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Abstract

We characterize excited state quantum phase transitions in the two dimen-
sional limit of the vibron model with the quantum fidelity susceptibility, com-
paring the obtained results with the information provided by the participation
ratio. As an application, we locate the eigenstate closest to the barrier to lin-
earity and determine the linear or bent character of the different overtones
for particular bending modes of six molecular species. We perform a fit and
use the optimized eigenvalues and eigenstates in three cases and make use of
recently published results for the other three cases.
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1 Introduction

The study of bending vibrational degrees of freedom has been fostered due to their two-
dimensional nature and the existence of two well-defined physical limits –linear and bent
configurations–, together with intermediate configurations –quasilinear species–, charac-
terized by a large amplitude motion that makes them rich in spectroscopic signatures [1].
Positive or non-monotonous anaharmonicities, the latter associated with the occurrence
of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro-
tational spectra due to the mixing of linear and bent characters in the wave functions of
states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient
spectroscopic features that can be found in the spectra of quasilinear species.

Significant advances and developments in spectroscopic methods have made possible
the experimental access to high bending overtones for several molecular species. In this
way, it has been possible to have access to experimental spectroscopic information that
allows for the study of systems at energies around the barrier to linearity [5,6]. The results
obtained for water [7] and NCNCS [8–10] are of particular relevance.

In recent times, the concept of quantum monodromy, initially introduced by Cushman
and Duistermaat [11] and revisited by Child [12], has greatly helped in the assignment
of states in systems where the complexity of wave functions, due to the proximity of
the states to the barrier to linearity, hampered a correct state labeling [5–8, 13]. This
is a concept borrowed from classical mechanics that relies on the topological singularity
happening once the system energy is large enough to probe local saddle points or maxima
that prevent the definition of global action-angle variables [14].

The theoretical modeling of bending vibrations in nonrigid molecular species requires
special tools, as the large amplitude vibrational degree of freedom strongly couples vibra-
tional and rotational degrees of freedom. A pioneering work in this field is the Hougen-
Bunker-Johns bender Hamiltonian [15]. This work was later extended to the semirigid
bender Hamiltonian [16] and the general semirigid bender Hamiltonian [17]. The MOR-
BID model [18], based on the above mentioned developments, is currently a standard
method for the analysis of nonrigid molecular spectra, where the simultaneous consid-
eration of rotational and vibrational degrees of freedom is required for the modeling of
experimental term values and the assignment of quantum labels.

The algebraic approach and, in particular, the vibron model is an alternative to the
traditional integro-differential approach for the modeling of molecular spectra. This model
is based upon symmetry considerations and relies heavily in the properties of Lie algebras
[19]. The vibron model (VM) belongs to a family of models that assign a U(n + 1)
algebra as a dynamical or spectrum generating algebra for an n-dimensional problem [20].
Similar models have been successfully applied to the modeling of the structure of hadrons
[21,22] and nuclei [23–25]. In the original vibron model formalism, introduced by Iachello,
rovibrational excitations of diatomic molecular species are treated as collective bosonic
excitations [26], and the dynamical algebra is U(3+1) = U(4), due to the vector nature of
the relevant degrees of freedom [25,27]. The two-dimensional nature of bending vibrations
and the need to simplify the vibron model formalism to efficiently deal with polyatomic
systems, naturally drove to the formulation of the two-dimensional limit of the vibron
model (2DVM) [28,29]. The 2DVM defines a formalism that is able to model the linear and
bent limiting cases of the bending degree of freedom, as well as the large amplitude modes
that characterize intermediate situations [30–33]. An extension to four-body operators of
the algebraic Hamiltonian, used in the present work, has been recently published [34]. The
2DVM has also been used for the modeling of coupled benders [28, 35–37], stretch-bend
interations [38–41], and the transition state in isomerization reactions [42].
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In recent years, considerable attention has been paid to the occurrence of quantum
phase transitions (QPTs) in many different physical systems [43, 44]. Such transitions
occur at zero temperature and are due to quantum fluctuations, differing in this way
from the usual thermal phase transitions. These transitions are also known as ground
state quantum phase transitions due to the abrupt modification experienced by the system
ground state wave function once a given parameter in the Hamiltonian (control parameter)
goes through a critical value. The work on ground state QPTs in algebraic models can
be traced back to the seminal articles by Gilmore et al. [45–47] where such transitions
were studied for nuclei. These transitions were also called shape phase transitions as each
phase corresponds with different geometric configurations of the system’s ground state.
The study of QPTs in mesoscopic systems is a very active research line [48–51] and a
general classification of QPTs in algebraic models can be found in Ref. [52]. In the 2DVM
case, the ground state QPT takes place between the linear and bent limiting cases, with a
second order phase transition that occurs for nonrigid configurations [30,31]. A full ground
state QPT analysis was performed in [29] and a study of corrections beyond the mean field
approach was published in [53]. As this is the simplest two-level algebraic model with a
nontrivial angular momentum, it has been chosen in many cases as a test model for QPT
studies [54–58].

The study of QPTs was later extended beyond the ground state with the concept
of excited state quantum phase transitions (ESQPTs) [59–61]. Such transitions, often
associated with a ground state QPT, involve the non-analiticity of the energy level density
and level flow for critical values of the energy [62,63]. For a system with a nondegenerate
stationary point and n effective degrees of freedom, the order of the derivative of the level
density that is non-analytic is n − 1 [64–68]. In most cases, ESQPTs can be associated
with the existence of an unstable stationary point or a similar singularity in the potential
obtained in the classical limit of the system. The non-analiticity is fully realized only in
the system large size limit. However, ESQPT precursors can be easily identified for finite
systems. Hence, in an ESQPT there exists a borderline of critical energy values, that marks
the occurrence of a high level density of states in a certain range of the control parameter
or parameters. This line, called separatrix, separates the different ESQPT phases. States
belonging to one of the phases have properties akin to the states of the dynamical symmetry
associated to the phase in question. As we discuss in this work, it is often cumbersome to
assign a given excited state to a phase or to ascertain its position relative to the separatrix.
This is particularly complex for systems with several control parameters and a complex
phase diagram. ESQPTs have been studied in different quantum many-body systems:
the single [62] and coupled [69] Lipkin-Meshkov-Glick models, the Gaudin model [70], the
Tavis-Cummings and Dicke models [63, 71], the interacting boson model [50], the kicked-
top model [72], periodic lattice models [73,74], or spinor Bose-Einstein condensates [75,76].
It has been paid special heed to the influence of ESQPTs on the dynamics of quantum
systems [77–87] and to a possible link between ESQPTs and thermodynamic transitions
[88, 89]. For a recent review on the ESQPT subject, with a complete reference list, see
Ref. [68].

The 2DVM presents an ESQPT, associated with a second order ground state QPT,
that can be explained from the influence on excited states that have enough excitation
energy to straddle the barrier to linearity. There is a clear connection between the ES-
QPT phenomenon and quantum monodromy [29], something that can be generalized to
systems other than molecules [90–92]. In fact, the possibility of accessing highly-excited
bending levels experimentally makes molecular spectroscopy an optimal playground to
detect ESQPTs precursors in experimental spectra [32, 34, 37, 42]. Other systems where
ESQPT signatures have been experimentally recorded are superconducting microwave bil-
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liards [73] and spinor Bose-Einstein condensates [93].
As mentioned above, states lying at different sides of the separatrix can be ascribed to

one or the other of the existing limiting physical situations, or dynamical symmetries. In
the 2DVM case, as explained in Sect. 2, states can have a U(2) –linear– or SO(3) –bent–
character. However, as one gets further from the limiting cases and closer to the critical
energy, it gets cumbersome to assign states to a given phase, due to the strong mixing in
the wave function [34]. This is explained by the known fact that the definition of order
parameters for ESQPTs is not an easy task, in contrast with the situation for ground state
QPTs [61].

Recently, a quantity called participation ratio [94] (also known as inverse participation
ratio [95] or number of principal components [96]), akin to the Shannon entropy, has been
used to quantify the degree of localization of states when expressed in the bases for the
different dynamical symmetries. For systems with U(n + 1) dynamical algebra and a
second order ground state QPT of the type U(n)−SO(n+ 1), it has been shown that the
participation ratio allows to reveal the location of the ESQPT critical energy due to the
enhanced localization of eigenstates with energies close to the critical energy value if they
are expressed in the U(n) basis, [80–82]. This fact has been later confirmed, using the
2DVM, in the study of the bending vibrational spectrum of molecular species with large
amplitude bending degrees of freedom [34] and in the HCN-HNC isomerization transition
state [42]. As explained in Sect. 2, the participation ratio does not allow in all cases for an
unambiguous assignment of a linear or bent character to a given state. The large mixing
that occurs once the system is far enough from the dynamical symmetry limits hinders this
assignment, a fact that can be explained using the quasidynamical symmetry concept [97].

Therefore, it is important to find a quantity other than the participation ratio that
allows for the unambiguous assignment of 2DVM excited states around an ESQPT to one
of the implied phases. In recent times, quantum-information-derived quantities have been
successfully employed to characterize ground state QPTs as they offer an approach that
does not rely on the identification of an order parameter and its corresponding symmetry-
breaking pattern (see [98–100] and references therein). Inspired by these works, we have
found that we can unambiguously assign excited states into ESQPT phases using quan-
tum fidelity susceptibility. Quantum fidelity is a concept that arises in quantum informa-
tion theory and it involves the overlap of wave functions [101]. This quantity has been
successfully applied to the study of ground state quantum phase transitions and critical
phenomena [102]; for a review see [99]. A derived quantity that has been used for the char-
acterization of QPTs is the quantum fidelity susceptibility (QFS), the second derivative of
the fidelity and the leading order term in the series expansion of the fidelity [99,103,104].
In the present work, we extend the calculation of QFS to 2DVM excited states, obtaining
an unambiguous assignment of such states to one of the possible ESQPT phases, as we
can locate the state position relative to the separatrix between ESQPT phases. We apply
the formalism to a recently presented four-body 2DVM Hamiltonian [34], and we assign
a linear or bent character to the excited states of linear and non-rigid molecular bending
vibrations.

The present work is structured as follows. We provide a brief introduction to the
2DVM in Sect. 2, presenting a simple model Hamiltonian. In Sect. 3, we discuss the
QFS results for the model Hamiltonian, comparing them with the information provided
by the participation ratio. In Sect. 4, we apply the formalism to the Si2C molecule, a
well-known example of nonrigid molecule [6]. In an abridged form, we also show results
for selected bending degrees of freedom for other five molecular species. In Sect. 5, we
include a summary of the work and some concluding remarks.
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2 The two-dimensional limit of the vibron model

This section includes the theory of the 2DVM in an abridged form, the interested reader
can find a more complete description of the model in Refs. [28,29,32–34]. Due to the two-
dimensional nature of bending vibrations, its algebraic modeling implies the treatment
of vibrational quanta as collective bosonic excitations using the U(3) Lie algebra as a
dynamical algebra [28,29].

Following the algebraic formalism [25,27], one should consider the possible dynamical
symmetries that are subalgebra chains starting in the dynamical algebra and ending in the
system’s symmetry algebra. The conservation of angular momentum in a bending mode
(vibrational angular momentum) implies that the symmetry algebra in this case is SO(2).
There exists two possible chains that start in U(3) and end in SO(2) 1

U(3) ⊃ U(2) ⊃ SO(2) Chain (I)
N n `
U(3) ⊃ SO(3) ⊃ SO(2) Chain (II)
N ω `

(1)

Each dynamical symmetry provides a set of quantum labels and a basis to treat the
problem of bending vibrational spectra and it is associated with a limiting physical case.
Chain (I) is known as the cylindrical oscillator chain and it can be mapped with the
bending vibrations of a linear molecule. Its associated basis is a truncated 2D harmonic
oscillator basis, with quantum labels {|[N ]n`〉}. The quantum label N identifies the totally
symmetric representation of U(3) and determines the size of the system Hilbert’s space;
the n and ` labels are the number of quanta of excitation in the 2D harmonic oscillator
and the vibrational angular momentum, respectively. Chain (II) is known as the displaced
oscillator chain and it can be mapped to the limiting physical case of a bent molecule.
The associated basis is expressed as {|[N ]ω `〉} where N has the same interpretation than
in the previous case, ω can be connected with νb, the number of quanta of excitation in
the anharmonic displaced oscillator: νb = (N − ω)/2. Finally, `, is the projection of the
molecular angular momentum on the figure axis. In some cases this quantity is expressed
using the usual notation for symmetric tops ` = K. The branching rules for both bases
can be found in Refs. [28, 29, 34] and calculations can be performed in any of them. The
selection of one or the other is often determined by the nature of the system under study.
The transformation brackets between both bases can be analytically derived [29,105].

In the algebraic approach, the Hamiltonian and any other operator of interest is ex-
pressed as a function of Casimir or invariant operators of the subalgebras in the dif-
ferent dynamical symmetries. A specially convenient and simple model Hamiltonian
can be built using two operators: the number operator, n̂, and the pairing operator,
P̂ = N(N + 1)− Ŵ 2. The first one is the first-order Casimir or invariant operator of the
U(2) subalgebra while the second one is built with Ŵ 2, the second order Casimir operator
of the SO(3) subalgebra. The model Hamiltonian,

Ĥ(ξ) = ε

[
(1− ξ)n̂+

ξ

N − 1
P̂

]
, (2)

depends on two parameters, the system control parameter, ξ ∈ [0, 1], and the energy scale,
ε. Hereafter we fix the energy scale to ε = 1 and the calculated energies are dimensionless
quantities. The pairing operator is a two-body operator, while the number operator is a

1A third chain, U(3) ⊃ SO(3) ⊃ SO(2) can be defined but it has the same physical interpretation than
the U(3) ⊃ SO(3) ⊃ SO(2) and it does not add new features to the model [29].
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one-body operator; therefore the two-body part is normalized by the system size to make
the Hamiltonian intensive and allow for the calculation of results in the thermodynamic
or large size –large N– limit. Matrix elements of the model Hamiltonian in the bases (1)
can be found in Ref. [29].

The study of the eigenvalues of Hamiltonian (2) and its classical limit determines that
there exists a ground state QPT of second order with a critical control parameter value
ξc = 0.2 [29]. For control parameter values ξ ≤ ξc, the system is said to be in the U(2) or
symmetrical phase, which in the molecular case can be mapped to a linear configuration.
If ξ > ξc, then the system is in a SO(3) or broken symmetry phase, known as a bent
–or semirigid– configuration in the case of vibrational bending. If ξ = 0, the Hamiltonian
is diagonal in Chain (I) basis and the spectrum is harmonic; while in the ξ = 1 case
the Hamiltonian is diagonal in Chain (II) basis and the spectrum is anharmonic, with
degenerate rotational bands. In between these two cases, the model Hamiltonian (2),
despite its simplicity, is able to reproduce spectra with positive anharmonicity, associated
with flat potentials for control parameter values less than ξc. It can also reproduce the
spectroscopic signatures of nonrigid molecular species (ξc < ξ < 1): the Dixon dip and
the change from a linear to a quadratic dependence of the energy with vibrational angular
momentum that characterizes quantum monodromy [29,30,32–34].

A convenient tool for the characterization of wave functions in the phases defined by an
ESQPT is the participation ratio (PR). This quantity provides the degree of localization
of a state in the available bases [94]. For a quantum state |Ψ〉, expressed in a given basis

{|φi〉}i=1,...,dim as |Ψ〉 =
dim∑
i=1

ci |φi〉, the PR is defined as

PR[Ψ] =
1

dim∑
i=1
|ci|4

. (3)

Note that the minimum value of the PR for a given state is one, and this means that the
state under scrutiny belongs to the basis. On the other hand, the maximum value is equal
to the basis dimension, dim, in the –nonrealistic– case of a state with equal and non zero
ci coefficients (ci = 1/

√
dim).

In algebraic models with an ESQPT associated with U(n) − SO(n + 1) dynamical
symmetries, it has been found that states close to the critical energy of the ESQPT
display a high localization in a dynamical symmetry basis [80–82]. The main application
of this quantity in the 2DVM stems from the high localization of the ` = 0 states that
lie closer to the barrier to linearity –critical energy of the ESQPT– when expressed in
the the U(2) basis (1). More precisely, such state, or states, have a dominant component
for the basis state |[N ]n = 0`=0〉 [34]. This effect is blurred for increasing values of the
vibrational angular momentum, `, as the centrifugal barrier precludes the wave function
from exploring the barrier to linearity critical point. The PR has also proved useful in the
caracterization of a different type of ESQPT, associated with ` = 0 transition states in
isomerization reactions, where the |[N ]n`〉 = |[N ]N0〉 component has the highest weight
in the Chain (I) basis [42].

In the 2DVM, cases with an ESQPT –i.e. with quantum monodromy–, notwithstanding
the critical energy of the ESQPT is well determined from the PR values for eigenstates
in the U(2) basis, the comparison of the PR values obtained for the U(2) and the SO(3)
bases does not allow for a clear assignment of a given eigenstate to a linear or bent ESQPT
phase. This is specially relevant for systems with a low barrier to linearity, and for states
that lie far from both limiting physical cases, the U(2) and SO(3) dynamical symmetries.
This is in good accordance with the quasidynamical symmetry concept [97], that explains
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the high degree of mixing expected as one gets further from the dynamical symmetries,
even for states retaining most of the characteristic features of a dynamical symmetry.
Therefore, in such cases, the direct comparison of the PR values for the U(2) and SO(3)
bases does not allow an unambiguous assignment of the eigenstate to a linear or bent
character.

3 Quantum Fidelity Susceptibility in the 2DVM

In order to overcome the PR limitations discussed in Sect. 2 and in our previous pub-
lication [34], we have looked for a basis-independent quantity that could achieve an un-
ambiguous assignment of a system excited states to one of the existing phases. This is
specially relevant once we move from the simple model Hamiltonian (2) to more complex
Hamiltonians that include higher order operators.

Our proposal is to extend the QFS to 2DVM excited eigenstates, obtaining in this way
a sensitive probe, able to locate a given eigenstate position with respect to the separatrix
line between ESQPT phases. It therefore allows us to assign excited states to a U(2)
or SO(3) ESQPT phase in a basis-independent way. We proceed to define QFS and its
application to the 2DVM.

The definition of quantum fidelity, a quantity introduced in quantum information the-
ory [101], for a system with a single control parameter, λ, and ground state |ψ0(λ)〉 is

F (λ, δλ) = |〈ψ0(λ)|ψ0(λ+ δλ)〉| . (4)

This quantitiy provides a measure of the similarity between ground states obtained for
control parameters values λ and λ + δλ. Despite its apparent simplicity, this quantity
efficiently grasps the sudden change experienced by the ground state wave function once
the control parameter is varied across its critical value and, since the seminal work of
Zanardi [102], it has been used to characterize QPTs in different systems [99,103]. Another
magnitude often used to identify QPTs is the QFS, which is the second order -and leading-
term in the series expansion of the fidelity as a function of δλ [99, 103]. This quantity is
maximal when the parameter λ goes through a critical value

χF (λ) = −∂
2F (λ, δλ)

∂(δλ)2
= lim

δλ→0

−2 lnF (λ, δλ)

(δλ)2
. (5)

Using first-order perturbation theory, the QFS can be expressed in the so called summation
form [99]

χF (λ) =
dim∑
i 6=0

∣∣∣〈ψi(λ)| ĤI |ψ0(λ)〉
∣∣∣2

[Ei(λ)− E0(λ)]2
, (6)

where ĤI is the interaction Hamiltonian and the total Hamiltonian can be written as
Ĥ(λ) = Ĥ0 + λHI ; |ψi(λ)〉 is the i-th eigenvector of Hamiltonian Ĥ(λ) and Ei(λ) is
its eigenvalue. An important advantage of the QFS, expressed in this form, is that it
is independent of the δλ value, assuming a linear dependence of Ĥ(λ) in the control
parameter.

The QFS has been used in the characterization of ground state quantum phase tran-
sitions and their universality in relevant many-body quantum systems, e.g. the 1D Hub-
bard model [103, 106], the Kitaev honeycomb model [107], the 1D asymmetric Hubbard
model [104], the Lipkin-Meshkov-Glick model [108–110], the two-dimensional transverse-
field Ising and XXZ models [111], the Rabi model [112], Gaussian random ensambles [113],
or 1D lattice models [114–117].
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In the present work, we extend the concept of QFS beyond the ground state, to the
realm of excited states, and we use this magnitude as a probe to locate excited states
in the 2DVM with respect to the separatrix line between different ESQPT phases. We
will apply this to the results obtained in the fit of Hamiltonian (11) to several molecular
species obtaining an unambiguous assignment of the excited states to a given basis.

Our proposal is to introduce a control parameter λ and split the algebraic 2DVM
spectroscopic Hamiltonian into three different terms: a first one, ĤI , that encompasses all
operators diagonal in the U(2) basis and its associated spectroscopic parameters; a second
one, ĤII , including terms diagonal in the SO(3) basis; and a third one, ĤI−II , containing
operators and the corresponding spectroscopic parameters diagonal in both bases

Ĥ (λ) = (1− λ) ĤI + (1 + λ) ĤII + ĤI−II = Ĥ(λ = 0) + λĤI , (7)

ĤI =− ĤI + ĤII . (8)

The control parameter λ is defined in the range λ ∈ [−1, 1] and the initial Hamiltonian
is recovered for λ = 0. The Hamiltonian Ĥ (λ = ±1) is diagonal in the U(2)/SO(3) basis.

We now proceed to define the QFS for the j−th eigenstate of Hamiltonian Ĥ (λ) as

χ
(j)
F (λ) =

dim∑
i 6=j

∣∣∣〈ψi(λ)| ĤI |ψj(λ)〉
∣∣∣2

[Ei(λ)− Ej(λ)]2
, (9)

that is a generalization of Eq. (6) to excited states. As the value of the λ control parameter

is varied, χ
(j)
F (λ) will evidence –even for finite-size systems– a peak whenever a separatrix

line associated with an ESQPT is crossed. The energy difference in the denominator of
Eq. (9) makes QFS also very sensitive to the presence of avoided crossings, pervasive
in chaotic systems. In fact, this quantity has been recently used to reveal the onset of
quantum chaos in spin chain models [117]. In chaotic systems having ESQPTs, QFS is
still a valid tool that ought to be combined with other quantities sensitive to the transition
to chaos in the system. It is worth to mention that recently it has been published a study
of adiabatic and counter-adiabatic driving in ESQPTs [68] using the extension of the QFS
to excited states.

The QFS can be used to locate excite states for a given Hamiltonian with respect to
the ESQPT separatrix. To illustrate this, we show as an example the application of Eq. (9)
to the excited states of model Hamiltonian (2) in the broken symmetry phase, with a fixed
ξ > 0.2. We select ξ = 0.6, and thus ĤI = 0.4 n̂ and ĤII = 0.6/(N − 1)P̂ , and

Ĥ (λ) = Ĥ(ξ = 0.6) + λĤI , (10)

where ĤI = −0.4 n̂+
(

0.6
N−1

)
P̂ and the new control parameter is λ. We show the results

obtained for ` = 0 states of the model Hamiltonian with a system size N = 200 in Fig. 1.
The correlation energy diagram, plotting the normalized excitation energy versus the λ
control parameter, is shown in the upper panel. The resulting diagram is, as expected, sim-
ilar to the correlation energy diagram of the model Hamiltonian, Ĥ(ξ), with a ground state
QPT and a line of high density of states that marks the ESQPT separatrix. The energies
for λ = 0 are the energies of our selected model Hamiltonian case. We have highlighted
the results obtained for the ground state and the states with normalized excitation ener-
gies closer to 0.05, 0.2, 0.4, 0.6, and 0.8, with different colors (orange, light green, purple,
pink, cyan, and dark green, respectively). Therefore, instead of going across the ESQPT
following a given eigenstate, we have selected a set of states according to their excitation
energy values. For each one of them, the ESQPT separatrix is crossed at different λ values
(see upper panel).
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We plot in Fig. 1 center panel the results obtained for the QFS (9) normalized by the
system size for the model Hamiltonian excited states as a function of λ. We use the same
color code than in the upper panel to emphasize the results for a selected set of states.
It is clear that the QFS for an excited state reaches its maximum value when the state
energy straddles the ESQPT critical energy line. Therefore, if the maximum of the QFS
for a level occurs for a negative (positive) λ value, the level lies below (above) the ESQPT
separatrix and we can assign a SO(3) (U(2)) character to the excited state. In case the
QFS maximum value is obtained for λ = 0, the system excited state energy coincides with
the critical energy and the state is in the separatrix line. In the provided example, the
ground state and the states with normalized energy values close to 0.05, 0.2, and 0.4 are
of bent (SO(3)) type and the states with E/N close to 0.6 and 0.8 have a linear (U(2))
character. The eigenstate νb = 50 is the state with an energy closest to the separatrix for
λ = 0.

The lower panel of Fig. 1 shows, for the same selected states and with the same color
code, the value of the normalized PR in the U(2) basis as a function of the λ control
parameter. In the ground state case, there is an abrupt change in the PR value for the
λ value associated with the ground state quantum phase transition, while excited states
show a minimum in the participation ratio for the λ control parameter value that makes
them cross the ESQPT separatrix, as predicted in Refs. [80–82].

In order to further illustrate the role of the QFS, we plot in the upper panel of Fig. 2
the normalized QFS –blue dashed line, left ordinate axis scale– and PR –red solid line,
right ordinate axis scale– as a function of the normalized excitation number (2νb/N) for
the model Hamiltonian eigenstates, with λ = 0, ξ = 0.6, and N = 200. Both quantities
can be used to assess the value of the ESQPT critical energy, indicated by a maximum
(minimum) value of the QFS (PR).

The lower panel of Fig. 2 shows λmax, the value of the control parameter λ for which
each eigenstate of the model Hamiltonian with ξ = 0.6 and N = 200 has a maximum QFS
value as a function of the normalized excitation number. The horizontal black-dashed line
marks the λ = 0 value and, as previously stated, eigenstates with λmax < 0 (λmax > 0)
can be classified as bent-like (linear) states.

Therefore, the QFS provides a trustworthy and basis-independent method to locate
states with respect to the high level density separatrix lines that characterize ESQPTs.
The case (10) is a particularly simple one, but in the next section we show how to use the
QFS in a more general case, with an application to the bending wavefunctions obtained
from the fit of spectroscopic parameters from an algebraic Hamiltonian including up to
four-body interactions to reported vibrational bending band origins for different molecular
species. In fact, the difficulty of clearly assigning levels in cases such as the ones included
in the next section has been the original motivation for this research [34].

4 Application to molecular bending structure

In order to illustrate how PR and QFS can help in the characterization of bending vi-
brational excited states we apply the procedure explained in section 3 to reported data
for several molecules. We have selected mostly nonrigid species, due to their feature-rich
bending spectrum that includes an ESQPT once eigenstates straddle the barrier to lin-
earity. Notwithstanding model Hamiltonian (2) has the basic ingredients to model the
limiting linear and bent cases, as well as the rich gamut of intermediate situations, it is
too simple to attain experimental accuracy in fits of observed band origins for bending
degrees of freedom. Previous fits have been performed, in most cases, using the general

9



SciPost Physics Submission

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2
No

rm
al

ize
d 

ex
cit

at
io

n 
en

er
gy

 E
/N

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

No
rm

al
ize

d 
su

sc
ep

tib
ilit

y 
F(

)/N

E/N = 0.00
E/N 0.05
E/N 0.20
E/N 0.40
E/N 0.60
E/N 0.80

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Control parameter 

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
pa

rti
cip

at
io

n 
ra

tio
 P

R U
(2

)/N

Figure 1: All panels: Results for a 2DVM Hamiltonian (10) with ξ = 0.6 and N = 200.
For the sake of clarity, the ground state and states with normalized excitation energies
closer to 0.05, 0.2, 0.4, 0.6 , and 0.8 have been highlighted using different colors (orange,
light green, purple, pink, cyan, and dark green, respectively). The rest are plotted with
blue dashed lines. All quantities are plotted versus the control parameter λ. Upper panel:
Normalized excitation energy of ` = 0 eigenstates of the model Hamiltonian (10). Middle
panel: Normalized QFS (9). Lower panel: Normalized PR in the U(2) basis (3) for the
set of selected states indicated above.
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Figure 2: All panels: Results for the 2DVM model Hamiltonian (10) with ξ = 0.6 and
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one- and two-body algebraic Hamiltonian [30,32,33]; adding higher order interactions for
especially hard cases, as in the case of the bending vibrational spectrum of water [33]. We
have recently presented improved results from a systematic study using the most general
Hamiltonian that includes up to four-body interactions [34].

Ĥ4b =P11n̂

+ P21n̂
2 + P22

ˆ̀2 + P23Ŵ
2

+ P31n̂
3 + P32n̂ˆ̀2 + P33(n̂Ŵ

2 + Ŵ 2n̂) (11)

+ P41n̂
4 + P42n̂

2 ˆ̀2 + P43
ˆ̀4 + P44

ˆ̀2Ŵ 2

+ P45(n̂
2Ŵ 2 + Ŵ 2n̂2) + P46Ŵ

4 + P47(Ŵ
2Ŵ

2
+ Ŵ

2
Ŵ 2)/2 .

The notation for the algebraic spectroscopic parameters, Pij , indicates that this is the j−th
parameter for i-th body interactions. The matrix elements of the different operators in
Hamiltonian (11) in the two possible basis –U(2) and SO(3)– can be found in Ref. [34].
The interpretation of the PR for the resulting eigenstates [34], is hampered by the new
ESQPT features introduced by three- and four-body interactions in Hamiltonian (11) as
it was already shown, for a simpler case, in Ref. [118]. This provides further support to
the use of a basis-independent alternative quantity as the QFS.

In the present work, we study a particular bending degree of freedom for six molecules:
Si2C, NCNCS, HNC, CH3NCO, 37ClCNO, and OCCCO. In the Si2C, NCNCS, and HNC
cases we use eigenfunctions and eigenvalues from the fit presented in Ref. [34]. We carry
out similar fits for the other three cases: CH3NCO, 37ClCNO, and OCCCO. Though the
influence of all spectroscopic parameters in (11) was explored for each case under study,
not all of them are needed in the fit and you can find a summary of our new results in
Tab. 1.

For the sake of brevity, we explain it in detail the QFS results for Si2C, whereas the
results obtained for the rest of the molecules are more succinctly reported. Some extra
details can be found in the figures included in Appendix.

In the Hamiltonian (11) the three- and four-body operators n̂Ŵ 2+Ŵ 2n̂, n̂2Ŵ 2+Ŵ 2n̂2,

and (Ŵ 2Ŵ
2

+ Ŵ
2
Ŵ 2)/2 are built as symmetrized products of Casimir operators and,

therefore, are not diagonal neither in the U(2) nor the SO(3) bases. To take this fact into
account, we extend the definitions (7,8) to include such operators

Ĥ (λ) = (1− λ) ĤI + (1 + λ) ĤII +
(
1− λ2

)
Ĥmix + ĤI−II , (12)

where ĤI , ĤII , and ĤI−II have the same meaning explained in Eq. (7,8), and Ĥmix

encompasses those interactions that are diagonal in neither the U(2) nor the SO(3) basis.
In this case, and applying first-order perturbation theory, the interaction Hamiltonian is
ĤI = −ĤI+ĤII−2λĤmix. Again, the original Hamiltonian is recovered for λ = 0 and the
Hamiltonian Ĥ (λ = ±1) is diagonal in the U(2)/SO(3) basis. Considering this definition,
the QFS can be computed using Eq. (9).

4.1 Detailed study of the Si2C case

The available data for the large amplitude bending degree of freedom of Si2C [6] were
studied using the four-body 2DVM Hamiltonian (11), obtaining already a fit within ex-
perimental accuracy considering one- and two-body operators (fitting spectroscopic pa-
rameters P11, P21, P22, and P23). The number of available observed term values is 37,
with νb up to 13 and a maximum vibrational angular momentum ` = 3 [6]. The resulting
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fit has rms=1.48 cm−1 [34].The interested reader can find a detailed description of the
fitting procedure in Ref. [34].

In this case, as all operators are diagonal in either the U(2) or the SO(3) basis (1),
the control parameter λ dependent Hamiltonian (7) can be written as follows

ĤSi2C (λ) = (1− λ)
[
P11n̂+ P21n̂

2
]

+ (1 + λ)
[
P23Ŵ

2
]

+
[
P22

ˆ̀2
]
,

= (1− λ) ĤI + (1 + λ) ĤII + ĤI−II .

The optimized Hamiltonian parameter values are obtained for λ = 0, and as λ ap-
proaches a value of 1 (−1) only terms associated with the SO(3) (U(2)) dynamical sym-
metry are nonzero.

We proceed to calculate the QFS as a function of λ for the first eleven Si2C bending
eigenstates, well beyond the barrier to linearity. The obtained results, for vibrational
angular momentum ` = 0, 1, and 2, are depicted in the left column panels of Fig. 3. For
each state, the QFS is maximal at a certain λ value. This result is completely equivalent
to the result presented in Fig. 1 for the model Hamiltonian (2): the maximum QFS value
indicates what is the λ value for which the state under study crosses the high-density of
states ESQPT separatrix line. Therefore, if the maximum occurs for a negative λ value, an
originally bent state (belonging to the SO(3) or broken symmetry phase) is changing to a
linear state (that belongs to the U(2) or symmetric phase) and vice versa for a maximum
at a positive λ value. In nonrigid molecules, where an ESQPT is expected, the level whose
QFS maximum is the closest to λ = 0 is the bending eigenstate with an energy that is equal
to the ESQPT critical energy. This state can be considered the transition state from bent
to linear configurations. The states of the left column of Fig. 3 can be labeled attending
to their maximum position: from left to right we have included states νb = 0, 1, ..., 10 and,
in the Si2C case, the transition state is the fifth bending overtone, νb = 6.

The right column panels in Fig. 3 show the participation ratio values in the U(2)
basis for bending levels νb = 0, 3, 6, and 9, and for vibrational angular momentum values
` = 0, 1, and 2. As already mentioned in the discussion of the lower panel of Fig. 1, in
the calculation of the participation ratio for the model Hamiltonian, the system ground
state is better localized in the U(2) basis before the ground state QPT, and the PR value
suddenly increases once the system goes through the critical point. As this sudden change
takes place for a negative λ value, that implies that the ground state of Si2C is a bent-like
state, as expected. In the excited levels case, the PR is minimal once each wave function
gets through the ESQPT separatrix, being νb = 6 the most localized state for λ = 0. We
have performed also calculations of the QFS for the optimized Si2C states (λ = 0 case)
with vibrational angular momentum ` = 0, 1, and 2. The obtained results are shown in
Fig. 5 in Appendix A; and they display the same trends than the model Hamiltonian case
shown in the upper panel of Fig. 2. QFS and PR for the ESQPT precursors are weaker for
higher ` values, which is a well-known effect explained by the centrifugal barrier hindering
the access of the wavefunction to the maximum in the barrier to linearity [61].

4.2 Application to other molecules

The detailed study of the Si2C case evinces the efficiency of the QFS locating excited
states with respect to the ESQPT separatrix. In the present subsection, we extend the
study to other molecular species. We include a linear molecule (HNC) and four nonrigid
species (CH3NCO, 37ClCNO, OCCCO, and NCNCS) with different barrier to linearity
heights.

As in the Si2C case, the bending vibration eigenvalues and eigenfunctions for the
HNC and NCNCS molecules are obtained using the 2DVM four-body Hamiltonian (11)
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Figure 3: All panels: Results for the optimized eigenstates of the bending degree of free-
dom of Si2C. The upper, middle, and lower rows show results for ` = 0, 1, 2, respectively.
Left panels: QFS for states with νb = 0, 1, . . . , 10 as a function of the λ control parameter.
Full blue lines alternate with dashed red lines for an easier distinction between adjacent
states. Right panels: Participation ratio versus the λ control parameter for selected Si2C
bending states (νb = 0, 3, 6, and 9).
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optimized spectroscopic parameter values the authors have recently presented in [34].
We have carried out fits, using the four-body Hamiltonian (11), to the available data for
nonrigid bending vibrational modes of three other molecular species: CH3NCO, 37ClCNO,
and OCCCO. The CH3NCO and 37ClCNO cases were previously studied using the 2DVM,
but including only interactions up to 2-body in the Hamiltonian [32]. In the CH3NCO case
we have added an additional (four-body) term, in the 37ClCNO case two additional (three-
body and four-body) terms, and in the OCCCO case we have used one- and two-body
terms plus an extra (four-body) term. We show in Tab. 1 the optimized spectroscopic
parameter values for these three molecules. Pij coefficients are reported in cm−1 units and
we include the total number of bosons N , the achieved root mean square rms deviation
(cm−1) and the total number of experimental data Ndata used in the fit. A detailed
description of the fitting procedure can be found in Ref. [34]. We include tables with the
reported bending band origins, our calculation and state assignment, as well as the fit
residuals, in App. B.

CH3NCO 37ClCNO OCCCO
P11 449.5(13) 760.88(16) 263.99(15)
P21 -5.477(22) -7.9142(24) -2.3308(25)
P22 7.85(7) 3.818(14) 1.300(17)
P23 -1.628(4) -2.1276(6) -0.6768(4)
P32 - - -
P33 - 1.8(7)×10−5 -
P42 - - -
P43 - - 7.2(12)×10−4

P45 -1.25(23)×10−5 -6.61(15)×10−6 -
P46 - - -
N 78 92 100

rms 1.10 0.12 0.60
Ndata 19 33 36

Table 1: Optimized Hamiltonian parameters (Pij , in cm−1 units) for the selected bending
degree of freedom of CH3NCO, 37ClCNO, and OCCCO. Values are provided together with
their associated uncertainty in parentheses in units of the last quoted digits. The total
vibron number, N , the obtained rms of the fit, and the number of reported bending band
origins considered in the fit are also included.

The CNC bending of CH3NCO (normal mode ν8) has a nonrigid character and we
have carried out a fit making use of the four-body Hamiltonian (11) to the 19 available
experimental data [119], with νb up to 3, and a maximum value of the vibrational angular
momentum ` = 7. The parameter resulting from the fit can be found in the first column
of Tab. 1. The obtained results, with an rms = 1.10 cm−1, are rather close to the results
previously obtained with the 2DVM including only one- and two-body interactions in the
Hamiltonian (rms = 1.34 cm−1) [32]. We have kept constant the total number of bosons N
used in Ref. [32] and there is only a four-body parameter from Hamiltonian (11), P45, that
significantly improves the quality of the fit. This can be explained due to the complexity
of the CH3NCO spectrum, with two coupled vibrational modes of large amplitude: an
internal methyl rotor, with a low energy potential barrier (at approx. 20 cm−1), and the
CNC bending mode, characterized by a large anharmonicity. This molecule is currently
the target of some studies in our group, trying to simultaneously treat the large amplitude
bending and the internal rotation within a common algebraic formalism.

We have also performed a fit to the 33 available experimental data for the ClCN
bending (ν5 normal mode) of the 37Cl isotopologue of ClCNO [120]. The data set comprises
states with bending excitation νb up to 3 and vibrational angular momentum ` up to 9
units. As in the CH3NCO case, the bending spectrum of this normal mode has been
previously analyzed using the one- and two-body Hamiltonian of the 2DVM, obtaining an
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Figure 4: Position λ where the QFS takes its maximum value for each state with ` = 0
of selected bending degrees of freedom for HNC (blue), CH3NCO (dark-green), 37ClCNO
(red), OCCCO (pink), Si2C (coral) and NCNCS (olive), versus the bending quantum
number νb. The dashed black horizontal line marks the λ = 0 value.

rms of 0.71cm−1 [32]. Our fit includes two higher-order interactions: P33 and P45, which
allows for a a reduction of the rms to 0.12 cm−1. In this case, the interactions introduced
are diagonal in neither the U(2) nor the SO(3) basis. As in the previous case, we have
used the same total number of vibrons, N , than Larese et al. [32].

The third molecular species whose bending spectrum has been modeled for its inclusion
in the present work is OCCCO. In this case we focus on the CCC bending (normal mode
ν7) and we have carried out a fit to the 36 available experimental term values, with a
maximum νb = 3 and a maximum ` = 12 [121]. We have included, in addition to one- and
two-body operators, the P43 parameter interaction, obtaining an rms equal to 0.60 cm−1.
The total number of vibrons has been manually adjusted to N = 100.

In summary, we have located where the maximum QFS occurs for states with ` = 0. In
all cases, the optimized Hamiltonian can be recovered for λ = 0. For this reason, attending
to the explanation given in section 3, a state with a maximum QFS at a negative λ value
is located in the SO(3) phase of the ESQPT and should have bent character. In case the
maximum QFS occurs at a positive λ, the state has a linear character and belongs to the
U(2) ESQPT phase.

The Fig. 4 shows the λ values at which maxima occur for the states with ` = 0 in all
cases examined, including Si2C. HNC and Si2C can be considered as textbook examples of
a linear and a nonrigid molecule, respectively. As expected, all λ values are positive in the
HNC case (blue circles). The varying slope between the ground and the first excited states
and the rest could be explained by the change from a positive to a negative anharmonicity
that characterizes the bending of this molecular species. On the other hand, in the Si2C
case (coral diamonds), the ground state, the fundamental, and the first five overtones have
a bent character (negative λ), whereas the rest are linear.

The results for CH3NCO (green triangles), 37ClCNO (red squares), and NCNCS (olive
stars) confirm that these molecules are also nonrigid, and their excited states lie closer to
the separatrix line between the ESQPT phases than in the Si2C case. The states with QFS
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maximum at negative λ values are the ground state plus five excited states for CH3NCO
and the ground state plus two excited states for NCNCS. Therefore, the following excited
state would be just above the barrier to linearity. In the 37ClCNO isotopologue case,
already the bending fundamental has a maximum at a positive λ value and, therefore,
only the ground state with Ka = J = 0 should be considered as a bent state. The last
molecule we have decided to include in this work is OCCCO (pink crosses), with all states
above a very low energy barrier to linearity, including the ground state.

We have included in the left column of Fig. 6 of App. B the dependence of the QFS
with λ for the above mentioned five molecules, from where the position of the maxima
reported in Fig. 4 have been extracted. In the right column panels of the same figure, we
depict the PR in the two bases considered as well as the λ = 0 QFS values.

5 Concluding remarks

In summary, the main contribution of this work is the study of an ESQPT making use
of the quantum fidelity susceptibility. The selected ESQPT is the one that occurs in
the 2D limit of the vibron model and we apply our findings to the eigenfunctions and
eigenstates of selected bending degrees of freedom for six different molecular species. The
QFS, a quantity of first importance in Quantum Information Theory, has been chiefly used
to characterize ground state quantum phase transitions in different many-body quantum
systems. Using a 2DVM model Hamiltonian, we have shown how the extension of the
QFS from the ground state to encompass excited states provides a convenient tool for the
study and characterization of ESQPTs and allows for a fully basis-independent assignment
of overtones to one of the possible ESQPT phases in molecular bending spectra. In this
regard, these findings nicely complements the information about the ESQPT provided by
the PR [80–82], though QFS achieves an unambiguous assignment of states to ESQPT
phases even for situations very far from the dynamical symmetry limits.

Out of the six molecular species bending vibrations used to apply the method to
observed data, the fit using the four-body algebraic 2DVM Hamiltonian (11) to three of
them (Si2C, HNC, and NCNCS) has been recently published by the authors [34]. For
the sake of completeness, we have performed fits using the same Hamiltonian for nonrigid
bending vibrations in the CH3NCO, 37ClCNO, and OCCCO cases and our results are
shown in Tab. 1. In all cases, the vibrational bending mode under study is anharmonic,
and all but HNC can be considered as nonrigid molecular species, with a feature-rich and
complex bending spectrum. A very satisfactory agreement with the reported data has
been achieved and the resulting algebraic energies and eigenfunctions have been used for
the calculation of QFS for the six molecular species.

We have presented a detailed account of the QFS results obtained in the Si2C case,
and an outline of the results for the rest of the molecules. The obtained results provide a
satisfactory estimation of the height of the barrier to linearity (which coincides with the
ESQPT critical energy) in all cases and the QFS has proved to be a very sensitive tool for
the classification of eigenstates as having a linear or bent character.

We are currently working on the study of universality and scaling laws of the QFS in
ground state and excited state QPTs for the vibron model and its limits in 1D and 3D as
well as in ESQPTs for other quantum systems.
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A Centrifugal barrier effects

We illustrate the centrifugal barrier effects over QFS and PR with the data calculated for
the Si2C molecule in Fig. 5. We show the QFS (full lines and left ordinate axes) and the PR
in the U(2) basis (dashed lines and right ordinate axes) for vibrational angular momentum
values ` = 0 (red, first panel), 1 (blue, second panel), 2 (green, third panel), and 3 (orange,
fourth panel). These two quantities are excellent probes to look for ESQPT precursors
in the 2DVM and other systems. In the panels of this figure, we can appreciate how the
bent-to-linear ESQPT precursors weaken for increasing vibrational angular momentum
values.

It is known that the ESQPT critical state in bent-to-linear transitions modeled with
the 2DVM has a large component in the

∣∣n`〉 =
∣∣``〉 element when expressed in the U(2)

basis [80–82], which translates into a minimum value of the Participation Ratio. The
localization in the U(2) basis becomes softer for higher values of `. This well known fact
can be explained considering the influence of the centrifugal barrier, which hinders the
non-zero angular momentum wave function access to the bent-to-linear barrier maximum.

It can be appreciated in the figure how QFS values χF (λ = 0) in the transition state
νb = 6 diminish as the vibrational angular momentum ` increases.
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Figure 5: Si2C bending eigenstates QFS (solid line) and PR in the U(2) basis (dashed
line) evaluated for λ = 0 versus the bending quantum number νb. Red, blue, green, and
orange lines correspond to ` = 0, 1, 2, and 3, respectively.
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B Energy fits, residuals, and QFS and PR results

As already mentioned, the procedure followed to fit the Hamiltonian (11) to the available
bending origin bands is the one already described in Ref. [34]. For the sake of completeness,
we include in this appendix tables including experimental and computed bending band
origin values, as well as the resulting residuals. We provide the results for the three species
whose fit has not been published yet: CH3NCO (Tab. 2), 37ClCNO (Tab. 3), and OCCCO
(Tab. 4). The states are labeled in all cases but the OCCCO one using the bent molecule
notation. In the OCCCO case we use the linear molecule quantum labels transforming
them to νb values in the figures [34]. The interested reader can find results for HNC, Si2C,
or NCNCS in Ref. [34].

We also provide in this appendix the intermediate results needed to reproduce Fig. 4.
In the left column of Fig. 6, the QFS for the first bending states is depicted as a function
of the λ parameter. QFS values for νb = 0, 2, . . . states are depicted with full blue lines,
while for νb = 1, 3, . . ., the QFS is depicted with dashed red lines. The λ parameter values
corresponding to the maximum QFS value for each state in these panels are the ones
depicted in Fig. 4.

The panels in the right column of Fig. 6 display the λ = 0 QFS (χF (λ = 0), red full
lines), and PR in the U(2) (blue dashed lines) and SO(3) (green dashed lines) bases as a
function of the number of quanta of bending excitation for each molecule. The QFS shares
axes and ticks with the corresponding plot on the left column, whereas the scale for the
PR is located on the right side of the right column panels.

νb, ` Exp. E. Calc. E. Exp.-Calc. νb, ` Exp. E. Calc. E. Exp.-Calc.

0, 0 0.0 0.0000 0.0000 0, 3 80.0 78.8075 1.1925
1, 0 182.2 183.5477 -1.3478 1, 3 268.6 268.5326 0.0674
2, 0 357.9 358.8119 -0.9119 2, 3 454.0 453.1013 0.8987
3, 0 525.1 523.8246 1.2754 0, 4 140.6 139.5489 1.0511
0, 1 8.4 8.7997 -0.3997 1, 4 333.4 333.3653 0.0347
1, 1 191.4 193.0995 -1.6995 0, 5 217.5 217.0241 0.4759
2, 1 368.6 369.6086 -1.0086 1, 5 415.5 415.4570 0.0430
0, 2 36.8 35.1316 1.6684 0, 6 311.1 310.8790 0.2210
1, 2 222.3 221.5793 0.7207 1, 6 513.4 514.2226 -0.8226
2, 2 402.1 401.4326 0.6674 0, 7 420.0 420.7589 -0.7589

Table 2: Experimental [119] and calculated band origins and residuals for the CNC bending
mode of CH3NCO. Units of cm−1.
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νb, ` Exp. E. Calc. E. Exp.-Calc. νb, ` Exp. E. Calc. E. Exp.-Calc.

0, 0 0.0 0.0000 0.0000 1, 4 375.5 375.4203 0.0797
1, 0 120.9 120.8932 0.0068 2, 4 591.3 591.2717 0.0283
2, 0 258.5 258.6117 -0.1117 3, 4 819.6 819.4564 0.1436
3, 0 432.0 432.1241 -0.1241 0, 5 244.7 244.7522 -0.0522
0, 1 17.5 17.6438 -0.1438 1, 5 460.5 460.4442 0.0558
1, 1 167.9 167.7928 0.1072 2, 5 687.2 687.2587 -0.0588
2, 1 335.1 335.0671 0.0329 3, 5 925.0 924.7723 0.2277
3, 1 525.3 525.4485 -0.1485 0, 6 325.4 325.4264 -0.0264
0, 2 55.6 55.7618 -0.1618 1, 6 551.8 551.7516 0.0484
1, 2 227.8 227.7131 0.0869 2, 6 788.1 788.1261 -0.0261
2, 2 415.1 415.1037 -0.0037 0, 7 413.1 412.9750 0.1250
3, 2 620.1 620.1478 -0.0478 1, 7 648.7 648.7310 -0.0310
0, 3 108.1 108.2590 -0.1590 2, 7 893.5 893.5698 -0.0698
1, 3 297.6 297.4773 0.1227 0, 8 506.8 506.6723 0.1277
2, 3 500.5 500.4730 0.0270 1, 8 750.8 750.8960 -0.0960
3, 3 717.9 717.9603 -0.0603 0, 9 606.1 605.9530 0.1470
0, 4 171.8 171.9164 -0.1165 1, 9 857.6 857.8490 -0.2490

Table 3: Experimental [120] and calculated band origins and residuals for the ClCN bend-
ing mode of 37ClCNO. Units of cm−1.

n` Exp. E. Calc. E. Exp.-Calc. n` Exp. E. Calc. E. Exp.-Calc.

20 60.70 60.2640 0.4360 104 466.79 467.3681 -0.5781
40 144.30 144.3234 -0.0234 55 164.49 163.9965 0.4935
60 244.70 244.4930 0.2070 75 278.61 278.8217 -0.2117
11 18.26 18.6991 -0.4391 95 401.59 400.1995 1.3905
31 97.22 97.2062 0.0138 115 528.08 527.3543 0.7257
51 191.06 191.4044 -0.3444 66 212.39 211.7692 0.6208
71 299.26 298.0710 1.1890 86 331.89 332.2356 -0.3456
22 46.11 46.5075 -0.3975 106 458.01 458.2881 -0.2781
42 137.26 137.4453 -0.1853 77 263.65 263.1749 0.4752
62 239.57 240.1829 -0.6129 97 388.95 388.5714 0.3786
82 352.91 352.8677 0.0423 117 518.15 518.7640 -0.6140
33 80.62 80.7559 -0.1359 88 317.94 318.0124 -0.0724
53 181.02 181.2481 -0.2281 108 447.91 447.7643 0.1457
73 290.52 291.1644 -0.6444 99 375.65 376.1605 -0.5105
93 407.97 409.2399 -1.2699 119 510.04 509.7902 0.2498
44 120.37 120.1674 0.2026 1010 436.77 437.5598 -0.7898
64 228.23 228.4397 -0.2097 1111 501.91 502.2009 -0.2909
84 345.27 344.4927 0.7773 1212 570.68 570.1168 0.5632

Table 4: Experimental [121] and calculated term values and residuals for the CCC bending
mode of OCCCO. Units of cm−1.
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Figure 6: Left column: QFS for states with ` = 0, χF (λ), versus the control parameter,
λ. Right column: QFS for λ = 0 (solid red line) using the same scales as in the left
panels and PR in the U(2) (blue dashed line) and SO(3) (green dashed line) bases (right
axes scale). Results for the five molecules that have been selected to illustrate the QFS
results in 2DVM systems, from top to bottom: HNC, CH3NCO, 37ClCNO, OCCCO, and
NCNCS.
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[30] F. Iachello, F. Pérez-Bernal and P. Vaccaro, A Novel Algebraic Scheme
for Describing Nonrigid Molecules, Chem. Phys. Lett. 375, 309 (2003),
doi:https://doi.org/10.1016/S0009-2614(03)00851-0.
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vajal, Simulation of the Raman spectra of CO2: Bridging the gap between
algebraic models and experimental spectra, J. Chem. Phys. 141, 054 (2014),
doi:10.1063/1.4889995.
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[63] P. Pérez-Fernández, A. Relaño, J. M. Arias, P. Cejnar, J. Dukelsky and J. E. Garćıa-
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