanh
√
Mϕ24

2

)
, (50b)

eq. (49) may again be expressed in terms of the cross ratios as

EW =
1

4GN

X̃

1− T̃
. (51)

On substituting the EWCS into our proposal in eq. (30), we obtain the expression for
the entanglement negativity for disjoint intervals in a thermal GCFT1+1 as

E =
cMπ

8β

[
u13 coth

(
πϕ13

β

)
+ u24 coth

(
πϕ24

β

)
− u14 coth

(
πϕ14

β

)
− u23 coth

(
πϕ23

β

)]
.

(52)
where we have used eq. (13). This matches exactly with the results in [64] obtained
through an alternate holographic prescription involving a particular linear combination of
the lengths of the bulk extremal curves. It should be noted here that again the Markov
gap or the crossing PEE vanishes for this case indicating a full Markov recovery.

4.1.3 Two disjoint intervals in a finite sized system

Next we focus on a GCFT1+1 compactified on a spatial circle of circumference Lϕ. The
dual geometry is described by the global Minkowski orbifold, which may be obtained from
the pure Minkowski spacetime through quotienting with a spatial circle compactified as

(u, ϕ) ∼ (u, ϕ+ Lϕ). (53)

The metric for global Minkowski orbifolds is given in eq. (19). Comparing with eq. (16),
it is easy to see that the ADM mass of the dual spacetime is related to the size of the
boundary system as given in eq. (20). Therefore, all our previous analysis of subsection
4.1.2 will simply follow with

√
M = 2πi

Lϕ
, and will lead to the expression of EWCS as

follows

EW =
π

4GNLϕ

[
u13 cot

(
πϕ13

Lϕ

)
+ u24 cot

(
πϕ24

Lϕ

)
− u14 cot

(
πϕ14

Lϕ

)
− u23 cot

(
πϕ23

Lϕ

)]
.

(54)
Using our proposal in eq. (30), we can now get the entanglement negativity for disjoint
intervals in a finite sized system as

E =
cMπ

8Lϕ

[
u13 cot

(
πϕ13

Lϕ

)
+ u24 cot

(
πϕ24

Lϕ

)
− u14 cot

(
πϕ14

Lϕ

)
− u23 cot

(
πϕ23

Lϕ

)]
.

(55)
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where we have made use of eq. (13). This matches exactly with the results obtained
in [64]. Again as earlier the connection between the holographic entanglement negativity
and the extremal EWCS given in eq. (30) is exact here and we observe that the Markov
gap or the crossing PEE vanishes.

4.2 EWCS for Two Adjacent Intervals

In this subsection we advance a holographic construction for computing the entanglement
wedge cross section for two adjacent subsystems in a GCFT1+1 dual to the Einstein gravity
in asymptotically flat spacetimes. To this end, we consider two adjacent intervals A and B,
at the null infinity of a (2 + 1)-dimensional asymptotically flat spacetime. In figure 5, the
shaded region is the connected entanglement wedge for this configuration. To compute the
EWCS we choose a bulk point y′b on the extremal curve γ13 computing the entanglement
entropy of the composite system A ∪ B, and extremize the length between the boundary
point ∂2A ≡ ∂1B and the bulk point y′b. Note that in our construction the bulk point y′b

Figure 5: Schematics of the holographic construction for computing the extremal EWCS for two adjacent
intervals in a GCFT1+1 dual to Einstein gravity in asymptotically flat spacetime.

must lie on the intersection of the null planes N1 and N3 descending from the endpoints
of A ∪ B. However, as described in [61], the distance from a bulk point to the boundary
on the future infinity is still infinite and we need a prescription to regulate the length. To
this end, we consider an arbitrary point yb on a null line γ2 descending from the boundary
point ∂2A as our regulator. The regulated distance between the boundary point ∂2A and
y′b may now be written as

L(∂2A, y
′
b) = L(∂2A, yb) + L(yb, y

′
b) = L(yb, y

′
b) . (56)

Note that the position of yb along the null line is arbitrary, so we must extremize the
length L(yb, y

′
b) with respect to the positions of both the bulk points yb and y′b. Therefore
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we may express the correct EWCS for the configuration of two adjacent intervals as

Eadj
W = min extr

y′b∈γ13
yb∈γ2

[
L(yb, y

′
b)

4GN

]
. (57)

Note that although the above construction is perfectly valid when one starts with the
setup of two adjacent intervals in the dual field theory at the asymptotic boundary, it
should be consistent with a suitable adjacent limit of the proposal involving two disjoint
intervals in eq. (35). To this end, in the limit of x2 → x3, the extremal curve γ23 in
the construction for two disjoint intervals described in section 4 shrinks to a single point
γ23 ≡ yextrb . However we would like to emphasize that upon extremization over the free
parameter labelled yb in fig. 5, it is precisely identical to the point yextrb . Hence the
extremization procedure described above consistently leads to an identical construction
to the one arrived at from a limiting analysis of the corresponding disjoint configuration.
However, if one begins with an independent setup of two adjacent intervals, the location
of the point yextrb in the bulk cannot be evaluated directly and can only be fixed after the
extremization procedure described above6.

We now proceed to compute the extremal EWCS for the three cases of a GCFT1+1 in
its ground state, a thermal GCFT1+1 and a GCFT1+1 describing a finite sized system on
an infinite cylinder as considered before in section 4.1.

4.2.1 Two adjacent intervals in vacuum

In this subsection we proceed to compute the extremal EWCS for two adjacent intervals
A = [(u1, ϕ1), (u2, ϕ2)] and B = [(u2, ϕ2), (u3, ϕ3)] in the vacuum state of a GCFT1+1 dual
to Einstein gravity in Minkowski spacetime. As described above, we drop a null curve
from (u2, ϕ2) till an arbitrary bulk point yb with the bulk coordinate rb as the unspecified
parameter. The coordinates of yb may be written in terms of the coordinates on the
boundary as

xb = rb cosϕ2 , yb = rb sinϕ2 , tb = u2 + rb . (58)

To express the position of the bulk point y′b, living on N1 ∩N3, in terms of the boundary
coordinates we again employ the method described in subsection 4.1.1 and introduce two
parameters describing the geodesic length on either side of y′b as

s1 = r′b sin
(
ϕ′
b − ϕ1

)
, s3 = r′b sin

(
ϕ′
b − ϕ3

)
, (59)

where

s1 + s3 = u31 cot
ϕ13

2
. (60)

Since the bulk point y′b lies on the intersection of the null planes N1 and N3, its coordinates
must obey the constraint equations given as

u′b − ui + 2r′b sin
2

(
ϕ′
b − ϕi

2

)
= 0 , i = 1, 3. (61)

6We would like to thank the referee for pointing out this subtlety.
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Utilizing these constraints in eq. (60) and (61), we may obtain the following expressions
for the position of y′b,

x′b =
u13 cosϕ3 + s3(sinϕ1 − sinϕ3)

1− cosϕ13
,

y′b =
u13 sinϕ3 + s3(cosϕ3 − cosϕ1)

1− cosϕ13
,

t′b =
u1 − u3 cosϕ13 + s3 sinϕ13

1− cosϕ13
.

(62)

The extremal length required for the computation of the EWCS may now be obtained by
extremizing the length L(yb, y

′
b), with respect to the undetermined variables rb and s3 to

be

Lextr(yb, y
′
b) =

1

2

(
u12

tan ϕ12

2

+
u23

tan ϕ23

2

− u13

tan ϕ13

2

)
. (63)

Therefore, the extremal EWCS may be expressed in the planar coordinates in eq. (5) as

Eadj
W =

1

4GN

(
x12
t12

+
x23
t23

− x13
t13

)
. (64)

We provide a consistency check of the above computation by taking the adjacent limit
of the disjoint result in eq. (43). In terms of the boundary coordinates this corresponds
to taking the limit x23 → ϵ, t23 → ϵ̃ with ϵ, ϵ̃ → 07. This modifies the cross-ratio given
in eq. (11). Putting this modified cross-ratio back in eq. (43), we obtain an expression
which exactly matches the explicit holographic computation for adjacent intervals in eq.
(64). Finally, we utilize our proposal in eq. (30) to obtain the holographic entanglement
negativity for the mixed state configuration of two adjacent intervals in vacuum to be

E =
cM
8

(
x12
t12

+
x23
t23

− x13
t13

)
. (65)

This matches exactly with the dual field theory result for cL = 0 in [56] and with that
in [64] obtained through another equivalent holographic construction utilizing a certain
algebraic sum of the extremal curves. This serves as a strong consistency check of our
construction. Interestingly, we find a vanishing Markov gap or the crossing PEE for this
configuration as well and complete understanding of the implication of this feature requires
a proper analysis of the Markov recovery process in asymptotically flat spacetimes.

4.2.2 Two adjacent intervals at a finite temperature

In this subsection we focus on a mixed state configuration of two adjacent intervals A =
[(u1, ϕ1), (u2, ϕ2)] and B = [(u2, ϕ2), (u3, ϕ3)] in a thermal GCFT1+1 dual to the non-
rotating FSC solution described by the metric given in eq. (16). As mentioned earlier, the
inverse temperature β in the dual field theory at the null infinity is related to the ADM
mass M of the spacetime as given in eq. (17).

As per our construction given in subsection 4.2 (see figure 5), we need the extremal
length Lextr(yb, y

′
b) between the bulk point y′b and the point yb acting as a regulator to

7We would like to emphasize that in order to have a finite entanglement negativity, one should really
subtract divergent terms of O( ϵ

ϵ̃
) from each of the terms of form x

t
which appear in expressions of en-

tanglement entropies in [60]. In this manuscript we chose to omit such divergent terms from the general
expressions for brevity. For this reason, we consistently neglect the O( ϵ

ϵ̃
) term coming from x23

t23
in eq. (43)

while implementing the adjacent limit.
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obtain the EWCS. We can retrace our computation of the previous subsection of defining
two generic parameters describing the geodesic length on either side of y′b as follows

sk =
r′b√
M

sinh
(√

M(ϕ′
b − ϕk)

)
for k = 1, 3 . (66)

Naturally they add up to the length of the bulk extremal curve γ13 on which y′b lives. Also
the bulk point y′b is constrained to lie on the intersection of the null planes N1 ∩N3 which
is given by

M(u′b − ui) + 2r′b sinh
2

(√
M(ϕ′

b − ϕi)

2

)
= 0 , i = 1, 3. (67)

On utilizing these constraints, similar to the previous subsection, we are left with two
undetermined variables in the expression of the length L(yb, y

′
b). We may extremize over

these variables to obtain the extremal length as follows

Lextr(yb, y
′
b) =

π u12
β

coth

(
πϕ12

β

)
+

π u23
β

coth

(
πϕ23

β

)
− π u13

β
coth

(
πϕ13

β

)
, (68)

where eq. (17) has been used. Using the above expression, we may compute the expression
of the EWCS for the mixed state configuration in question as

EW =
1

4GN

[
π u12
β

coth

(
πϕ12

β

)
+

π u23
β

coth

(
πϕ23

β

)
− π u13

β
coth

(
πϕ13

β

)]
. (69)

The consistency of the above result may be checked by taking the adjacent limit of the
disjoint result in eq. (49). This corresponds to taking the limit x23 → ϵ, t23 → ϵ̃ with
ϵ, ϵ̃ → 0 which modifies the cross-ratios given in eq. (50). Using these modified cross-
ratios we obtain an expression which exactly matches the explicit bulk computation of
the EWCS for adjacent intervals in eq. (69). Further, our proposal in eq. (30) may be
utilized to obtain the holographic entanglement negativity for the two adjacent intervals
in the mixed state configuration in question as

E =
cM
8

[
π u12
β

coth

(
πϕ12

β

)
+

π u23
β

coth

(
πϕ23

β

)
− π u13

β
coth

(
πϕ13

β

)]
, (70)

where eq. (13) is used. Again this matches exactly for cL = 0 with the result obtained
in [56] through a dual field theory analysis and with that in [64] obtained through an-
other equivalent holographic construction utilizing a certain algebraic sum of the extremal
curves. It should be noted here that the relation between the holographic entanglement
negativity and the EWCS given in eq. (30) is exact here as the Markov gap or the crossing
PEE vanishes.

4.2.3 Two adjacent intervals in a finite sized system

In this subsection, we compute the EWCS for two adjacent intervals A = [(u1, ϕ1), (u2, ϕ2)]
and B = [(u2, ϕ2), (u3, ϕ3)] in a GCFT1+1 compactified on a spatial circle of circumference
Lϕ. As described earlier, the dual geometry is the global Minkowski orbifold with the
metric given in eq. (19) and the ADM mass M of the dual spacetime is related to the size
of the boundary system Lϕ as given in eq. (20). Again in a manner similar to the disjoint
interval case in subsection 4.1.3, our analysis for finite sized system follows the finite
temperature scenario of subsection 4.2.2 with

√
M = 2πi

Lϕ
. This gives us the expression of

the EWCS for the adjacent subsystems in question as follows

EW =
1

4GN

[
π u12
Lϕ

cot

(
πϕ12

Lϕ

)
+

π u23
Lϕ

cot

(
πϕ23

Lϕ

)
− π u13

Lϕ
cot

(
πϕ13

Lϕ

)]
(71)
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Like earlier the above result may also be verified by taking the adjacent limit of the disjoint
result in eq. (54). Now using our proposal in eq. (30), we may obtain the expression
for the holographic entanglement negativity for two adjacent subsystems in a GCFT1+1

compactified on a spatial circle as

E =
cM
8

[
π u12
Lϕ

cot

(
πϕ12

Lϕ

)
+

π u23
Lϕ

cot

(
πϕ23

Lϕ

)
− π u13

Lϕ
cot

(
πϕ13

Lϕ

)]
, (72)

which matches exactly with the result in [56,64] for cL = 0. Again, the Markov gap or the
crossing PEE for this configuration is vanishing and we speculate full Markov recovery.

4.3 EWCS for a Single Interval

Finally we consider the pure state configuration of a single interval in a GCFT1+1 vacuum
and in a GCFT1+1 describing a finite sized system, and a mixed state configuration of
a single interval in a thermal GCFT1+1. For the pure state scenario the EWCS is given
trivially by the length of the extremal curve homologous to the subsystem on the boundary
[44]. But for the mixed state in a thermal GCFT1+1, the construction is subtle. We utilize
here a flat holographic version of the construction used in [38] to obtain the EWCS for
the AdS3/CFT2 framework.

4.3.1 Single interval in vacuum

Consider a pure bipartite state given by an interval A = [(u1, ϕ1), (u2, ϕ2)] and its compli-
ment B = Ac in a GCFT1+1 in the vacuum state with the endpoints of A being labelled
as ∂iA, see figure 1. The dual geometry is the Einstein gravity in the Minkowski space-
time. In subsection 2.2, we saw that flat holographic version of the HRT curve for this
configuration is comprised of the null segments γi starting at ∂iA connected via a third
extremal bulk geodesic.

Now, for the EWCS for the pure state configuration of a single interval at zero tem-
perature, we require the length of the extremal geodesic homologous to the interval on
the boundary given in eq. (14). So, we may get the expression for entanglement wedge
cross-section as

EW =
1

4GN
Lextr
A =

1

4GN

∣∣∣∣∣ u21

tan ϕ12

2

∣∣∣∣∣, (73)

which obviously is same as the holographic entanglement entropy of the interval A, as
expected for a pure state. Substituting in our proposal (30), we may obtain the corre-
sponding holographic entanglement negativity in planar coordinates, given in eq. (5), to
be

E =
cM
4

x12
t12

. (74)

This is precisely the result obtained in [56, 64] for cL = 0 which provides another consis-
tency check for our proposal.

4.3.2 Single interval in a finite sized system

Consider a single interval A = [(u1, ϕ1), (u2, ϕ2)] in a GCFT1+1 compactified on a spatial
circle of circumference Lϕ dual to the global Minkowski orbifold whose metric is given in
eq. (19). As mentioned in earlier subsections, the ADM mass of the dual spacetime is
related to the size of the boundary system as given in eq. (20).

For the computation of EWCS we need the length of the extremal bulk curve homolo-
gous to the interval A which is given in eq. (21). Utilizing this expression, we may obtain

23



SciPost Physics Submission

the extremal EWCS for the single interval in a GCFT1+1 compactified on a spatial circle
as

EW =
1

4GN
Lextr
A =

1

4GN

π u12
Lϕ

cot

(
πϕ12

Lϕ

)
. (75)

Putting the above expression for the EWCS in our proposal (30) gives the expression for
the holographic entanglement negativity as follows

E =
cM
4

π u12
Lϕ

cot

(
πϕ12

Lϕ

)
, (76)

which matches exactly with the results obtained in [56,64] for cL = 0.

4.3.3 Single interval at a finite temperature

Finally we consider the case of a bipartite configuration of interval A and its compliment
B = Ac in the GCFT1+1 at a finite temperature whose bulk dual is the non-rotating FSC
solution with the metric given in eq. (16). The ADM mass of the spacetime M is related
to the inverse temperature β of the dual field theory at the null infinity as given in eq. (17).

However the construction in this case is subtle as was shown in [38] in the context
of AdS/CFT . We propose a construction similar to the one mentioned above for the
computation of EWCS for a single interval in a thermal GCFT1+1 in the context of
flat space holography. As described in [56, 64] the mixed state configuration of a single
interval A in a finite temperature GCFT1+1 is correctly described by sandwiching the
single interval in question between two auxiliary large intervals B1 and B2 on both sides.
To this end we consider a tripartite system described by A∪B1 ∪B2 as shown in figure 6.
The length of the single interval A = [(u1, ϕ1), (u2, ϕ2)] is denoted by ℓ and we choose the
lengths of the auxiliary subsystems B1 and B2 to be L. Similar to the situation described in
[38] in the AdS3/CFT2 framework, in the bipartite limit L → ∞ the original configuration
of a single interval A with the rest of the system given by B1 ∪ B2 = Ac is recovered.
Therefore, we have the following inequalities for tripartite pure state configurations at our
disposal [44,45]:

EW (A : B1B2) ≤ EW (A : B1) + EW (A : B2) ,

EW (A : B1B2) ≥
1

2
I(A : B1) +

1

2
I(A : B2).

(77)

Now we specialize to the case of A and B1 (or B2) being adjacent to each other. From
eq. (69) and the corresponding entanglement entropy in eq. (18), it is easy to see that
the following equality holds:

EW (A : B) =
1

2
I(A : B). (78)

Therefore, the inequalities in (77) reduce to equalities, and in particular we obtain

EW (A : B1B2) = EW (A : B1) + EW (A : B2), (79)

for the present configuration in the bipartite limit.
Therefore, utilizing eqs. (69) and (79) we obtain the extremal EWCS for the bipartite

mixed state of a single interval on an infinite cylinder of circumference β as

EW (A) = lim
L→∞

EW (A : B1B2)

=
1

4GN

[
π u12
β

coth

(
πϕ12

β

)
− π u12

β

]
.

(80)
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Figure 6: EWCS construction for a single interval in a thermal GCFT1+1 dual to the FSC geometry.
Note that the EWCS shown by the green curves only provide a schematic while the actual construction for
adjacent intervals requires a regularization prescription as discussed in section 4.2.

Utilizing our proposal in eq. (30) we may obtain the holographic entanglement negativity
for the configuration in question as

E =
cM
4

[
π u12
β

coth

(
πϕ12

β

)
− π u12

β

]
. (81)

which exactly matches with the corresponding results in [56, 64]. Note here that our
proposal connecting the holographic entanglement negativity and the EWCS in eq. (30)
is exact in this case as the Markov gap or the crossing PEE vanishes. This serves as a
strong substantiation for our holographic construction which is equivalent to the one given
in [64]. Note that eq. (81) could be recast in the instructive form

E =
3

2

(
SA − Sth

A

)
, (82)

where SA is the entanglement entropy of the interval A on the boundary which may be
obtained utilizing eqs. (15) and (18) and Sth

A = cM
4

π u12
β denotes the thermal contribution.

This subtraction of the thermal contribution may be interpreted as the entanglement
negativity providing the upper bound of distillable entanglement.

5 EWCS in flat-space TMG

In the previous sections we established the holographic constructions for the extremal
EWCS in asymptotically flat geometries described by Einsten gravity. From the point of
view of the dual field theory, this corresponds to a generic bipartite density matrix ρAB in
a GCFT1+1 with only one non-vanishing central charge cM . In this section, we will lift this
restriction and consider the effects of a non-zero cL. The modified bulk picture is described
by the flat space Topologically Massive Gravity (TMG). The action for flat space TMG
includes a gravitational Chern-Simons (CS) term coupled to the usual Einstein-Hilbert
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action:

Sflat-TMG =
1

16πG

∫
d3x

√
−g
[
R+

1

2µ
εαβγ

(
Γρ

ασ∂βΓ
σ
γρ +

2

3
Γρ

ασΓ
σ
βηΓ

η
γρ

)]
, (83)

where µ is the coupling of the CS term with the Einstein-Hilbert action. When the
coupling is weak (µ → ∞), the TMG action reduces to the Einstein gravity. Note that the
flat-space TMG may be obtained as a flat limit ℓ → ∞ of the familiar AdS-TMG action,
where ℓ is the AdS3 radius [64]. The asymptotic symmetry analysis at null infinity of
flat-space TMG yields the Galilean conformal algebra with non-trivial central extensions:

cL =
3

µGN
, cM =

3

GN
. (84)

As described in [61,64], a non-vanishing cL in the dual GCFT1+1 corresponds to primary
operators with nontrivial spin. The holographic correspondence in asymptotically flat
spacetimes dictates that such operators in the dual field theory correspond to massive
spinning particles propagating in the bulk. The on-shell worldline action for such an
anyonic particle of mass χ and spin ∆ was found in [61,75] to be 8

Son-shell =

∫
C
ds

(
χ

√
ηµνẊµẊν +∆(ñ.∇n)

)
, (85)

where ñ and n are unit spacelike and timelike vectors normal to the trajectory of the
particle Xµ and C denotes the worldline of the particle. The Chern-Simons term in eq.
(83) effectively erects a normal frame (X,n, ñ) to each point in the bulk, thereby modifying
the shape of particle worldline in the form of a ribbon. The Chern-Simons contribution
in eq. (85) may be interpreted as the boost required to drag the normal frame (X,n, ñ)
from the point xi to xf [61]:

∆η(ni, nf ) =

∫
C
ds (ñ.∇n) = cosh−1(−ni. nf ) , (86)

where ni and nf are the normal vectors at xi and xf , respectively. A natural realization
for the regulated bulk normal timelike vectors on the null geodesics γi descending from
the boundary point (ui, ϕi) was described in [61] by introducing an auxiliary null vector
mi as

ni =
1

ϵ̃
γ̇i + ϵ̃mi , (87)

where γi.mi = −1 and ϵ̃ is a UV cut-off. It was also demonstrated that the on-shell
action computed using the above prescription was independent of the regulator ϵ̃. In the
following we will utilize this prescription to propose a holographic construction to obtain
the Chern-Simons contibution to the extremal EWCS corresponding to a generic bipartite
state in the dual GCFT1+1.

Consider two generic intervals A and B with no overlap in the dual GCFT1+1. The
construction of the entanglement wedge for this configuration is identical to that discussed
in section 4 with an extra ingredient that there are timelike vectors erected at each bulk
point, as shown in figure 7. The Chern-Simons contribution to the extremal EWCS is
obtained by extremizing the boost required to drag the normal frame through the bulk
entanglement wedge. In particular we extremize over the relative orientation of the bulk
timelike vectors nb and n′

b located at the bulk points yb and y′b which were obtained in

8Note that χ , ∆ are the scaling dimensions of the corresponding primary operator in the dual GCFT1+1

as described in section 2.1.
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the construction of the EWCS for the flat Einstein gravity in section 4.1. Therefore the
Chern-Simons contribution to the extremal EWCS is given by

ECS
W = min extr

nb, n
′
b

[
∆η(nb, n

′
b)

4µGN

]
. (88)

Note that in our definition of the extremal EWCS the coupling constant µ for the Chern-
Simons term appears in the denominator which fixes the EWCS to be dimensionless.

Figure 7: Schematics of the holographic construction of extremal EWCS for two disjoint intervals in a
GCFT1+1 dual to flat-space TMG.

In the following subsections, we will compute the above CS contribution to the ex-
tremal EWCS for various bipartite states ρAB in the dual GCFT1+1 and subsequently
obtain the holographic entanglement negativity utilizing our proposal in eq. (30) gen-
eralized to include the Chern-Simons contribution. Note that, as discussed earlier in
subsection 3.2, the connection between the holographic entanglement negativity and the
EWCS involves the appearance of a Markov gap which turned out to be vanishing in the
case of bulk Einstein gravity in asymptotically flat spacetimes. In the present scenario,
however, we will find that the Chern-Simons contribution to the EWCS differs from half
the holographic mutual information signifying a non-trivial Markov gap or crossing PEE.
Therefore, the holographic proposal for the entanglement negativity in eq. (30) requires
suitable modifications to incorporate the Markov gap. Fortunately, as in the AdS3/CFT2

scenario described in [68], the Markov gap will turn out to be a constant and therefore
the functional structure of our holographic proposal in eq. (30) remains unchanged.

To begin with, we consider the bipartite mixed state of two disjoint intervals in the
GCFT1+1 vacuum, in a thermal GCFT1+1 and subsequently for a GCFT1+1 describing a
finite sized system. Next we compute the extremal EWCS for two adjacent intervals from
a specific bulk construction. These results may also be obtained from the disjoint interval
results by taking an appropriate limit. The computations for the pure state configurations
described by a single interval in the ground state of a GCFT1+1, and for a finite sized
system described by a GCFT1+1 on an infinite cylinder will follow the same spirit of
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subsection 4.3. Finally, we will describe single interval in a thermal GCFT1+1 defined on
an infinite cylinder of circumference β compactified in the timelike direction. In this case,
we will modify our construction in subsection (4.3.3) to include the effects of a non-zero
cL and the EWCS will be obtained using the bipartite limit of the auxilary intervals.

5.1 EWCS for two disjoint intervals

In this subsection, we will calculate the Chern-Simons contribution to the holographic
entanglement negativity through the extremal EWCS for two disjoint intervals in the
vacuum state, at a finite temperature, and for finite sized systems in dual GCFT1+1s. In
this context, we discuss the bulk construction for the EWCS in flat-space TMG background
for these configurations which involves bulk vectors at each bulk point. In particular the
Chern-Simons contribution for the EWCS contains, the scalar product of two bulk timelike
vectors nb and n′

b. These vectors are placed on the endpoints of the extremal EWCS as
constructed in the Einstein gravity case. Our results for the holographic entanglement
negativity thus obtained exactly match with the corresponding expressions in [64].

5.1.1 Two disjoint intervals in vacuum

We start with TMG in Minkowski spacetime. A schematics of the bulk geometry corre-
sponding to two disjoint intervals A = [(u1, ϕ1), (u2, ϕ2)] and B = [(u3, ϕ3), (u4, ϕ4)] in the
dual GCFT1+1 is shown in figure 7. We have bulk normal vectors ni at each of the bulk
points yi descending from the endpoints (ui, ϕi) of the intervals on the boundary, which
were chosen in [61] to be pointed along the directions of the corresponding null geodesics
γi:

γ̇i = ∂r

∣∣∣
γi

= ∂t + cosϕi ∂x + sinϕi ∂y (i = 1, .., 4) . (89)

As described earlier, we also need two arbitrary timelike vectors nb and n′
b at the points

yb and y′b landing on the intersections of the null planes as shown in figure 7. In order
to compute the Chern-Simons contribution to the extremal EWCS, we need to extremize
the total boost ∆η given in eq. (86). A convenient parametrization of the bulk timelike
normal vectors was given in [61] which we reproduce here:

nb =
x2 + u2 + 1

2u
∂t +

x2 + u2 − 1

2u
∂x +

x

u
∂y ,

n′
b =

x′2 + u′2 + 1

2u′
∂t +

x′2 + u′2 − 1

2u′
∂x +

x′

u′
∂y ,

(90)

where x , x′ and u , u′ are free parameters. We now use the freedom provided by Galilean
conformal symmetry to move the boundary end points at the symmetric locations

ϕ1,4 = π ∓ Φ

2
, and ϕ2,3 = ±Φ

2
. (91)

After fixing the endpoints of the intervals on the boundary as above, the boosts along the
extremal curves on either sides of yb (or y

′
b) are given by L sin Φ

2 [61], where L is arbitrary.
These constraints allow us to find the total boost in eq. (86) as

∆η = 2 log

[
cot

(
Φ

4

)
L ±

√
L2 − 4

2

]
. (92)

Extremization with respect to L leads to an additive constant which is divergent and may
be regularized by adding a counterterm in the total action. The final extremized boost
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after regularization is given by

∆ηextr = 2 log

[
cot

Φ

4

]
. (93)

In terms of the cross-ratio (11), eq. (93) may be conveniently rewritten as

∆η = 2 log

[
1 +

√
T√

1− T

]
. (94)

For the two disjoint intervals in proximity (T → 1), the above equation reduces to

∆η ≈ 2 log 2− log(1− T ) . (95)

Therefore, the Chern-Simons contribution to the extremal EWCS for the two disjoint
intervals in proximity may be explicitly written in terms of the planar coordinates in eq.
(5) as

ECS
W =

1

4µGN
log

(
t13t24
t14t23

)
+

1

4µGN
log 4 . (96)

We note that the constant term on the right hand side of the above expression may be
interpreted as the Markov gap or the crossing PEE for the mixed state of two disjoint
intervals in vacuum. In this case, we observe that the constant contribution may be
obtained as log 2

4µGN
times the number of boundaries of the EWCS. As a consequence, we

expect the geometric interpretation of the Markov gap as described in [68] to hold in the
framework of flat space holography as well.

Finally, substituting eq. (96) in our proposal (30), we obtain the Chern-Simons contri-
bution to the holographic entanglement negativity for two disjoint intervals in proximity
in the ground state of a GCFT1+1 to be

ECS =
cL
8

log

(
t13t24
t14t23

)
, (97)

where we have omitted the constant term of the right hand side which carries the signature
of the Markov gap or the crossing PEE [48,68]. Interestingly, we did not have a Markov gap
in the usual Einstein gravity case as discussed earlier in section 4. It is somewhat counter-
intuitive that the topological part of the action captures the Markov gap while the truly
dynamical part does not. However a complete understanding of this behaviour requires
a proper analysis of the Markov recovery process or the balanced partial entanglement in
the context of flat space holography.

The complete expression for the holographic entanglement negativity together with
the Einstein gravity result in eq. (44) becomes

E =
cL
8

log

(
t13t24
t14t23

)
+

cM
8

(
x13
t13

+
x24
t24

− x14
t14

− x23
t23

)
, (98)

which matches exactly with the holographic entanglement negativity obtained in [64]
through a particular linear combination of the bulk extremal lengths homologous to spe-
cific intervals.

5.1.2 Two disjoint intervals at a finite temperature

We now compute the extremal EWCS for the two disjoint intervals A = [(u1, ϕ1), (u2, ϕ2)]
and B = [(u3, ϕ3), (u4, ϕ4)] at a finite temperature. In this context, the dual field theory is
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defined on an infinite cylinder compactified in the timelike direction and the corresponding
bulk theory is described by TMG in FSC geometry. Note that the nature of the timelike
vectors at each bulk point changes due to the FSC geometry. The authors in [64] obtained
the bulk vector ni at each bulk point yi as given in eq. (87), where

γ̇i =
1√
M

cosh
(√

Mϕi

)
∂t +

1√
M

sinh
(√

Mϕi

)
∂x −

1√
M

∂y (i = 1, ..., 4) , (99)

and mi ≡ 0. In eq. (99), M is the ADM mass of the spacetime which is related to inverse
temperature β as given in eq. (17). To compute the total boost (86), we use eq. (90) for
the bulk timelike vectors [61]. Next we utilize the Galilean conformal symmetry to place
the intervals on the boundary at the symmetric positions

ϕ1,4 =
iπ√
M

∓ Φ

2
, and ϕ2,3 = ±Φ

2
. (100)

With this choice of the angular location, the lengths of the extremal curves on either side
of the bulk points yb and y′b can be fixed as

−2γ̇i · nb =L sinh

(√
MΦ

2

)
for i = 1, 4 ,

−2γ̇i · n′
b =L sinh

(√
MΦ

2

)
for i = 2, 3 ,

(101)

where L is an arbitary parameter. As described in the previous subsection, we obtain the
total extremized boost, utilizing the above constraint equations, as

∆η = 2 log

[
coth

(√
MΦ

4

)]
. (102)

We can express the above equation in terms of the EWCS using eq. (88) as

ECS
W =

1

2µGN
log

[
coth

(√
MΦ

4

)]
. (103)

For two disjoint interval in proximity, the EWCS can be written in terms of the cross-ratio
(50) for the finite temperature GCFT1+1 as in eq. (95) with T replaced by T̃ . Therefore,
utilizing eq. (50), the CS contribution to the extremal EWCS for the configuration in
question may be expressed as

ECS
W =

1

4µGN
log

[
sinh

√
Mϕ13

2 sinh
√
Mϕ24

2

sinh
√
Mϕ14

2 sinh
√
Mϕ23

2

]
+

1

4µGN
log 4 . (104)

Now we can obtain the Chern-Simons contribution to the holographic entanglement neg-
ativity for two disjoint intervals at a finite temperature by using our proposal eq. (30) as

ECS =
cL
8

log

sinh
(
πϕ13

β

)
sinh

(
πϕ24

β

)
sinh

(
πϕ14

β

)
sinh

(
πϕ23

β

)
 , (105)

where we have used eq. (17) and have omitted the constant term signifying the Markov
gap or the crossing PEE. Utilizing eq. (52), the total expression for the holographic
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entanglement negativity becomes

E =
cL
8

log

sinh
(
πϕ13

β

)
sinh

(
πϕ24

β

)
sinh

(
πϕ14

β

)
sinh

(
πϕ23

β

)
+

cMπ

8β

[
u13 coth

(
πϕ13

β

)
+ u24 coth

(
πϕ24

β

)

− u14 coth

(
πϕ14

β

)
− u23 coth

(
πϕ23

β

)]
.

(106)
The above equation exactly matches with the holographic entanglement negativity for two
disjoint intervals at a finite temperature [64].

5.1.3 Two disjoint intervals in a finite-sized system

Finally we compute the Chern-Simons contribution to the EWCS for the two disjoint
intervals in a finite sized system. The dual field theory is described on infinite cylinder
compactified in the spatial direction with circumference Lϕ and the corresponding bulk
theory is described by TMG in global Minkowski orbifold. In this context, the computation
of the EWCS is similar to the earlier case but here the ADM mass M is related to the size
of the boundary system Lϕ as given in eq. (20). Thus the EWCS for this case becomes

ECS
W =

1

4µGN
log

sin
(
πϕ13

Lϕ

)
sin
(
πϕ24

Lϕ

)
sin
(
πϕ14

Lϕ

)
sin
(
πϕ23

Lϕ

)
+

1

4µGN
log 4 . (107)

Using our proposal (30), the Chern-Simons contribution to the holographic entanglement
negativity for two disjoint intervals in a finite sized system may be obtained as

ECS =
cL
8

log

sin
(
πϕ13

Lϕ

)
sin
(
πϕ24

Lϕ

)
sin
(
πϕ14

Lϕ

)
sin
(
πϕ23

Lϕ

)
 , (108)

where the constant term in eq. (107) carrying the signature of the Markov gap or the
crossing PEE has been omitted. Therefore, the total holographic entanglement negativity
using eq. (55) becomes

E =
cL
8

log

sin
(
πϕ13

Lϕ

)
sin
(
πϕ24

Lϕ

)
sin
(
πϕ14

Lϕ

)
sin
(
πϕ23

Lϕ

)
+

cMπ

8Lϕ

[
u13 cot

(
πϕ13

Lϕ

)
+ u24 cot

(
πϕ24

Lϕ

)

− u14 cot

(
πϕ14

Lϕ

)
− u23 cot

(
πϕ23

Lϕ

)]
.

(109)
The above equation exactly matches with the holographic entanglement negativity results
obtained in [64].

5.2 EWCS for two adjacent intervals

The bulk construction of EWCS for the adjacent intervals in GCFT1+1 is similar to the
Einstein gravity case with timelike vectors erected at the each bulk points as shown in
figure 8. The computation of the EWCS involves two regulated bulk vectors nb , n

′
b placed

on the bulk points yb , y
′
b which lie respectively on the null line γ2 and the intersection of

the null planes N1 ∩N3.
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Figure 8: Schematics of the holgraphic construction of extremal EWCS for two adjacent intervals in a
GCFT1+1 dual to flat-space TMG

Therefore the EWCS for this configuration is given by

ECS
W = min extr

nb, n
′
b

[
∆η(nb, n

′
b)

4µGN

]
. (110)

In the following, we will compute the above Chern-Simons contribution to EWCS for two
adjacent intervals in various configurations involving a GCFT1+1 vacuum, a GCFT1+1 at
finite temperature, and a GCFT1+1 describing a finite sized system.

5.2.1 Two adjacent intervals in vacuum

We start with the computation of Chern-Simons contribution to EWCS for two adja-
cent intervals A = [(u1, ϕ1), (u2, ϕ2)] and B = [(u2, ϕ2), (u3, ϕ3)] in the ground state of a
GCFT1+1. The bulk dual is described by TMG in pure Minkowski space. In this context,
the bulk vectors can be obtained using eq. (89) and eq. (90) as

nb =
γ̇2
ϵ̃
,

n′
b =

x2 + u2 + 1

2u
∂t +

x2 + u2 − 1

2u
∂x +

x

u
∂y ,

(111)

where x , u are arbitrary parameters and ϵ̃ is the UV cut-off as described before. The
choice of these bulk vectors comes from the construction of EWCS described above. Now
we can use the freedom provided by the Galilean conformal symmetry to move the angular
points to symmetric positions

ϕ1 = π − Φ

2
, ϕ2 = 0 , ϕ3 = π +

Φ

2
. (112)

With this choice of the location of the boundary points, we can fix the length of the
extremal curve to either side of bulk point y′b as

−2γ̇1 · nb =L sin

(
Φ

2

)
,

−2γ̇3 · n′
b =L sin

(
Φ

2

)
,

(113)
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where γ̇is are null vectors located at the bulk points y1 , y3 and L is an arbitrary parameter.
Using above constraint equations, we can now calculate the total boost in (110) utilizing
the definition in eq. (86) as

∆η = log

[
1

2ϵ̃
cot

(
Φ

4

)]
− log

[
L ±

√
L2 − 4

8

]
. (114)

Next we extremize the boost over the parameter L which again gives a divergent result.
As described earlier, this can be regularized by adding a counter term in the total action.
Therefore the Chern-Simons contribution to EWCS using eq. (110) becomes

ECS
W =

1

4µGN
log

[
1

2ϵ̃
cot

(
Φ

4

)]
. (115)

The above expression can be restructured in terms of the GCFT1+1 cross-ratios using eq.
(8). This may further be rewritten in the planar coordinates in eq. (5) as

ECS
W =

1

4µGN
log

[
t12t23

ϵ̃(t12 + t23)

]
+

1

4µGN
log 2 . (116)

Once again, we note that the constant term on the right hand side in eq. (116) carries
the signature of the Markov gap for the mixed state configuration under consideration.
Remarkably, this Markov gap may again be obtained in terms of the number of non-trivial
boundaries of the EWCS and we anticipate the above geometric interpretation to hold in
generic flat holographic setups.

Finally, we can compute the Chern-Simons contribution to the holographic entangle-
ment negativity for adjacent interval in vacuum by utilizing eqs. (30) and (84) as

ECS =
cL
8

log

[
t12t23

ϵ̃(t12 + t23)

]
, (117)

where the constant term signifying the Markov gap or the crossing PEE has been omitted.
As a consistency check, we can also obtain eq. (117) from the disjoint intervals result in
eq. (97) by taking the appropriate adjacent limit. In particular, this corresponds to x23 →
ϵ, t23 → ϵ̃ with ϵ, ϵ̃ → 0 in terms of the planar coordinates. The Chern-Simons contribution
to the holographic entanglement negativity obtained through this limit exactly matches
with eq. (117).

The total expression for the holographic entanglement negativity may be obtained by
including the Eintein gravity contribution in eq. (65) as

E =
cL
8

log

[
t12t23

ϵ̃(t12 + t23)

]
+

cM
8

(
x12
t12

+
x23
t23

− x13
t13

)
, (118)

which exactly matches with the corresponding results obtained in [56,64].

5.2.2 Two adjacent intervals at a finite temperature

Next we compute the Chern-Simons contribution to the EWCS for two adjacent intervals
A = [(u1, ϕ1), (u2, ϕ2)] and B = [(u2, ϕ2), (u3, ϕ3)] at a finite temperature. The boundary
theory is defined on an infinite cylinder compactified in the timelike direction and the dual
gravitational theory is given by TMG in FSC geometry. In this context, the computation
of EWCS involves two bulk vectors nb andn

′
b which are given in eq. (111) with the null
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vector γ̇2 in eq. (99). Now we can utilize the Galilean conformal symmetry to move the
angular co-ordinate to symmetric positions

ϕ1 =
iπ√
M

− Φ

2
, ϕ2 = 0 , ϕ3 =

iπ√
M

+
Φ

2
. (119)

In the above equation, M is the ADM mass of the spacetime and is related to inverse
temperature β of the dual field theory at the null infinity as given in eq. (17). Here we
can fix the portions of the length of the extremal curve γ13 on either sides of the EWCS
as

−2γ̇1 · nb =L sinh

(√
MΦ

2

)
,

−2γ̇3 · n′
b =L sinh

(√
MΦ

2

)
.

(120)

We can now obtain the extremal EWCS using eqs. (110) and (120) which involves the
calculation of the boost in eq. (86) and subsequently an extremization over the arbitrary
parameter L. Thus the EWCS for two adjacent intervals at a finite temperature is given
by

ECS
W =

1

4µGN
log

[
1

2ϵ̃
coth

(√
MΦ

4

)]
. (121)

The above equation can be rewritten, using eq. (50) for the cross-ratios, as

ECS
W =

1

4µGN
log

 β

πϵ̃

sinh
(
πϕ12

β

)
sinh

(
πϕ23

β

)
sinh

(
π(ϕ12+ϕ23)

β

)
+

1

4µGN
log 2 , (122)

where we have utilized eq. (17). We may now obtain the Chern-Simons contribution to
the holographic entanglement negativity for two adjacent intervals at a finite temperature
using eqs. (30) and (84) as

ECS =
cL
8

log

 β

πϵ̃

sinh
(
πϕ12

β

)
sinh

(
πϕ23

β

)
sinh

(
π(ϕ12+ϕ23)

β

)
 . (123)

Note that the constant term on the right hand side in eq. (122) carrying the signature of
the Markov gap or the crossing PEE has been omitted. We provide a substantiation for
eq. (123) by taking the adjacent limit x23 → ϵ, t23 → ϵ̃ with ϵ, ϵ̃ → 0 of the disjoint result
in eq. (105). The Chern-Simons contribution to the holographic entanglement negativity
thus obtained, exactly matches with eq. (123).

Finally, utilizing the Einstein gravity result in eq. (70), the total expression for the
holographic entanglement negativity becomes

E =
cL
8

log

 β

πϵ̃

sinh
(
πϕ12

β

)
sinh

(
πϕ23

β

)
sinh

(
π(ϕ12+ϕ23)

β

)
+

cM
8

[
π u12
β

coth

(
πϕ12

β

)
+

π u23
β

coth

(
πϕ23

β

)

− π u13
β

coth

(
πϕ13

β

)]
.

(124)
The above expression exactly matches with the results obtained in [56,64] which serves as
strong consistency check of our holographic construction.
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5.2.3 Two adjacent intervals in a finite sized system

Finally we compute the Chern-Simons contribution to the EWCS for two adjacent intervals
in a finite sized system described by a GCFT1+1 compactified in the spatial direction with
circumference Lϕ. The dual gravity theory is described by TMG in the global Minkowski
orbifold. To this end, we follow a similar analysis for the computation of the extremal
EWCS as shown in subsection 5.2.2. In particular, we obtain the similar expression for
the EWCS in the terms of the cross-ratio eq. (50). Therefore the EWCS is given by

ECS
W =

1

4µGN
log

 β

πϵ̃

sin
(
πϕ12

Lϕ

)
sin
(
πϕ23

Lϕ

)
sin
(
π(ϕ12+ϕ23)

Lϕ

)
+

1

4µGN
log 2 , (125)

where we have utilized the relation between ADM mass and size of the boundary system
as given in eq. (20). Finally, we can obtain Chern-Simons contribution to the holographic
entanglement negativity using eqs. (30) and (84) as

ECS =
cL
8

log

 β

πϵ̃

sin
(
πϕ12

Lϕ

)
sin
(
πϕ23

Lϕ

)
sin
(
π(ϕ12+ϕ23)

Lϕ

)
 , (126)

where the constant term on the right hand side indicative of the Markov gap or the crossing
PEE has been omitted. As discussed in earlier case, we can also compute the above
expression for the Chern-Simons contribution to the holographic entanglement negativity
by taking the adjacent limit of the disjoint result eq. (108). The total expression for
the holographic entanglement negativity by including Einstein gravity result in eq. (72)
becomes

E =
cL
8

log

 β

πϵ̃

sin
(
πϕ12

Lϕ

)
sin
(
πϕ23

Lϕ

)
sin
(
π(ϕ12+ϕ23)

Lϕ

)
+

cM
8

[
π u12
Lϕ

cot

(
πϕ12

Lϕ

)
+

π u23
Lϕ

cot

(
πϕ23

Lϕ

)

− π u13
Lϕ

cot

(
πϕ13

Lϕ

)]
,

(127)
which exactly matches with the results obtained in [56,64].

5.3 EWCS for a single interval

In this subsection, we first consider the pure state configuration of the single interval de-
scribed by a GCFT1+1 in vacuum and a GCFT1+1 describing a finite sized system. The
bulk gravitational theory is given by TMG in pure Minkowski spacetime and TMG in
global Minkowski orbifold, respectively. In particular for the pure state case, the EWCS
is equivalent to the holographic computation of the entanglement entropy. Therefore, as
described in [64], the construction of the extremal EWCS involves two bulk regulated time-
like vectors n1 andn2 located at the bulk points y1 and y2. Note that the above mentioned
bulk timelike vectors lie on the intersection of the null plane N1 andN2 dropping from the
endpoints of the interval on the boundary [61]. Therefore, the Chern-Simons contribution
to the EWCS is given by

ECS
W =

∆η(n1, n2)

4µGN
, (128)

where µ is the coupling constant of the Chern-Simons term in the action eq. (83).
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In the following, we will compute the Chern-Simons contribution to the extremal
EWCS for the pure states described by a single interval in a GCFT1+1 at zero tem-
perature and in a GCFT1+1 describing a finite sized system using eq. (128). The mixed
state configuration of of a single interval in a thermal GCFT1+1 requires a more careful
analysis. To calculate the EWCS for such a configuration in an infinite system, we will
follow the same prescription as in the case with pure Einstein gravity with the additional
ingredient that there are regulated timelike vectors at each bulk point.

5.3.1 Single interval in vacuum

In the subsection 4.3.1, it was shown that the EWCS for a single interval at zero tem-
perature is solely described by the extremal length in the bulk dual Einstein gravity. In
this case, the EWCS for a single interval A = [(u1, ϕ1), (u2, ϕ2)] in the ground state of a
GCFT1+1 dual to TMG in pure Minkowski spacetime can be obtained using boost pa-
rameter eq. (86) which involves the scalar product of two timelike vectors n1, n2 located
at the bulk points as shown in figure 9. These vectors have the following parametrization

n1 =
γ̇1
ϵ̃

− ϵ̃

2

γ̇2
γ̇1.γ̇2

,

n2 =
γ̇2
ϵ̃

− ϵ̃

2

γ̇1
γ̇1.γ̇2

,

(129)

where γ̇is are the null vectors defined earlier in eq. (89) and ϵ̃ is the UV cutoff. Using eq.
(86), we can compute the boost as

∆η = 2 log

(
2

ϵ̃
sin

ϕ12

2

)
, (130)

Thus we can obtain the expression for the extremal EWCS using eqs. (128) and (130) as

ECS
W =

1

2µGN
log

(
t12
ϵ̃

)
, (131)

where we have made use of the planar coordinates in eq. (5).

Figure 9: EWCS for the single interval in the flat-space TMG
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Finally the Chern-Simons contribution to the holographic entanglement negativity for
a single interval in a GCFT1+1 vacuum may be obtain using our proposal in eq. (30) as

ECS =
cL
4

log

(
t12
ϵ̃

)
. (132)

In the above equation, we have used the expression for the central charge given in eq. (84).
Using eq. (74), the complete expression for the holographic entanglement negativity for
the pure state configuration in question becomes

E =
cL
4

log

(
t12
ϵ̃

)
+

cM
4

(
x12
t12

)
, (133)

which exactly matches with the results obtained in [56,64].

5.3.2 Single interval in a finite sized system

Now we compute the Chern-Simons contribution to the extremal EWCS for a single in-
terval A = [(u1, ϕ1), (u2, ϕ2)] in a finite sized system. The field theory at the asymptotic
boundary is given by a GCFT1+1 on an infinite cylinder compactified in the spatial direc-
tion with circumference Lϕ and the bulk gravitational dual is described by TMG in the
global Minkowski orbifold. The calculation of the boost is similar to the earlier case and
can be obtained using eq. (86) as

∆η = 2 log

[
Lϕ

πϵ̃
sin

(
πϕ12

Lϕ

)]
, (134)

where we have used the relation between ADM mass and the size of the boundary system
in eq. (20). Utilizing eq. (128), the Chern-Simons contribution to the EWCS becomes

ECS
W =

1

2µGN
log

[
Lϕ

πϵ̃
sin

(
πϕ12

Lϕ

)]
. (135)

Finally, the Chern-Simons contribution to the holographic entanglement negativity for a
single interval in a finite sized system may be obtain using our proposal (30) as

ECS =
cL
4

log

[
Lϕ

πϵ̃
sin

(
πϕ12

Lϕ

)]
. (136)

where we have utilized eq. (84) for the central charge cL. Therefore using the Einstein
gravity result in eq. (76) the complete expression for the holographic entanglement nega-
tivity may be obtained as

E =
cL
4

log

[
Lϕ

πϵ̃
sin

(
πϕ12

Lϕ

)]
+

cM
4

π u12
Lϕ

cot

(
πϕ12

Lϕ

)
, (137)

which exactly matches with the results obtained in [56,64].

5.3.3 Single interval at a finite temperature

As discussed earlier in the Einstein gravity scenario, the construction of the EWCS for
the mixed state configuration of a single interval at a finite temperature in the GCFT1+1

requires a careful analysis. Therefore following the insights forwarded in [38], we utilize
the same bulk construction proposed earlier for the Einstein gravity case with additional

37



SciPost Physics Submission

bulk vectors located at each bulk points. Note that for the tripartite pure state configu-
ration described in subsection 4.3.3, in the present case involving TMG in FSC geometry
the inequality in eq. (77) also holds. However, in the present scenario of TMG in asymp-
totically flat spacetimes, we find from eq. (122) the following equality for two adjacent
intervals A and B:

ECS
W (A : B) =

1

2
ICS(A : B) +

1

4µGN
log 2 , (138)

where we have utilized results for the Chern-Simons contribution to the entanglement
entropies for various subsystems from [61, 64]. Note that, there is a non-perturbative
additive constant on the right hand side carrying the signature of the Markov gap (or the
crossing PEE) which was absent in eq. (78). Consequently, the reasoning leading to (an
analogue of) eq. (79) no longer holds and we may only have an upper bound on the Chern-
Simons contribution to the EWCS. Therefore, for a tripartite pure state A ∪B1 ∪B2, we
denote the upper bound by ẼCS

W which is given as

ẼCS
W (A : B1B2) =

1

2
ICS(A : B1) +

1

2
ICS(A : B2) +

1

4µGN
log 4 . (139)

We may now utilize the above relation to compute the correct expression of the upper
bound of the EWCS for a single interval A = [(u1, ϕ1), (u2, ϕ2)] in a thermal GCFT1+1

defined on an infinite cylinder of circumference β whose bulk dual is described by TMG in a
FSC geometry. As shown in figure 10, the construction of the EWCS involves two auxiliary
intervals B1 = [(U1,Φ1), (u1, ϕ1)] and B2 = [(u2, ϕ2), (U2,Φ2)] and correspondingly four
bulk timelike vectors n1 , n2 , nU1 andnU2 directed along the null geodesics dropping from
the boundary points u1 , u2 , U1 , and , U2 respectively. Now we use the adjacent intervals
result in eq. (122) and take the bipartite limit of the auxilary intervals B1 and B2.
Therefore the Chern-Simons contribution to the EWCS is given by

ẼCS
W =

1

2µGN

[
log

(
β

πϵ̃
sinh

πϕ12

β

)
− πϕ12

β

]
+

1

4µGN
log 4 . (140)

Note that the constant second term in the above expression carries the signature of the
Markov gap or the crossing PEE and is consistent with its geometric interpretation pro-
vided in terms of the non-trivial endpoints of the EWCS [68]. Using eqs. (30) and (140),
we may now obtain the Chern-Simons contribution to the holographic entanglement neg-
ativity for the mixed state in question as

ECS =
cL
4

[
log

(
β

πϵ̃
sinh

πϕ12

β

)
− πϕ12

β

]
, (141)

where we have used eq. (84) and the constant term in eq. (140) signifying the Markov gap
or the crossing PEE has been omitted. Using the Einstein gravity result in eq. (81), the
complete expression for the holographic entanglement negativity becomes

E =
cL
4

[
log

(
β

πϵ̃
sinh

πϕ12

β

)
− πϕ12

β

]
+

cM
4

[
π u12
β

coth

(
πϕ12

β

)
− π u12

β

]
, (142)

which exactly matches with the results obtained in [56,64].
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Figure 10: Construction of the EWCS for a single interval in flat-space TMG. The green line segments
show only a schematic view of the actual EWCS which for the case of two adjacent intervals, require a
specific regularization scheme in terms of extra null geodesics dropping from the common boundary. Note
that there will be additional bulk timelike vectors on each of these extra null geodesics which come into the
calculation of the EWCS.

It is interesting to note that the complete expression for the holographic entanglement
negativity in the above equation can be recast in the instructive form eq. (82), where

SA =
cL
4

log

(
β

πϵ̃
sinh

πϕ12

β

)
+

cM
4

π u12
β

coth

(
πϕ12

β

)
,

Sth
A =

cL
4

πϕ12

β
+

cM
4

π u12
β

, (143)

denote the entanglement entropy for the single interval A and the thermal contribution
respectively. Once again this subtraction of the thermal contribution indicates that the
entanglement negativity quantifies the upper bound of distillable entanglement.

6 Summary and Discussion

To summarize, in this article we have advanced a novel holographic construction to obtain
the extremal entanglement wedge cross section (EWCS) for several bipartite pure and
mixed states in GCFT1+1s located at the null infinity of the dual bulk (2+1)-dimensional
asymptotically flat Einstein gravity and topologically massive gravity (TMG) theories.
We have further proposed a prescription for the holographic entanglement negativity for
the configuration in question by utilizing the EWCS obtained through the construction
mentioned above. For the scenario of flat Einstein gravity, the bulk asymptotic symme-
try analysis leads to the dual GCFT1+1 with central charges cL = 0, cM ̸= 0. In this
context we have obtained the holographic entanglement negativity using our prescription
through the EWCS for the configurations involving a GCFT1+1 dual to the the bulk
(2+1)-dimensional Minkowski spacetime in its ground state, a thermal GCFT1+1 dual to
the bulk non rotating flat space cosmology and a GCFT1+1 describing a finite sized system
on an infinite cylinder dual to the bulk global Minkowski orbifold. First we have obtained
the EWCS for the configuration of two disjoint intervals in the dual GCFT1+1 using our
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novel construction where we have utilized the length of a certain bulk extremal curve be-
tween two specific bulk geodesics. Next we proceed to the case of two adjacent intervals
where the EWCS is obtained using the extremal distance between a bulk geodesic and a
boundary point. This length requires a regularization as the distance of any bulk point
from the boundary situated at the null infinity is still infinite. To this end, an arbitrary
point on a null line descending from the boundary point is considered as a regulator. Fur-
thermore we demonstrate that in the limit of the two disjoint intervals being adjacent we
retrieve the corresponding holographic entanglement negativity for two adjacent intervals
which further substantiate our holographic construction. Finally in the context of flat
Einstein gravity, we have considered the pure state of a single interval in a dual GCFT1+1

in its ground state and a GCFT1+1 describing a finite sized system. For these scenarios
the EWCS is given trivially by the length of the extremal curve homologous to the subsys-
tem on the boundary. But for the mixed state of a single interval in a thermal GCFT1+1

the construction is subtle. We consider the single interval in question being sandwiched
between two auxiliary large intervals on both sides. Subsequently a bipartite limit de-
scribed by extending the auxiliary intervals to infinity is applied by which we recover the
original configuration of the single interval. A similar construction for the AdS3/CFT2

framework utilized to obtain the EWCS can be found in the existing literature. Interest-
ingly in the case of GCFT1+1s dual to the asymptotically flat Einstein gravity we found
that the Markov gap vanishes indicating a full Markov recovery. Once again, we reiterate
that a proper justification of this subtle issue requires a complete analysis of the Markov
recovery process in the flat holographic setup.

Following the above computations, we extend our holographic construction to obtain
the entanglement negativity for the bipartite states described earlier in a GCFT1+1 with
non-zero cL dual to the bulk flat space topologically massive gravity. The effect of non-
zero cL is to incorporate a spin for the massive particles propagating in the bulk. This
results in the introduction of regulated vectors at each bulk point. Again we have obtained
the holographic entanglement negativity for mixed state of disjoint intervals in the dual
GCFT1+1 by extremizing the relative orientation of such bulk vectors situated at certain
bulk points. We then proceed to the case of adjacent intervals where we again consider
an arbitrary point on a null line descending from the boundary point as a regulator to
compute the EWCS. Taking the limit of the two disjoint intervals being adjacent we again
recover the corresponding holographic entanglement negativity for two adjacent intervals.
Finally for the case of the pure state of a single interval in a dual GCFT1+1 in its ground
state and a GCFT1+1 describing a finite sized system is trivially calculated using the bulk
vectors on the extremal curve homologous to the subsystem on the boundary. And for the
mixed state of a single interval in a thermal GCFT1+1 we follow the previous construction
of taking a tripartite state with the single interval in question being sandwiched between
two large auxiliary intervals. By taking the bipartite limit where the auxiliary intervals
are extending till infinity we recover the original configuration. The expression for the
holographic entanglement negativity thus obtained using our prescription matches with
the corresponding replica technique results in large central charge limit. Interestingly our
findings also match with the results obtained through an alternate holographic construc-
tion for the entanglement negativity involving the algebraic sum of the lengths of bulk
extremal curves homologous to certain appropriate combinations of the intervals in ques-
tion for both the cases, namely flat Einstein gravity and flat TMG. Remarkably, in this
case we found exactly a constant Markov gap with the correct geometric interpretation in
terms of the non-trivial boundaries of the EWCS. This seems somewhat counter-intuitive
that only the topological part of the gravity theory in the bulk correctly captured the
Markov gap or the crossing PEE for asymptotically flat spacetimes and any interpreta-
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tion of this ambiguity requires a full analysis of the Markov recovery process as described
in [68] or the balanced partial entanglement in [48] in such spacetimes with non-Lorentz
invariant duals. This serves as a strong substantiation and consistency check for our holo-
graphic entanglement negativity prescription. We would like to emphasize here that our
construction described in this work addresses the significant issue of the computation of
the entanglement wedge cross section essential for the characterization of the mixed state
entanglement in the context of flat space holography.

Subsequently, in appendix A we also perform a limiting analysis where we have shown
that the extremal EWCS in asymptotically flat spacetimes dual to a GCFT1+1 computed
in the main text matches with the EWCS obtained through a parametric İnönü-Wigner
contraction of the corresponding relativistic result obtained in the context of AdS3/CFT2

in the literature. This provides another consistency check for our holographic construction
for the EWCS.

Further in appendix B, we utilize the well known fact that the flat chiral gravity is
a limit of the flat space TMG for which the Newton’s constant GN → ∞ such that the
product of GN with the coupling constant µ of the topological term in the action is held
fixed, to compute the holographic entanglement negativity for bipartite mixed state of
two disjoint intervals in proximity in the dual GCFT1+1 using our prescription. The
corresponding dual GCFT1+1 have the central charges cL ̸= 0, cM = 0 for which the
algebra is isomorphic to the chiral copy of the (relativistic) Virasoro algebra. The result
thus obtained matches up to a constant Markov gap with the holographic entanglement
negativity for the configuration in question reported earlier in the literature. Therefore,
we find once again that a non-vanishing Markov gap or the crossing PEE originates solely
from the chiral sector of the asymptotically flat gravitational theory. On a separate note, it
is interesting to point out a fascinating connection of the flat space chiral gravity with the
AdS2/CFT1 correspondence. A parallel could be drawn between the bulk timelike vectors
introduced in the flat TMG scenario and points in the three dimensional embedding space
of the Euclidean Poincare AdS2. This results in the identification of the boost required to
drag the normal frame from one bulk point to another with the geodesic length between
the corresponding points in the Euclidean Poincare AdS2. This is an extremely interesting
open avenue for future investigations as described by the progress in the corresponding
AdS2/CFT1 scenario.
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Appendix A Limiting Analysis

In this appendix we will show that the extremal EWCS in asymptotically flat spacetimes
dual bipartite density matrices in a GCFT1+1 computed in the main text may be obtained
through a parametric contraction of the corresponding relativistic result obtained in the
context of AdS3/CFT2 in [35,44].

The GCA2 algebra can be obtained as a result of a parametric İnönü-Wigner contrac-
tion of the Virasoro algebras of a relativistic CFT1+1:

t → t , x → ϵx , (144)
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with ϵ → 0. This may alternatively be written in terms of the coordinates describing the
CFT1+1 as

z → t+ ϵx , z̄ → t− ϵx . (145)

The central charges of the GCA2 are related to those of the parent relativistic theory as

cL = c+ c̄ , cM = ϵ(c− c̄) . (146)

Now we will utilize this connection to show the equivalence of the entanglement wedge
corresponding to a generic bipartite density matrix ρAB in the CFT1+1 to that in the
GCFT1+1. To this end we recall that the minimal entanglement wedge cross section for
such bipartite systems in a CFT1+1 may conveniently be expressed in terms of the cross
ratios as

EW =

{
c
6 log

(
1+

√
x

1−
√
x

)
1/2 ≤ x ≤ 1 ,

0 0 ≤ x ≤ 1/2 ,
(147)

where x = z12z34
z13z24

is the cross ratio. If we allow for unequal central charges for the left and
right moving sectors the above expression has the natural generalization

EW =
c

12
log

(
1 +

√
x

1−
√
x

)
+

c̄

12
log

(
1 +

√
x̄

1−
√
x̄

)
. (148)

Utilizing eq. (145), we now write the CFT1+1 cross ratios in terms of those in theGCFT1+1

as

x → T

(
1 + ϵ

X

T

)
, x̄ → T

(
1− ϵ

X

T

)
. (149)

Using eq. (149), we may now write down the fate of the entanglement wedge cross section
in eq. (148) after the contraction as

EW → c

12
log

(
1 +

√
T
(
1 + ϵ

2
X
T

)
1−

√
T
(
1 + ϵ

2
X
T

))+
c̄

12
log

(
1 +

√
T
(
1− ϵ

2
X
T

)
1−

√
T
(
1− ϵ

2
X
T

)) . (150)

Expanding upto linear order in ϵ and using eq. (146), the above expression reduces to

EGCFT
W =

cL
12

log

(
1 +

√
T

1−
√
T

)
+

cM
12ϵ

ϵX

2
√
T

(
1

1 +
√
T

+
1

1−
√
T

)
+O(ϵ)

=
cL
6

log

(
1 +

√
T√

1− T

)
+

cM
12

X√
T (1− T )

+O(ϵ).

(151)

Finally we use the analogues of the Brown-Henneaux formula [76] in flat holography,
namely eq. (84) to obtain

EGCFT
W =

1

2µGN
log

(
1 +

√
T√

1− T

)
+

1

4GN

X√
T (1− T )

. (152)

Remarkably, this is exactly the same extremal EWCS obtained in the main text using
methods of flat holography.

Next we analyze the Markov gap for two disjoint intervals in proximity in a GCFT1+1

dual to TMG in asymptotically flat spacetime through the above parametric contraction.
For the case of two disjoint intervals A and B in proximity in usual AdS3/CFT2 framework,
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we can re-express the Markov gap in terms of the EWCS and the holographic mutual
information as

2EW (A : B)− I(A : B) =
c

6

(
log

1 +
√
x

1−
√
x
− log

1

1− x

)
+

c̄

6

(
log

1 +
√
x̄

1−
√
x̄
− log

1

1− x̄

)
.

(153)
Now performing the İnönü-Wigner contraction of the cross ratios as given in eq. (149), we
obtain

2EW (A : B)− I(A : B) =
cL
6

(
log

1 +
√
T

1−
√
T

− log
1

1− T

)
+

cM
6

(
X√

T (1− T )
− X

1− T

)
,

(154)
where we have used eq. (146). We can clearly see from the above expression that as
T → 1, the difference becomes proportional to log 2 coming from the first parenthesis.
We emphasize that although a geometric interpretation in terms of the number of non-
trivial boundaries of the EWCS is still elusive for the case of Einstein gravity in the
bulk, the above limiting analysis consistently shows that the Markov gap should vanish
in such scenarios. Note that the Markov gap or the crossing PEE originating from the
purely topological part of the action is still elusive and a complete understanding of this
behaviour requires a proper analysis of the Markov gap or the BPE in the flat holographic
setup.

Appendix B EWCS in Flat Chiral Gravity: Connection to
AdS2/CFT1

In this appendix we deal with a special case of flat space TMG, called the flat space
chiral gravity (FχG) or sometimes conformal Chern-Simons gravity [77–79] with the non-
covariant action:

SCSG =
k

4π

∫
d3x

√
−g

[
εαβγΓρ

ασ

(
∂βΓ

σ
γρ +

2

3
Γσ

βηΓ
η
γρ

)]
, (155)

where k is the Chern-Simons level. The FχG may be obtained as a limit of the flat space
TMG action in eq. (83) by scaling the Newton’s constant to infinity, GN → ∞, while
keeping µGN ≡ 1/8k fixed. The equation of motion for FχG leads to a vanishing Cotton
tensor, thereby confirming that the solutions admitted by the action (155) are conformally
flat. It was demonstrated in [77] that the dual quantum field theory is described by a
GCFT1+1 with central charges cL = 24k , cM = 0 whose algebra is isomorphic to the
chiral copy of the usual Virasoro algebra.

Next we will describe a construction for computing the extremal EWCS in FχG. The
Chern-Simons action (155) describes a massless spinning particle propagating in the bulk
three dimensional spacetime, for which the on-shell worldline action in given in eq. (86),
where the symbols inherit their usual significance from the TMG case. The only degrees of
freedom are given by the timelike vectors ni erected at each bulk point yi. The construction
of the entanglement wedge corresponding to two generic (disjoint) intervals A and B on
the asymptotic boundary is identical to that described in subsection 5.1, except that now
the cross section only picks up a topological contribution. The cross section is obtained
by choosing two arbitrary bulk points yb and y′b on the extremal curves computing the
entanglement entropy of A ∪B and then extremizing the Galilean boost required to drag
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the the bulk vector nb at yb to y′b:

EFχG
W = 2k min ext

nb , n
′
b

∆η(nb, n
′
b) . (156)

Therefore, for two disjoint intervals in proximity in the ground state of the GCFT1+1 dual
to FχG in Minkowski spacetime, the extremal EWCS is obtained as

EFχG
W = 2k log

(
t13t24
t14t23

)
+ 2k log 4 , (157)

where we have used eq. (96). We may now utilize a version of our flat-holographic
proposal in eq. (30) restricted to the case of FχG to obtain the corresponding entanglement
negativity as

E =
cL
8

log

(
t13t24
t14t23

)
, (158)

which matches exactly with that reported in [64] providing a consistency check. Note
that, as earlier we have subtracted the constant Markov gap (or crossing PEE) from
the EWCS while computing the entanglement negativity. We emphasize that the above
analysis substantiates the fact that the constant Markov gap originates solely from the
chiral sector of the gravity theory.

It is now straightforward to extend this construction for the entanglement wedge for
the cases of two adjacent intervals and a single interval in the boundary theory. Instead,
we would like to report a fascinating connection of FχG with the AdS2/CFT1 correspon-
dence. As noted in [61], the bulk timelike vectors of the form (90) can be thought of as
points in the three dimensional embedding space of Eucildean Poincare AdS2, with x and
u being the corresponding Poincare coordinates. With such a connection, the boost in eq.
(86) may be identified with the geodesic distance in Eucildean Poincare AdS2, between
the points corresponding to ni and nf . Therefore the extremal EWCS in FχG may also
be computed using the worldline method in Euclidean AdS2. This observation also finds
support in the fact that the dual CFT1 accomodates only one copy of the Virasoro algebra,
which is isomorphic to the GCA2 for cM = 0. It was also demonstrated in [77] that the
representations of such GCA2 reduce to the Virasoro module, as well as the possibility
of putting unitarity constraints. Therefore, one might wonder about a holographic corre-
spondence between a topological gravitational theory with a specific unitary field theory
in two dimensions lower.
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