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Abstract

The many-body localised (MBL) to thermal crossover observed in exact diag-
onalisation studies remains poorly understood as the accessible system sizes
are too small to be in an asymptotic scaling regime. We develop a model of
the crossover in short 1D chains in which the MBL phase is destabilised by
the formation of many-body resonances. The model reproduces several prop-
erties of the numerically observed crossover, including an apparent correlation
length exponent v = 1, exponential growth of the Thouless time with disor-
der strength, linear drift of the critical disorder strength with system size,
scale-free resonances, apparent 1/w dependence of disorder-averaged spectral
functions, and sub-thermal entanglement entropy of small subsystems. In the
crossover, resonances induced by a local perturbation are rare at numerically
accessible system sizes I which are smaller than a resonance length \. For
L> VX (in lattice units), resonances typically overlap, and this model does
not describe the asymptotic transition. The model further reproduces contro-
versial numerical observations which Refs. [1,2] claimed to be inconsistent with
MBL. We thus argue that the numerics to date is consistent with a MBL phase
in the thermodynamic limit.

1 Introduction

Interacting one-dimensional quantum systems generically many-body localise (MBL) in the
presence of strong disorder. Local subsystems of a MBL system do not thermalise; they in-
stead retain memory of their initial conditions indefinitely. MBL thus provides a remarkable
counterexample to the ergodic hypothesis, the cornerstone of quantum statistical mechan-
ics [3-8], and allows for exotic quantum orders at finite energy densities [9-14,14-17,17-28|.

Statistical descriptions of both the thermal and MBL phases have been corroborated
by numerical studies. Specifically, the thermal phase is found to obey the eigenstate
thermalisation hypothesis (ETH) [29-37|, whereas the MBL phase violates the ETH and is
instead characterised by a complete set of quasi-local conserved quantities (or 1-bits) [38—
44].

However, theoretical descriptions and numerical observations of the MBL-thermal tran-
sition remain at odds with one another. Phenomenological models suggest that the tran-
sition has Kosterlitz-Thouless-type scaling [45-47|, and occurs when the localised phase is
destabilised by rare thermal regions which seed “thermalisation avalanches” [48-54]. Nu-
merical studies, which are limited to small systems, do not find any evidence of rare thermal
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Figure 1: a) The resonance model (RM) predicts a continuous transition (orange point)
between a localised (blue) and a thermal (red) phase, and an inverse correlation length
|€]7! (orange lines) that vanishes with exponent v = 1 at the transition. At finite size, the
transition is smeared into a crossover with ‘fuzzy’ boundaries (demarcated by the dashed
orange lines). Within the crossover region the behaviour depends on whether the resonance
length A (purple) is greater/lesser than the systems size L. In region I L < A, and typical
eigenstates have no resonances and spectrally averaged properties resemble those of the
localised phase. b) The MBL-thermal finite-size crossover: At large L in the vicinity of the
RM transition (hatched region), localisation is inconsistent due to overlapping resonances.
The RM is however self-consistent in the blue regions. The RM thus describes the MBL-
thermal crossover in small system numerics (horizontal line), even though it does not
describe the asymptotic transition (black point).

regions [55,56], but are known to be plagued by unexplained finite-size effects [57-60]. The
absence of a theory of the finite-size crossover leaves unclear which features of the numeri-
cal data may survive in the thermodynamic limit, and has led Refs. [1,2] to claim that the
numerical data precludes the possibility of an MBL phase altogether.

We develop a microscopically motivated resonance model (RM) for the one-dimensional
MBL-thermal crossover at finite sizes. In this model the MBL phase is not destabilised
by rare thermal regions, but by many-body resonances involving macroscopically distinct
l-bit states. Although this mode of instability was previously identified [61] and observed
in finite size numerics [62], it has received little attention in the literature.

Specifically, we consider a presumptively many-body localised chain, analyse the statis-
tics of resonances induced by local perturbations, and establish when these resonances
destabilise MBL. The detailed analysis is different in the Floquet (Sec. 2) and Hamiltonian
(Sec. 3) settings. However, in both cases, the same set of non-trivial length scales emerge
which control the physics. The first of these is the bare localisation length ¢, which governs
the exponential decay of off-diagonal matrix elements of local operators in the 1-bit ba-
sis. A site-local perturbation introduces many-body resonances between eigenstates. The
probability that a given eigenstate finds a first-order resonance involving 1-bits within a
range 7 (in the Floquet case) is given by

e_T/g

q(r) = — (1)

Here, two additional lengths emerge: the correlation length & sets the typical range of
resonances, while the resonance length \ determines their density. The RM predicts that
& diverges as the localisation length approaches the critical value (.. This marks the
transition between a localised phase in which the number of resonances is finite and a
delocalised phase (dubbed thermal in Fig. 1a) in which the number of resonances grows
exponentially with range. The finite-size behaviour near the transition depends crucially on
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the resonance length A which is much larger than the lattice scale. For system size L < A
(region I, Fig. 1la), typical eigenstates have no resonances and non-thermal expectation
values. For system sizes L > \ (region II), typical states participate in L/\ > 1 resonances
even at first-order .

The first-order analysis is clearly incomplete in regimes where the number of resonances
induced by a single local perturbation grows with L (region II and thermal). In fact, the
region of instability is somewhat larger if we consider locally perturbing the system at
every site. In this case, a typical eigenstate develops a density ~ £/\ of resonances each
of which rearranges a region of size £ (here and henceforth we measure lengths in units
of the lattice constant). For £ 2> VA, the resonances typically spatially overlap and we
expect them to lead to l-bit rearrangements on the scale of the system. The hatched region
in Fig. 1b indicates the parameter regime and finite sizes where localisation in the RM is
inconsistent due to this instability.

Nevertheless, we present analytical arguments in Sec. 4 that the RM is self-consistent
outside of the hatched region — i.e. at small enough L in region I and at any L for
large enough disorder (i.e. 1/¢). Rough estimates of the resonance length in Floquet and
Hamiltonian disordered chains suggest 15 < A < 50 for models numerically studied to date
(see Sec. 4) . Thus, we believe that numerically accessible system sizes correspond to the
horizontal dashed line in Fig. 1b, so that the observed crossovers in spectral quantities,
spectral functions, finite-size drifts, etc. can all be predicted within the region of validity
of the RM. Summarising the more detailed results in Sec. 5, the RM reproduces many
features of numerically exact data:

e Localised region I: As typical eigenstates do not find a resonance for L < v\,
the RM predicts that region I displays the phenomenology of the localised phase:
long-time local memory, a logarithmically growing light cone, sub-thermal eigenstate
entanglement entropy of small sub-systems etc.. Spectrally averaged quantities are
thus insensitive to the boundary between the MBL phase and region I (§ = L,
Fig. 1b), in agreement with Ref. [58|.

o (Correlation length exponent v: The correlation length exponent in the RM is given by
v = 1, consistent with the values extracted from finite-size scaling in ED [8,11,59,63|.
Note that v = 1 violates the Harris criterion [57,64,65].

o Drift of the critical disorder strength W, with L: The RM predicts the controversial
observation of Refs. [1,2] that W, oc L at small L.

o Apparent 1/w low-frequency dependence of spectral functions: In region I, disorder-
averaged spectral functions [S(w)] exhibit a low-frequency power-law divergence with
a continuously varying exponent (throughout we use [-] to denote disorder averaging).
The divergence is strongest in the middle of region I, with [S(w)] ~ 1/w!=% (Floquet,
Fig 2a-b) or [S(w)] ~ 1/w|logw|'/? (Hamiltonian, Fig 2d-¢). As the corrections are
small (0. < 1), the RM explains the apparent 1/w behaviour reported in Refs. [2,66].

e Scale-free resonances: Within regions I and II, ¢(r) is scale-invariant and resonances
form at all ranges, in agreement with a numerically exact calculation of ¢(r) [62].

o Apparent sub-diffusion: On the thermal side of the transition (0 < —¢ < L), the
dynamics at short times ¢ < we ' is critical. The RM describes this dynamics, and

'Naively, region II is the ‘critical fan’ in which & > L >> all other length scales. However, we refrain
from this nomenclature as the region is masked by the collective instability of overlapping resonances
discussed next.
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predicts a continuously varying exponent z in spectral functions ~ 1 /wl_l/ Z (see
Figs 2a-b for Floquet, and Figs 2d-e for the Hamiltonian case). The RM thus
explains the apparent sub-diffusion (as measured by z) reported in several studies
[2,66-70], without invoking rare region effects, which Ref. [55] finds are absent in
numerically accessible systems.

e FExponential increase of Thouless time at weak disorder W < W,: This numerical
observation of Refs. [1,2] follows from the logarithmic growth of the light cone until
time t = wgl in the thermal phase of the RM.

As the resonance model of the finite-size crossover assumes the existence of MBL, and
reproduces the numerical observations of Refs [1, 2], we conclude to their contrary, that
the numerics to date appears consistent with a stable MBL in the thermodynamic limit.

We additionally predict three interesting features of the dynamical phase diagram that
could be tested numerically in the near future.

e The exponents controlling the strongest low-frequency divergence of [S(w)] ~ 1/w! =%
in region I: We predict that the exponent 6. is a non-zero non-universal value in the
Floquet setting, while . — 0" (corresponding to log corrections) in the Hamiltonian
setting with energy conservation. That is, the existence and number of conservation
laws affects the scaling theory of the finite-size MBL-thermal crossover.

e An empirical criterion for MBL: In localised systems, the distribution o(v) of matrix
elements of a local operator V' that couple eigenstates in two small non-overlapping
mid-spectrum energy (or quasi-energy) windows takes the form,

o(v) ~ v, (2)
with 0 < 6y <1 (see Fig. 2¢). A simple numerical criterion follows:
pU ~ 2572 (thermal), pv ~ cons. (MBL) (3)

with p denoting the mid-spectrum many-body density of states. This criterion gen-
eralises the avalanche stability criterion of Ref. [48] to a setting without l-bits or rare
thermalising regions.

e Detecting the crossover between MBL and region I: In region I, scale free resonances
form, but remain rare. Thus eigenstate averaged observables are largely insensitive to
the formation of resonances. However, by analysing the distribution of an observable
over eigenstates, or conditioning on the formation of resonances, it is possible to
numerically detect the crossover between MBL and region I. Such an analysis is
performed in Ref. [62].

We proceed as follows. In Section 2, we describe the Floquet resonance model, couple
the RM to a probe spin, compute the statistics of many-body resonances that a reference
I-bit state is involved in, and thus derive the disorder-averaged spectral function of a local
operator. In Sec. 3 we repeat the analysis for a Hamiltonian system. In Sec. 4 we establish
the regime in which the RM is self-consistent, showing it to apply to small and strongly
disordered systems (small L in region I in Fig. 1). In Sec. 5 we discuss the implications of
this analysis for interpreting finite-size numerical data, before concluding in Sec. 6.
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Figure 2: Properties of the Resonance Model transition: Panels (a) and (d): In the MBL
phase and at the RM transition (1/¢ > 1/(.), the spectral function diverges at low fre-
quencies [S(w)] ~ w™ TP, Panels (a) and (d) summarise the behaviour of the exponent 6
in the Floquet and Hamiltonian cases respectively. Both panels show 6§ = 6y — 1 deep in
the MBL phase (1/¢ — o), and § — 0 as the transition is approached. At the Floquet
RM transition, 6 jumps to a finite value § = 6. (orange point, panel (a)), while . = 0T
(indicating the presence of log corrections) at the Hamiltonian RM transition. Panels (b)
and (e): In the vicinity of the RM transition, the correlation length |{| sets the cross-over
frequency scale we ~ exp(—1/|6g|). The low-frequency behaviour (w < wg) is determined
by the phase, while the intermediate frequency behaviour w > we > J —1 is determined
by the transition. The two other frequency scales are set by the system size: the Heisen-
berg scale wy is the inverse level spacing, while w, is the scale of the smallest off-diagonal
matrix elements. The thermal-region I crossover occurs when we ~ wyg ~ we. In region I,
only the exponent controlling the w > we¢ decay is visible. This exponent is continuously
varying and is significantly corrected from its value at the transition in region I (as quan-
tified by the O(6y) term). The smallest value of the exponent is however set by .. Panel
(¢): The exponent 6y may be directly extracted from p(v), the distribution of off-diagonal
matrix elements of a local operator. In the localised phase, there are exponentially many
off-diagonal matrix elements which are exponentially small in range, so g(v) diverges as a
power-law at small v. The exponent defines 6y. Panel (f): The time averaged correlator

[C',] serves as an order parameter for the MBL phase. [C.] goes to zero smoothly as
1/¢ — 1/(. is approached from the MBL side, faster than any power law in both the
Hamiltonian and Floquet cases.
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Figure 3: Set-up in the physical and [-bit bases respectively: a) A “probe” spin—% (orange)
couples to a strongly disordered chain (blue) at the site n = 0 (magenta). b) Transforming
to the 1-bit basis renders the Floquet unitary of the chain diagonal and the probe-chain
coupling quasi-local. The coupling strength decays exponentially with distance from n = 0.

2 Floquet resonance model

We now describe the computation of the spectral function [S(w)] of a local operator within
the RM for a Floquet-MBL system. Specifically we calculate [S(w)] for a Pauli operator
acting on an ancillary probe spin, coupled to an infinite MBL chain (Fig. 3). This simplifies
the analysis as the the probe spin may be isolated without cutting the chain. The low
frequency behaviour of [S(w)] is though universal, and thus holds for any local operator
defined on the chain. We first introduce the Floquet RM and define the localisation length
¢ in Sec. 2.1, we then detail a careful counting of resonances induced by a probe spin in
Sec. 2.2. Panels (a), (b) and (f) in Fig. 2 summarise the results for the spectral function
of the probe spin in the Floquet RM.

Resonances do not span the system for 1/¢ > 1/(. := log 2; this is the MBL phase of
the Floquet RM. The RM MBL phase has infinite time memory of initial conditions, and
a power-law divergence of the spectral function at small frequency (53).

The point 1/¢{ = 1/(. marks the transition out of the RM MBL phase, at which reso-
nances occur on all length scales. The statistics of the strongest resonances determine the
low-frequency scaling of [S(w)] in regions I and II within Fig. la. The exponent # charac-
terising the low-frequency divergence of [S(w)] in region II jumps at the transition (57).

Although typical states find increasingly many resonances at long ranges for 1/¢ < 1/,
they remain rare on the scale of the correlation length £. Consequently, the RM predicts
the behaviour of [S(w)] at intermediate frequencies (59) in the thermal phase.

2.1 Set-up
2.1.1 Chain Hamiltonian

Consider a generic strongly disordered and interacting quantum spin chain with periodic
boundary conditions, and subject to a periodic (Floquet) drive. For example, the Heisen-
berg model with random O(3) fields:

HW:WZvn-an 0o<M<m
n

H(t) = (4)
HJ:JZO'H'O'nJrl T < Qt <27

where W, J and 2 set the disorder strength, interaction strength and fundamental fre-
quency of the drive respectively, o, = (0%, 04,072) is the usual vector of Pauli matrices
acting on the nth site, and o471 = o1 enforces periodic boundary conditions. The v,, are
independent and identically distributed (iid) random vectors with zero mean [v,] = 0 and
unit variance [v,, - v,] = 1, with, for example, iid Gaussian distributed entries. Here []

denotes disorder averaging.
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Figure 4: Organising resonances by range: a) The many-body spectrum of #; in a small
quasi-energy window is divided into two sectors labelled by the state of the probe spin
o =T,}. |ea T) labels a specific reference state. b) The 1-bit configuration corresponding
to reference state (red spectral line) is shown. The states |eg |) in the opposite sector
(green lines) can be grouped according to their range r from the reference state (ranges
r =0, 1,2 shown); states at range r differ only on the l-bits with index |n| < r (highlighted
in orange). A state |eg |) at range r is resonant with |e, 1) if its quasi-energy separation
is less than the matrix element size v(r) (i.e. if it lies within the magenta region). In the
plot, the first resonance occurs at range r = 2.

We assume two key properties of H(t): (i) it has no global conservation laws, and (ii)
for some finite Q, W > J, the model is Floquet many-body localised, as per Ref. [71]. The
specific form of H(t) is otherwise unimportant.

The dynamics of the chain is characterised by the Floquet operator

T
Up =T exp (—1/0 H(t)dt> -
=exp (—iH;T/2) exp (—iHwT/2)

where T' = 27/Q and 7 is the usual time ordering operator. The associated Floquet states
lea), and quasi-energies €, are defined by

Urlea) = e Te,). (6)

2.1.2 Localisation in the l-bit basis

At sufficiently strong disorder in the MBL phase, we assume that the Floquet states |e,)
may be identified with configurations of quasi-local integrals of motion, or I-bits |7,38,39]
(in Sec. 4.1, we discuss how this assumption may be relaxed). Each l-bit 77 is traceless
tr (77) = 0, squares to the identity (77)? = 1, is exponentially localised around the physical
site n, and commutes with the Floquet operator

[Ur, 77] = 0. (7)

Each Floquet state |e,) can be identified with an l-bit configuration 7, € {—1,1}*. The
scalar element 7,, = £1 of 7, specifies the state of the nth l-bit:

Thl€a) = Tanl€a)- (8)

A quasi-local operator U diagonalises the Floquet unitary, and maps the physical spin
operators to l-bits,
Ureut = o2, 9)
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Thus the ¢ are similarly exponentially localised operators in the 1-bit basis.
Consider two eigenstates |e,), |€5). We say two states differ at range r if the furthest
flipped 1-bit is at distance 74, from the site n = 0.

Tab := max{|n| : Tan # Ton} (10)

The range is depicted in Fig. 4b. If the matrix element Vg, := (¢,|V'|€y) of an operator V
is non-zero, then V,; is also said to have range 4.

The length scale on which a physical spin operator is localised in the 1-bit basis defines
the localisation length (. Consider a local operator V' acting on the physical site of index
n = (0. The operator V can be decomposed into a sum of terms of increasing range

v=>V, (11)

where all the non-zero matrix elements of V, have range r. The asymptotic decay of the
norm of V,. defines (:

)
log V| ~ ~. (12)

We use the re-scaled Frobenius norm

L), (13)

as it is simple to calculate analytically, and captures the typical expectation value of an
arbitrary vector |(|V;|[¢)| = |V,|.

2.1.3 Coupling a probe spin to the disordered chain

To probe the dynamical phase of the disordered chain, we introduce a probe Spin—% op
subject to a z-field of strength W. The combined Hamiltonian of the probe spin and
disordered chain,

H(t) = Ho(t) + (1), (14)

is periodic with fundamental frequency Q. Here #; encodes the part of the Hamiltonian
in which the probe spin and disordered chain are decoupled

h
%(t):H(t)®11+§ﬂ®afD, (15)
and #(t) encodes their coupling. Throughout we use cursive letters to denote properties
of the combined Hilbert space of the disordered chain and the probe spin, and italic letters
to denote properties of the reduced Hilbert spaces. The spin and chain are coupled an
interaction #j, we choose

Hi(t) =Y 6(n—t/T)V®op. (16)
nez

Here V is some local operator which acts only on the n = 0 site of the chain, and which is
assumed to have norm |V| = J, eg. V = Jo§.
The Floquet operator of the combined system is given by

Uy = Uy Uy (17)
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where €U is the Floquet unitary for #; = 0, and U; encodes the interaction

Uy = Up ® exp (—sWTop) (18)
U, = exp (—1TV @ op) . (19)

Each eigenstate of the unperturbed Floquet unitary Tp|e%) = e_i53T|eg> is a tensor product
of a quasi-energy state of the disordered chain |e,) and a z-polarised state of the probe
spin |o),

0
Eq) ‘= |€a0) = |€q) ® |O),
) i= koo = e 1o o0
Eq = €a + 50W,
where o = (a, 0) is a composite label.
2.2 Spectral function of ¢f in the RM MBL phase ¢ < (.
Our aim is to calculate the disorder averaged infinite temperature zz spin correlator,
1 z z
[C2:(t)] = 7 [tr (op()op(0))], (21)

in the RM. Here the normalization by D, the Hilbert space dimension, ensures that
[C..(0)] = 1. For simplicity, we restrict to stroboscopic observations at the drive period
t € TN. The Heisenberg operator of(t) at integer periods is given by

op(nT) = (UL)"op U (22)
The spectral function [S(w)] is obtained by Fourier transformation of (21),
Cat) = / dw e S(w)]. (23)

The basic steps in the calculation are as follows. We resolve the trace in the correla-
tor (21) over the eigenstates |e,0) of Hy, and argue in Sec. 2.2.1 that each term is well
approximated by either unity or a pure tone:

o 1 (no resonance)
(€aclop(t)op(0)]€a0) = (24)
cos (|Vap|t)  (resonance)

Above, |V is the largest matrix element that couples |e,0) to a resonant state |e,0) where
o is the opposite z-spin projection as compared to o. Taking the matrix elements at range
r to have a characteristic scale v(r), we obtain

L2
[C..(1)] = [C..] +/O dr p(r) cos(v(r)t) (25)

where p(r) is the probability (upon varying the initial state, and disorder realisation) that
the resonant process with the largest matrix element is at range r, and

_ T L/2
Culi= Jim 7 [ aticeol=1- [ aratr) (26)

is the probability of no resonances. As p(r) and v(r) are exponentially decaying in r, we
find that the spectral function is a power law at low frequencies,

[S(w)] ox w1+, (27)
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Figure 5: Cartoon of approximate eigenstates: For the purposes of calculating the spectral
function, the resonant eigenstates may replaced with cat states. Here the resonance is of
range r = 2, so that only l-bits with indices n € {—2,—1,0, 1,2} (red box) are reconfigured.

The exponent 6 approaches zero as ( — (. from the localised side, but jumps to a non-
zero 0. precisely at the critical point ¢ = (.. Ref. [61] gave a similar resonance counting
argument for the low frequency properties of the spectral function in the localised phase.

At each stage of this analysis we approximate eigenstates as being either product states
of the probe spin and I-bits, or cat states in which the probe spin is flipped. A more sophis-
ticated treatment would account for intermediate situations in which a “partial resonance”
forms [72]. However, such refinements do not change the low frequency properties of the
spectral function, which are of interest here.

We now detail how these results are obtained. The final expressions for the spin-spin
correlator are given in Secs. 2.2.4, 2.2.5.

2.2.1 Contribution of a resonance to the spectral function

Let us define a resonance. Consider a Floquet state |e,) of combined system,
Uples) = e = T|e,). (28)
Expanding these Floquet states to leading order in V', we obtain

iVi T
lea) = lea 1)+ > e tyr gl ¥ + - (29)
b

where a = (a,1) 2. We define the two states |e, 1) and |e, |) to be resonant if the first-order
correction is large, that is, if

Voa
€q — €p+ h +nd

Jba = Max >1 (30)

nez

If gpe < 1 for all b, then we approximate |e,) by the unperturbed eigenstate |e, 1).
If gpo > 1 for a single b, then degenerate perturbation theory yields ‘cat’ Floquet states

) = 5 (e D) £ len 1) + Ol (31)

to good approximation (see Fig. 5). The two cat states (31) are split in quasi-energy by
the matrix element |Vj,|,

lea = €8] = Vol + O(|Vhal gy ) (32)
Ignoring the sub-leading corrections, we thus obtain

(€a T |0p(t)op(0)|€q 1) = cos (|Vialt), t € TN. (33)

2Eq. (29) recovers the standard first-order term in Hamiltonian perturbation theory in the high-
frequency limit 7" — 0

10
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The corresponding contribution to the spectral function is two delta function peaks at w =
+|Vha|. The absence of weight at zero frequency is a consequence of the equal amplitudes
in the RHS of (31). We argue in Appendix A that extending this calculation to include a
small non-zero weight at w = 0 does not alter the low frequency behaviour of the disorder-
averaged spectral function.

If gpq > 1 for multiple indices b, the eigenstates do not have the simple form in (31).
Nevertheless, we argue in Appendix A that the strongest resonance, corresponding to the
largest matrix element, sets the frequency of oscillation if < (.. That is,

(€a T]op(t)op(0)|eq T) = cos(wqrt) for te TN (34)

with
Wqt = Max {\Vba]:gba>1}. (35)

In other words, for an initial state |e, T), the probe spin oscillates at a frequency weqy for
a window of time ¢t > wC}l, and thus the Fourier transform of (34) is sharply peaked at

+w,t. Analogous expressions for an initial state in the down sector are easily similarly.

2.2.2 The probability ¢(r) of resonance at range r

We take all the matrix elements at range r to have a single characteristic value v(r) which
is a monotonically decreasing function of the range r. This recasts the problem of finding
the resonance with the largest matrix element as the problem of finding the resonance
with the smallest range r. We now calculate v(r), and subsequently the probability ¢(r)
of finding a resonance at range r.

As described in Sec. 2.1, V = Zfi % V. may be decomposed into terms of increasing
range r in the MBL phase. V. couples a given state |e,) to N, other states |e;,) at range r,
where

No =1, Nyso=3-4". (36)

The characteristic scale v(r) of each matrix element is determined by,
1
Vi = 2l Vo) = Vo) (37)

Using |V,| ~ Je~"/¢ we obtain

v(r) = [Ve] ~ Je_r/é_zr/gc, (38)

5

where the correlation length £ is defined by

1 1 1 1
ET W - log 2. (39)
The omission of the unimportant pre-factor of 1/3/2 makes (38) approximate.

Two properties of £ are noteworthy. First, £ has the interpretation of a length only in
the MBL phase of the RM, in which it is positive. Second, & diverges as ¢ — (. When
we use results of the RM to discuss the short-time dynamics as ¢ — ¢, we will be careful
to use the absolute value of &.

Let p(r)dr denote the density of states per unit quasi-energy with range in the interval
[r, 7 +dr]; from here on we will coarse grain and treat the range r as a continuous variable.

11
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As the states are uniformly distributed in quasi-energy ¢, € [0,], and the total number
of states within range r is given by 22"*! we have

4e%7/Ce
G

Consider the dn = Qp(r)dr states with ranges in the interval [r,7 + dr]. As they
are uniformly distributed over the quasi-energy interval [0,(2], the probability that an
arbitrarily selected one of them has a quasi-energy in the interval z-:% € el + [—v(r),v(r)],
and is thus resonant, is given by 2v(r)/Q. It follows that the probability that at least one
of these states is resonant with |e, 1) is given by

Q r
/ de/ dr'p(r’) = 22 — p(r) = (40)
0 0

dn
q(r)ydr=1- (1 - 2?}9(71)> = 2v(r)p(r)dr + ... (41)

where higher-order corrections in v(r)/€Q can be dropped for ¢(r) < 1. Combining (38),
(40) and (41)

e/t 42
with € as in (39) and the resonance length A defined as
Cft Q
= ~—>1 4
A 8J J > (43)

We expect that A > 1 as MBL in the RM requires €2 > J. Put another way, deep in
the MBL phase where ¢ < 1, the probe spin will typically induce resonances of range
r = 0 (i.e involving only the I-bit n = 0 to which it is directly coupled). For stable MBL,
the probability of such resonances ¢(0) = 1/X should be small so that nearest-neighbour
resonances are atypical.

2.2.3 The probability p(r) that the strongest resonance is at range r

The fraction F'(r) of states that have not resonated up to range r satisfies the differential
equation

OF
5=
F(r) =exp <§ (1 - e_r/g)) . (45)

The probability p(r)dr that the strongest resonance with the largest matrix element has
range in the interval [r,r 4 dr| is then determined by

p(r):—aal::iexp <—2—§\<1—e_r/5)> . (46)

2.2.4 The time domain correlator [C,,(¢)] and the logarithmically growing light
cone front

—q(r)F(r) (44)

with solution

We now have all the pieces in place to write down the spin-spin correlation function.
The strongest resonance for each state is mediated by a matrix element of size v(r) with
probability p(r). Plugging this into the pure tone ansatz (34), and treating the disorder

12
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average as simply sampling the distribution p(r), we obtain the Floquet RM spectral
function

_ L/2
[C.(t)] = [C2] +/O dr p(r) cos(v(r)t) (47)

where the integral runs over all possible ranges 0 < r < L/2, and the infinite time average

T
O = Jim % /0 At [C..(t)] = F(L)2) (48)

is simply the probability that a state of the uncoupled system is not resonant with any
other state.

We were unable to exactly perform the integral (47). However a crude approximation
allows us to extract the asymptotic behaviour in the time domain. At finite time, the
dominant contribution to the integral comes from values of r such that v(r)t is small as
such terms are always positive. We thus approximate by replacing cos(v(r)t) — ©(1—v(r)t)
where, © denotes the usual Heaviside step function ©(z > 0) = 1, ©(x < 0) = 0. Within
this approximation we obtain

[C2(t)] = F (r(t)) (49)
where r(t) is obtained by solving v(r)t = 1,
r(t) = L min (gc(1 — 0p) log(Jt), L). (50)
where we have defined .
D=t (51

The position r(t) has a simple interpretation as the front of a logarithmically growing
light cone. Only the cat states formed from l-bits states with » < r(¢) contribute to the
correlation function at time ¢.

2.2.5 The spectral function [S(w)]

From (47) it is straightforward to obtain the spectral function. For brevity we first recast
the matrix element (38) as v(r) = Je /(%% using (51). Then by inverse Fourier transform
of (47)

L/2
1/ ar 8(jw| — v(r)) p(r)

2
<g90 log | > (52)

_ &bo
Inserting the calculated form of p(r) (46) into (52) yields

2w’
1— 146 0
C(zlieo ’J‘ Oexp<—§\< = 0)) for we < |w|<J
(53)

[C.]6(w) for we > |w|

in the MBL phase of the Floquet RM. The cutoff scale w; is set by the smallest matrix
elements at distance L/2,

[S(w)] =

L L
we =vpp = Jexp <—2€ — Cc) (54)
= L exp(~L/2), (55)
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where the Heisenberg frequency wy := Q27 is set by the typical many-body level spacing.

The high-frequency (w ~ J) behaviour of [S(w)] depends on the microscopic Hamil-
tonian in the immediate vicinity of the spin, and is thus non-universal. In contrast, the
exponent 0 characterising the power-law at low frequency:

[S(w)] ~ w1 (56)

is a consequence of distant resonances which reconfigure large regions of the chain. Thus,
as ( — (;, we expect 6 to have a universal functional dependence on | — (|-
For L > X (region II in Fig. 1a), it follows from (53) that

Ce
0y = c
0 — 0 %c+2§ ¢<¢ (57)
ec:i C:Cc

That is, 6 vanishes linearly with | — (.| as ( — (., but jumps to a non-universal non-zero
value at the transition.

For L < A (region I in Fig. 1a), 6 = 6. + O(6p), so that the exponent is continuously
varying. The low-frequency divergence in [S(w)] is strongest when 6 = 6., we return to
this in Sec. 5.2 3.

Eq. (56) implies that that disorder-averaged correlators exhibit a power-law decay at
long times ¢ > J~! in the RM MBL phase:

[S)]~w ™ = [Cu(t)] ~ (T8 (58)

The decay persists until time ~ w_ !, which is exponentially larger than the Heisenberg
time ~ wﬁl. The dynamics at these long time scales are due to the exponentially small
(in L) fraction of cat states involving re-configurations of I-bits on the scale of the system
size L.

A fraction of the eigenstates |e,0) do not hybridise with any other states despite the
coupling with the probe spin to the chain, even as L. — oco. As the probe spin has a well-
defined orientation in these states (even upon including perturbative corrections), these

states contribute to the infinite-time memory [C',] of the MBL phase.
We defer more detailed discussion of the finite-size behaviour of [S(w)] to Sec. 5.

2.3 Spectral function of ¢} in the RM thermal phase ¢ < (.

In the thermal phase, we expect that the off-diagonal matrix elements obey the eigenstate
thermalization hypothesis. In particular, the off diagonal matrix elements they do not
decay exponentially with range r at large r, as assumed by the RM in (12). Consequently,
the RM does not apply in this regime.

Despite being generally inapplicable, the early time predictions of the RM are found to
hold even in the thermal regime. Specifically, as the probability of resonance ¢(r) is small
for r < [€], [S(w)] exhibits power-law decay (as in (56)) for J > w > we where,

we 1= o(jg]) = T~ /1%l (59)

That is, the correlator’s dynamics are critical until a time-scale ~ w;!. This result is
obtained exactly as in the MBL case, with the refinement that, instead of working in a

3We note that the RM predicts that § = 6y < 0 for ¢ > (. leading to a stronger divergence than at
0 = 6.. However, as this prediction hinges on the exponential growth of ¢(r) on the thermal side for ranges
r < &, this prediction is unphysical and and may be disregarded.
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basis of l-bits (which do not exist in the thermal regime), it is necessary to work in a
basis of “almost-l-bits” 77. These operators have the same properties as I-bits (mutually
commuting exponentially localised etc.), but only “almost commute” with the Hamiltonian

[H, 73] S we- (60)

3 Hamiltonian resonance model

We describe the computation of the spectral function of the RM with Hamiltonian dynam-
ics. Despite the Hamiltonian case appearing superficially simpler than the Floquet case (as
it lacks the additional “ingredient” of a drive frequency) the analysis is more complicated
due to the conservation of energy. The associated hydrodynamic mode constrains the late
time dynamics, and hence the low frequency behaviour of the spectral function.

For simplicity, we assume that the chain has a single hydrodynamic mode. The analysis
is easily generalised to accommodate further conservation laws, such as the spin conserva-
tion present in the “standard model of MBL” the Heisenberg model with random z-fields.

3.1 Set-up

3.1.1 Chain Hamiltonian

Consider a strongly disordered static chain with disorder strength W and interaction
strength J. For specificity, consider the 2 — oo limit of the Floquet model in (4), that is,
the Heisenberg model with O(3) random fields

H:g;an-o'mrl—l—v;/;vn-an. (61)

As before, the details of this model will be unimportant except for two key properties:
(i) energy is the only conserved extensive quantity at any W,.J, and (ii) the model is
many-body localised for some finite W > J.

3.1.2 The local energy ¢,

In addition to its energy eigenvalue FE,, each eigenstate |E,) of H can be assigned a local
energy €,(r) which can loosely be understood as the expectation value of the Hamiltonian
restricted to the sites n € [—r, r]:

€a(r) = (EalH—p.7)| Ed), (62)

Here H|_, ,) is the Hamiltonian (61) with the summation restricted to terms acting on the
sites n € [—r,7].
We make this notion sharp with the following definition

€q(r) = Eq — Ey(a,r) (63)
where the energy shift Eg(a,r) is obtained by averaging the energies of the 22"+1 states
within range r of |E,)

1
Eola,r) = oo > B (64)

birgp<r
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The local energy has two useful properties. First, for two states |E,), |Ep) within range r,
energy differences are preserved exactly

E,— Ey=¢€4(r) —ep(r) < rep <r. (65)

Second, given a state |Eg), the distribution of the local energies €,(r) of the states within
range r is Gaussian and centred at € = 0. Specifically,

22r+1 €2
|2 flem e~ e (3 (66)

where ~ denotes convergence in distribution at large r. Neglecting sub-leading corrections
in J/W, the width of the Gaussian is given by

Se(r)=W+2r+1. (67)

3.1.3 Coupling a probe spin to the disordered chain
The Hamiltonian of the chain coupled to a probe spin is given by H = Hy + H; with

h
%:H®ﬂ+§ﬂ®a§,
H =V @op.

(68)

The eigenvectors of H, Hy and H are denoted |E,), |EQ) and |E,) respectively. These
vectors play roles in direct analogy with |,), [€2) and |e,) from the Floquet case in Sec. 2.
The eigenvectors and corresponding eigenvalues of H and % are related by

| Ea) = |Ea0) := | Ea) @ |o) (69)
Y :=E,+ ioh (70)

Each eigenstate |E,, o) of Hy is assigned a local energy
€(a,0) (1) = €a(r) + oh/2. (71)

3.2 Spectral function of ¢} in the RM MBL phase ¢ < (.

Our aim is to calculate the disorder averaged infinite temperature spin-spin correlator

1 z z —iw
Ct] = e (3()50) = [ dre (S (w), (72)
for time evolution generated by the Hamiltonian
o5 (t) = eMMtaze 1, (73)

As in Sec. 2.2, states with resonant partners contribute a pure tone, while states with no
resonant partners contribute unity (see (24)), and hence [S(w)] follows.

The key difference between the Floquet and Hamiltonian cases stems from the energy
dependence of the density of states at range r. In the Floquet case, at sufficiently large
range r, the density of states at range r is independent of quasi-energy, thus all states
states have an equal probability of finding a resonance at range r. In contrast, in the
energy conserving case, states with unusually high/low local energy e,(r) couple to an
atypically small density of states at range r. As such these atypical states find resonances
at a significantly lower rate (see Fig. 6). We thus adapt the calculation to keep track of the
local energy e, (r) of the states. This leads to a slower decay of F(r), and hence a slower
than power law decay of correlations.
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puler)

Local density of states p(e,r)

e, er

Local energy e

Figure 6: Local density of states: the local density of states at range r and energy e,
po(e,r), is plotted versus the local energy e for the o =1 (red) and o =] sectors of the
probe spin. These distributions have the same width s.(r) but are offset from each other
due to the probe spin energy +h/2. The probability of a state in the 1 sector finding a
resonant partner is proportional to the density of states in the | sector (see (76)). We
illustrate this with an arbitrary cut-off: the 1 states at energies e & €| + [—25,(7), 2s.(r)]
(red shaded area) have a much reduced probability of resonating versus those in the bulk
of the distribution.

3.2.1 Identifying resonances

Recall the resonance condition: two states |E, 1) and |Eyp |) that differ at range r are said
to be resonant if
|Ea_Eb+h| < ‘%a" (74)

Using (65), this condition is recast as
le(a) (1) = €w,1) ()] < [Vial- (75)
3.2.2 The probability ¢(e,r) of finding a resonance at range r, and local energy

e

Define gq(e, )| , the probability that a state |E, 1) with finds a resonant partner

€=€(qa,1) (T)
state |Ej |) at range r. Analogous to the Floquet case, ¢;(e, ) is given by

qr(e,r) =2p (e, r)v(e, ). (76)

where p|(e,r) is the density of states in the down sector (i.e. the opposite spin sector) at
local energy e = ¢, |)(r) and range r, and v(e, r), the characteristic size of matrix elements,
coupling states from the two spin sectors at local energies e, and range 7.

Consider the characteristic matrix element v(e, ). To begin with, we neglect the energy
dependence of v and assume that the matrix element have the same form as in (38),

vie,r) = Je /&) (77)

We later discuss refinements to this approximation.
Next, the density of states p,(e,r) follows from (66),

/Ordr'pa(e, r') = 56(2:;12? exp (—; <eSe(:)U >2> . (78)
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The mean is biased away from zero due to the orientation of the probe spin

¢r == 30h (79)

and the variance s,(r) is set by (67). Differentiating (78) and taking the asymptotically
dominant behaviour we obtain

4 o 1 [/e—¢e )\
pole) v P (cc (507 ) ' (80)

Equivalently stated, the asymptotic behaviour of p, (e, ) is dictated by the growth-diffusion
equation

Ops 282/)(, 2
or " e Tl

po (e, —3) = Qf §(e—ey)

(81)

where the boundary condition is obtained by matching the solutions with (80).
Substituting Egs. (80) and (77) in (76)
r (e—e¢)2> _ (82)

1
e,r) ~ exp | —— —
alen) ~ s p( ¢ AWy
and similarly for g (e,r). As before 1/§ =1/( —1/(., and the resonance length is defined

as,
CW\? w2

The approximation indicates the dropping of an unimportant numerical factor /(4 log 2)? ~
0.4. As expected, q,(e,r) is decaying in 7 on the localised side (£ > 0), and growing on
the thermal side (£ < 0).

3.2.3 The probability p(r) that the strongest resonance is at range r

The growth diffusion equation (81), which describes the total density of states at local
energy e and range r, is easily modified to describe the density of states which have not
found a resonant partner by range r. At each range r, the hybridisation probability is set
by g, (e,r). We thus obtain:

s 208

2
1774 u u - 4
or 0e? Ccpg Pod (84)

Here the superscript ‘u’ (for unhybridised) distinguishes p} from the total density of states
Po-

We now extract the probability p(r) that a state |E,o) finds its strongest resonance
at a range r. Observe that the second term in (84) leads to exponential growth with r.
Define a distribution that scales out this exponential growth:

folleur) = o= pi(enn). (55)

Substituting in (84), we obtain

Ofr 20 fs
or =W g et (36)
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The substitution (85) has a simple interpretation:

_ Jdepy(e.r)
[ deps(e,r)

is the fraction of states which have not hybridised by range r. Eq. (86) is invariant under
the replacements (e,0) — (—e, —0), by this symmetry F'(r) is independent of o. It follows
that the probability p(r)dr that the strongest resonance of a given state is in the interval
[r,7 + dr] is given by

F(r)= /defg(e,r) (87)

p(r) = —%I: = /de frle,m)gr(e,r). (88)

Eq. (88) is the generalisation of the Floquet result (46) to the energy conserving case. Here
it is necessary to solve the two-dimensional partial differential equation (86) rather than
the simpler one-dimensional ordinary differential equation (44).

What do the solutions of (86) and (88) look like? We discuss two regimes. The first
regime in Sec. 3.2.4 is most relevant for the numerically accessible MBL-thermal crossover
in Fig. 1b. The second regime of L, [£] > \ determines properties of the Hamiltonian RM
in the vicinity of ( = (. as L — oo and is discussed in Appendix B.

3.2.4 Far from criticality [{| < A, or small critical systems L < \ < [¢]

Neglecting the energy dependence of ¢, (e, ),

(er)m S )
o\e,T) = :
4 4N
Substituting (89) into (88), we obtain an approximate equation for F'(r),
0F; e_r/5
= — F 90
ar D (%0)

which we denote as Fi(r) to distinguish it from a true solution to the growth diffusion
equations (86) and (87).

Let us justify the approximation above a posteriori. For & > L, the solution Fi(r)
of (90) decays exponentially on the length scale set by A\. Thus for < A, the bulk of the
weight of the distribution of unhybridised states f,(e,r) is at typical energies |e| < s.(r),
where the energy dependence of g,(e,) can be neglected by making the replacement
go(e,7) = q»(0,7) in (88) to obtain (90). The approximation is thus valid for small critical
systems L < A < [¢] (region I of Fig 1). Far from the crossover on the MBL side [¢| < A,
few resonances form after the length scale £ and f,(e,r) does not becomes small at typical
energies |e| < s.(r). The bulk of the weight of the distribution of unhybridised states
fo(e,r) is thus at typical energies and the approximation is justified.

On longer length scales r > A at 1/§ = 0, the weight of f,(e,r) at typical energies is
depleted by the exponential decay. The weight of the distribution is instead concentrated
at atypical energies |e| > s.(r) where the resonance probability g, (e,r) is much smaller.
Appendix B discusses the behaviour at r > A in detail.

The solution to the approximated equation (90) is

exp(— ZiErf( 2)) £E>0
exp(“ﬁErﬁ( 2)) £<0
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where Erf(-) and Erfi(-) are the usual error function and imaginary error function respec-
tively. The correlator then immediately follows

L)2
[C..(t)] = F1(L/2) + /0 drp(r) cos(v(r)t). (92)

Using (88) and (52), we obtain the desired result:
_ for € >0
1 Cc(1=bo) |w|—1+0 ™ 4] ’
e T CVE L (DT B
) [ G(60) jw|1+l| ™ J for £ <0,
6] = § by ot 1517 s (B oonos 2 ) 270

for £ > 0,

we > |w]

Ql

[C22]0(w)

(93)

The spectral function exhibits the same w119 low frequency behaviour as (53) in

the Hamiltonian RM MBL phase and at intermediate frequencies in the thermal phase.

However, as the localisation length approaches the critical value ( — (., the correlation

length diverges 1/ — 0, the correlation decay exponent 6y — 07, and the correction to

the low-frequency w™! behaviour of the spectral function is logarithmic rather than power
law. We further discuss the logarithmic corrections in Sec. 5.2.2.

4 Regime of self consistency of the resonance model

The RM assumes a characteristic range-dependence for the matrix elements v(r) of a
local operator V' acting at site n = 0 (see (38)). The coupling to the probe spin induces
hybridisation between the eigenstates of #y. The reader might thus worry that the off-
diagonal matrix elements of a local operator between the hybridised eigenstates is not
consistent with the RM assumption in (38). In other words, the distribution of matrix
elements after having introduced the probe spin is inconsistent with the distribution we
assumed at the beginning.

We address this question in two parts. First, we show that [S(w)] ~ w™1+% at low
frequencies even if the matrix elements at range r have a generic distribution p(v|r), as
opposed to a single value v(r), so long as the aggregate distribution of off-diagonal matrix

elements
L)2

o(v) =Y p(vlr)p(r) (94)
r=0

is distributed as a power-law in v at small v. Thus, we can relax the assumption in (38)
to allow for a pre-existing population of resonant cat pairs states, as the matrix elements
between such cat pairs and the reference state can differ from v(r).

Next, we imagine perturbing a MBL RM chain, with a given p(v|r), weakly at every site.
The local perturbations induce local resonances. When these resonances do not overlap,
we argue that the distribution p(v|r) is unaffected at large r, and thus that the perturbed
chain presents the same statistics of off-diagonal matrix elements v as the unperturbed
chain at small v. Consequently, the exponent 6, that sets the low-frequency divergence of
[S(w)] is stable to local perturbations.
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Specifically, we argue that the resonance model is perturbatively stable, and conse-
quently our conclusions hold, in the regime

min (g |g|) < VN (95)

in which resonances do not typically overlap. Eq. (95) holds deep in the RM MBL phase
as L — oo and in region I (see Fig. 1) for sufficiently small systems. Three important
conclusions follow:

1. As the RM is self-consistent deep in the MBL phase, the RM predicts and describes
a stable MBL phase in the thermodynamic limit.

2. The RM describes the MBL-thermal crossover in short chains, despite being inappli-
cable at large L.

3. The RM describes dynamics in the MBL-thermal crossover at short times as L — oo,
or equivalently on frequency scales:

w > wyp, == max(v(VA), v(|¢])). (96)

4.1 Generalised RM with p(v|r)

Define the aggregated distribution of off diagonal matriz elements o(v) as the distribution
of matrix elements |Vj,| that couple two narrow energy windows E, € [E,E + A] and
E, € [E', E' + A] at maximum entropy:

0(v) =Y 8(v = [Vsal) (97)
ab

where p(v) and the distribution of matrix elements p(v|r) are related by (94). In Secs. 2
and 3, we took the matrix elements at range r to be single valued p(v'|rr) = §(v' —v(r)). In
the Floquet case the corresponding aggregated distribution of off diagonal matrix elements

at small v is
1 5 (/)2 y<J
o(v) ==Y Ny(v—o(r)) « (98)
Q9 0 v>J

where N, = 3 - 4" as in (36), 0 < 6y < 1 is defined in (51), and the power law is obtained
by coarse-graining over the scale separating the delta functions.

Eq. (53) follows from (98), independent of the precise model p(v|r) for the matrix
elements at range r. Consider the Floquet RM. A change of variables in (44) yields

dF(v)
dv

= F(v)vo(v). (99)

The solution -
F(v) = exp (/ do’ v'@(v’)) (100)

is the fraction of states which do not have a resonance induced by a matrix element of size
v or larger. Note that F'(v = oo) = 1. Similarly we may define

p(v) = gf = vo(v) exp (/OO dv’ v’@(@’)) ; (101)

v

21



SciPost Physics

2) €<l ad - b) &1

0000000060

™ ¢ w5 o T T, T4 Ty TP T

Figure 7: Resonances: The spectral function calculation in the RM is self-consistent if the
eigenstates in the RM-MBL are well characterised as 1-bit configurations dressed with local
resonances. a) A l-bit state dressed with two resonances of range r = 1 centred at sites
n = —3 and n = 2. Each resonance is represented by an arc encompassing the patch of
rearranged spins. Resonances typically rearrange a patch of size £ and have density £/A
(in units of lattice spacing), and thus are well separated for £2 < \. b) For £€2 > \, these
resonances typically overlap forming large resonant patches that destabilise MBL.

so that p(v)dv is the fraction of eigenstates of #; whose strongest resonance is due to a
matrix element in the range [v,v 4+ dv|. The spectral function is then given by,

[S(w)] = gp(lw]) + d(w)F(v = 0). (102)

Substituting (98), we recover the previously calculated spectral function (53). The calcu-
lation presented in Sec. 3 for the Hamiltonian RM can be similarly generalised.

Note that a general model for the matrix elements alters the simple relationship between
the localisation length ¢ and the exponent 6y, and thus leads to an altered critical value of
the localisation length (. := (g _o-

4.2 Self-consistent and stable localisation

To be self-consistent, the RM must have the same statistical distribution of resonances
before and after a local perturbation.

Consider a perturbation V' of strength |V| ~ J applied at a single site n = 0 (as in
Sec. (2.2)). The effect of this perturbation is straightforward: first the eigenstate energies
are corrected by the diagonal elements of V' (i.e. E, — E4 + V,,) and second, each state
|E,) finds a resonance at range r (i.e. |Vyp| > |Eq — Ep|, where rq, = r) with probability
q(r) = e~"/€/X. This leads to a pair of resonant ‘cat’ states

/
(5 Lt 1) (1) 09
)~ v\t 1) \|m)

with corresponding energies E},, E; and splitting |E}, — E}| ~ Vg

We now apply a second perturbation U, also of strength |U| & J, at a site m a finite
distance from n = 0. Naively, the arguments of Sec. (2.2) imply each such subsequent
perturbation causes more long range resonances to develop. However, this is not the case.
The matrix element (E/,|U|E}) a2 Je~*/¢ where s = max(0,m —ry) acts to disentangle cat
state pairs (103) whose splitting is small | V| < Je /€. This removes all resonances due to
V which are of long range 7,5, > m/2. This disentangling of resonances is counterbalanced
by the formation of new long range resonances due to the combined action of U and V.
Their distribution is statistically identical to that induced by a single local perturbation.
Specifically, the range of typical resonances remains O(§).

Short range (rq, < m/2) resonances induced by V survive the second perturbation.
When the surviving resonances overlap with those induced separately by U, the eigenstate
entanglement further increases. Specifically, two cat pairs |E}), |E}) (103) and |E.), |E})
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with respective level splittings |Vop| and |Veq| survive if (E}|U|E}) S |Vap| and (EL|\U|E) <
|Vea| hold. The states |E.), |E!) may hybridise if (E/|U|E.) 2 |E, — E.| yielding |E!) ~
(|EL) + |EL))/v/2. In the state |E”), a small subsystem in the vicinity of n = 0 has
entanglement entropy S ~ 2log2. Similarly two “cats of cats” |EY), and |E”) may be
hybridised by a third perturbation W to form |E"") ~ (|E")+|E"))/v/2, with entropy S ~
4log 2. Here we have illustrated the increase of entanglement entropy due to overlapping
resonances for the case

(Eq[W|E) < (Bg|UIEL) < (Eo|V|Ey). (104)

The general case is more complex. However we suspect similar increases of the entangle-
ment entropy when resonances overlap.

The merging of local resonances into larger resonant clusters with larger entanglement
entropies represents an instability of the “I-bits + local resonances” picture assumed by
the RM unless the localisation length is sufficiently short £ < v (with lengths measured
in units of the lattice length). Consider perturbing the RM at every site. At each site,
the probability of inducing at least one resonance between the reference state |E,) and a
second state |Ep) is 1 — F(r = oco) &= /. If the typical spacing between these resonances
A/€ exceeds their typical size £, then they remain spatially separated. We conclude that
for £2/X < 1 resonances do not merge, and do not alter the asymptotic distribution of
matrix elements at low frequencies. The RM is thus self consistent and stable to local
perturbations in this regime. This case is depicted in Fig. 7a where the extent of each
resonance is indicated by the red arcs. We note that rare states participate in long range
resonances 7 > &; however these do not destabilise the localisation.

Repeating the above arguments for systems of finite-size L, we find that resonances
occur with density 1 — F(r = L/2) ~ min(§, L/2)/XA and involve min(&, L/2) sites. This
yields the condition (95).

Finally, we note that the RM describes dynamics in the thermodynamically large ther-
malising phase at short times, or equivalently at frequencies satisfying (96). At these
short times, resonances are rare and thus the RM is controlled. As noted in Sec. 2.3,
the derivation of [S(w)] proceeds through “almost-1-bits” that almost commute with the
Hamiltonian.

5 RM predictions for finite-size numerics

The RM is self-consistent in short chains
L <2V (105)

in region I and provides a simple model for the MBL-thermal crossover. Could the RM
describe the numerically accessible MBL-thermal finite size crossover? A naive estimate of
the resonance length A\ comes from Egs. (83) and (43) using numerical and experimentally
reported values for the critical frequency or critical disorder strength [6,63,73]. This gives
15 < A < 50. Physically, A has to far exceed the lattice scale, as ¢(0) = 1/A is the
probability of a nearest neighbour resonance in the MBL phase. We thus reason that
numerically accessible chain lengths L are smaller than or comparable to 2/, and that
the RM is an analytically tractable model for the numerics.

In what follows, we describe several properties of the RM in short chains that explain
numerical observations about the finite-size MBL-thermal crossover. The crossover occurs
around the line |{| = L/2 separating the thermal phase from region I in Fig. 1a). We also
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explain the numerical observations of Refs. [1] and [2] within the RM. As the RM has a
stable MBL phase, we weigh in on the controversy of the existence of MBL in favour of
MBL.

5.1 Correlation length exponent v =1

The thermal-MBL crossover in the resonance model is characterised by a correlation length

19K
€] o< ¢ = Ce| ™ (106)

which diverges with exponent v = 1. This value is close to the numerically reported values
of 0.77 < v < 1.02 reported for data collapses of different quantities in Ref [63]. Note that
the RM exponent, as well as the numerically reported ones, violate the Harris bound for
randomly disordered systems v > 2 [57,64,65|, as they only capture the pre-asymptotic in
L scaling.

5.2 Apparent 1/w divergence of the spectral function

The RM predicts a power-law divergence in [S(w)] at low frequencies in the MBL phase
and in region I:

[S(w)] ~ w1+, (107)
Above ~ indicates asymptotic equality up to constant factors and log corrections, and

0> 0.
Deep in MBL phase, the following hierarchy of frequency scales hold:

we Kwhp L weg, 0<ESL/2 (108)

and [S(w)] takes the form in (107) for w > w. with the exponent 6 given by 6y > 1 in (57).
In region I in Fig. (1), || 2 L/2, and the frequency scales are arranged as:

we Swe ~wh, [§] 2 L/2. (109)

Below, we show that the low-frequency divergence of [S(w)] is strongest in the middle of
region I and is given by [S(w)] oc w™! up to logarithmic corrections.

Ref. [2] interpreted the apparent w~! behaviour as inconsistent with MBL. The RM
however predicts this behaviour near the finite-size MBL-thermal crossover in region I and
allows for a stable MBL phase.

5.2.1 Floquet systems

The exponent 6y in (57) vanishes as [{] — oo in the RM. The strongest low-frequency
divergence [S(w)] is however not ~ 1/w (indeed, as noted in [2] such a strong divergence
would violate an elementary sum rule) because the exponential term in (53) modifies the
exponent. The RM instead predicts the following spectral function in the middle of region
It

[S(w)] ~w % w> we,wy and €] > A, (110)

with 6. = (./2), as given by (57).

As A > 1 and (. is on the lattice scale, we conclude 6, = (./2\ < 1. The strongest
low-frequency divergence in (110) is thus close to 1/w.

Note that (110) implies a power law decay of correlations at late times. Such decay
can only be consistent with a logarithmically spreading light cone (50) in the absence of
any conserved quantities, such as in a Floquet system.
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Figure 8: Logarithmically growing light cone: the Heisenberg operator of(t) (in (22)) is
localised to the probe spin site time ¢ = 0. Under time evolution, the support spreads and
defines a light cone. After a time ¢, this light-cone has width r(¢) o log Jt (green).

5.2.2 Hamiltonian systems

Hamiltonian systems conserve energy, which results in a logarithmic, rather than power
law, correction to 1/w scaling of [S(w)]. Specifically, for |{| > A > L, we simplify (93) to

obtain:
1

- w/Nog [J/w|’

Here ~ indicates equivalence up to an w independent pre-factor.

Observe that this decay is not asymptotically consistent with hydrodynamics. The
light-cone only grows logarithmically in time in the RM (see Fig. 8), but (111) implies
critical correlations that decay faster than 1/log(Jt) as t — oo,

: | Ce
gli>r£1<>[C’z,z(7f)] ~ exp <— 2 log Jt) . (112)

More careful analysis of the Hamiltonian resonance model finds that below a frequency
timescale wy := v(A), the decay of [C..(t)] is dictated by a form

[S(w)] W > we, WH. (111)

1
C..(t)] ~» —, t>1/w 113
Coslt)) ~ = Joo (13)
consistent with hydrodynamics. We note this corresponds to a time averaged value which
goes to zero as [C,.] ~ € /2. However, as (113) applies outside of the regime of self-
consistency of the resonance model, we relegate further discussion to Appendix B.

5.3 Localised finite-size crossover

As the resonance probability is small for L < 2v/A’, the RM predicts a localised finite-size
crossover (i.e. a localised region I).

First, the time-averaged correlator [C.] is close to unity in both the Floquet and energy
conserving cases, and thus retains long-time memory:

lim [C.] e L/2A (Floquet) (114)
im [C,,] =
§—o0 e”VL/2A (Energy conserving)

Next, the late-time memory implies that small subsystems of the chain have sub-
thermal entanglement entropy. This prediction is in agreement with numerical observations
in Ref. [58].
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Figure 9: Drift of the critical disorder strength W.(L) with L at small sizes: The main
plot shows the probe spin eigenstate averaged entanglement entropy [Sp] predicted by our
analysis of the resonance model (calculated using Eqgs. (120,93)) as a function of disorder
strength for L = 5,10,15,...60 (coloured solid lines). The dashed black dashed line
indicates the L — oo limit. Inset: corresponding values of Ws with § = 0.01 (green solid
line) vs L, and the corresponding analytic curve from (117) (black dotted line). The red
dotted line is a linear fit at small L. We see that W.(L) o L at small L. Parameters:
1/€ =log(W/W,), W, = 10, X as given by (83), and J = 1.

Finally, dynamics in the finite size crossover is characterised by a dynamical exponent
z = 00 as per the logarithmically growing light cone (see (50) and Fig. 8). The length-
energy relationship set by the matrix elements ¢ ~ v(r)~! determines the light cone; any
l-bits outside the light cone are not entangled with the probe spin. In the thermal phase, we
expect that the logarithmic expansion of the light cone crosses over to ballistic or diffusive
expansion for ¢t > w: ' in Floquet and Hamiltonian systems respectively.

Ref. [74] numerically observed stretched exponential decay of typical spatial correla-
tions in eigenstates in the MBL-thermal crossover region and noted the similarity of their
numerical results to that near an infinite-randomness fixed point. Although we do not
flesh out the connection between the RM transition and the infinite-randomness transition
here, we note that both theories predict z = oo and logarithmically growing light cones.

5.4 Scale-free resonances near the finite-size crossover

In region I (and II), the probability of resonance at range r is scale free

1

lim ¢(r) = A

E—o0 1
VT

resulting in the formation of resonances on all length scales. This feature of the thermal-
MBL crossover in small systems has been observed numerically in Ref. [62].

(Floquet)
(115)

(Energy conserving)

5.5 Linear drift of critical disorder strength with L

The RM predicts a ubiquitous feature of small system numerics on disordered chains: that
the critical disorder strength increases approximately linearly with L. Refs. [1| and [2]
argued this drift to be inconsistent with the existence of MBL; the RM however provides
an alternative explanation.

The origin of the drift lies in the localised nature of region I. On increasing 1/¢ at small
sizes, the chain crosses over from thermal to localised behaviour when the correlation length
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first exceeds the system size || =~ L (see Fig. 1). The critical 1/¢ (and equivalently the
critical disorder strength) thus increase with L.
This drift can be quantified: let Ws(L) denote the disorder strength at which the time-

averaged correlator [C,,] deviates from its value in the infinite temperature Gibbs ensemble
by some small amount &,

[sz(Wé)} =i 1L (116)
For the Hamiltonian RM, algebraic manipulation of (91) with 1/ = log(W/W,) yields:

Wi(L) ~ Wee™to/(LH1), (117)

for some d-dependent constant £5. Over a regime of sufficiently small L, this function is
approximately linearly increasing with L (see Appendix D for derivation).

More generally the linear growth of Wy follows from Taylor expanding & near W = W.
Precisely, if we identify £(Ws(L)) o L, (for some d-dependent constant of proportionality),
and consider the taylor expansion

EW) = &(Ws(L)) + (W — Ws(L)E' (Ws(L)) + ... (118)
about the point W = Ws(L + AL) we obtain

AL
§(Ws(L))

Eq. (119) and the linear-in-L drift of the critical point follow provided W is sufficiently far
from the transition that i) the Taylor expansion is valid (i.e. [W —Ws(L)| < |W5(L)—W|)
and ii) that &(Ws(L)) is slowly varying in L.

The drift in the critical point has been observed in various statistics across many
studies [|. As an example we consider the spectrally averaged spin (or p-bit) eigenstate
entanglement entropy [Sp]. This quantity is finite in the MBL phase [Sp] = O(1) (tending
to zero at strong disorder), whereas in the thermal phase [Sp] = log2 up to corrections
which are exponentially small in L. Within the resonance model, [Sp] is given by

AWs = Wg(L + AL) - Wg(L) X (119)

[Sp) = log 2 (1~ [C.)) (120)

In Fig. 9 we plot [Sp] for the Hamiltonian RM as a function of the re-scaled disorder
strength (using 1/& = log(W/W,)). The probe spin entropy is maximal in the cat states,
and is zero is the fraction [C,.] = F(L/2) of states that do not resonate. The inset confirms
that the deviation (Ws — W,) increases linearly with L at small L, before converging to
zero from below at large L.

A similar analysis in the Floquet RM predicts a linear drift of the critical frequency at

which localisation sets in with L for fixed disorder strength.

5.6 Exponential increase of the Thouless time with disorder strength

Refs. [1] and [2| numerically studied the scaling of the Thouless time with disorder strength
in the thermalising phase. The Thouless time is defined as the time-scale above which
random matrices govern quantum dynamics in chaotic systems, or equivalently as the
inverse of the energy scale below which the random matrices govern eigenstate properties.
Through a detailed study of the spectral form factor and [S(w)], Refs. [1] and [2] argued
that the inverse of the Thouless time wry, exponentially decreases with disorder strength:

wrp, oc e~ W/, (121)
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Should this behaviour continue asymptotically as L — oo, then the numerically observed
MBL-thermal crossover is simply a finite-size effect caused by wry,. becoming smaller than
the Heisenberg time wﬁl . That is, the observed localisation is simply a consequence of
the small sizes accessible to exact numerics.

The RM provides an alternate explanation for (121) while allowing for a MBL phase.
In a diffusive system, the Thouless time is set by the time taken by a localised packet of
energy to spread over the system. For diffusion constant D, thus wy, = D/L?. As the
packet takes time we L to spread a distance &, D = w§§2. Combining these estimates

D W§€2 J€2 —2|¢|/¢e
wmn == e

(122)

where & indicates the dropping of an O(1) factor.

Next, consider the correlation length £(W). It is a smooth function of the disorder
strength W and diverges at the critical disorder W, defined by ( = (.. As discussed
in Sec. 5.5, the crossover from spectrally averaged statistics being close to their thermal
values, to close to their localised values occurs at disorder strength Wy, a much weaker
disorder strength than W, in small systems sizes. We may thus Taylor expand £ near
W = W; (as in (118)) from which the exponential dependence of the Thouless time on the
disorder strength W of (121) follows.

5.7 Apparent sub-diffusion in the RM thermal phase

Egs. (53) and (91) predict a continuously varying exponent for the spectral function
[S(w)] ~ w™1*? above a threshold frequency scale wg in the thermal phase. The RM thus
explains the apparent sub-diffusion (as measured by the dynamic exponent 1/6) reported
in several studies [66—70] without any reference to rare regions, and indeed predicts such
apparent sub-diffusive behaviour even in Floquet systems without any conservation laws.
This prediction of the RM may resolve a mystery about the absence of broad distributions
of the conductivity (across disorder realisations) that are expected in a sub-diffusive regime
characterised by weak links [55,56].

We note that Ref. [75] (in the supplementary material) previously speculated that rare
resonances may lead to apparent sub-diffusive behaviour in the thermal phase.

5.8 Exponentially enhanced sensitivity to eigenstates or ‘maximal chaos’

The fidelity susceptibility x, measures the sensitivity of an eigenstate |E,) to perturbation
by a local operator U. It is defined as

Xa= ).

b#a

(Eb|U|Eq) [

123
B, _F, (123)

The mean of the logarithm of x (defined as the average of log x, across infinite temperature
eigenstates and disorder realisations) shows the following scaling with L:

L -log2 thermal
r° MBL.

Ref. [2] made two observations about the distribution of log x, at numerically accessible
sizes. First, there is a regime of maximal chaos separating the thermalising and MBL
regimes in which

[log x] ~ L-2log2, (“maximal chaos”.) (125)
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Second, the tails of the distribution in the putative MBL regime (in which [log x| satu-
rates) are fatter than expected from a Poisson distribution. The authors explained both
observations through the exponential enhancement of matrix elements between eigenstates
with energy differences comparable to the many-body level spacing, and concluded that
such enhancement is inconsistent with MBL.

The RM explains both observations in Ref. [2] assuming a thermodynamic MBL phase.

Consider a pair of resonant cat states |E,) = (|E,) £ |Ep))/v2 involving the re-
arrangement of 1-bits at range r = L/2 and spli]cting comparable to or less than the many-
body level spacing. A generic local perturbation U will couple these states as (E,|U|E}) =
O(|U]) #. Consequently, their fidelity susceptibility is very large, increasing as ~ 22%.

In the numerically accessible MBL-thermal crossover, a finite fraction q(L/2)AL of the
eigenstates are involved in resonances with range between L and L + AL and splitting
comparable to the many-body level spacing. The RM thus predicts maximum chaos (125)
at the finite-size crossover. More precisely, in regions I and II of the Floquet RM

L
[log x] = /0 s(r) log (|U|2p2(r)) =L (2log2+ O(A/L)) (126)

where p(r) sets the typical inverse level spacing for a resonance at range r, and s(r) =

q(r) exp(— er/ 2 q(r")dr’), is the probability that the longest range resonance for a given
state is at range r. Thus, maximum chaos is approached as L becomes closer to A.

In the RM MBL phase, the fraction of states involved in system-wide resonances g(L/2)
is exponentially small in L. These states thus do not contribute to [log x|, which is inde-
pendent of L. Nevertheless, these rare states lead to increased weight in the tail of the
distribution of log x. This explains the second observation of Ref. [2].

5.9 Absence of a cut-off at the Heisenberg time in the MBL phase

We find that the dynamics in the MBL phase are not cut-off by the Heisenberg time
ty ~ wﬁl ~ J712L  Instead, the RM is cut-off by an exponentially larger in L time-scale
set by w; !

we = v(L/2) = wye /% (127)

The dynamics on the time-scales ¢ > wﬁl are due to the rare cat states with energy
splittings that are smaller than the typical level spacing.

The existence of a timescale longer than the Heisenberg time ty contradicts commonly
held lore that at tg the system “realises” that it is finite, the discreteness of the spectrum
is resolved, the dynamics becomes quasi-periodic, and thus there cannot be physically
meaningful dynamics beyond ty. This lore neglects that in the localised phase all local
operators have discrete (i.e. pure-point) spectra even before ¢y, so there is nothing to
“realise” at ty.

5.10 A simple numerical stability criterion for MBL

Following the discussion in Sec. 4.2, MBL requires that the expected number of resonances
induced by a local perturbation V' in a typical eigenstate of the chain is much smaller than
unity:

/OO drq(r) < 1. (128)
0

4To see this note that if U = 75 on a site n in which 74, # 7pn, then U has an order one matrix
element between the two cat states (and similarly for any string of 77 with an odd number of such terms).
(EL|U|Ey) = O(|U]) then follows as a generic local operator U has O(|U|) overlap onto such terms
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Using the tools developed in Sec. 4.1, we can re-write the above criterion in-terms of the
aggregated distribution p(v) of off-diagonal matrix elements of V'

/ dvvo(v) = pv < 1. (129)
0

Here p is the many body density of states in some small mid spectrum window of width

A, and

4]

1
= KPZMCL! (130)
b

is the mean matrix element in the same window for a mid-spectrum state a.

Eq. (130) provides a simple numerically tractable criterion for MBL. As L — oo, the
quantity pv grows exponentially with L in a thermalising phase that satisfies the eigenstate
thermalization hypothesis, but saturates in a MBL phase:

pv o 282 (thermal), pv = cons. < 1 (MBL). (131)

Note that (130) makes no reference to a l-bit basis. When o(v) oc v=2+% at small v, the
stability criterion implies that 0 < 8y < 1 for MBL.

Eq. (130) generalises the stability criterion to thermalising avalanches introduced in
Ref. [48]. Ref. [48] studied the stability of a MBL system composed of 1-bits to a ther-
malising inclusion, and argued that ¢ (the length scale controlling the localisation of a
physical spin operator in the 1-bit basis) must be smaller than (. = 1/log 2. Re-writing the
avalanche criterion in terms of properties of off-diagonal matrix elements, we obtain (130)
with no reference to either rare regions or to l-bits.

6 Discussion

We have presented the RM, a model of the finite-size MBL-thermal crossover in which
the localised phase is destabilised by many-body resonances, rather than rare low-disorder
regions. The RM is consistent with a stable MBL phase, and reproduces several numeri-
cally observed features of the MBL-thermal finite-size crossover, including the controversial
observations of Refs. [1,2].

Fig. 10 re-plots the [S(w)] data in Fig. 2 of Ref. [2]. The plot shows the frequency
dependence of [S(w)] at several disorder strengths 0.5 < W < 2.5 in the putative thermal-
ising phase of the disordered spin—% XXZ chain. Ref. [2| argued that the data is consistent
with the scaling law [S(w)] ~ C/(Ww) (black horizontal line) over an increasing range of
frequencies. We instead argue that the data is consistent with the scaling law predicted by
the Hamiltonian RM with a logarithmic correction (dashed black line). Indeed, the curves
for W 2 1 align with the RM prediction over ~ 1.4 decades in frequency, while evidence
of the plateau predicted by Ref. [2] is visible only in two of the curves with W ~ 1.5,1.75,
and over less than a decade in frequency. The behaviour of the curves with W =~ 1.5,1.75
is however noteworthy, and not immediately explained by the RM. To settle the debate
between the two scaling predictions requires more systematic numerical investigation of
the effects of system size on the curves in Fig. 10. Specifically, numerics at larger L should
reveal which of the two regimes (the linear growth or the plateau) expands with increasing
L.

The RM makes several numerically testable predictions about Floquet and quasi-
periodically modulated spin chains. First, Sec. 5 applies without alteration to the quasi-
periodic case. Second, the exponent 6. controlling the strongest low-frequency divergence
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Figure 10: Spectral function data from Ref. [2[: Disorder averaged spectral function data
for the random XXZ model from Fig. 2a of Ref. [2] (same colour scheme). Different series
correspond to different disorder strengths W (legend above). Here we plot ([S(w)]wW)~2
as a function of (Ww)~! so that the pure 1/w divergence predicted by Ref. [2] appears as
a horizontal line (black solid, C' = 0.0179) whereas the form predicted in this work, (111),
appears as line of constant gradient (black dashed). Agreement with (111) is seen for 1.4
decades for (Ww)™! € [1.7,40].

of the spectral function in region I in the Floquet case is non-universal and non-zero, in
contrast to the Hamiltonian RM with 6. — 0T. Third, Floquet systems on the ther-
malising side of the finite-size crossover would also exhibit apparent sub-diffusive scaling
in their spectral functions. The origin of this apparent sub-diffusion is the formation of
many-body resonances on length scales shorter than £. Fourth, irrespective of the type of
disorder or the number of conservation laws, we predict logarithmically growing light cones
in the thermalising phase for ¢ < we ! Finally, observables conditioned on the formation
of resonances could detect the MBL-region I crossover in Fig. 1a.

Eq. (131) offers a new numerical criterion to differentiate localised and thermalising
systems. Analogous to the G parameter in Ref. [76] and the typical fidelity susceptibility [2],
pv is exponentially larger in L in the thermalising phase as compared to the MBL phase.
Preliminary work on a disordered Ising model suggests that (131) bounds the transition
out of the localised phase to larger disorder strengths than other standard criteria based
on energy level statistics or eigenstate entanglement entropies.

Future work could explore the RM along several axes. The first is to establish whether
the distribution of sample conductivities (across disorder realisations) predicted by the
RM is consistent with the observations of Ref. [55]. This would add further evidence
to the claim that many-body resonances, and not rare regions, give rise to the apparent
sub-diffusion observed in numerical studies.

The second is to compare the eigenstate correlations predicted by the Hamiltonian RM
to those from the Anderson model on the random regular graph (RRG) [77,78|. The RRG
Anderson transition is believed to model the MBL-thermal transition if one identifies each
site of the RRG with a computational basis state of a disordered spin chain [79]. Using
Mott-type resonance arguments similar to those of Sec. 3, Ref. [77| recently argued that in
the RRG localized phase, the correlator [tr (IT,,(¢)I1,,(0))] (where II,,(¢) is the time evolved
single site projector onto the site n) has a Fourier spectrum [(w) which diverges as a
power law as w — 0. Identifying each II,, with |E,0)(E,0|, a product state of the probe
spin and the disordered chain, the RM predicts that S(w) diverges exactly as [S(w)] (27).
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The reconcilation of the RM with the RRG is however less apparent in the thermal phase,
where the latter predicts a correlation length that diverges with a different exponent than
in the RM.

The third is to attempt an extension of the RM to the asymptotic limit in systems with
correlated disorder. The RM neglects the effects of rare low-disorder regions; these regions
dictate the asymptotic transition in randomly disordered systems [45,46,57,61,64,80-85].
Contrarily, in MBL chains with quasiperiodic [86-88] or sufficiently hyperuniform [89]
disorder, as there are no such rare regions [57,90,91|, MBL may be destabilised by many-
body resonances even in the thermodynamic limit.
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A Multiple and imperfect resonances in the Resonance Model

A.1 Imperfect cat states

In Sec. 2.2.1, we assume that pairs of resonant eigenstates of #y form perfect cat states
with equal weights,

Cang) = j§<ea 1) % Jep 1)) (132)

Their contribution to [S(w)] is thus pure tone with no weight at zero frequency,
(€qo|op(t)op(0)|eqo) = cos(|Vialt). (133)

A more refined ansatz for the hybridised states would incorporate the resonance parameter
gre and lead to imperfect cat states:

lea,8) = VDlea T) + /1 —pei¢]eb 1. (134)

Above, p ~ 1/2 4+ O(gb_al). Imperfect cat states contribute delta function peaks at w =0
and w = war = [Voa| + O(|Vhalg5,2)

(ea0|0% (t)05(0)|eac) = (1 — 2p)* + 4p(1 — p) cos(wWart). (135)

Accounting for the distribution of gy, in (25) corrects A, the weight at zero frequency and
the exact form of [S(w)]. However, it does change universal features, such as the vanishing
of the exponent 0 with |( — (.| and the exponential decay in r of F(r), the weight at zero
frequency after all range ' < r processes have been accounted for, as per (45).
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A.2 Multiple resonances

Suppose an eigenstate |eq, 1) is resonant with multiple other eigenstates of #Hy. Here we
argue that the strongest resonance (defined by (35)) sets the frequency of oscillation of
(ea T lo()05(0)]ea ).

Consider the case of two resonances at different ranges. Let |e,) = %(ka T+ len 1))
denote the cat state resulting from the strongest resonance (at the shorter range). Suppose
that |e4) is now resonant with another state |e. |) at larger range with some matrix element

(ea|Vec L) = Voo := % (Vae + Vie) - (136)

This matrix element is much smaller than [Vi,| as [Vac|, |[Vie| < |Via|. Treating this reso-
nance within degenerate perturbation theory splits the peak at w = |V3,| into two peaks
at w = |Via| £ |Vae|- As this further splitting is small, we neglect it and assume that the
spectral weight remains sharply peaked around w = |Vj,].

In the time domain this statement is as follows: an initial state |e, 1) oscillates between
lea 1) and |ep J) on a time scale |Vj,| ™! and tunnels into the state |e. ) on the much longer
timescale |Vae| 1.

We generalise the above argument to many-resonance case. Suppose |e,) has a reso-
nance meditated by a matrix element |V,.|, which leads to hybridised states

1
least) = 77 (lea) £ lec 1)) - (137)
Take one of these states |e/,, ). Suppose this state has a longer-range resonance mediated
by a matrix element [V |. We obtain two new cat states. Suppose one of these two cat
states |el,, ) has an even longer-range resonance mediated by |V,,| and so on. The initial
peak at wqr = |Vq| splits into several peaks at

w :|Vba| - |Vozc‘7 |Vba‘ + ‘VaC‘ - ’Valzdla

138
Veal + [Vacl + [Vaal £ [Vl - - )

An analogous procedure splits each of the peaks with a minus sign in the RHS above into
many sub-peaks.

To show that such shift Aw remain unimportant we calculate the root-mean-square
size shift Aw? as show that Aw? < wqt- To do this we first note that the matrix elements
v(r)’ connecting an already hybridised state to other unhybridised states at range r are a
factor v/2 smaller

V'(r) = —=wv(r), (139)

§(r) = 2p(r) (140)

yielding a probability of hybridising at range r of
qd(r) = V2q(r). (141)

Thus, supposing that the initial resonance is at a range r (i.e. that wey = v(r)) we find

Aw = Z o' (X)X (r") (142)
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where X (r) is a random variable which takes values X (r) = 1,—1,0 with probabilities
q(r)/2,4'(r)/2,1 — ¢ (r) respectively. Thus Aw has mean Aw = 0 and, measured in units
of the initial resonant frequency wqs, has variance

V(s)\? e—(3+1)/¢
v(r)) C16V2A(4/C +3/€)

On the localised half of the phase diagram (£ > 0) this quantity is exponentially decaying
in r, indicating this approximation scheme is asymptotically improving at low frequencies.
In the crossover region it is bounded by its critical value, which is much smaller than unity

A2 [
= = dsq'(s) <

2
wa’r r+1

(143)

A G
wi o 64v2A
and so does not alter the asymptotic form of the spectral function [S(w)], whereas on the

thermal this approximation breaks down only for r > £, outside the regime of validity of
our calculation.

<1, (144)

B The spectral function [S(w)] in the Hamiltonian RM for
large systems in the vicinity of the MBL transition: L, |{| >
A

In this regime hydrodynamic constraints become important. These constraints highlight
the limitations of the approximation made in (90), as F) predicts unphysical behaviour.
Specifically

lim Fy(r) =e VA (145)
£—o0
which using [C..(t)] = F(r(t)) (49), and the logarithmically growing light cone r(t) o logt
implies that the correlations decay as a stretched exponential in log¢. This decay is slower
than any power law, but much faster than the maximum possible decay rate permitted by

energy conservation of
1 1

[C.2(t)] o @) > gt (146)
This maximum rate follows as the z-field on the probe spin of has overlap with the
Hamiltonian tr (af) ) = W, and any initial energy on the probe spin cannot have spread
further than the light cone front ().

In order to address this inconsistency we turn to a more careful treatment of Egs. (86)
and (88). By direct numerical integration (see Appendix C.1) we find that the stretched
exponential decay is cut-off at 7 > A by an asymptotic decay F(r) ~ r~2, implying a
decay [C..(t)] ~ log~2t. This decay is still too fast to be consistent with hydrodynamics,
however, the weakness of this violation means there are many small corrections which yield
a late time dynamical regime consistent with hydrodynamics. For example, a sub leading
power law in 7 on the matrix elements v(e,r) will suffice. However, here we explore the
effect of energy dependency of the matrix elements.

Instead of the energy independent form for the matrix elements (77), we now consider

(e, ) = Jexp <_§(:/r) — Z{j) . (147)

where we now allow the localisation length to vary as a function of the energy density
e/r of the patch of the system which must be rearranged to relate the two states |E, 1)
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and |Ep |) (As we are interested only in behaviour at asymptotically large r, we consider
these states to be at the same energy density, despite their energy difference of +W due
to the probe spin). We consider only the leading order dependence on energy density of

the localisation length
1 1 e e? )
— == |14+—4+ == +... 148

Cle/r) € ( e e

where ( is the localisation length at maximum entropy, the constant energy densities u,n
determine scales over which ( varies, and we have suppressed higher powers of e/r. We
will assume 17 = oo as the statistical symmetry of the model implies ¢ should be an even
function, and p positive and finite. This corresponds to a localisation length which is
shorter away from maximum entropy.

The energy dependence of the matrix elements then alters the form of ¢, (e, 7):

1 r e? (e+e,)?
qg(ear) ~ 5% eXp <_§ - CTM2 B AW 2y > ’ (149)

For p positive and finite g, (e, r) is asymptotically narrower than p, (e, r) at large r, we can
extract the asymptotic behaviour of f, by replacing ¢,(e,r) with a delta function

8fo 282f0 1
— =W — 0 50W) fo
ar ger ~ Vet 2o/ (150)
fo (ev_%) =0 (3— %O’W) .
where v = [deg,(e,r) is an r independent constant at the critical point. Solving (150)
(see Appendix (C.2)) we find asymptotic decay

Flr) = /defg(e,r) N \/1? (151)

where here ~ indicates asymptotic equality up to an overall constant. This yields
[C..(t)] ~ log~ /2 Jt (152)
[S(@)] ~ w| M log ™% | /w| (153)

consistent with hydrodynamic restrictions.

C Solutions to the loss-diffusion (86)

In this appendix we consider the loss-diffusion equation (86)

0fs _ yr2®fo _

fo(e,—3)=6(e—3aW).

We study two regimes:

e We first study the critical dynamics (( = (.) with energy independent matrix el-
ements (v a function of r only). We show that the asymptotic decay of F(r) =
[defs(e,r) is given by F(r) oc r=2 as quoted in the main text. This behaviour is
not permitted asymptotically due to hydrodynamic restrictions.

e We then study the asymptotic critical dynamics for energy dependent matrix ele-
ments (147) with 7 = oo, and 0 < u < co. We show that in this case F(r) ~ r~1/2,
behaviour consistent with hydrodynamics.
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Figure 11: Decay in F(r) for energy independent matrix elements: Values of A\|dF/dr| are
plotted versus r/A, these are obtained by numerically solving (155) and (157). The point
r/A = 1 is marked with a vertical grey line. For r/A < 1, the behaviour is consistent
with F(r) = exp(—+/r/\) (dotted line). For /X > 1, the decay is slower F(r) o< (\/r)?
(dashed). Different series correspond to different values of A (legend inset).

a=2.
0.100 /\

103

-6 -4 -2 0 2 4 6 -6 -4 0 2 4 6 -6 -4 -2 0 2 4 6
e/ se(r) e/ se(r) e/ se(r)

A=2.x10?

A=2.x10*

0.100 0.100

o
=3
S

0.001

fler) - s.(r)
fler) - ser)

Figure 12:  Decay in F(r) for energy independent matriz elements: the distributions
fo(e,r) are plotted for log-spaced intervals of r, using the same numerical solutions to (155)
and (157) as Fig 11. In each case it is clear that at large ranges the distribution is depleted
at energies e < s.(r).

C.1 Critical point with energy independent matrix elements

Here we study the equation defined in the main text, specifically

Ofr _ 2 fr
o = Wige ~halen) (155)
fr(e.—3)=d(e—3W).
for the loss function )
1 (e+3W)?
(e, r) ~ N exp <_2322(r)> . (156)

where s,(r) = W+/2r + 1.
We numerically solve these equations by stochastic sampling of trajectories. In Fig 11
we plot dF/dr for different values of the parameter A where as before

F(r)= /defT(e,T). (157)

We see that for all trajectories the initial decay at small » < X is consistent with the

~

approximate solution F'(r) = exp(—+/7r/\) (grey vertical line marks = \) at which there
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is a crossover to F'(r) o< 7~2 behaviour. For these equations this latter behaviour continues
asymptotically.

In Fig. 12 we show the variation of f(e,r) with e, specifically we plot fi(e,r) for a
series of fixed log-spaced values of r. For clarity we also re-scale e by the width of the
distribution s,(r) = W+/2r + 1 (i.e. so that for A = oo the plots would collapse for all r).
From these plot it is clear that the centre of the distribution is depleted faster than the
mean, that is f;(0,r) decays asymptotically faster than F'(r). This behaviour is exhibited
for r > X and violates the approximation scheme of Sec. 3.2.4.

C.2 Critical point with energy dependent matrix elements

We now study the same loss-diffusion equation (154) for dynamics in the crossover region
with energy dependent matrix elements. Specifically we now set

1 e? (e+ 2W)?
ar(e,1) ~ —==exp <— i 2532(T) ) : (158)

for some finite p in the range 0 < p < 0.

To simplify the problem we make several approximations which do not alter the asymp-
totic behaviour of these equations. First, as the width of ¢, is asymptotically smaller (in
r) than s,(r), for r > X we can approximate g4(e,r) with a delta function placed at the
origin with weight

W

_ _ —1
y = /deqT(e,r) e Lo, (159)

Second, we neglect the sub-leading r-dependent correction to 7, and thirdly we neglect the
initial energy offset of f4+. This yields the equation

Ofr _ 2 fr
o w 92 vf+d(e), (160)
with boundary condition fi(e,r = 0) = d(e).
To solve this equation we decompose fr as
fT(evT) = an(e7r) (161)
n=0
which satisfy the equations
dfo 29” fo
ZJ0 162
or W 0e? (162)
with boundary condition fy(e,r =0) = d(e) for n = 0 and
afn 282fn
GJn _ v fo 1

with boundary condition f,(e,7 = 0) = 0 for n > 0. With this fj is straightforwardly

identified
o=/ (4rw?)

fo(e,r) = TM/Q’ (164)

and it further follows that for n > 0

Faler) = — /O dsfo(er — 5)fu1(0,5) (165)
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this equation is obtained by simply treating f,,—1(0, s) as a source term for f,,, in accordance
with (163), and integrating with the heat equation Kernel fy. To make progress we note
that it is sufficient to obtain the f,(0, s), which are related by a recursion relation

n(0,7) fn 1(0, s) (166)

_7/ V4 W27T (r—2s)

and related to our desired result, F(r), by

- ;/defn(e,r) =1- 7;/0 dsfn—1(0,7) (167)

where we have substituted (165).
Solving this recursion relation (166) yields

fa(0,7) = (1)n<r>”51 (168)
T ey )

where £ = 4W?2 /7y2. The function F(r) is then obtained by substituting (168) into (167),
performing the integral

/df 0.r) = =" (T)n;l (169)
§fn-1(0,7) (n+3) /¢

and recognising the resulting summation as a Taylor series, this yields

F(r) = e"/* Exfc (\/r/7 ) (170)

where
Erfe(z) =1 - — 4t (171)
—T

is the usual complementary error function. From (170) it follows that F'(r) decays asymp-
totically as
l 2w
F(r)y~1— =

T YT
as quoted in the main text. The constant pre-factor here is liable to be altered by
the simplifications we made earlier in the calculation, however the asymptotic behaviour
F(r) oc 7~1/2 is robust.

(172)

D Linear drift of the deviation from thermal behaviour

In this appendix we derive (117) from the main text
Ws(L) ~ Wee™ b/ (1), (173)

where /5 is some § dependent constant, and Wy(L) is defined as the disorder strength at
which the time averaged correlator [C,,] deviates from thermal behaviour by some small
amount

[C..)(Ws) = < 1 (174)
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Recalling that [C..] = F(L/2) and using the form (91) for F'(r) on the thermal side

oo [ TEWS)] L
‘“p< wmf”(mm0> (175)

where we have explicitly labelled disorder dependence of the correlation length & and the
resonance length A. We use

1

EW) = Tog(W/IWo) (176)

whereas A is given by (83).
Let us extract from (175) how Wy varies with L. Away from the crossover region the
imaginary error function can be written in terms of more familiar functions

el’

N3

Substituting both (177) and A(Ws) = (Ws/W.)?A(W,) into (175) and rearranging we
obtain

Erfi(y/) =

(1+0@=™) (177)

L Wy SLA(We)
wmﬁmm‘m%rmw'mﬁ

+0 (QK(LW‘”') (178)

Consider the RHS of (178): for sufficiently small § we are far from the crossover L >
|€] and the corrections may be neglected. Now consider the leading term on the RHS
of (178): this term exhibits weak logarithmic dependence of L, and, recalling that £&(Ws) ~
1/log(Ws/W,), doubly logarithmic dependence on W, thus to first approximation the RHS
may be replaced by a (negative) constant —/s:
L Wi

€07;)] + log W Ly (179)
Then, again using &(Ws) ~ 1/log(Ws/W.), by rearranging we obtain the desired re-
sult (173).

This function is approximately linear for sufficiently small L. To see this, note that
the RHS of (117) has an inflection point at L = ¢s/2 — 1, and thus has zero curvature
at this point. Taylor expanding about the inflection point and demanding that the cubic
term is not larger than the linear term reveals the approximate linearity to persist for

L+1<65(1/2+ /3/4).
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