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Abstract

We compute the entanglement negativity for various pure and mixed state con-
figurations in a bath coupled to an evaporating two dimensional non-extremal
Jackiw-Teitelboim (JT) black hole obtained through the partial dimensional
reduction of a three dimensional BTZ black hole. Our results exactly repro-
duce the analogues of the Page curve for the entanglement negativity which
were recently determined through diagrammatic technique developed in the
context of random matrix theory.
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1 Introduction

A clear resolution to the black hole information paradox is essential to understanding
several intriguing aspects of semiclassical and quantum gravity. A recent progress towards a
possible solution to the puzzle involves the appearance of certain regions known as “islands"
in the black hole space time which contribute significantly to the fine grained entropy of
the Hawking radiation at late times, leading to a unitary Page curve [1]. The island
proposal was inspired by earlier works on the quantum correction to the Ryu-Takayanagi
proposal for the holographic entanglement entropy computed through a quantum extremal
surface which is obtained by extremizing the generalized entropy given by the sum of
the area of a codimension 2 surface homologous to the subsystem under consideration
and the bulk entanglement entropy across that surface as described in [2–4]. The island
formulation has led to many exciting developments ranging from the role of the space-time
replica wormholes in the computation of the Euclidean gravitational path integrals [5, 6]
to the reproduction of the Page curve. Obtaining the Page curve indicates towards an
unitary evolution during the black hole formation and evaporation process, and hence at the
possibility of a resolution to the information loss paradox ( The literature in this exciting
area is vast. See [7, 8] and the references therein). The above discussed island formula
for computing the fine grained/entanglement entropy of a subregion in a d dimensional
quantum field theory coupled to semiclassical gravity is given by

S[X] = min

{
extIs(X)

[
Area[∂Is(X)]

4GN
+ Seff [X∪Is(X)]

]}
. (1)

where-X is the subregion under consideration, Is(X) is the island corresponding to given
region-X, GN denotes the Newton’s gravitational constant and Seff (Y ) corresponds to
the effective semiclassical entanglement entropy of quantum matter fields in Y .

The island formulation can be understood very naturally in the frame work of double
holography. As discussed in [1], in the double holographic scenario, the d dimensional
quantum field theory coupled to semiclassical gravity, is itself holographically dual to a d+1
dimensional gravitational theory. In this context, the entanglement entropy determined
utilizing the above mentioned island formula in the d-dimensional theory, is simply given
by the RT/HRT formula in the dual d + 1 dimensional bulk space time. In fact, as
argued in [1], the application of the RT/HRT formula in the d+ 1 dimensional bulk space
time clearly suggests that the island present in the black hole interior is a part of the
entanglement wedge of the Hawking radiation/bath which leads to a realization of the
ER=EPR scenario [9]. This nice feature of double holography naturally leads to a geometric
perspective of the black hole formation and evaporation. Since this exciting development,
a variety of very interesting models have explored different techniques to geometrize the
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island formulation [10–25]. In this article we focus on another distinct recent geometric
construction proposed in [20]. The authors in [20] motivated by [26], demonstrated that
the evaporation of a two dimensional Jackiw-Teitelboim black hole could be modelled by
a partial dimensional reduction of a three dimensional BTZ black hole. In this model the
extent to which the JT black hole evaporates is controlled by the parameter describing the
partial dimensional reduction.

We know from quantum information theory that the above mentioned entanglement
entropy is an unique entanglement measure for pure quantum states only. However, for
mixed quantum states, various quantum information theoretic measures characterizing dis-
tinct quantum/classical properties have been proposed [27,28]. Remarkably a good number
of these measures such as the entanglement of purification, odd entropy, reflected entropy
admit holographic descriptions as suggested in [29–31]. Recently, island formulations have
been proposed for each of these measures to further investigate and explore the mixed
state entanglement and correlation structure present in the Hawking radiation [12,32,33].
Another significant computable mixed state entanglement measure in this regard is the
entanglement negativity [34]. This particular measure is a non-convex entanglement mono-
tone which characterizes the upper bound on the distillable entanglement of the given
quantum state [34, 35]. A replica technique was then developed to obtain this quantity in
quantum field theories utilizing which the explicit computation was performed for various
configurations in two dimensional conformal field theories [36–38]. Furthermore, this led to
the first attempt for the holographic entanglement negativity of pure states made in [39].
Soon after another distinct holographic conjecture involving the algebraic sum of the areas
of the extremal surfaces for various pure and mixed state configurations of the adjacent,
the disjoint and the single intervals in a zero and finite temperature CFT1+1 was proposed
in a series of articles [40–47]. Recently, this proposal was re-expressed in terms of the areas
of the combination of backreacting cosmic branes corresponding to Renyi entropy of order
half [48]. Apart from the above mentioned proposals another alternative holographic con-
struction for the entanglement negativity involving the backreacting entanglement wedge
cross section (EWCS) or the Reflected entropy of order half was developed in [49,50]. Note
that the results from the holographic proposals involving the algebraic sum of the areas of
the extremal surfaces [40, 43, 45], precisely match with the corresponding results obtained
using the EWCS in [49–52]. In a recent article [53], the authors computed the gravita-
tional path integral corresponding to the Renyi negativities in holographic theories and
demonstrated that it is dominated by a bulk replica symmetry breaking saddle. Follow-
ing this in [48], the authors of the present article demonstrated that for two dimensional
holographic CFT s and for the case of subsystems involving spherical entangling surfaces
in higher dimensions, the computation in [53] also serves as a proof of the holographic
proposals [40,43,45].

Inspired by the above mentioned holographic constructions, two alternative island for-
mulations for the entanglement negativity, first one involving the extremization of an alge-
braic sum of the generalized Renyi entropy of order half and the second one involving the
sum of the backreacting EWCS and the effective entanglement negativity, were proposed
by the authors of the present article in [48]. We demonstrated that the expressions for
the entanglement negativity obtained by the two proposals for various pure and mixed
state configurations in baths coupled to extremal and non-extremal JT black holes, match
exactly and also with the generalized Renyi reflected entropy of order half as expected. Fur-
thermore, we provided a possible derivation of our island proposal for the entanglement
negativity involving the areas of backreacting cosmic branes by considering the replica
wormhole contributions to the gravitational path integral involving the replica symmetry
breaking saddle of [53] .
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The connection between random matrix theory and black holes has gained utmost
significance in recent times in several exciting phenomena explored in [5, 54–62]. Quite
interestingly, several such techniques involving Harr random unitaries have been utilized to
gain insight into the black hole evaporation and the information loss paradox (see [63–69]
and references therein). More recently, very interesting developments have led to the
computation of various measures such as the entanglement negativity, mutual information,
relative entropy to obtain analogues of the Page curve for these measures in Harr random
states [70,71]. In [70] the authors have developed a systematic diagrammatic technique to
obtain the entanglement negativity of a a bipartite system in a random mixed state chosen
from the Wishart ensemble. This led them to determine the analogues of Page curves for
the entanglement negativity for bipartite systems in random mixed states. Furthermore,
the authors provided an interpretation for the specific behaviours of the entanglement
negativity in terms of the dimensions of the Hilbert spaces of the subsystems involved. The
analogues of such Page curves for the entanglement negativity thus obtained for various
configurations of the random states is expected to shed new light on the structure of mixed
state entanglement in Hawking radiation. Hence, the discussion above raises the crucial
issue of obtaining the analogues of the Page curve for the entanglement negativity in the
context of black hole evaporation and compare them to the corresponding results obtained
through random matrix technique in [70].

In this article we address this significant issue by computing the entanglement nega-
tivity of various mixed state configurations in a bath coupled to a two dimensional non-
extremal JT black hole obtained by a partial dimensional reduction of a three dimensional
BTZ black hole as described in [20]. We will demonstrate that the entanglement negativ-
ity of various bipartite systems in a bath coupled to a non-extremal JT black hole exactly
reproduces the analogues of the Page curve for the entanglement negativity of random
mixed states which were obtained in [70]. Furthermore we interpret the results we derived
in terms of the Hawking quanta collected in various subsystems in the bath and their
respective islands.

The article is organized as follows. In section 2 we review the model involving the par-
tial dimensional reduction described in [20] to obtain the Page curve for the entanglement
entropy of the entire bath/radiation coupled to a JT black hole. Following this we briefly
review [70] where the authors obtain the entanglement negativity of a random bipartite
mixed state and then go on to describe the holographic entanglement negativity construc-
tion proposed in [43, 45]. In section 3 we describe our computation of the entanglement
negativity of the pure and mixed state configurations involving disjoint, adjacent and sin-
gle intervals in a bath CFT2 coupled to an evaporating non-extremal JT gravity obtained
through the partial dimensional reduction of the BTZ black hole. We will demonstrate
that the result we obtain exactly reproduces the analogue of the Page curves for entangle-
ment negativity of the random mixed states obtained in [70]. In section 4 we summarize
the results we have obtained and discuss the plausible future directions. Furthermore, in
appendix A we determine the entanglement negativity for various pure and mixed state
configurations in a bath CFT2 coupled to an extremal JT black hole obtained through the
partial dimensional reduction of the pure AdS3 spacetime. However, a clear interpretation
of the results we obtain for configurations in a bath coupled to an extremal JT black hole,
remains an open issue for future investigations.
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2 Review of the Earlier Results

In this section, we review the computation of the entanglement entropy of a bath coupled
to an evaporating two dimensional black hole in JT gravity obtained through a partial
dimensional reduction of the three dimensional BTZ black hole in [20]. The authors in [20]
introduce the time dependence in the two dimensions by varying the parameter describing
the dimensional reduction. We will explain below the detail of their construction which
reproduces the Page curve for the entanglement entropy and hence, provides a geometric
representation of the black hole evaporation process. We then briefly describe the entan-
glement negativity of a bipartite system in a random mixed state and the corresponding
Page curve derived using the random matrix techniques in [70]. Subsequently, we discuss
the holographic entanglement negativity proposal for various mixed state configurations in
the AdS3/CFT2 scenario conjectured in [40,43,45].

2.1 Page Curve for Entanglement Entropy through Geometric Evapo-
ration

2.1.1 Non-Extremal JT black hole from BTZ

The authors in [20], considered the BTZ black hole whose metric is given by

ds2 = −
(
r2 − r2

h

L2
3

)
dt2 +

(
r2 − r2

h

L2
3

)−1

dr2 + r2 dϕ2 (2)

where rh is the horizon radius, L3 denotes the AdS3 length scale and the angular direction
ϕ is periodic i.e ϕ ∼ ϕ+2π. The length of a geodesic homologous to a boundary subsystem
described by an angular interval of extent ∆ϕ is given by

L∆ϕ,Con1 = 2L3 log

[
sinh

rh∆ϕ

2L3

]
+ UV cutoff (3)

L∆ϕ,Con2 = 2L3 log

[
sinh

rh(2π −∆ϕ)

2L3

]
+ UV cutoff (4)

where ∆ϕ is the angle subtended by the subsystem under consideration and Con1 denotes
a connected RT surface which corresponds to a geodesic. As described in [20, 72, 73],
there is another extremal surface which also satisfies the homology condition. This is a
disconnected extremal surface which involves the horizon of the BTZ black hole and the
geodesic anchored to the complement of the subsystem considered. Note that the authors
considered the BTZ black hole to be formed from collapsing matter which was in a pure
quantum state. Hence, they did not include the contribution from the black hole horizon
in the second extremal surface as it would correspond to a dual CFT characterized by a
mixed quantum state. The resulting extremal surface after discarding the contribution
from black hole horizon therefore, is a connected geodesic which is denoted by the suffix
Con2 in eq. (4). The entanglement entropy is then given by the minimum of these two
geodesic lengths as expressed below

S∆ϕ =
1

4G
(3)
N

Min

[
L∆ϕ,Con1, L∆ϕ,Con2

]
. (5)

The BTZ metric in eq. (2) corresponds to an asymptotically AdS space time whose
action is given by

S =
1

16πG(3)

∫
d3x
√
−g
(
R(3) − 2Λ

)
(6)
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where the cosmological constant Λ < 0 and G(3) corresponds to the three dimensional
Newton’s gravitational constant. Since, the BTZ metric in eq. (2) does not depend on the
ϕ coordinate it could be expressed in the following form

ds2 = gµν dxµ dxν = hab (xa) dxb dxb + φ2 (xa)L2
3 dϕ2 (7)

where µ, ν = 0, 1, 2 and a, b = 0, 1. In [26], it was demonstrated that a dimensional
reduction may be performed because the BTZ black hole metric may be re-expressed in
the above form. This led the authors in [20] to integrate the angular direction φ in the
action given by eq. (6) to obtain

S =
2παL3

16πG(3)

∫
d2x
√
−hφ

(
R(2) − 2Λ

)
(8)

In the above equation α ∈ (0, 1] denotes the parameter which controls the extent of partial
dimensional reduction. The metric after the reduction may be expressed as

ds2 = −4π2L2

β2

du dv

sinh2 π
β (u− v)

+
4π2L4

β2

1

tanh2 π
β (u− v)

dϕ2. (9)

Observe that the first term in the above expression corresponds to the metric of the non-
extremal black hole in JT gravity upon identifying L3 with L which is the AdS2 length
scale. The two dimensional black hole in JT gravity inherits the temperature from the
BTZ black hole upon dimensional reduction. After integrating out ϕ as described by eq.
(8), the dilaton profile is given by

Φ = Φ0 +
2πΦr

β
coth

π

β
(u− v) , (10)

where u = t + r∗ and v = t − r∗ are the light-cone coordinates, with r∗ being the usual
radial tortoise coordinate [20]. In eq. (10), Φr = 2πLα is the renormalized value of the
dilaton which carries the signature of the dimensional reduction through the parameter
α. Note that in order to arrive at the above expression, the authors utilized the relations
L3 = L, G(3) = LG(2), rh = 2πL2

β in eq. (3) and eq. (4), and absorbed the UV cut off in
the background value of the dilaton field Φ0.

The authors then utilized the expressions for geodesic lengths described in equations
(3) and (4) and then incorporated the appropriate substitutions for partial dimensional
reduction. Upon performing the partial reduction, the interval [0, b] correspond to the
quantum mechanical degrees of freedom dual to the JT black hole in the limit b→ 0 and
the rest of the system corresponds to that of the bath/radiation. This led the authors to
obtain the entanglement entropy of the entire radiation/bath (SRad) to be as follows

SRad, Con1 =
1

4G
(2)
N

(
Φ0 + 2 log

[
sinh

π

β
(2πL(1− α)− 2b)

])
SRad, Con2 =

1

4G
(2)
N

(
Φ0 + 2 log

[
sinh

π

β
(2πLα+ 2b)

])
SRad = Min

[
SRad, Con1, SRad, Con2

]
(11)

As explained earlier the subscripts Con1 and Con2 denote the two possible connected
RT surfaces. Note that the entanglement entropy above is expressed in terms of the
dimensional reduction parameter α. The authors in [20] developed a dynamical evaporation

6



SciPost Physics Submission

scheme for the JT black hole by putting time dependence on the parameter α. Varying α
is tantamount to a time-dependent renormalized dilaton1

Φr(t) = 2πLα(t) = 2πL

(
1− A

2
t

)
(12)

where A = c
6
GN
πL and c is the central charge of the matter CFT2 which is obtained as

the holographic dual of the rest of the BTZ black hole spacetime that has not been di-
mensionally reduced. The central charge of a holographic CFT2 is related to the three
dimensional gravitational constant GN through the well known Brown Henneaux formula
c = 3L

2GN
[74]. As shown in [20], the conformal anomaly present in the matter CFT2 gives

rise to an outgoing energy flux which simulates a black hole evaporation process within
the JT gravity framework. Subsequently, the authors utilized their construction to demon-
strate that the entanglement entropy of the bath/radiation given by eq. (11), follows the
Page curve during the evaporation of the non extremal black hole in JT gravity.

2.2 Page Curve for Entanglement Negativity from Random Matrix The-
ory

In this subsection we present a concise review of the entanglement properties of random
mixed states as described in [70]. The authors developed a diagrammatic technique within
the framework of random matrix theory and investigated the entanglement negativity of
a random bipartite mixed state. The basic setup in [70] consists of a tripartite system
which we denote as R1 ∪ R2 ∪ B, and in the context of present article, we interpret B as
a black hole while R ≡ R1 ∪ R2 constitutes the bath 2. The random mixed nature of R
was produced by varying the size of the subsystems involved. It was shown in [70] that
for large Hilbert space dimensions, the random reduced density matrix of the subsystem
R which in the context of present article represents the radiation/bath is captured by the
Wishart ensemble [75]:

ρR ≈ XX† , (13)

where X is a (random) dim HR × dim HB rectangular matrix sampled from a Gaussian
distribution. Subsequently, utilizing a diagrammatic implementation of the partial trans-
position, various moments of the density matrix ρT2R were computed in the limit of large
Hilbert space dimensions. The ensemble averaged entanglement negativity of the mixed
state described by R may then be expressed in terms of the number of qubits, N in the
respective systems as

〈ER1R2〉 ≈

{
1
2(NR −NB) , NR1,2 <

N
2

min (NR , NB) , otherwise
(14)

for NR > NB, while for NR < NB it turns out to be vanishingly small. The authors of [70]
obtained several Page-like curves by varying the size of R1 and R2

3 relative to B. In the
present work we will exactly reproduce the above discussed analogues of the Page curves
for entanglement negativity, but in the context of an evaporating non-extremal JT black
hole coupled to a bath, which is obtained by a partial dimensional reduction of a three
dimensional BTZ black hole.

1Note that the coordinate in which the dilaton becomes time-dependent was denoted by t̃ in [20]. In
the present article we have chosen to omit the tildes for brevity.

2Note that originally in [70] the bipartite system was denoted as AB, where B was interpreted as the
auxiliary bath subsystem.

3Here changing the lengths of subsystems essentially correspond to changing the dimensions of the
respective Hilbert spaces.
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2.3 Holographic Entanglement Negativity

In this subsection we briefly recall the salient features of the holographic entanglement
negativity proposals in [40, 43, 45]. Based on the replica technique computations of the
entanglement negativity in 2d CFTs [36,37], it was argued that the holographic entangle-
ment negativity (HEN) for various bipartite mixed states was given by an algebraic sum of
the lengths of a specific combination of bulk geodesics homologous to different sub-regions
in the dual CFT2. For example, the HEN for two adjacent intervals A and B was given
by [43,48]

E(A : B) =
3

16πG
(3)
N

(LA + LB − LA∪B) (15)

=
3

4
[S(A) + S(B)− S(A ∪B)] , (16)

where LX is the length of the minimal surface (geodesic) homologous to subsystem X,
and in the second step we have made use of the Ryu-Takayanagi formula [76, 77]. As the
entanglement negativity of a pure state is given by the Renyi entropy of order half, we
wish to re-express eq. (15) in terms of the Renyi entropies of order half. To this end, we
recall that the Renyi entropy in a holographic CFTd is dual to the area of a backreacting
cosmic brane A(n)

A
4, in the dual bulk AdSd+1 spacetime, homologous to the subsystem-A

in question [78]

S(n)(A) =
A(n)
A

4G
(d+1)
N

, (17)

where G(d+1)
N is the (d + 1) dimensional Newton’s constant. Hence, in the context of

AdS3/CFT2, the Renyi entropy of order half is given by

S(1/2)(A) =
L(1/2)
A

4G
(3)
N

, (18)

where L(1/2)
A is related to the length of a back reacting cosmic brane in AdS3 space time,

which is homologous to an interval-A. As described in [39, 49, 79] for spherical entangling
surfaces and for a subsystem in a holographic CFT2, the effect of the backreaction can be
quantified specifically

L(1/2)
A =

3

2
LA. (19)

Now, we may utilize eqs. (18) and (19) to rewrite eq. (15) for the holographic entanglement
negativity between two adjacent intervals in the following instructive form

E(A : B) =
1

2

[
S(1/2)(A) + S(1/2)(B)− S(1/2)(A ∪B)

]
. (20)

In a similar manner we can re-express the holographic conjecture in [45] for the entan-
glement negativity of the mixed state configuration of two disjoint intervals A and B in

4Note that A(n) is not exactly the area of a backreacting brane but is related to it as n2 ∂
∂n

(n−1
n
A(n)) =

Area( cosmic brane n).
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proximity5, in a holographic CFT2, as

E =
1

8GN

[
L(1/2)
A∪C + L(1/2)

B∪C − L
(1/2)
A∪B∪C − L

(1/2)
C

]
(21)

=
1

2

[
S(1/2)(A ∪ C) + S(1/2)(B ∪ C)− S(1/2)(A ∪B ∪ C)− S(1/2)(C)

]
. (22)

The subsystem C in the above equation denotes an interval sandwiched between the two
intervals A and B. In the following we will utilize these expressions to compute the holo-
graphic entanglement negativity for various mixed state configurations involving different
sub-regions of the JT gravity + CFT2 obtained via partial dimensional reductions of var-
ious AdS3 geometries.

3 Page Curve for Entanglement Negativity

In this section we compute the entanglement negativity of various bipartite pure and mixed
state configurations in a bath coupled to a non-extremal black hole in JT gravity, through
the partial dimensional reduction of a BTZ black hole. For the mixed state configurations
involving adjacent and disjoint intervals in a bath subsystem, we demonstrate that the
entanglement negativity reproduces the Page curves obtained from the random matrix
techniques in [70] which was described in previous section.

The Page curve for a bipartite quantum system with a finite dimensional Hilbert space
was obtained in [81]. It was determined by plotting the Harr random average of the
entanglement entropy as a function of the Hilbert space size for one of the subsystems in the
bipartite system. Only later this was interpreted in the context of black hole evaporation by
defining the Page curve as the time evolution of the entanglement entropy of the Hawking
radiation [82,83]. Similarly the Page curve for the entanglement negativity derived through
the Random matrix technique in [70] discussed earlier is also expressed as a function of the
Hilbert space sizes of subsystems involved. Observe that the α parameter which controls
the extent to which the black hole evaporates in [20] also describes an angle. In this section,
we determine the analogue of such curves for the entanglement negativity by examining
its time evolution by varying the α parameter in some cases whereas in other cases we
fix α but vary the sizes of the subsystems involved. We emphasize that it is perfectly
valid to examine the behaviour entanglement negativity as a function of the size of the
subsystems for a fixed α or vary the α parameter. However in order to compare our results
with corresponding results in the random matrix theory we kept the α fixed in some of our
computations. More specifically in subsection 3.1.1 we consider the time evolution of the
entanglement negativity of a single interval in the bath/radiation system. Subsequently
we obtain the time evolution of the entanglement negativity for the configuration of the
adjacent intervals in bath in subsection 3.1.2 (a). Furthermore, we also determine the
behaviour of the entanglement negativity for the adjacent and disjoint intervals in bath by
varying sizes of the subsystems involved, in subsections 3.1.2 (b), 3.1.2 (c) and in subsection
3.1.3 respectively.

Note that the linear characteristics of the Page curve for entanglement entropy obtained
through the model in [20], is valid for β << Φ0

r ( Φ0
r = 2πL where L is the AdS radius

which we have set to unity ). This is clearly expressed in the line above eq.(4.30) of
[20]. Away from this approximation, that is for larger values of β, the Page curve for

5Note that in a holographic CFT2 the proximity approximation corresponds to the x → 1 channel
(where x is the cross ratio) of the corresponding four point twist correlator as described in [45,80]. In the
x→ 0 channel which corresponds to the configurations involving the disjoint intervals which are far apart
the entanglement negativity vanishes.

9
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entanglement entropy obtained through the partial dimensional reduction deviates from
its linear behaviour. This will be true for the holographic entanglement negativity which
we compute below as it is given by a linear combination of the Renyi entropies of order
half. Hence all our plots are also valid within the approximation β << Φ0

r . Away from
this approximation, the plots for entanglement negativity differ from those shown in our
article.

3.1 Non-Extremal JT black hole

3.1.1 Single Interval in Bath

As described earlier the holographic entanglement negativity conjecture we are utilizing
is expressed as an algebraic sum of the Renyi entropies of order half of various subsys-
tems for the configuration considered. In this subsection we will describe the holographic
computation of the Renyi entropy of order half of a subsystem in a CFT2 dual to a BTZ
black hole in AdS3 spacetime and subsequently perform the partial dimensional reduction
as described in subsection 2.1.1. We may utilize the relations in eq. (3) and eq. (4) to
obtain the lengths of the backreacting cosmic branes which are homologous to a generic
subsystem in the bath CFT2 radiation as follows

L(1/2)
Con11 (`ϕ1 , `ϕ2) = L(1/2)

Con1 (`ϕ1) + L(1/2)
Con1 (`ϕ2) (23)

L(1/2)
Con22 (`ϕ1 , `ϕ2) = L(1/2)

Con2 (`ϕ1) + L(1/2)
Con2 (`ϕ2) (24)

L(1/2)
Con12 (`ϕ1 , `ϕ2) = L(1/2)

Con1 (`ϕ1) + L(1/2)
Con2 (`ϕ2) (25)

L(1/2)
Dis (`∆ϕ) = 6L log

[
sinh

π`∆ϕ
2β

]
+ UV cutoff (26)

where the subscripts Con11, Con12, Con22 denote possible connected RT surfaces and
Dis denotes the disconnected RT surface. All of these RT surfaces are depicted in fig. 1.
Note that in the above equation ϕi (i = 1, 2) are the angles subtended by the endpoints of
the subsystem of interest such that ∆ϕ = |ϕ1 − ϕ2|, and we have written `ϕi = Lϕi and
`∆ϕ = L∆ϕ. L(1/2)

Con1 (`ϕi) and L(1/2)
Con2 (`ϕi) are given by the lengths of the geodesics in the

BTZ background as follows

L(1/2)
Con1 (`ϕi) = 3L log

[
sinh

π`ϕi
β

]
+ UV cutoff (27)

L(1/2)
Con2 (`ϕi) = 3L log

[
sinh

π(2π − `ϕi)
β

]
+ UV cutoff . (28)
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Figure 1: Schematic for possible RT surfaces homologous to the subsystem-Ri. Figures (a),
(b) and (c) depict the RT surfaces in the connected phase whereas figure (d) corresponds
to a schematic of the disconnected phase of the RT surfaces.

Finally the Renyi entropy of a given subsystem is simply obtained by the minimum
of the lengths of the backreacting cosmic brane on the above four possible homologous
surfaces as given below

S(1/2)(`∆ϕ) =
1

4G
(3)
N

min
[
L(1/2)
Con11 (`ϕ1 , `ϕ2) , L(1/2)

Con22 (`ϕ1 , `ϕ2) , L(1/2)
Con12 (`ϕ1 , `ϕ2) , L(1/2)

Dis (`∆ϕ)

]
(29)

Note that in [20], the subsystem under consideration was the entire bath. However, here we
will be considering a subregion inside the bath which leads to the four possible backreacting
cosmic branes homologous to the subsystem as depicted in fig. 1.

We may now perform the partial dimensional reduction reviewed in the previous section
[20] to obtain the Renyi entropy of order half of an arbitrary subsystem R in a bath coupled
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to JT gravity to be as follows

S
(1/2)
Con11(R) =

1

4G
(2)
N

(
2Φ0 + 3 log

[
sinh

[π
β

(2πLα+ 2b+ 2`φ′)
]]

+ 3 log

[
sinh

[π
β

(2πLα+ 2b+ 2`φ′ + 2`∆ϕ)
]])

S
(1/2)
Con22(R) =

1

4G
(2)
N

(
2Φ0 + 3 log

[
sinh

[π
β

(2πL(1− α)− 2b− 2`φ′)
]

+ 3 log

[
sinh

[π
β

(2πL(1− α)− 2(b+ `φ′ + `∆ϕ)
]])

S
(1/2)
Con12(R) =

1

4G
(2)
N

(
2Φ0 + 3 log

[
sinh

[π
β

(2πLα+ 2b+ 2`φ′)
]

+ 3 log

[
sinh

[π
β

(2πL(1− α)− 2(b+ `φ′ + `∆ϕ)
]])

S
(1/2)
Disc (R) =

1

4G
(2)
N

(
2Φ0 + 6 log

[
sinh

[π`∆ϕ
β

]])
S(1/2)(R) = Min

[
S(1/2)

R, Con11, S
(1/2)
R, Con22, S

(1/2)
R, Con12, S

(1/2)
R, Disc

]
(30)

where `∆ϕ = L∆ϕ is the length of the interval R and `φ′ = φ′L is its distance from the
interval B = [0, b] describing the quantum mechanical degrees of freedom in the limit b→ 0
as discussed in the previous section6.

As described earlier, the authors in [20] considered, the CFT dual to the full three
dimensional geometry to be in a pure state. Hence in their model, the entanglement
negativity of a single interval with its complement is given by the Renyi entropy of order
half as expected from the quantum information theory [36, 37]. Therefore, in the reduced
geometry the entanglement negativity of the subsystem R in the bath is given by

E(R) = S(1/2)(R). (31)

where S(1/2)(R) is given by eq. (30).
We now compute the entanglement negativity of the subsytem R described by a single

interval in the bath depicted in figure 1 by utilizing eq. (31) and eq. (30). The time
evolution of the entanglement negativity for this configuration is depicted in the plot given
in figure 2, where we have fixed the size of the rest of the bath denoted as l2. As described
earlier the entanglement negativity in this case is given by the Renyi entropy of order half
and we may interpret the plot from the appearance of the entanglement island for the sub-
system considered as follows. When the interval considered is smaller than half the size of
the entire system, the negativity we obtain rises linearly during the black hole evaporation
as the bath subsystem collects more and more Hawking quanta. The entanglement keeps
rising because the subsystem considered does not admit the corresponding island for such
a configuration. Hence we obtain only the rising part of the analogue of the Page curve
for the entanglement negativity of a pure state. However, when the size of the subsystem
is larger than half the size of the entire system, the subsystem admits an entanglement
island which leads to the purification of the Hawking quanta collected. This in turn leads

6Note that [0, b] is the interval which correspond to the quantum mechanical degrees of freedom dual to
the 2d JT black hole in the limit b→ 0. Hence, the length of this interval given by b has to be small. We
have introduced φ′ to keep the radiation subsystem chosen to be generic as it need not always be adjacent
to the interval [0, b]. However, we would like to emphasize that all our results hold even if one sets φ′ = 0.
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l2=0.001

l2=0.1

l2=0.5

l2=1
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Figure 2: Plot for the behaviour of entanglement negativity of a single interval in a bath
as a function of 1 − α by fixing the length of the rest of the bath denoted as l2. Here,
Φ0 = 1000, c = 500, β = .1, φ′ = 0.001 and b = .001. Note that when l2 is large we only
obtain a part of the Page curve whereas when it is very small we obtain the entire Page
curve.

to a decrease in the entanglement between R and the rest of the system which involves
the black hole and the remaining bath. Finally, when the rest of the bath is vanishingly
small, the subsystem R spans the entire bath and the corresponding island purifies all the
Hawking quanta collected leading to an analogue of the complete Page curve as depicted
in figure 2.

3.1.2 Adjacent Intervals in Bath

In this subsection we consider the mixed state configuration given by two generic adjacent
subsystems R1 = [b, b+ `1] and R2 = [b+ `1, b+ `1 + `2] in the bath . The corresponding
entanglement negativity between R1 and R2 is given by the conjecture in eq.(20),

E =
1

2

[
S(1/2)(R1) + S(1/2)(R2)− S(1/2)(R1 ∪R2)

]
, (32)

where, the Renyi entropies of order half S(1/2)(Ri) are defined in eq. (30). We have denoted
the lengths of the subsystems Ri , i = (1, 2) by `i. We will examine the behaviour of the
entanglement negativity of the adjacent subsystems in the bath coupled to non-extremal
JT gravity, as a function of the parameters α and the lengths of the subsystems `1 and `2.
In the following, we will consider different cases by systematically varying the ratio p = `1

`2
and α and comment on the qualitative features of the entanglement negativity profiles.
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Figure 3: Schematics of two adjacent intervals R1 and R2 in the radiation.

(a) Keeping p = `1/`2 fixed and varying α: geometric evaporation

In this subsection, we obtain the entanglement negativity between the subsystems R1 and
R2 which describe two adjacent intervals spanning the entire bath denoted as R. This
particular situation can be achieved in the limit b + `1 + `2 → π(1 − α). As described
earlier the dynamical evaporation of the JT black hole is controlled by the value of the
parameter α. Such geometrical evaporation may be achieved by considering a linearly
decreasing dilaton, and the Page time may be identified with tPage = −2/α̇(t) as explained
in [20]. Here, we fix the ratio p = `1

`2
and determine the time evolution of the entanglement

negativity for the adjacent interval configuration by varying α. We may now employ eqs.
(30) and (32) to obtain the entanglement negativity of adjacent intervals in bath for the
case p = 1 as follows

E(R1, R2) =


3
2Φ0 + c

4 log

(
π2 sinh

[
π(2π(1−α)−2(b+`1))

β

]
sinh2

[
π`1
β

]
β2 sinh

[
π(2π(1−α)−2b)

β

]
)
, 0 < 1− α < 0.5

3
2Φ0 + c

4 log

(
π2 sinh

[
π(2π(1−α)−2(b+`1))

β

]
sinh2

[
π`1
β

]
β2 sinh

[
π(2πα+2b)

β

]
)
, 0.5 < 1− α < 1.

(33)

Similarly, the entanglement negativity for p = 0.5 case may be obtained as

E(R1, R2) =



3
2Φ0 + c

4 log

(
π2 sinh2

[
π`1
β2

]
sinh

[
π(2π(1−α)−2(b+`1))

β

]
β2 sinh

[
π(−2b+2π(1−α))

β

]
)
, 0 < 1− α < 0.5

3
2Φ0 + c

4 log

(
π2 sinh2

[
π`1
β

]
sinh

[
π(2π(1−α)−2(b+`1))

β

]
β2 sinh

[
π(2b+2πα)

β

]
)
, 0.5 < 1− α < 1+p

2 + b
π

3
2Φ0 + c

4 log

(
π2 sinh2

[
π`1
β

]
sinh

[
π(2πα+2(b+`1))

β

]
β2 sinh

[
π(2b+2πα)

β

]
)
, 1+p

2 + b
π < 1− α < 1.

(34)
In figure 4, we show the plot of the entanglement negativity obtained above with

respect to 1 − α(t) for two different values of p. The growth rate along linear rise is 4cπ2

3β

for small β << Φ0
r . Remarkably, the plot in figure 4 exactly reproduces an analogue of the

Page curve for entanglement negativity for a similar mixed state configuration obtained
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through the random matrix techniques in [70], which was reviewed in section 2. Hence,
our result emphasizes the interesting connection between random matrix theory and black
hole evaporation, which has been explored recently in relation to diverse phenomena in
[5,54–58,60,61]. We discuss different regimes of this plot and comment on the qualitative
behaviour of the negativity with respect to the presence of islands for different subregions.

p=1

p=0.5

0.2 0.4 0.6 0.8 1.0
1-α =

A

2
t

5000

10000

15000

20000

25000

ε (R1 :R2)

Figure 4: Entanglement negativity between two adjacent subsystems R1 and R2 for p = 1
and p = 0.5 wrt (1− α) = A

2 t. Here, Φ0 = 1000, c = 500, β = .1 and b = .001.

For small values of (1 − α), the black hole B is much larger in size than the bath
and therefore the subregions R1 and R2 are strongly entangled with B. Therefore, in
this regime, the monogamy of entanglement implies a weak entanglement between R1

and R2. Hence, the negativity between them is very small. When the size of R1 or R2

becomes comparable to that of B, we land in the tripartite entanglement phase, and the
entanglement negativity between R1 and R2 starts to grow linearly in time. There is still
one more regime for the entanglement negativity when p 6= 1. In such cases, for very
small values of α, R1 becomes much larger than both R2 and B, which corresponds to a
maximally entangled phase between R1 and R2. In this regime R2 is completely entangled
with R1 and therefore the entanglement negativity between them is determined by the size
of the Hilbert space of R2. It will be interesting to investigate more about the transition
to this regime.

The above phenomena may be interpreted in terms of the appearance of the negativity
islands in the lower dimensional picture. As demonstrated in [48], the quantum extremal
surface Q for the entanglement negativity of two generic subsystems R1 and R2 lands on
the corresponding entanglement wedge cross section and is given by the intersection of the
individual negativity islands for R1 and R2

7, namely

Q = ∂ IsE(R1) ∩ ∂ IsE(R2). (35)

The corresponding entanglement negativity including the island contribution is given as
7Incidentally, a similar relationship for the island of the reflected entropy was proposed in [32,33]. Also

note that, we have not made use of eq. (36)to compute the entanglement negativity in our present model.
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follows

Egen(R1 : R2) =
A(1/2) (Q = ∂ IsE(R1) ∩ ∂ IsE(R2).)

4GN
+ Eeff (R1 ∪ IsE(R1) : R2 ∪ IsE(R2))

E(R1 : R2) = min(extQ{Egen(R1 : R2)}). (36)

where A(1/2) corresponds to the area of a backreacted cosmic brane8 on the EWCS (en-
tanglement wedge cross section) and Eeff refers to the effective entanglement negativity of
quantum matter fields in the bulk regions across the EWCS.

We may now utilize the above mentioned island construction to interpret the plot we
obtained in figure 4 for the entanglement negativity. To begin with, the black hole B was
very large and the bath subsystems were too small to admit any islands. Correspondingly
there is no quantum extremal island described in eq. (35), and the contribution from the
effective term in eq. (36) is also very small. As the JT black hole evaporates, the size of
the bath subsystems R1 and R2 keeps growing with a fixed ratio between them given by
p. In such a regime, an island for the entire bath subsystem R appears when it becomes
larger than half the size of the total system. This in turn, leads to the appearance of
quantum extremal surface for the entanglement negativity of R1∪R2, which shifts towards
the boundary as time progresses. As a result the area contribution described by first
term in eq. (36) increases and correspondingly the entanglement negativity between R1

and R2 starts increasing linearly in time as they collect more and more Hawking quanta.
Note that, depending on the value of the fixed ratio p, the nature of the entanglement
negativity shows different behaviours. For p 6= 1, the larger of the two subsystems R1 and
R2 starts developing the corresponding island for entanglement entropy when it becomes
larger than half the size of the entire system. When this happens, the rate of growth of
the entanglement negativity diminishes as the appearance of the corresponding quantum
extremal surface leads to the purification of the Hawking quanta already captured by the
subsystem9. It is important to note that as the black hole evaporates, the size of R1 and
R2 keeps increasing. As a result, in this phase the entanglement negativity increases at a
slower rate. However for p = 1, the entanglement negativity grows linearly and does not
involve any further phase transitions. This may be understood from the fact that for such
a case, there are no islands associated with either R1 or R2.

Having obtained the behaviour of the entanglement negativity for the adjacent interval
configuration under time evolution, we now determine the same for various configurations
by changing the relative size of the subsystems while keeping fixed the parameter α, which
describes the time dependence.

(b) Keeping α fixed and varying the ratio `1
`1+`2

Here we compute the entanglement negativity between R1 and R2 where the size of the
subsystem R1 is increasing while keeping the size of the JT black hole fixed to less than

8To make sense out of the backreacted area A(1/2) the context of JT gravity, we first recall that the area
term in the entanglement island formula corresponds to the value of the dilaton field at that point [1,6,84].
Now, consider the bulk replica geometry corresponding to the n-th Renyi entropy. The backreacted area of
a cosmic brane homologous to a subsystem (a point in (1 + 1)-dimension) is obtained in terms of the value
of the dilaton field φ(n) at the conical singularities, which intrinsically depends on the replica parameter
n. See, for example, [48,85] for explicit expressions for the backreacting dilaton. Therefore, the order half
area term in eq. (36) corresponds to the analytic continuation of the dilaton φ(n) to n→ 1

2
.

9 Note that the entanglement negativity islands of R1 and R2 are related to the entanglement entropy
island of R as Is(R1 ∪ R2) = IsE(R1) ∪ IsE(R2) which was described in [48]. A similar relation holds for
the islands corresponding to the reflected entropy as discussed in [32].
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that of the entire bath subsystem R = R1 ∪ R2. The entanglement negativity can be
computed using eqs. (30) and (32) for the configuration of adjacent intervals as follows

E(R1, R2) =



3
2Φ0 + c

4 log

(
π2 sinh2

[
π`1
β

]
sinh

[
π(2πα+2(b+`1))

β

]
β2 sinh

[
π(2b+2πα)

β

]
)
, 0 < `1 <

π
2 (1− 2α)− b

3
2Φ0 + c

4 log

(
π2 sinh2

[
π`1
β

]
sinh

[
π(2π(1−α)−2(b+`1))

β

]
β2 sinh

[
π(2b+2πα)

β

]
)
, π

2 (1− 2α)− b < `1 <
π
2

3
2Φ0 + c

2 log
(

sinh
[
π(2π(1−α)−2(b+`1))

β

])
, π

2 < `1 < π(1− α)− b.
(37)

We plot the entanglement negativity from the above expression in figure 5 which depicts the
analogue of the Page curve for the entanglement negativity. The growth rate along linear
rise is 4cπ

3β for very small β. Remarkably, the behaviour of the entanglement negativity we
obtain from our computations once again matches exactly with that derived in the context
of random matrix theory in [70].
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Figure 5: Page curve for entanglement negativity. Here, Φ0 = 1000, c = 500, β = .1,
α = .25, b = .001 and b+ `1 + `2 = π(.99− α) = 2.325.

In the present setup, the bath captures all of the radiation coming out of the black hole
and therefore we are always in the NPT (negative partial transpose) phase and correspond-
ingly the entanglement negativity between R1 and R2 is non-zero. As long as R1 remains
smaller than R2 the negativity rises linearly since the entanglement is governed by the size
of the smaller subsystem. When we keep on increasing `1, at a particular point the size
of R1 becomes comparable to that of R2 and the entanglement between them saturates
to a plateau, describing a tripartite entanglement phase. Finally, when R1 becomes much
larger than R2, the entanglement between them is determined by the size of R2. This leads
to a linearly decreasing phase of the entanglement negativity when plotted as a function
of `1. This may observed from the plot in figure 5 .

In the two-dimensional point of view these transitions may be understood in terms of
the appearance of the entanglement islands. As described before, in this scenario, the JT
black hole is smaller than half the size of the total system and therefore the radiation bath

17



SciPost Physics Submission

R = R1 ∪ R2 always accommodates its entanglement island. When the size of the bath
subsystem R1 is small, then R2 admits an island as one of the geodesics corresponding
to R2 passes through the JT gravity region. As we increase the size of R1, due to a
decrease in the size of R2 this geodesic moves downwards and therefore the size of the
entanglement island for R2 decreases. This in turn causes a decrease in the purification of
the Hawking quanta present in R2. As a result the negativity between R1 and R2 increases
due to the increasing size of R1 as well as a decreasing size of the island for R2. If we
further increase the size of R1, at a particular point R2 becomes smaller than half the size
of the entire system R ∪ B (black hole+bath). Hence, its island disappears completely
and correspondingly we land in the tripartite entanglement phase. In this regime, the
entanglement negativity saturates to a plateau since the total number of entangling modes
between R1 and R2 remains fixed. Finally, R1 admits its own entanglement island when it
becomes larger than half the size of the entire system. As a result, the entangling modes
captured in R1 gets purified from their partners collected in the corresponding island. This
leads to a net decrease of the available entangling modes in R1 with both R2 and B. Note
that as the size of R2 decreases, the entanglement negativity between R1 and R2 also
decreases linearly until it vanishes completely.

(c) Keeping α and `1 fixed, varying `2

To begin with, we keep α and `1 fixed, and increase `2 till it covers the full radiation region.
Note that as described earlier the parameter α controls the time dependence in the present
construction. Hence, fixing it describes a particular time frozen situation during the black
hole evaporation, when a fixed amount of Hawking radiation has been transferred from the
black hole to the bath. We then vary the size `2 of the subsystem R2 and investigate the
behaviour of entanglement negativity for the bipartite system R1 ∪R2. The entanglement
negativity may now be computed by utilizing the expression for Renyi entropy of order
half given in (30) for subsystems R1, R2 and R1 ∪R2 in eqs. (32) as follows

E(R1, R2) =


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sinh2
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β4 sinh

[
π(2b+2πα)
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sinh
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4 log
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π2 sinh2

[
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sinh
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]
β2 sinh
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β
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, `2 >

π
2 .

(38)
In the following we discuss and qualitatively substantiate the behaviour of the entan-

glement negativity in different regimes as sketched in fig. 6. The growth rate along linear
rise is 4cπ

3β for high temperatures. The authors of [20] argued that the region bounded by
the RT surface(s) for a generic subsystem in the bath, and the dividing line of the JT and
BTZ regions may be identified as the corresponding island. In the present model, therefore,
the transition from the island to the no island phase is mimicked by the transition of the
geodesic from within the purple region to the exterior. We will utilize these facts to make
qualitative comments about how the nature of the entanglement negativity changes with
the (dis)appearance of islands.

Note that as we vary `2, the entanglement negativity is almost vanishingly small upto a
certain size of R2 for a fixed size of R1 and α. As entanglement negativity is characterized
by the negative eigenvalues of ρT2R , its vanishing may be interpreted as ρR being a “PPT”
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(positive partial transpose) state [70]10. As long as the dimension of the Hilbert space
of R = R1 ∪ R2 remains much smaller than that of its complement, the density matrix
corresponding to the radiation remains in a PPT state. This may be interpreted as the
subsystems R1 and R2 being too small compared to the rest, to have any entanglement
between each other 11.
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Figure 6: Entanglement negativity between R1 and R2 w.r.t the size of R2. Here, Φ0 =
1000, c = 500, β = .1, b = .001, b+ `1 = .6 and α = 0.25.

As we further increase `2, the Hilbert space of R becomes larger than its complement
and more and more Hawking quanta are collected in the bath subsystem R2. These quanta
are in turn entangled with the quanta collected in the bath subsystem R1. Hence, in this
regime, ρT2R gains negative eigenvalues and correspondingly the entanglement negativity
between R1 and R2 starts to increase linearly with `2.

Finally, when `2 becomes very large, R captures most of the Hawking radiation coming
out of the black hole B. As a result R1 and R2 both become entangled with B. This is
the tripartite entanglement phase, where the entanglement negativity between R1 and R2

saturates to a plateau. This may be understood as follows: when R2 becomes larger than
half of the entire system then the entanglement between R1 and R2 reaches its maximum.
This is because all the Hawking quanta in R1 are entangled with their partners in R2 and
their entanglement with each other cannot grow any further.

One may utilize the above island formulation for entanglement negativity to differ-
entiate its behavior in different regimes depicted in fig. 6. In the first case there is no
entanglement islands for R1, R2 and R, and therefore the area term in eq. (35) vanishes.
As described above, due to smaller sizes of R1 and R2, the bulk (effective) term in eq. (36)
also remains vanishingly small.

10Note that the PPT criterion is a necessary condition for a state to be separable but it is sufficient
only for 2 × 2 and 2 × 3 dimensional Hilbert spaces. However, for higher dimensional Hilbert spaces it
remains only as a necessary condition. Hence, the vanishing entanglement negativity implies that there
is no distillable entanglement in a given state but it leaves out a class of entangled states known as the
bound entangled states [34, 39,86,87].

11Note that in fig. 6, in this regime the entanglement negativity has some small finite value due to the
finiteness of the UV cut-off ε.
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Figure 7: Entanglement entropy and negativity Islands corresponding to the two adjacent
intervals in the radiation. The full green segments correspond to the entanglement entropy
islands of the subsystem R = R1 ∪ R2. Note that the dashed curves correspond to the
disconnected geodesics for the subsystem R2.

Note that depending on the (fixed) size of R1, it might or might not admit an entan-
glement island. Let us first consider the case when R1 does not have an island. In this case
initially the entanglement negativity vanishes due to the arguments described above. As we
increase the size of the subsystem R2, at a particular point the subsystem R will be greater
than half of the entire system. At this point it will be large enough to accommodate an
entanglement island and the RT surface corresponding to it transits from the disconnected
phase to the connected one which is depicted in fig. 7. This leads to the appearance of the
quantum extremal surface for the entanglement negativity, which is the shared boundary
of the individual negativity islands IsE(R1) and IsE(R2) as described in eq. (35)12. In
this regime, with increasing `2, the corresponding negativity island IsE(R2) increases in
size. As a result the entanglement negativity island given in eq. (35) shifts towards the
asymptotic boundary along the radial direction. This leads to a linear increase 13 in the
dominant area term in eq. (36) and therefore, the entanglement negativity between R1

and R2 increases as shown in fig. 6.14 As we further increase `2, the subsystem R2 starts
claiming its own entanglement island as shown in fig. 8, and the RT surface corresponding
to it transitions from the disconnected phase to the connected phase. In this regime, the
Hawking quanta already accommodated by R2 find their partners in the corresponding
entanglement entropy island of R2 and therefore a purification happens. As a result we
obtain the plateau region as shown in fig. 6 indicating entanglement saturation.

12Note that in this phase R1 and R2 do not admit their entanglement entropy islands as either of them
is smaller than half of the entire system. However they admit entanglement negativity islands as the
combined system R1 ∪R2 admits entanglement entropy island.

13The linear increase in the area term may be understood from the dilaton profile in eq. (10). Utilizing
the form of the tortoise coordinate r∗ given in [20] the dilaton profile in the Schwarzschild coordinates may
be seen to be given by Φ(r) = Φ0 + Φr r. Therefore, as one moves towards the asymptotic boundary of
the spacetime, the dilaton and hence the area increases linearly.

14One can understand the linear rise of the entanglement negativity in this region in terms of redistribu-
tion of entanglement between Hawking quantas in the corresponding entanglement negativity islands. In
the lower dimensional effective theory one should consider R1∪ IsE(R1) and R2∪ IsE(R2) as the entangling
subsystems and therefore the effective entanglement negativity decreases due to a partial purification of
available entanglement between Hawking modes present in the subsystems. However the total entangle-
ment negativity shows a linear rise because of the appearance of a shared boundary in between IsE(R1)
and IsE(R2) across which a large number of modes are entangled.
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Figure 8: The subsystem R2 is big enough to claim its own entanglement entropy island.
This corresponds to connected RT surfaces for R2.

Next let us consider the case when R1 admits an entanglement island. In this case, the
behavior is similar to the earlier case except that the vanishing phase of the entanglement
negativity disappears. This is because in this case, the subsystems R1 and hence R always
admit their entanglement islands which lead to the non-vanishing entanglement negativity
which may be expressed as

E(R1, R2) =


3
2Φ0 + c

4 log

(
π2 sinh2

[
π`2
β

]
sinh

[
π(2π(1−α)−2(b+`1))

β

]
β2 sinh

[
π(2π(1−α)−2(b+`1+`2))

β

]
)
, `2 <

π
2

3
2Φ0 + c

2 log
(

sinh
[
π(2π(1−α)−2(b+`1))

β

])
, otherwise.

(39)

The behavior of the entanglement negativity for this case is depicted in fig. 9. The growth
rate along linear rise is 4cπ

3β for very small β.
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Figure 9: Schematic behaviour of entanglement negativity as a function of `2 in the presence
of an entanglement entropy island for R1. Here, Φ0 = 1000, c = 500, β = .1, α = .15,
b = .001 and b+ `1 = 1.6.

3.1.3 Disjoint Intervals in Bath

Having discussed the case of adjacent intervals we now analyze the entanglement negativity
of a mixed state configuration of two disjoint subsystems described by the intervals R1 =
[b, b + `1] and R2 = [b + `1 + `s, b + `1 + `s + `2] and Rs = [b + `1, b + `1 + `s] denotes
the interval sandwiched in between R1 and R2 as shown in fig. 10. The expression for the
holographic entanglement negativity for two disjoint subsystems in proximity in the CFT2

bath are given in eq.(22). Here the length of the subsystem Ri is denoted by `i. In this
subsection we consider the same model as in section 3.1.2 and explore different situations
involving various limit of the subsystems R1,R2 and Rs. First we keep the size of the
subsystems R1 and Rs fixed and increase the size of the subsystem R2. In the second
case we keep R1 fixed and vary the relative size between the subsystems R2 and Rs by
changing their shared boundary point. The entanglement negativity in the first scenario
shows behaviour similar to that of the previous case for two adjacent intervals in the bath
discussed in section 3.1.2(a). The result in the second case also agrees with the physical
interpretation described in the section 3.1.2.
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Figure 10: Schematics of two disjoint intervals R1 and R2 in the bath sandwiching the
subsystem Rs.

(a) Keeping `1, `s fixed and changing `2

To begin with, we keep `1 , `s and the size of the JT black hole fixed and increase `2 till the
subsystem R2 covers the whole radiation. The entanglement negativity can be computed
for this configuration using eqs. (22) and (30) as follows

E(R1, R2) =



c
2 log
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β

]
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β

]
sinh
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β

]
sinh
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β

]
)
, `2 < (π2 − `1 − `s)

c
4 log

(
π2 sinh2

[
π(`1+`s)

β
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sinh2

[
π(`2+`s)

β
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β2 sinh2

[
π`s
β
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sinh
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β
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sinh

[
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)
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4 log
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sinh2
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π(`1+`s)

β

]
sinh
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β

]
sinh2

[
π`s
β

]
sinh

[
π(2b+2πα)

β

]
)
, `2 > (π2 − ls)

(40)
The behaviour of the above entanglement negativity with increasing `2 is shown in fig. 11
where we have considered b = 0.001, `1 = 0.6, `s = 0.4 and α = 0.25. In the following we
explain the different regimes of fig. 11 and also interpret these phase transitions using the
island arguments in the effective lower dimensional scenario. The growth rate along linear
rise is cπ

β for high temperatures ( for small β).
As shown in fig. 11 the entanglement negativity between R1 and R2 retains an in-

finitesimally small value till the size of the entire bath subsystem R ≡ R1 ∪ Rs ∪ R2 is
less than half the size of the entire system. In this region R1 and R2 can not have any
entanglement as all the Hawking quanta in the region R1 ∪Rs ∪R2 are entangled with the
rest of the system. If we keep increasing `2, then we land in a phase where the size of the
entire bath subsystem R is larger than half the size of the full system R ∪ B. When this
happens, the subsystems R1 and R2 gather enough Hawking quanta, some of which lead
to their entanglement with the rest of the system whereas the remaining quanta result in
their mutual entanglement. Hence, the entanglement negativity shows a linear rise with
increasing `2. It can be seen in fig. 11 that the linear rise ceases when the size of the sub-
system R2 ∪Rs becomes larger than half the size of the entire system. Beyond this point
the entanglement negativity between R1 and R2 shows a plateau region which indicates a
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constant entanglement between R1 and R2 despite the increasing size of the subsystem R2.
In this region, R1 being a part of (R2 ∪Rs)c, is completely entangled with the subsystem
(R2 ∪Rs). As a result, R1 does not have any more Hawking quanta left which could lead
to a rise in its entanglement with R2 even if `2 is increased further.
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l2
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ε R1 :R2

Figure 11: Entanglement negativity between two disjoint intervals (R1 = [b, b + `1] and
R2 = [b+ `1 + `s, b+ `1 + `s+ `2]) in proximity in the bath as a function of `2. In this case,
we have chosen Φ0 = 1000, c = 500, β = .1, b = 0.001, `1 = 0.6, `s = 0.4 and α = 0.25.

The phenomenon described above can be explained in terms of the negativity islands
from the two-dimensional point of view along the same line as explained in section 3.1.2.
The initial flat region in fig. 11 corresponds to the situations where R ≡ R1 ∪ Rs ∪ R2

is smaller than the half of the entire system and thus it does not have any entanglement
entropy island. As a result the entanglement negativity picks up the contribution only
from the effective term in eq.(36) which is vanishingly small. In the second phase, the size
of the subsystem R is larger than the rest of the system and therefore R develops its own
entanglement entropy island. Hence, the entanglement negativity islands for R1 and R2

appear with a common boundary whose area contributes to the entanglement negativity.
As we increase the size of R2 the size of the entanglement negativity island corresponding
to R2 increases and therefore the entanglement negativity between R1 and R2 increases
linearly as they collect more and more Hawking quanta (cf. the discussion after fig. 7).
Now as we further increase `2 the subsystem R2 admits its own entanglement entropy
island when the size of R2 becomes larger than half the size of the total system. This new
entanglement entropy island collects the partners of the Hawking quanta present in R2

which leads to a purification. As a result the entanglement negativity becomes constant
in this region with the increasing size of R2.

(b) Keeping `1 fixed, varying `2 and `s

Next we keep α , `1 and the size of the entire bath system R fixed while we vary the size of
the intermediate sub-region Rs. We choose to keep the size of R1 small enough such that
for smaller Rs (larger R2), ρR1∪R2 is in the NPT phase and therefore the entanglement
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negativity between R1 and R2 remains non-zero. Now the entanglement negativity for this
case may be obtained using eqs. (22) and (30) as

E(R1, R2) =


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β

]
sinh
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sinh
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(π/β)2 sinh2
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π`s
β
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)
, (π2 − `1) < `s <

π
2

0, `s >
π
2 .

(41)
We observe from the above expression that the entanglement negativity remains constant
upto a certain size of Rs and then linearly decreases to zero which is plotted in fig. 12.
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Figure 12: Variation of the entanglement negativity for two disjoint intervals R1 and R2

with increasing size of the intermediate interval Rs. Here we choose the values Φ0 = 1000,
c = 500, β = .1, b = 0.001, b+ `1 = 0.6, b+ `1 + `s + `2 = 2.325 and α = 0.25.

As we increase `s, with a fixed endpoint of R2 the size of R2 gradually decreases. As
long as R2 remains larger than half the entire system, we are in the tripartite entanglement
phase and the entanglement negativity between R1 and R2 remains constant. After `s
crosses a certain threshold, R2 becomes smaller than half of the entire system and the
entanglement negativity starts decreasing linearly. Finally, when R1 and R2 are small
enough to be maximally entangled with the rest of the system B ∪ Rs, they do not have
any entanglement with each other due to the monogamy property. In this regime, the
entanglement negativity becomes vanishingly small.

From the point of view of the two-dimensional effective theory, the full bath subsystem
R = R1 ∪Rs ∪R2 always has an entanglement entropy island for this particular configura-
tion. For smaller Rs, R2 is large enough to admit its own entanglement island. As a result,
some of the Hawking quanta collected by R2 are purified by their partners in the entangle-
ment island and the entanglement negativity between R1 and R2 remains constant. As we
increase `s, after a certain point the entanglement entropy island of R2 disappears. How-
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ever, note that since R has an entanglement entropy island, there is a quantum extremal
surface corresponding to the entanglement negativity islands of R1 and R2 as described by
the relation in the footnote 12. With increasing `s, or a decreasing `2 the above mentioned
quantum extremal surface shifts towards the center and therefore the area contribution in
eq. (36) decreases linearly leading to a decrease in the entanglement negativity between
R1 and R2. Finally, for a very large Rs, the entanglement wedge between R1 and R2

is disconnected and correspondingly the negativity island disappears completely. In this
phase, the entanglement negativity only picks up the effective contribution in eq. (36),
which due to the relatively small sizes of R1 and R2, is vanishingly small.

3.1.4 Adjacent Intervals involving Black hole and Bath

Figure 13: Schematics of two adjacent intervals B and R2 involving the JT black hole and
the bath.

In this subsection we consider two adjacent intervals B = [0, b] and R2 = [b, b+ `1], where
the interval B includes the quantum mechanical degrees of freedom as shown in fig. 13.
We interpret this configuration as two adjacent subsystems involving the black hole and
the bath. We vary the size of the bath subsystem R2 and plot the entanglement negativity
corresponding to this configuration in fig. 14. The behaviour of the entanglement nega-
tivity between B and R2 is similar to the situation described in subsection 3.1.2 (a) and is
depicted in fig. 6. The qualitative features of the entanglement negativity in the different
regimes may be explained using arguments similar to those in subsection 3.1.2.
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Figure 14: Variation of the entanglement negativity between the adjacent intervals B and
R2, with the size of R2. Here Φ0 = 1000, c = 500, β = .1, b = 0.001, α = 0.25.

3.1.5 Disjoint Intervals involving Black hole and Bath

Finally we consider the mixed state configuration of two disjoint intervals involving the
JT black hole and the bath. The configuration is schematically shown in fig. 15 and is
similar to that in fig. 10, only in this case the subsystem B = [0, b] includes the quantum
mechanical degrees of freedom while Rs = [b, b+ `s] and R2 = [b+ `s, b+ `s + `2] reside in
the radiation bath. As in subsection 3.1.3, we consider two cases. In the first case we keep
the size of the JT black hole fixed and vary `2 while keeping `s fixed. In the second case
we vary `s keeping the size of the black hole and one of the endpoints of R2 fixed. The
plots of the entanglement negativity between B and R2 are shown in fig. 16. Once again
the qualitative features of these plots may be explained from the lower dimensional island
arguments and also in terms of the Hawking quanta collected by the individual subsystems,
similar to those in subsection 3.1.3.

Figure 15: Schematics of two disjoint intervals B and R2 involving the JT black hole and
the bath.
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(a) Φ0 = 1000, c = 500, β = .1, b = 0.001,
b+ `s = 0.2 and α = 0.25.
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(b) Φ0 = 1000, c = 500, β = .1, b = 0.001,
b+ `s + `2 = 2.325 and α = 0.25.

Figure 16: Entanglement negativity between two disjoint intervals B = [0, b] and R2 =
[b+ `s, b+ `s + `2] involving both the JT black hole and the radiation bath. In (a) the size
of the radiation subsystem R2 is varied while in (b) we vary the size of the intermediate
subsystem Rs.

4 Summary and discussion

To summarize, in this article we have obtained the behaviour of the entanglement negativity
for various bipartite pure and mixed state configurations involving adjacent, disjoint and
single intervals in a bath coupled to an evaporating non-extremal JT black hole obtained
through the partial dimensional reduction of a BTZ black hole as described in [20]. Note
that in the present article we utilized the model developed in [20] that geometrizes the
black hole evaporation and the island formation in the two dimensional effective theory. We
would like to emphasize that the Hawking radiation collected in the two dimensional bath is
entangled with the evaporating JT black hole, and hence probing its entanglement structure
requires a mixed state entanglement measure such as the entanglement negativity. Hence,
our investigation of the behaviour of the entanglement negativity for various configurations
essentially amounts to exploring the dynamics of the mixed state entanglement structure
of the Hawking radiation collected in a bath coupled to an evaporating JT black hole.
Remarkably, we have demonstrated that the results we obtained exactly reproduced the
analogues of Page curve for the entanglement negativity in bipartite random mixed states,
which was derived through a diagrammatic technique in [70]. Therefore, our computation
reiterates the deep connection between black holes and random matrix models which has
been investigated in several recent articles in diverse contexts [5, 54–62].

We started by considering the entanglement negativity of a bipartite pure state con-
figuration involving a single interval in the bath and the rest of the system. For this case,
the entanglement negativity is given by the Renyi entropy of order half as expected from
quantum information theory. We demonstrated that when the single interval considered
is restricted to be less than half the size of the entire system, the behaviour of the entan-
glement negativity is analogous to the rising part of the Page curve for the entanglement
entropy. However, when the interval considered becomes larger than half the size of the
entire system the entanglement negativity starts decreasing and finally when it spans the
entire bath we obtain the complete Page curve. We interpreted the above result in terms
of the entanglement island construction in the two dimensional effective theory as follows.
An entanglement island for this case appears only when the size of the bath subsystem
under consideration is larger than half the size of the entire system. This leads to the
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purification of the Hawking quanta collected in the subsystem resulting in a net decrease
of the entanglement negativity. When the subsystem considered spans the entire bath all
the Hawking quanta are purified by the corresponding island and we obtain the analogue
of the complete Page curve for the pure state.

We then considered the mixed state configurations involving the adjacent and the dis-
joint intervals in the bath. We further divided the case of the adjacent intervals in the
bath into three. In the first scenario, we kept the ratio of the two adjacent intervals fixed
and varied the dimensional reduction parameter α which controls the geometric evapo-
ration of the JT black hole. Remarkably, our result exactly reproduced an analogue of
the Page curve for the entanglement negativity obtained through the random matrix tech-
nique derived in [70]. In the second scenario, we varied the length of only one of the two
intervals while keeping the α parameter and the sum total of the length of the intervals
fixed. Quite interestingly, once again the behaviour of entanglement negativity determined
from our computation precisely matched with an analogue of the corresponding Page curve
obtained from the random matrix technique in [70]. In the third case, we fixed the α param-
eter and the length of one of the subsystems, and determined the entanglement negativity
of the adjacent intervals by varying the length of the other interval. We described the
behaviour of entanglement negativity obtained in all the three cases from the dynamics of
the entanglement between the Hawking quanta collected in the bath subsystems involved
and their corresponding islands.

Subsequently, we considered the mixed state configuration of two disjoint intervals in
a bath coupled to an evaporating JT black hole. We described this case by further divid-
ing it into two scenarios. In the first case, we determined the entanglement negativity by
varying the length of one of the disjoint intervals in question, while keeping the length of
the other interval and the distance between them fixed. In the second case, we once again
kept the length of one of the interval fixed but varied the length of the other interval and
the distance between them. In both of the above mentioned scenarios we could once again
explain the behaviour of entanglement negativity through the interplay of the entangle-
ment between the subsystems, and the purification due to the appearance of islands in
the two dimensional effective theory. Finally, we considered the mixed state configurations
involving the JT black hole and a part of the Hawking radiation/bath. In the model devel-
oped in [20] the quantum mechanical degrees of freedom dual to the evaporating JT black
hole are described by an interval [0, b] in the limit b→ 0. We computed the entanglement
negativity between such an interval describing the quantum mechanical degrees of freedom
and another interval which is completely inside the bath subsystem, both for adjacent and
disjoint configurations. As earlier we could interpret all the results we obtained from the
island construction in two dimensional effective theory.

Furthermore in the appendix, we have obtained the entanglement negativity of vari-
ous mixed state configurations in a bath coupled to a two dimensional extremal JT black
hole obtained from a partial dimensional reduction of the pure AdS3 space time as de-
scribed in [20]. The mixed state configurations we considered here included the adjacent
and the disjoint intervals involving bath and black hole. Note that as is well known the
extremal black holes are at a vanishing Hawking temperature, and therefore they do not
evaporate. Hence, their exact role in the information loss paradox is unclear and a definite
interpretation of the results for this case remains elusive due to the subtleties involved.

Our results lead to several possible future directions. It would be very exciting to
compare the entanglement negativity we computed for various configurations to the corre-
sponding results obtained in other models involving the double holographic formulations
examined in [13–15,17,18,24,25]. Investigation of other mixed state entanglement and cor-
relation measures such as reflected entropy, entanglement of purification and odd entropy
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for bipartite systems in the present model developed in [20] should be significant in further
understanding the correlation structure of the Hawking radiation. Exploring the behaviour
of the entanglement negativity in other constructions involving the geometrization of the
black hole evaporation process and the island formation considered in [10, 11, 22] might
lead to novel insights about how the Hawking radiation encodes the information about
the black hole interior. It would also be quite interesting to examine the behaviour of the
entanglement negativity when gravitating baths are involved [16,21,23,88]. We leave these
fascinating issues for future investigations.
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Appendix A Extremal JT black holes

In this appendix we determine the entanglement negativity for various mixed state con-
figurations in a bath coupled to an extremal black hole in JT gravity obtained through
the partial dimension reduction of the pure AdS3 space time as will be reviewed below.
Unlike the non-extremal JT black hole, the extremal black hole has a vanishing Hawking
temperature and hence in this case it does not evaporate. As a result, the explicit role of
the extremal black hole in the information loss paradox remains unclear. Also note that in
the model described in [20] the α = Φr

2π parameter does not control the time dependence
anymore. Therefore, a coherent interpretation of the results we obtain below remains as
an open issue for future investigation.

A.1 Review of the partial dimensional reduction

In this section we briefly review how extremal black hole in JT gravity can be obtained
through partial dimension reduction from a three dimensional pure AdS3 [20]. The metric
for the pure AdS3 space time in Poincaré coordinates is given as

ds2 =
L2

3

z2
(−dt2 + dz2 + dx2). (42)

where L3 denotes the AdS3 length scale. On using the coordinate transformation z =
L2
3
r

and x = L3ϕ, the above equation may be written as

ds2 = − r
2

L2
3

dt2 +
L2

3

r2
dr2 + r2dϕ2. (43)

where ϕ corresponds to the angular coordinate with a period 2π. Once again the above
metric is of the form eq. (7) which leads to an extremal black hole in JT gravity upon a
partial dimension reduction of pure AdS3 in Poincaré coordinates as described in [20]

ds2 =
−4L2

3 dX+dX−

(X+ −X−)2 +
4L4

3 dϕ2

(X+ −X−)2 (44)

where X± = t± z are the light cone coordinates. The authors made the following identi-
fication in order to identify the above metric with AdS2 metric in Poincaré coordinates

Φ = Φ0 + Φr

√
gϕϕ

`2
= Φ0 +

2Φr

X+ −X−
(45)
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where Φ corresponds to the dilaton in two dimensional JT gravity. As described in [20],
upon partial dimensional reduction in the ϕ direction (i.e integrating over some angle 2πα,
where α ∈ (0, 1]), the spacetime consists of two parts, namely the extremal JT black hole
and the rest corresponds to a two dimensional bath subsystem described by a CFT.

Consider the subsystem [0, b] in the CFT/bath region, which also includes the quantum-
mechanical degrees of freedom. The entanglement entropy of this subsystem may be ob-
tained by computing the length of a geodesic in the three dimensional bulk. In this case,
the length of a geodesic homologous to a boundary subsystem of length ∆ϕ in coordinates
(t, r, ϕ) is given by

L∆ϕ = 2L3 log ∆ϕ+ UV cutoff. (46)

Hence, the subsystem described by an interval i.e [0, b] in the bath, the entanglement
entropy of the boundary subsystem is then obtained using eq. (46) and the RT formula
as [20]

S =
1

4G

(
Φ0 + 2 log

Φr + 2b

L

)
, (47)

where we have made the following identifications L3 = L, G ≡ G(2) = G(3)

L , Φr = 2πLα
and the UV cut off is absorbed in the background value of the dilaton denoted as Φ0.

A.2 Entanglement Negativity

To begin with we determine the Renyi entropy of order half for a generic boundary sub-
system A described by an interval of length ∆ϕ in the bath, which we require to compute
the entanglement negativity of various configurations in question. The Renyi entropy of
order half for such an interval A can be obtained using eqs. (19), (18) and (46) as follows

S(1/2)(A) = Φ0 +
c

2
log ∆ϕ, (48)

where we have used the Brown-Henneaux formula c = 3L

2G
(3)
N

[74] and absorbed the UV cut

off in Φ0. We will use the above expression to compute the entanglement negativity in the
following subsections.
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A.2.1 Adjacent Intervals in Bath

Figure 17: Schematic of different possible phases for adjacent intervals configuration in a
bath.

In this subsection we consider the mixed state configuration of two adjacent intervals
R1 ≡ [b, b+ `1] and R2 ≡ [b+ `1, b+ `1 + `2] in the bath as shown in fig. 17. We observe
that depending on the size of the intervals R1, R2, we have different phases which we
describe below.

Phase I

In phase I, the sizes of both the intervals R1 and R2 are small such that the corresponding
RT surfaces are disconnected. This is depicted in fig. 17(a). The entanglement negativity
for the adjacent intervals in this phase may be obtained using eqs. (48) and (20) as

E(R1 : R2) = Φ0 +
c

2
log

[
`1`2

L(`1 + `2)

]
. (49)

Phase II

In this phase, the RT surfaces corresponding to R1 and R2 are disconnected but connected
for R1∪R2. This is shown in fig. 17(b). The entanglement negativity for the configuration
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of adjacent intervals for phase II may now be computed using eqs. (48) and (20) as

E(R1 : R2) = Φ0 +
c

4
log

[
`21`

2
2

L2(Φr + 2b)(Φr + 2b+ 2`1 + 2`2)

]
, (50)

where Φr = 2πLα.

Phase III

The phase III is described by the configuration in the subsystem R1 is large enough to
have connected RT surfaces whereas the RT surfaces corresponding to R2 are disconnected
as depicted in fig. 17(c). We now employ eqs. (48) and (20) to obtain the entanglement
negativity for this phase as

E(R1 : R2) = Φ0 +
c

4
log

[
(Φr + 2b+ 2`1) `22

L2(Φr + 2b+ 2`1 + 2`2)

]
. (51)

Phase IV

In this phase the RT surfaces corresponding R1 are disconnected whereas the same for R2

are connected. It is shown in fig. 17(d). The entanglement negativity for adjacent intervals
in phase IV may now be computed using eqs. (48) and (20) as follows

E(R1 : R2) = Φ0 +
c

4
log

[
(Φr + 2b+ 2`1) `21
L2(Φr + 2b)

]
. (52)

Phase V

In this phase, the RT surfaces corresponding to both the intervals R1 and R2 are connected
as depicted in fig. 17(e). The entanglement negativity for the configuration of the adjacent
intervals for phase V may now be given as

E(R1 : R2) = Φ0 +
c

2
log

[
Φr + 2b+ 2`1

L

]
. (53)

A.2.2 Disjoint Intervals in Bath

We consider the mixed state configuration of two disjoint intervals in the bath described
by R1 ≡ [b, b + `1] having length `1 and R2 ≡ [b + `1 + `s, b + `1 + `s + `2] of length `2.
These two intervals are separated by Rs ≡ [b + `1, b + `1 + `s] having length ls. We see
that depending on the size of the intervals R1, R2, there are many possible phases some of
which we discuss below.

Phase I

In this phase, we take the size of the subsystems R1 and R2 such that the RT surfaces
corresponding to the subsystem R1∪Rs are connected but disconnected for R2∪Rs. We also
consider Rs to be small so that its RT surfaces are always disconnected. The entanglement
negativity for the configuration of disjoint intervals in bath may now be obtained using
eqs. (48) and (22) as

E(R1 : R2) =
c

4
log

[
(`2 + `s)

2(Φr + 2b+ 2`1 + 2`s)

`2s(Φr + 2b+ 2`1 + 2`s + 2`2)

]
. (54)
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Phase II

This phase is described by the configuration in which R1 and R2 are large enough such
that the RT surfaces for R1 ∪ Rs and R2 ∪ Rs are connected. We now employ eqs. (48)
and (22) to compute the entanglement negativity for this phase as follows

E(R1 : R2) =
c

4
log

[
(Φr + 2b+ 2`1)(Φr + 2b+ 2`1 + 2`s)

`2s

]
. (55)

The entanglement negativity for other remaining phases can be obtained in a similar
manner described above.

A.2.3 Adjacent Intervals involving Black hole and Bath

We consider the mixed state configuration described by the adjacent intervals B ≡ [0, b]
(which also includes the QM degrees of freedom) of length b and R1 ≡ [b, b+ `1] of length
`1 as shown in fig. 18. We see that there are two phases for this configuration depending
on the size of interval R1 which are discussed below.

Figure 18: Figure (a) depict the RT surface for R1 in the disconnected phase where as the
schematic in figure (b) corresponds to the connected phase of the RT surface.

Phase I

For the configuration of the adjacent intervals in phase I, the RT surfaces corresponding to
the subsystem R1 are disconnected as depicted in fig. 18(a). The entanglement negativity
for the adjacent intervals in this phase may now be obtained using eqs. (48) and (20) as

E(B : R1) = Φ0 +
c

4
log

[
(Φr + 2b) `21

L2(Φr + 2b+ 2`1)

]
. (56)

Phase II

In phase II, we have connected RT surfaces for the interval R1 which is shown in fig. 18(b).
The entanglement negativity for the adjacent intervals in phase II may be obtained using
eqs. (48) and (20) as follows

E(B : R1) = Φ0 +
c

2
log

[
Φr + 2b

L

]
. (57)

From the above expressions it is clear that the entanglement negativity increases as we
increase the size of the subsystem R1 and become constant after a certain value of `1.
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A.2.4 Disjoint Intervals involving Black hole and Bath

For the mixed state configuration of two disjoint intervals, we consider the subsystems B ≡
[0, b] of length b (which also includes the QM degrees of freedom), and R1 ≡ [b+`s, b+`s+`1]
having length `1, which are separated by Rs ≡ [b, b+`s] of the length `s. This configuration
is depicted in fig. 19. We observe that depending on the size of intervalR1, we have different
phases which are described below.

Figure 19: Schematic of different phases for configuration of disjoint intervals.

Phase I

The RT surfaces for the subsystem R1 ∪Rs in this phase are disconnected as shown in fig.
19(a). Note that we consider Rs to be small such that RT surfaces corresponding to it
are always disconnected. We now employ eqs. (48) and (22) to obtain the entanglement
negativity for this phase as

E(B : R1) =
c

4
log

[
(`1 + `s)

2(Φr + 2b+ 2`s)

`2s(Φr + 2b+ 2`1 + 2`s)

]
. (58)

Phase II

In this phase, the RT surfaces for R1 ∪ Rs are connected as depicted in fig. 19(b). As
earlier we find the entanglement negativity for phase II, utilizing eqs. (48) and (22) as
follows

E(B : R1) =
c

4
log

[
(Φr + 2b)(Φr + 2b+ 2`s)

`2s

]
. (59)

Once again from the above expressions, we note that the entanglement negativity in-
creases as a function of the size of the subsystem R1 first and eventually saturates.
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