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We study the usefulness of the permanent state as variational wave functions for bosons, which
is the bosonic counterpart of the Slater determinant state for fermions. For a system of N identical
bosons, a permanent state is constructed by taking a set of N arbitrary (not necessarily orthonormal)
single-particle orbitals, forming their product and then symmetrizing it. It is found that for the
one-dimensional Bose-Hubbard model with the periodic boundary condition and at unit filling, the
exact ground state can be very well approximated by a permanent state, in that the permanent
state has high overlap (at least 0.96 for 12 particles and 12 sites) with the exact ground state and
can reproduce both the ground state energy and the single-particle correlators to high precision. For
more general models, we have devised an optimization algorithm to find the optimal set of single-
particle orbitals to minimize the variational energy or maximize the overlap with a given state. It
turns out that quite often the ground state of a bosonic system can be well approximated by a
permanent state by all the criterions of energy, overlap, and correlation functions. And even if the
error is apparent, it can often be remedied by including more configurations, i.e., by allowing the
variational wave function to be the superposition of multiple permanent states. All these suggest
that permanent states are very effective as variational wave functions for many bosonic systems.

I. INTRODUCTION

The Hartree-Fock approximation for fermions is a
paradigm in quantum mechanics [1–6]. Conceptually,
it is very simple. It is a variational method. For
an N -fermion system, one just takes N orthonormal
single-particle orbitals {φi|1 ≤ i ≤ N}, constructs the
product state φ1(x1)φ2(x2) . . . φN (xN ), and then anti-
symmetrizes it to obtain the Slater determinant wave
function

Ξ(x1, x2, . . . , xN )

=
1√
N !

∑
P∈SN

(−1)PφP1
(x1)φP2

(x2) . . . φPN
(xN )

=
1√
N !

det(φi(xj)). (1)

Here SN denotes the symmetric group of degree N . By
construction, the determinant state satisfies the anti-
symmetry condition and constitutes a legitimate wave
function for a collection of identical fermions. With the
variational wave function built in this way, the rest work
is an optimization problem. One has to choose the N
orthonormal orbitals optimally so as to minimize the en-
ergy expectation value of the N -body variational state.

It is a natural idea to generalize this approach to
bosons. One can take N single-particle orbitals {φi|1 ≤
i ≤ N}, form their product, but then symmetrize it to
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obtain the following state,

Φ(x1, x2, . . . , xN )

=
1√
N !

∑
P∈SN

φP1
(x1)φP2

(x2) . . . φPN
(xN )

=
1√
N !

per(φi(xj)), (2)

which we shall refer to as a permanent state. Unlike
the fermionic case, here because of the symmetry instead
of anti-symmetry condition, the single-particle orbital-
s are not necessarily orthogonal to each other [7], but
could even be identical. In the extremal case in which
all the orbitals are constrained to be the same, we have
the Gross-Pitaevskii approximation [8, 9], which has been
proven to be very successful for weakly interacting bose
gases [10, 11]. However, for more general systems, such
as the Bose-Hubbard model which we shall study below,
the Gross-Pitaevskii approximation is too restrictive and
we had better allow more freedom for the N orbitals.

The idea seems very simple. However, probably be-
cause mathematically the permanent of a matrix lacks
many of the nice properties of the determinant, such an
approach has rarely been put into practice. As far as
we know, the very limited literature starts with two pa-
pers of Romanovsky et al. in 2004 and 2006 [12, 13].
They employed the permanent state as variational wave
functions for some few-boson systems in two-dimensional
harmonic traps. They went beyond the Gross-Pitaevskii
approximation by allowing each particle to occupy a dif-
ferent orbital, for which they coined the term unrestrict-
ed Bose-Hartree-Fock approximation. However, because
of the perceived high complexity of the self-consistency
equations, they did not seek self-consistent orbitals, but
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prescribed them as displaced Gaussians. Subsequently,
the self-consistency equations for the orbitals were de-
rived by Heimsoth [14, 15]. Unfortunately, the formalism
was still unnecessarily complicated, and he did not even
implemented the Ryser algorithm for permanent compu-
tation. Consequently, he could handle at most six parti-
cles.

In this paper, we resume research in this vein. We shall
see that permanent states are very effective as variational
wave functions. Moreover, the difficulties above can be
evaded if the problem is formulated appropriately. In
particular, it is not that time consuming to deal with
permanents. With a typical laptop computer, we can
handle up to 12 particles in reasonable time.

This paper is organized as follows. First in Sec. II, we
review the connection between the first and second quan-
tization formalisms, and we shall establish some analytic
facts about the permanent state. Then in Sec. III, we
show that for the one-dimensional Bose-Hubbard mod-
el with periodic boundary condition and at unit filling,
which is the standard setting for studying the superfluid-
Mott insulator transition, the permanent state can be a
very good approximation of the exact ground state. It is
good not only by the usual energy criterion, but also by
the more stringent criterions of overlap and correlation
functions. For a Bose-Hubbard model with 12 particles
on 12 sites, the energy-minimizing permanent state with
prescribed orbitals has an overlap with the exact ground
state as large as 0.96 in the worst case. Of course one
should not be satisfied with prescribed orbitals. It is de-
sirable to have more flexibility and presumably the num-
bers could be further improved if the orbitals are really
unrestricted. We thus propose an iteration algorithm in
Sec. IV for searching for the optimal set of orbitals mini-
mizing the energy. The equations are equivalent to what
Heimsoth derived [14, 15]. However, because of the differ-
ent point of view, our derivation is more elementary and
straightforward, and the formulation is more amenable
for numerical implementation. Moreover, our formalis-
m can treat the multi-configuration case, i.e., the case
when the variational wave function is a linear combina-
tion of multiple permanent states, easily. The algorithm
can actually be employed to solve another optimization
problem, namely, for a given wave function, finding the
single- or multi-configurational variational wave function
most close to it, i.e., having the largest possible overlap
with it. Although this problem is rarely studied in the
literature and is not our focus in this paper, it should
be a meaningful question for studying the structure of a
bosonic wave function. With the optimization algorithm,
we can tackle more general models. This is what we do
in Sec. V. We shall see that in many cases, a single- or
multi-configurational variational wave function is a very
good approximation of the exact ground state of the sys-
tem. Finally, we conclude in Sec. VI with some open
problems.

II. PERMANENT WAVE FUNCTIONS

For the sake of simplicity, let us assume a finite-
dimensional single-particle Hilbert space

H = span{|x〉, 1 ≤ x ≤ L}, (3)

where |x〉 are orthonormal basis vectors. The associ-
ated creation (annihilation) operators will be denoted
as a†x (ax). They satisfy the usual commutation re-
lations. A generic (not necessarily normalized) single-
particle state or a single-particle orbital in this space is

|φ〉 =
∑L
x=1 |x〉〈x|φ〉 =

∑L
x=1 φ(x)|x〉. The associated

creation operator is a†φ =
∑L
x=1 φ(x)a†x.

For an N -boson system, the many-body Hilbert space
is spanned by the orthonormal Fock states

|n〉 =
(a†1)n1(a†2)n2 . . . (a†L)nL

√
n1!n2! . . . nL!

|vac〉. (4)

where n ≡ (n1, n2, . . . , nL) is an L-tuple with nx ≥ 0 and∑L
x=1 nx = N . The number of such Fock states or the

dimension of the many-body Hilbert space is

D =

(
N + L− 1

N

)
=

(N + L− 1)!

N !(L− 1)!
. (5)

A generic N -boson state |Ψ〉 expands as |Ψ〉 =∑
n C(n)|n〉. In first quantization, the same state is

expressed by the wave function Ψ(x1, x2, . . . , xN ), with
1 ≤ xi ≤ L. Under the action of particle permutations,
the coordinate tuples x ≡ (x1, x2, . . . , xN ) break into dif-
ferent equivalent classes labelled by the occupation tuple
n. The wave function should be constant on each class.
We say a coordinate tuple x belongs to n and denote
it as x ` n if in x, the value x appears nx times. The

cardinality of the class n is N !/
∏L
x=1 nx!, and thus by

considering the norm of Ψ in both the first and second
quantization form, we have [16]

Ψ(x) =

√
n1!n2! . . . nL!

N !
C(n), x ∈ n. (6)

With this formula, one can convert a wave function in the
first quantization form to the second quantization form,
and vice versa.

Now suppose we have a set of N arbitrary orbitals
{φi(x), 1 ≤ i ≤ N}. The simplest symmetric N -particle
wave function one can construct out of them is the per-
manent state in (2). We shall use the notation

Φ = Ŝ(φ1, φ2, . . . , φN ) (7)

to indicate that Φ is built out of the orbitals {φi(x), 1 ≤
i ≤ N} according to the product and symmetrization
procedure in (2). By the correspondence (6), it is easy
to show that in second quantization, this state has the
expression

|Φ〉 =

N∏
i=1

a†φi
|vac〉. (8)



3

This form should reminds us of the standard Fock states.
They are also permanent states, but with orthonormal
orbitals.

Here we emphasize that in this paper we abandon the
orthogonality and normalization of the orbitals. This is a
fundamental difference between the current approach and
the multiconfigurational Hartree theory for bosons (M-
CHB) [17], which although also treats the single-particle
orbitals as variational parameters, insists on their orthog-
onality and normalization. One apparent advantage of
using non-orthogonal orbitals is that the expression of
the wave function is more compact [18]—A single per-
manent state in the form of (8) would expand into a
multitude of Fock states if the orbitals φi are expanded
in terms of an orthonormal basis. The downside is that
we have to compute the permanents of overlap matrices,
which is expensive in CPU time.

A. Five simple propositions

At least five simple facts about a permanent state can
be easily established. Although they are not much used
in this paper, we collect them here for completeness.

The first one seems trivial or only of academic interest.
Intuitively, for a given set of nonzero orbitals {φi, 1 ≤
i ≤ N}, the permanent state constructed according to
(2) or (8) is nonzero too, or, there is no danger of perfect
cancellation between the terms in the sum of (2). This is
indeed the case. We have

Proposition 1. The N -particle permanent state Φ con-
structed with N nonzero orbitals {φ1≤i≤N} according to
(2) is necessarily non-vanishing.

Proof. Consider the inner product of Φ with the
condensate-type symmetric state

Ω = v(x1)v(x2) . . . v(xN ), (9)

where v ∈ H is an arbitrary single-particle state. We
have

1√
N !
〈Φ|Ω〉 =

N∏
i=1

〈φi|v〉. (10)

The product on the right hand vanishes if and only if

v is orthogonal to some φi, or v ∈
⋃N
i=1 ker(φi). Here

by an abuse of notation, we have also used φi to denote
the linear functional 〈φi|·〉. The kernel of this functional
ker(φi) is simply the hyperplane orthogonal to φi. By the
well-known folklore in mathematics that a vector space
over C cannot be the union of a finite number of proper

subspaces [19], we know the union
⋃N
i=1 ker(φi) cannot

cover the whole space H, and for some v the product
is non-vanishing, which in turn means that Φ must be
non-vanishing.

The second one is about uniqueness. Given a set of
orbitals {φi, 1 ≤ i ≤ N}, one can construct a permanent

state according to (2) or (8). One might ask whether the
same permanent state can be built with a different set
of orbitals. Here of course, two sets of orbitals should be
deemed equivalent if they differ just by a permutation or
some linear scaling. The answer is no as we have

Proposition 2. Suppose a non-vanishing N -particle
permanent state Φ can be constructed with two sets of
orbitals {f1≤i≤N} and {g1≤i≤N}, i.e.,

Φ = Ŝ(f1, f2, . . . , fN ) = Ŝ(g1, g2, . . . , gN ), (11)

then for some permutation σ ∈ SN , fi ∝ gσ(i) for all
1 ≤ i ≤ N .

Proof. We provide two proofs. The first one is elementary
but lengthy. Again, let us consider the inner product of
Φ with the condensate-type state in (9). We have

1√
N !
〈Φ|Ω〉 =

N∏
i=1

〈fi|v〉 =

N∏
i=1

〈gi|v〉. (12)

Now suppose v is orthogonal to f1, i.e., 〈f1|v〉 = 0, or

v ∈ ker(f1). The equality above implies v ∈
⋃N
i=1 ker(gi).

As this holds for any v ∈ ker(f1), we obtain ker(f1) ⊆⋃N
i=1 ker(gi), which in turn means

ker(f1) = ker(f1)
⋂(

N⋃
i=1

ker(gi)

)

=

N⋃
i=1

(
ker(f1)

⋂
ker(gi)

)
. (13)

Again by the well-known folklore that a vector space
cannot be the union of a finite number of proper sub-
spaces [19], we know there must be some i such that
ker(f1) = ker(f1)

⋂
ker(gi), or ker(f1) = ker(gi), which

means f1 ∝ gi. By permutation or relabeling, we can
assume i = 1 and simply f1 = g1.

We then wish to factor out f1 and g1 in (12) to get

N∏
i=2

〈fi|v〉 =

N∏
i=2

〈gi|v〉 (14)

for all v ∈ H. This already holds for v /∈ ker(f1). To
show that it actually holds also for v ∈ ker(f1), consider
v ∈ ker(f1) and w /∈ ker(f1). For any nonzero t ∈ C,
v + tw /∈ ker(f1), otherwise w = [(v + tw) − v]/t would
be in ker(f1). By (14), we have then

N∏
i=2

〈fi|v + tw〉 =

N∏
i=2

〈gi|v + tw〉 (15)

for all t 6= 0. That is, two polynomials of t evaluate to
the same value for all t 6= 0. This means that the two
polynomials are actually the same. In particular, their
constant terms are identical. We have thus proven that
(14) holds for all v ∈ ker(f1) too. The proposition is then
proven by induction.
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The second proof is more direct. Let |fi〉 =
∑L
j=1 fij |j〉

and similarly |gi〉 =
∑L
j=1 gij |j〉. By (8) and (11),

Φ =

N∏
i=1

 L∑
j=1

fija
†
j

 |vac〉 =

N∏
i=1

 L∑
j=1

gija
†
j

 |vac〉.(16)

The fact that the a†j operators commute and the Fock ba-
sis states are linearly independent implies the polynomial
equality

N∏
i=1

 L∑
j=1

fijzj

 =

N∏
i=1

 L∑
j=1

gijzj

 , (17)

where zj are indeterminates. The proposition is proven
by the unique factorization theorem of multivariate poly-
nomials over C [20].

To appreciate Proposition 2, one should note that for
fermions, a Slater determinant state constructed out of
N orbitals is determined by the subspace (a point on
the so-called Grassmannian manifold [21]) spanned by
the orbitals, not by the orbitals themselves. The orbitals
are just a basis of the subspace. Another basis would
yield the same Slater determinant state up to a global
constant.

By Proposition 2, the permanent state Φ is invariant
under the permutation fi → fσi

with σ being an ar-
bitrary permutation, and the scaling fi → λifi with the

scaling factors satisfying the condition
∏N
i=1 λi = 1. This

allows us to count the degrees of freedom [22] of a per-
manent state as

d = NL− (N − 1) = N(L− 1) + 1. (18)

Apparently, like not every N -fermion state is a Slater
determinant state, not every N -boson state is a perma-
nent state. However, in the special case of dimH = L =
2, this is indeed the case. We have

Proposition 3. Suppose the single-particle Hilbert space
is of dimension 2, i.e., dimH = L = 2, then every N -
boson state is a permanent state.

Proof. In this case, the N -boson Hilbert space is of
dimension N + 1 and a basis is the Fock states
{(a†1)i(a†2)N−i|vac〉, 0 ≤ i ≤ N}. But by (18), the num-
ber of degrees of freedom of a permanent state is also
N + 1, so the proposition is anticipated by dimension
counting. To prove it rigorously, we expand an arbitrary
state Ψ as

Ψ = (a†2)m
N−m∑
k=0

ck(a†1)N−m−k(a†2)k|vac〉. (19)

Here m is an integer between 0 and N , and c0 6= 0. The

fact that a†1 and a†2 commute motivates us to consider the

polynomial P (z) =
∑N−m
k=0 ckz

N−m−k. Let it factorize as

P (z) = c0

N−m∏
j=1

(z − zj). (20)

Then it is easy to see that Ψ factorize as

Ψ = c0(a†2)m
N−m∏
j=1

(a†1 − zja
†
2)|vac〉. (21)

By (8), we see it is a permanent state and can read off
the single-particle orbitals.

Proposition 3 means that for a two-site Bose-Hubbard
model [23], which is a canonical model for studying the
Bose-Josephson effect, any state is a permanent state.
The proposition also reminds us of a similar proposition
for fermions [24, 25]. Although an arbitrary fermionic
wave function is not generally a Slater determinant state,
for the case of N fermions in L = N+1 orbitals, the wave
function is necessarily a Slater determinant.

Proposition 3 is about the case when the dimension of
the single-particle Hilbert space is minimal (but still non-
trivial). Similarly, when the particle number is minimal
(but still nontrivial), i.e., when N = 2, we have

Proposition 4. Suppose N = 2 and dimH = L, then
every N -boson state can be written as the sum of at most
b(L+1)/2c permanent states. Here bxc is the floor func-
tion denoting the greatest integer less than or equal to
x.

Proof. For N = 2, the bosonic wave function Ψ(x1, x2)
with 1 ≤ xi ≤ L can be considered as a complex sym-
metric matrix. By the Autonne-Takagi theorem [26], it
can be factorized as

Ψ(x1, x2) =

L∑
j=1

√
Djfj(x1)fj(x2), (22)

where fj are a set of orthonormal functions and Dj are
a set of non-negative numbers in decreasing order. The
functions fj are actually the so-called natural orbitals,
i.e., eigenvectors of the one-body reduced density matrix
ρ = 2ΨΨ† associated with Ψ, and 2Dj are the occupation
numbers. In the following, we shall assume that Ψ is

normalized, i.e., 〈Ψ|Ψ〉 = 1, so that
∑L
j=1Dj = 1.

In the form of (22), the wave function Ψ is already
a sum of L permanent states. Now for any pair j 6= k,
we can combine

√
Djfj(x1)fj(x2) and

√
Dkfk(x1)fk(x2)

into a single permanent state, i.e.,

Ŝ(u, v) =
1√
2

[u(x1)v(x2) + v(x1)u(x2)]

with (note that by Proposition 2, this is essentially the
only solution)

u ≡ 1
4
√

2
( 4
√
Djfj + i 4

√
Dkfk),

v ≡ 1
4
√

2
( 4
√
Djfj − i 4

√
Dkfk).

The proposition is then proven by noting that in (22),
when L is even, we have L/2 pairs and when L is odd,
we have (L − 1)/2 pairs and an extra unpaired term,
which is already a permanent state.
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It is easy to see that the number b(L + 1)/2c in
Proposition 4 is not only sufficient but also necessary
for a generic 2-boson state. For a generic state, the
matrix Ψ is nonsingular or full-ranked. On the other
hand, a permanent state is at most 2-ranked. Hence,
by the subadditivity property of the rank of a matrix
[rank(A + B) ≤ rank(A) + rank(B)], we need at least
b(L+1)/2c permanent states to fully recover the original
state. However, in practice, one might just need a suf-
ficiently good approximation of the original state. The
question is then, by taking the sum of M < b(L+ 1)/2c
permanent states, i.e., by constructing a state in the form
of

Ω =

M∑
α=1

Ŝ(u(α), v(α)), (23)

where u(α) and v(α) are arbitrary orbitals, to what extent
can we approximate a target function Ψ? Quantitatively,
what is the maximal value of the overlap

O =
|〈Ω|Ψ〉|2

〈Ω|Ω〉〈Ψ|Ψ〉
(24)

achievable with such an M -configuration state? For this
problem, we have

Proposition 5. Suppose N = 2, dimH = L, and M ≤
b(L + 1)/2c. For the target state Ψ in (22), the largest
possible value of the overlap of an M -configuration state
in the form of (23) with it is

Omax = max
Ω

|〈Ω|Ψ〉|2

〈Ω|Ω〉〈Ψ|Ψ〉
=

2M∑
j=1

Dj . (25)

Proof. Like Ψ in (22), the M -configuration state Ω in
(23) is also symmetric and can also be factorized as

Ω =

2M∑
j=1

√
Cjϕj(x1)ϕj(x2), (26)

where ϕ1≤j≤2M are a set of orthonormal vectors which
can be extended into a complete orthonormal basis
ϕ1≤j≤L, and Cj ≥ 0 are ordered in decreasing order.
Without loss of generality, let us assume Ω is normalized

so that
∑2M
j=1 Cj = 1. Note that by construction Ω is at

most of rank 2M , and thus here in (26) we have at most
2M nonzero terms. For the overlap between Ω and Ψ,
we have

O =

∣∣∣∣∣∣
2M∑
j=1

√
Cj〈ϕjϕj |Ψ〉

∣∣∣∣∣∣
2

≤

2M∑
j=1

Cj

2M∑
j=1

|〈ϕjϕj |Ψ〉|2


=

2M∑
j=1

|〈ϕjϕj |Ψ〉|2 ≤
2M∑
j=1

L∑
k=1

|〈ϕjϕk|Ψ〉|2 = Tr(AA†),

where A ≡ V †ΨW ∗, with V the L × 2M matrix whose
columns are ϕ1≤j≤2M and W the L × L matrix whose
columns are ϕ1≤k≤L. Note that W is unitary. We have

Tr(AA†) = Tr(V †ΨW ∗WTΨ†V )

= Tr(V †ΨΨ†V ) ≤
2M∑
j=1

Dj . (27)

Here we used the Ky-Fan inequality [27] for the matrix
ΨΨ†, which states the for an L×L hermitian matrix, the
sum of its m diagonal elements is less than or equal to
the sum of its m largest eigenvalues, for all 1 ≤ m ≤ L.
We have thus proven that the overlap is upper bounded

by
∑2M
j=1Dj . That this upper bound can be achieved is

obvious, as we can just take the first 2M terms in (22)
and by Proposition 4 it is an M -configuration state.

In general, the occupation numbers Dj decrease fast
and a truncation of (22) with a very limited number of
terms can yield a good approximation of the original s-
tate.

B. Basic formulae

A generic many-body Hamiltonian is of the form

H = H1 +H2 =

N∑
i=1

K(i) +
∑

1≤i<j≤N

U(i, j). (28)

Here the first sum is over each particle, with K(i) de-
noting the sum of the kinetic energy and the external
potential of the ith particle, while the second sum is over
each pair, with U(i, j) denoting the interaction between
the ith and jth particle. The quantity of primary interest
is the expectation value of H with respect to a permanent
state (2), i.e.,

Evar =
〈Φ|H|Φ〉
〈Φ|Φ〉

=
〈Φ|H1|Φ〉+ 〈Φ|H2|Φ〉

〈Φ|Φ〉
. (29)

It is straightforward to calculate the denominator and
the numerator here. But for the sake of generality and
in view of the extension to the multiconfigurational case
below, let us consider the off-diagonal matrix elements
instead of the diagonal matrix elements. Suppose Φ(1)

and Φ(2) are two permanent states constructed with two

sets of orbitals {φ(α)
1≤i≤N , α = 1, 2}, i.e.,

Φ(α) = Ŝ(φ
(α)
1 , φ

(α)
2 , . . . , φ

(α)
N ), α = 1, 2. (30)

Let us first define the N × N overlap matrix of the or-
bitals,

Aij = 〈φ(1)
i |φ

(2)
j 〉, 1 ≤ i, j ≤ N. (31)
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We have then

〈Φ(1)|Φ(2)〉

=
1

N !

∑
P,Q∈SN

〈φ(1)
P1
|φ(2)
Q1
〉〈φ(1)

P2
|φ(2)
Q2
〉 . . . 〈φ(1)

PN
|φ(2)
QN
〉

=
∑
R∈SN

〈φ(1)
1 |φ

(2)
R1
〉〈φ(1)

2 |φ
(2)
R2
〉 . . . 〈φ(1)

N |φ
(2)
RN
〉

= per(A). (32)

Here per(A) denotes the permanent of the matrix A. As
for the matrix elements of H1,

〈Φ(1)|H1|Φ(2)〉 =
N

N !

∑
P,Q∈SN

〈φ(1)
P1
|K|φ(2)

Q1
〉
N∏
i=2

〈φ(1)
Pi
|φ(2)
Qi
〉

=

N∑
i1=1

N∑
j1=1

〈φ(1)
i1
|K|φ(2)

j1
〉per(A; i1|j1), (33)

where per(A; i1|j1) denotes the permanent of the (N −
1) × (N − 1) minor obtained by deleting the i1th row
and the j1th column from A. Similarly, for the matrix
elements of H2,

〈Φ(1)|H2|Φ(2)〉

=
N(N − 1)

2(N !)

∑
P,Q∈SN

〈φ(1)
P1
φ

(1)
P2
|U |φ(2)

Q1
φ

(2)
Q2
〉
N∏
i=3

〈φ(1)
Pi
|φ(2)
Qi
〉

=
1

2

N∑
i1 6=i2,1

N∑
j1 6=j2,1

〈φ(1)
i1
φ

(1)
i2
|U |φ(2)

j1
φ

(2)
j2
〉

×per(A; i1, i2|j1, j2). (34)

Here in the last line, the summation
∑N
i1 6=i2,1 means that

i1 and i2 both run from 1 to N , but they must take
different values. The second summation is interpreted
similarly. By per(A; i1, i2|j1, j2) we mean the permanent
of the (N − 2)× (N − 2) minor of A obtained by deleting
row i1, i2 and column j1, j2.

Above we see that to calculate the norm and physical
expectation values of a permanent state, we have to cal-
culate the permanent of the overlap matrix A and those
of its minors. This is the price we have to pay for working
with non-orthonormal orbitals.

As is generally believed, unlike the determinant of a
matrix, the permanent of the matrix cannot be calculat-
ed in polynomial time. Currently, the best known gen-
eral exact algorithm is the Ryser algorithm [28], which
reduces the naive N ·N ! evaluations to O(N22N−1). By
using the Gray code, a further reduction by a factor of
N can be achieved [29]. This is the algorithm we use in
this work [30]. With this algorithm, it takes about 1 sec
(0.01 sec) to calculate the permanent of a 22×22 (15×15,
respectively) real-valued matrix on a commercial laptop
computer and with MATLAB. We mention that in this
paper, all calculation is done with MATLAB but without
invoking the parallel computing toolbox.

III. BOSE-HUBBARD MODEL AT UNIT
FILLING

To see whether a permanent wave function can be a
good approximation of the ground state of a bosonic sys-
tem, we take the one-dimensional Bose-Hubbard model
with the periodic boundary condition and at unit filling
as a case study. The Hamiltonian, as is often written in
the second-quantization formalism, reads

H = −
L−1∑
x=0

(a†xax+1 + a†x+1ax) +
g

2

L−1∑
x=0

a†xa
†
xaxax. (35)

Here the single-particle Hilbert space H is spanned by
the orthonormal site (Wannier) states {|x〉, 0 ≤ x ≤ L−
1}. The periodic boundary condition means |x〉 = |x +
L〉. Note that we have taken the hopping strength as
the unit of energy, and the Hamiltonian depends only
on the parameter g ≥ 0, which characterizes the on-site
interaction strength.

For our purpose, it is often more convenient to work
with the first-quantization formalism of (28). The corre-
sponding K and U operators have matrix elements as

Kx,x′ = −(δx,x′+1 + δx,x′−1), (36)

Ux1x2,x′
1x

′
2

= gδx1,x2δx1,x′
1
δx1,x′

2
. (37)

In this section, we shall confine ourself to the unit
filling case, namely, the case when the particle number
N = L. The commensurate condition and the translation
symmetry suggest putting the ith particle in an orbital
centered at site i, with all the orbitals of the same shape
and related to each other by translations. Specifically,

φi(x) = φ(x− i), 1 ≤ i ≤ N, (38)

for some function φ. Here the periodic boundary con-
dition requires φ(x) = φ(x + L). The total variational
wave function (VWF) is then determined by the single-
particle orbital φ. To construct an L-periodic function φ,
we can choose an arbitrary primitive function χ(x) de-
fined on the whole axis −∞ < x < +∞, and form the
superposition

φ(x) =

∞∑
j=−∞

χ(x− jL). (39)

We have tried two types of primitive functions, i.e., the
Lorentz function and the exponential function,

χ(l)(x;λ) = (1 + λ2x2)−1, (40a)

χ(e)(x;λ) = e−λ|x|, (40b)

where λ ≥ 0 is a parameter controlling the width of the
functions. For these two simple types of primitive func-
tions, the summation in (39) can be carried out analyti-
cally and yields

φ(l)(x;λ) =
1− e−4π/Lλ

|1− e−2π/Lλei2πx/L|2
, (41a)

φ(e)(x;λ) =
e−λx + e−λ(L−x)

1− e−λL
, 0 ≤ x ≤ L. (41b)
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FIG. 1. (Color online) Energy expectation value (per parti-
cle) of the permanent variational state constructed with either
the Lorentz-type (40a) or the exponential-type (40b) primi-
tive orbitals. The horizontal dashed line indicates the exact
ground state energy calculated by exact diagonalization. The
inset shows the optimal orbitals corresponding to the minima
of the curves Evar(λ). The parameters are N = L = 10 and
g = 4.
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FIG. 2. (Color online) Ground state energy (per particle)
estimated with the permanent variational state constructed
with either the Lorentz-type (40a) or the exponential-type
(40b) primitive orbitals. The solid line is the exact value
obtained by exact diagonalization (ED). In the region of g .
8, the Lorenztian-type orbital yields a better estimate; while
in the region of g & 8, the exponential-type orbital is better,
although this latter fact is hardly visible in the figure. The
parameters are N = L = 10. The dimension of the Hilbert
space is 92 378.

Note that in the limit of λ→ 0, both φ(l) and φ(e) reduce
to the zero-momentum Bloch state on the periodic lat-
tice, while in the opposite limit of λ→∞, both of them
reduce to the Kronecker delta function δx,0.

The strategy is then simply to vary the parameter λ
and calculate the variational energy Evar(λ; g) as a func-

tion of λ by using the formulae in Sec. II B. Here and
henceforth, the dependence of Evar on the primitive or-
bitals should be understood tacitly. By the variational
principle, Evar is always above the exact ground state
energy Eextgs . The concern is whether the minimum of

Evar can be sufficiently close to Eextgs . A case study with
N = L = 10 and g = 4 is shown in Fig. 1. We see that
for both types of primitive orbitals, at some value of λ,
Evar dips towards the horizontal line indicating Eextgs . At
the minima, the relative error is 2% and 4%, respectively,
for the Lorentz-type and exponential-type orbital. This
is very encouraging and turns out to be typical.

By determining the minimum of the curve Evar(λ; g)
for a fixed value of g, we can get a variational estimate
(denoted as Evargs ) of the ground state energy and an op-
timal permanent variational wave function Φe. In Fig. 2,
the variational energy Evargs is compared with the exact

ground state energy Eextgs obtained by exact diagonal-
ization (ED) [32]. We see that over the full range of
0 ≤ g < ∞, the variational estimates agree with the ex-
act values very well. The discrepancy is apparent only
for the exponential-type variational wave function in the
region around g = 4, with a relative error about 5.6%.
However, in this region, the Lorentz-type wave function
is a much better approximation, reducing the relative er-
ror to about 2%. The general observation is that for
g . 8, the Lorentz-type wave function yields a better up-
per bound for the ground state energy, while for g & 8,
the exponential-type wave function is better, although
the latter fact is hardly visible in Fig. 2. Here in passing,
we mention that if we take the Gross-Pitaevskii approxi-
mation, the orbital occupied by all the particles should be
the zero-momentum Bloch state, as this choice minimizes
the kinetic energy and the interaction energy simultane-
ously. The energy per particle would be −2+g(L−1)/L,
i.e., linear in g, which is qualitatively wrong for large val-
ues of g.

Other than energy, a more stringent test for the accu-
racy of the variational wave function is its overlap with
the exact ground state. We have thus Fig. 3(a), in which
the overlap between the exact ground state |GS〉, which
is obtained by ED, and the energy-minimizing (hence the
subscript e) VWF |Φe〉, is shown as a function of g. We
see that in the full range, the overlap is at least 0.78
for the exponential-type VWF for a system as large as
N = L = 12, and this number is even higher (0.95)
for the Lorentz-type VWF. To appreciate these number-
s, one should note that the dimension of the many-body
Hilbert space is as large as 1 352 078. We also note that
Fig. 3(a) and Fig. 2 are consistent with each other. In
Fig. 3(a), all the curves show minima in the proximi-
ty of g = 4. This is exactly where the variational en-
ergies deviate most significantly from the exact one in
Fig. 2. In this region, the Lorentz-type VWF has a much
higher overlap than the exponential-type VWF with the
exact ground state and accordingly, in this region the
former has a lower energy as shown in Fig. 2. On the
other hand, when g & 8, the exponential-type VWF be-
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FIG. 3. (Color online) Overlap between (a) the energy-minimizing permanent variational state Φe and (b) the overlap-
maximizing permanent variational state Φo constructed with either the Lorentz-type (40a) or the exponential-type (40b)
primitive orbitals with the exact ground state |GS〉. We see that for each lattice size L, in the region of g . 8, the Lorent-type
variational wave function has a higher overlap with the exact ground state; while in the region of g & 10, the exponential-type
variational wave function becomes better.

comes better by the overlap criterion and accordingly,
its energy is lower as shown in Fig. 2. The fact that in
the small-g region, the Lorentz-type VWF wins over the
exponential-type VWF while in the large-g region, the
exponential-type VWF takes over might be understand-
able in view of the superfluid-Mott insulator transition.
The large-g region corresponds to the insulator phase, in
which because of the strong particle-particle repulsion,
each particle tends to be localized in its own site and the
tunneling into neighboring sites should be exponentially
small. The small-g region corresponds to the superfluid
phase, in which the particles are more mobile and a more
extended orbital should be more appropriate.

So far, we have been taking the energy minimizing s-
tate Φe among either class of VWFs as an approximation
of the exact ground state |GS〉. Usually, this is the only
thing one can do if the exact ground state is unavailable.
However, if the exact ground state is available in a cer-
tain way, say, by exact diagonalization as we do here, a
natural alternate approximation of it should be the vari-
ational state having maximal overlap with it. Let us de-
note it as Φo, with the subscript meaning overlap. Hence,
we have two related by different optimization problems.
One is energy minimization and the other overlap max-
imization. There is no reason that the two solutions Φe
and Φo should be the same, and by definition, we have
|〈GS|Φe〉|2 ≤ |〈GS|Φo〉|2 necessarily. In Fig. 3(b), we
show |〈GS|Φo〉|2 as a function of g. In comparison with
Fig. 3(a), we see that all the curves shift upwards as
expected. For the exponential-type states, the increase
of the overlap is quite apparent. For instance, while in
Fig. 3(a), the minimum of |〈GS|Φe〉|2 is about 0.78 for
N = L = 12, in Fig. 3(b), the minimum of |〈GS|Φo〉|2
is about 0.85. This strongly indicates that the two op-
timization problems are related but really different. For
the Lorentz-type states, the increase of the overlap is

less apparent but still visible. For N = L = 12, the mini-
mum of the overlap increases from 0.95 to 0.96. From the
curves in Fig. 3, by extrapolation one can infer that even
for a system as large as N = L = 20, with a many-body
Hilbert space of dimension about 6.9×1010, the minimal
values of the overlaps |〈GS|Φe〉|2 and |〈GS|Φo〉|2 would
be about 0.9 if we take the Lorentz-type orbital. These
numbers are very impressive.

We also note that in Fig. 3, all the curves, regardless
of the primitive orbital type or the criterion, show mini-
ma in the vicinity of g = 4. This should be anticipated
in view of the superfluid-Mott insulator transition. Ac-
cording to previous works [33, 34], the transition occurs
at about gc = 3.61. Close to the transition, the exact
ground state should be most complex and it is hardest
to approximate it with some simple functions.

In hindsight, the large overlap between the variational
states and the exact ground state should be reasonable.
There are at least three reasons that are in favor of such
a welcome result. First, both VWFs can reproduce the
exact ground state in either limit of g = 0 and g = ∞.
Second, it is well-known that for an arbitrary value of g,
by the Perron-Frobenius theorem [26], the ground state
is strictly positive everywhere in the Fock-state basis.
This property is shared by both VWFs by construction.
Third, it is also known that the ground state belongs to
the trivial representation of the symmetry group of the
model (the dihedral group), or more specifically, it is in-
variant under all translations and reflections, a property
again shared by both VWFs by construction.

Finally, as yet another check of the quality of the

VWFs, we consider the single-particle correlator 〈a†0ax〉.
This expression is convenient for the exact ground state,
which is obtained by ED in the Fock-state basis. For the
VWFs, which are in the first-quantization formalism, we
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FIG. 4. (Color online) Single-particle correlator 〈a†0ax〉. In each panel, the ∗ markers are for the exact ground state |GS〉,
while the circles and squares are for the energy-minimizing variational state Φe with Lorent-type or exponential-type orbitals,
respectively. The common parameters are N = L = 12. Note that because of the periodic boundary condition, the largest
possible distance between two sites is 6.
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FIG. 5. (Color online) Single-particle correlator 〈a†0ax〉. In each panel, the ∗ markers are for the exact ground state |GS〉,
while the circles and squares are for the overlap-maximizing variational state Φo with Lorent-type or exponential-type orbitals,
respectively. The common parameters are N = L = 12. Note that because of the periodic boundary condition, the largest
possible distance between two sites is 6.

note that the corresponding single-particle operator Ĉ
has matrix elements 〈m|Ĉ|n〉 = δm,0δn,x, and we can use
(32) and (33) to calculate its expectation value

〈a†0ax〉 =

N∑
i,j=1

φ∗i (0)φj(x)
per(A; i|j)

per(A)
. (42)

In Fig. 4, 〈a†0ax〉 is plotted against x for the energy-
minimizing state Φe and the exact ground state |GS〉.
We see a picture consistent with Fig. 2 and Fig. 3. In
Fig. 4(a)-(c), when g is small and the lorent-type VWF is
better, the correlator predicted by the lorent-type VWF
is very close to the exact one. In Fig. 4(e)-(f), when
g gets large, the exponential-type VWF is better, and
accordingly the correlator predicted by the exponential-
type VWF is close to the exact one. For any value of
g, either the lorent-type or the exponential-type VWF
will be a good approximation by all the three criteri-
ons. Here it is also interesting to note that while the
exponential-type VWF always underestimates the corre-
lator, the lorent-type VWF slightly underestimates it in
the small-g region, while overestimates it in the large-
g region. This might be related to the superfluid-Mott
insulator transition.

In Fig. 5, 〈a†0ax〉 is plotted against x for the overlap-
maximizing states Φo. It is normal to expect that Φo re-
produces the correlation function better than Φe. This is
indeed the case. We see that for g ≤ 6, when |〈GS|Φo〉|2
is significantly higher than |〈GS|Φe〉|2, the curves of

〈a†0ax〉 shift closer to the exact curve for both types of
orbitals. In particular, the curves with the Lorentz-type
orbitals almost coincide with the exact curves. For g ≥ 8,
|〈GS|Φe〉|2 ' |〈GS|Φo〉|2, indicating that Φe ' Φo, we do
not see any significant change of the curves.

IV. OPTIMIZATION ALGORITHM

In the proceeding section, we have seen that for the
one-dimensional Bose-Hubbard model with the period-
ic boundary condition and at unit filling, it is possi-
ble to construct some permanent state out of some sim-
ple orbitals to approximate its exact ground state very
well. This is checked by examining the variational en-
ergy, the overlap with the exact ground state, and the
single-particle correlation function.

The close approximation is achieved with some preas-
signed orbitals depending on a single parameter λ. A
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natural question is whether the numbers can be further
improved by allowing more freedom of the orbitals. This
leads to two optimization problems. First, for a given
bosonic system with Hamiltonian (28), how can we find
a set of orbitals {φi, 1 ≤ i ≤ N}, such that the energy
expectation value of the permanent state Φ constructed
in (2),

E =
〈Φ|H|Φ〉
〈Φ|Φ〉

, (43)

is minimized? Second, for a given normalized bosonic
wave function |Ψ〉, how can we find the permanent state
which is the optimal approximation of it? That is, how
can we find the permanent state as in (2) such that the
overlap [24, 25]

O =
〈Φ|Ψ〉〈Ψ|Φ〉
〈Φ|Φ〉

(44)

is maximized?
There exists a common simple strategy for both prob-

lems [24, 25]. For clarity, let us focus on the first problem
for the present. Let us fix N−1 orbitals, say, the orbitals
φ2≤i≤N , and try to find an optimal φ1. To this end, we
note that with the orbitals φ2≤i≤N fixed, the numera-
tor and denominator in (43) are both hermitian forms of

φ1. That is, one can find operators F̂ and Ĝ such that
〈φ1|F̂ |φ1〉 = 〈Φ|H|Φ〉 and 〈φ1|Ĝ|φ1〉 = 〈Φ|Φ〉. We then
can rewrite the ratio as

E =
〈φ1|F̂ |φ1〉
〈φ1|Ĝ|φ1〉

, (45)

By definition, F̂ and Ĝ are hermitian single-particle oper-
ators depending on the orbitals φ2≤i≤N . Importantly, Ĝ
is even positive definite as long as φ2≤i≤N are all nonzero,

as by definition 〈φ1|Ĝ|φ1〉 = 〈Φ|Φ〉 ≥ 0, with the equali-
ty achieved only if φ1 = 0. Here we recall Proposition 1,
which asserts that Φ is necessarily nonzero if φ1≤i≤N are
nonzero. It is a straightforward but lengthy calculation
to derive the explicit expressions of F̂ and Ĝ, so we defer
it to the Appendix. Suppose we have prepared the oper-
ators F̂ and Ĝ (this is the most time-consuming part of
the iteration). The optimal φ1 that will minimize the ra-
tio in (45) is just the solution of the following generalized
eigenvalue problem

F̂ φ = εĜφ (46)

corresponding to the smallest eigenvalue εmin, and the
minimum of the ratio is just εmin.

Once we have updated φ1, we can turn to φ2, and then
to φ3, and so on. However, for convenience of program-
ming, we can just make a circular shift of the orbitals
φi → φi−1, and continue to update φ1. In this process,
the variational energy decreases monotonically, and as it
is lower bounded by the exact ground state energy, it will
definitely converge.

We have to mention that (46) is essentially the self-
consistency equation derived by Heimsoth before by the

method of performing variational differentiation of ab-
stract Hilbert space vectors [14, 15]. However, hopefully
here our different point of view has led to a more compact
and transparent formalism.

Now it should be clear that the second problem can be
treated similarly. The ratio (44) can be written as

O =
〈φ1|γ〉〈γ|φ1〉
〈φ1|Ĝ|φ1〉

, (47)

where the single-particle orbital γ is defined by the sum-
mation or partial contraction

γ(x) =
√
N !

L∑
x2,...,xN=1

Ψ(x, x2, . . . , xN )

N∏
i=2

φ∗i (xi). (48)

Once γ is calculated (again, this is the most time-
consuming part), the optimal φ1 can be obtained by solv-
ing a generalized eigenvalue equation similar to (46), with

|γ〉〈γ| replacing F̂ .
Naively, the summation in (48) has the complexity of

LN−1N , as x2≤i≤N run independently from 1 to L. How-
ever, one should note that Ψ is invariant under permu-
tations of x2≤i≤N . Making use of this fact and changing
the dummy variables from xi to yi−1, (48) can be written
as

γ(x) =
√
N !
∑
y

Ψ(x,y)
per(φ∗(y))

n(y)!
, (49)

where the summation is over the ordered (N − 1)-tuple
y ≡ (y1, y2, . . . , yN−1) with 1 ≤ y1 ≤ y2 . . . ≤ yN−1 ≤ L,
and φ∗(y) denotes the (N − 1) × (N − 1) matrix with
its ith row being the yith row of the L× (N − 1) matrix

(φ∗2, φ
∗
3, . . . , φ

∗
N ). In the denominator, n(y)! ≡

∏L
i=1 ni!,

with ni denoting the times i appears in y. The computa-
tional complexity is now on the order of

(
L+N−2
N−1

)
2N−2N .

A. The multiconfiguration case

So far, we have assumed a single configuration. For
better approximation, one can try M > 1 sets of orbitals

{φ(α)
i , 1 ≤ α ≤ M, 1 ≤ i ≤ N}, and let the variational

wave function be the sum of the permanent wave func-
tions constructed by each set of orbitals. Specifically,

Φ =

M∑
α=1

Φ(α) =

M∑
α=1

Ŝ(φ
(α)
1 , . . . , φ

(α)
N ). (50)

Fixing the orbitals φ
(α)
2≤i≤N in each set, the variational

energy (43) can be written as

E =

∑M
α,β=1〈Φ(α)|H|Φ(β)〉∑M
α,β=1〈Φ(α)|Φ(β)〉

=

∑M
α,β=1〈φ

(α)
1 |F̂ (αβ)|φ(β)

1 〉∑M
α,β=1〈φ

(α)
1 |Ĝ(αβ)|φ(β)

1 〉
, (51)
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where F̂ (αβ) and Ĝ(αβ) depend on the fixed orbitals

φ
(α)
2≤i≤N and φ

(β)
2≤i≤N , and can be calculated with essen-

tially the same formulae as in the Appendix—Just add
the superscript α to the orbitals in the bras and β to the
orbitals in the kets. It is easily seen that

(F̂ (αβ))† = F̂ (βα), (Ĝ(αβ))† = Ĝ(βα). (52)

Apparently, (51) can be cast in the same form as (45), if
we identify φ1 as the concatenated vector

φ1 ≡ (φ
(1)
1 ;φ

(2)
1 ; . . . ;φ

(M)
1 ), (53)

which is of length LM , and define the block operators
F̂ ≡ (F̂ (αβ)) and Ĝ ≡ (Ĝ(αβ)), which are of size LM ×
LM . The same update and iteration procedures can then
be carried out.

Similarly, in the multiconfiguration case, the overlap
(44) can be written as

O =

∑M
α,β=1〈φ

(α)
1 |γ(α)〉〈γ(β)|φ(β)

1 〉∑M
α,β=1〈φ

(α)
1 |Ĝ(αβ)|φ(β)

1 〉
, (54)

where the single-particle orbital γ(α), like γ in (48), is

defined by the same summation with φ
(α)
i replacing φi.

Again, the same strategy as above can be applied.

B. A pitfall with N = 2

A pitfall is to be avoided in implementing the multi-
configuration scheme. In the single-configuration case,
the hermitian operator Ĝ is strictly positive definite as
long as the orbitals φ2≤i≤N are nonzero. This is because

by definition 〈φ1|Ĝ|φ1〉 = 〈Φ|Φ〉, and by Proposition 1,
Φ is nonzero if φ1≤i≤N are nonzero. In contrast, in the
multi-configuration case (50), we do not necessarily have

Φ 6= 0 even if all the orbitals {φ(α)
i , 1 ≤ α ≤ M, 1 ≤

i ≤ N} are nonzero—the configurations could cancel each
other out. This happens particularly in the two-particle
case of N = 2. As an illustration let us consider the
two-particle, two-configuration case. For any value of

{φ(1)
2 , φ

(2)
2 }, if we choose {φ(1)

1 , φ
(2)
1 } as {φ(2)

2 ,−φ(1)
2 },

Φ = Ŝ(φ
(1)
1 , φ

(1)
2 ) + Ŝ(φ

(2)
1 , φ

(2)
2 )

= Ŝ(φ
(2)
2 , φ

(1)
2 )− Ŝ(φ

(1)
2 , φ

(2)
2 ) = 0. (55)

That the total wave function Φ could vanish means that
Ĝ in the multi-configuration case is just semi-positive def-
inite. It could have zero eigenvalues. Theoretically, this
does not cause any problem because when the denom-
inator of (51) vanishes, its numerator vanishes too. In

other words, the eigenvectors of Ĝ with the zero eigen-
value are also eigenvectors of F̂ with the zero eigenvalue.
In numerics, one has to restrict F̂ and Ĝ to the subspace
spanned by the eigenvectors of Ĝ with nonzero (hence
positive) eigenvalues. This can be easily implemented

once Ĝ is diagonalized.
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FIG. 6. (Color online) Convergence of the energy of the per-
manent variational state. Each curve corresponds to a d-
ifferent set of initial orbitals. The solid (dotted) lines are
with M = 1 (M = 2) configuration(s). In each step, one
orbital is updated. The energy after n steps is denoted
as En. The limiting value E∞ is approximated by E2400.
The setting is a one-dimensional Bose-Hubbard model in a
harmonic trap with the Hamiltonian (56). The parameters
(N,L, κ, g) = (3, 13, 0.2, 5).

In practice, this cautious extra effort is necessary only
for N = 2. In our extensive numerical simulations, we
have never encountered a case of Ĝ becoming singular
for N ≥ 3. The reason is yet to be understood but it is

not surprising as when N ≥ 3, for fixed φ
(α)
2≤i≤N , unlike

(55), it is hard to find φ1 = (φ
(1)
1 ;φ

(2)
1 ; . . . ;φ

(M)
1 ) to make

Φ vanish; likely there is no solution. But for N = 2,
it occurs necessarily. With M configurations, generally
Ĝ has

(
M
2

)
eigenvectors with the eigenvalue zero. This

number can be understood in view of (55). For fixed

orbitals φ
(α)
2≤i≤N , one can find

(
M
2

)
linearly independent

vectors φ1 such that Φ vanishes.

C. Convergence of the algorithm

We take a concrete model to illustrate the convergence
behavior of the algorithm. Consider a one-dimensional
Bose-Hubbard model in a harmonic trap. The Hamilto-
nian is

Htrap = −
L0−1∑
x=−L0

(a†xax+1 + h.c.) +
g

2

L0∑
x=−L0

a†xa
†
xaxax

+κ

L0∑
x=−L0

x2a†xax. (56)

Here κ > 0 is the stiffness of the harmonic potential. For
symmetry, we have assume a lattice of size L = 2L0 + 1.
We take the open boundary condition.

We start from MN random orbitals [see Eq. (50)],
where M is the configuration number and N is the par-
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ticle number. Essentially, we just generate an ML × N
matrix with each element chosen randomly from the in-
terval [0, 1] according to the uniform distribution. The
orbitals (the columns) are then updated in a circular way.
The variational state after n updates (steps) will be de-
noted as Φn, and its energy will be denoted as En. Note
that En is obtained simultaneously in solving the gener-
alized eigenvalue problem (46).

By construction, En decreases monotonically and will
definitely converge. The concern is in which way and
with what rate it converges to its limit E∞. This is stud-
ied in Fig. 6, where for a set of values of the parameters
(N,L, κ, g) and with M = 1 or 2, some typical trajecto-
ries of En −E∞ (here we just approximate E∞ by some
En with a large enough n) are displayed. For each value
of M , we have three trajectories corresponding to three
different sets of initial orbitals.

We see that often the trajectory is not very regular—
It is neither pure exponential nor pure power law, but
clearly divides into different parts. In many cases, after
some relaxation or transition stage, which can last for a
long time, the energy eventually enters an exponentially
decreasing mode. In our extensive numerical simulations,
the observation is that the trajectory of the energy de-
pends not only on the model and the model parameters,
but also on the initial conditions and can differ signif-
icantly from run to run. We cannot draw any definite
rule for the convergence rate of the energy, but the feel-
ing is that the convergence tends to be slower with more
configurations and weaker interactions.

1. The non-interacting case

Possibly the most embarrassing and surprising thing
is that the convergence is slowest in the non-interacting
limit. In this trivial case, the exact ground state |GS〉 is
simply a condensate-type (and hence a permanent) state
with all particles occupying the single-particle ground s-
tate. We do not need to invoke the algorithm for its
calculation, however, if we do, the convergence is as slow
as a power law. In Figs. 7(a) and 7(b), with g = 0 but the
other parameters the same as in Fig. 6, trajectories of the
energy error En − E∞ and the infidelity 1 − |〈GS|Φn〉|2
are shown respectively for a particular run. Here we take
E∞ to be the exact ground state energy. In either fig-
ure, the curve drops down steeply at about n ∼ N , and
afterwards it follows a straight line in the log-log plot.
Basically, the picture is that after the first round of up-
date, i.e., when each orbital has been updated once, the
variational wave function is already very close to the ex-
act state (the overlap is over 0.99 in the particular case).
Afterwards, it improves slowly by a power law.

The exact reason behind the slow convergence is yet
to be understood. Here we just emphasize that the con-
vergence is slow only in the asymptotic sense. In the
initial phase, the algorithm can already deliver the state
Φn close enough to its limit Φ∞ = |GS〉.

In Figs. 7(c) and 7(d), we show two snapshots of
the constituent orbitals, the particle density distribution
ρ(x, x), and the correlation function ρ(0, x), which are
respectively the diagonal and off-diagonal parts of the
single-particle reduced density matrix ρ defined as

ρ(x1, x2) = 〈a†x2
ax1〉. (57)

We see that even for an n as small as n = N = 3, the
permanent variational state Φn can already reproduce
the exact values of ρ(x, x) and ρ(0, x) to high precision.
The intriguing thing is that while the total wave function
is already very close to the exact many-body ground s-
tate in terms of energy, overlap, and some most relevant
correlation functions, the constituent orbitals are still far
away or at least visibly different from the exact single-
particle orbital. In view of Proposition 2, which states
that different sets of orbitals necessarily result in differ-
ent many-body wave functions, the current observation
implies that the latter is not necessarily very sensitive to
perturbations of the former in some cases. This in turn
implies that it might not be a good idea to use conver-
gence of the orbitals as a criterion in determining the
termination of the algorithm [15].

2. Local minima

It should be no wonder that the algorithm can get s-
tuck in a local minimum like many other greedy algo-
rithms. This is illustrated in Fig. 8(a) with a model of
(56) and some specific value of g. We see that many
trajectories of En settle down on a secondary minimum.
Note that for clarity, we have shown only the first 100
steps, but actually the horizontal lines extend all the way
up to n = 1500.

In Fig. 8(b), we plot the possible eventual values of
the variational energy En and the overlap |〈GS|Φn〉|2 as
functions of g. For each value of g, like in Fig. 8(a),
we have run the algorithm 20 times, each time up to
n = 1500. We see that for g smaller than some critical
value gc ' 8, we get only a single value for either of
E∞ and |〈GS|Φ∞〉|2, which indicates that there is only a
global minimum, however for g larger than gc, we get two
different values for either of E∞ and |〈GS|Φ∞〉|2, which
indicates the presence of a second, local minimum.

Our experience is that local minima are ubiquitous.
Generally, their number increases with the number M of
configurations. To avoid them and enhance the proba-
bility of hitting the global minimum, we simply run the
algorithm multiple times, say 20 times for M = 4 config-
urations.

3. Real versus complex

So far, we have assumed the optimal orbitals to be
real. For many systems with the time reversal symmetry,
the many-body ground state is real and the assumption



13

10-5

100

100 101 102
10-5

100

0

0.5

1

0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1 variational
exact

0

0.5

1

0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1 variational
exact

FIG. 7. (Color online) (a) and (b): Trajectories of the energy error En − E∞ and the infidelity 1− |〈GS|Φn〉|2 in a particular
run in the non-interacting case (g = 0). (c) and (d): The orbitals φi(x), the particle density distribution ρ(x, x), and the
one-particle correlator ρ(0, x) at two snapshots. In (c1) and (d1), the solid dots represent the single-particle ground state. The
setting is the same as in Fig. 6. The parameters are also the same except for g.
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FIG. 8. (Color online) (a) Twenty trajectories of the variational energy En. Each trajectory starts with a different set of
randomly generated initial orbitals. (b) Possible limiting values of the variational energy E∞ and the overlap |〈GS|Φ∞〉|2.
Note that for each value of g, we have 20 runs as in (a) and in each run the number of iteration steps is 1500. The setting is a
one-dimensional Bose-Hubbard model in a harmonic trap with the Hamiltonian (56). The fixed parameters are (N,L, κ,M) =
(3, 13, 0.2, 1).

that the optimal orbitals should also be real seems very
reasonable. However, this is not the case.

We take a minimal model to illustrate the possibility
that the optimal orbitals could be complex although the
total wave function is real. Consider a two-particle, two-
site Bose-Hubbard model, i.e., a model with (N,L) =
(2, 2). The Hamiltonian is

Hds = −(a†1a2 + a†2a1) +
g

2
(a†1a

†
1a1a1 + a†2a

†
2a2a2). (58)

Consider a real wave function Ψ(x1, x2), with x1,2 = 1, 2,
of this model. By Proposition 3 or Proposition 4, Ψ can
be written as a permanent state

Ψ = Ŝ(u, v) (59)

with two orbitals u and v. The question is whether u, v

can both be real. Componentwise, (59) means

Ψ(1, 1) =
√

2u1v1, Ψ(2, 2) =
√

2u2v2,

Ψ(1, 2) =
1√
2

(u1v2 + v1u2).

We have then

∆ ≡ Ψ(1, 2)2 −Ψ(1, 1)Ψ(2, 2) =
1

2
(u1v2 − v1u2)2.

We thus see that for (59) to have real solutions, a nec-
essary condition is that the quantity ∆ be non-negative.
It is easy to verify that this is also sufficient.

Hence, when ∆ < 0, in the single configuration ap-
proximation, the wave function Ψ can be exactly recov-
ered with complex orbitals but not with real orbitals.
Note that such a condition is satisfied by a cat-type s-
tate, which can be realized as the ground state of the
model (58) with an attractive on-site interaction g < 0.
In Fig. 9, we show the variational energies of the ground
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FIG. 9. (Color online) Trajectories of the energy of the per-
manent variational state with either (a) real or (b) complex
orbitals. In each case, we have five runs starting with five dif-
ferent sets of random orbitals. The number of configurations
is M = 1. The horizontal dotted lines indicate the exac-
t ground state energy. The setting is a two-particle, two-site
Bose-Hubbard model with the Hamiltonian (58). The param-
eter g = −1.

state of such a model, calculated with either real or com-
plex orbitals. We see that while complex orbitals can
deliver the exact value, real orbitals miss it with some
overestimation.

Therefore, we see that at least theoretically, complex
orbitals are superior to real orbitals for energy minimiza-
tion. However, the observation is that for all the models
we consider in this paper, if the interaction is repulsive
(g ≥ 0) and if we take the single configuration approxi-
mation (M = 1), the complex approach leads to identical
results with the real approach. More specifically, in these
circumstances, even if we start with complex orbitals, the
iteration will result in real orbitals. The reason is yet to
be understood. For multiple configurations (M > 1),
with complex orbitals, often we do get lower energies,
however, the improvement is not very significant. We
thus often confine ourselves to real orbitals in the follow-
ing. Anyway, real arithmetics are four times fast than
complex arithmetics, and the disadvantage in accuracy
can be compensated by including more configurations.

V. APPLICATION OF THE ALGORITHM

A. The Bose-Hubbard model revisited

With the numerical optimization algorithm above, we
can handle more general models. But let us start from the
Bose-Hubbard model with the periodic boundary condi-
tion and at unit filling, and see how much it can improve
over the results in Sec. III.

For this particular model, we take a single configura-
tion (M = 1). We never encounter any local minimum,

and the symmetry of the model is perfectly preserved by
the optimal orbitals. That is, although we always start
from random orbitals, the orbitals we eventually get are
always of the same shape and differ from each other just
by translations, as described by (38).

In Fig. 10, we show the estimated ground state energy
Egs and the overlap |〈GS|Φe〉|2 obtained with unrestrict-
ed orbitals. For comparison, also shown are the result-
s with Lorentz or exponential orbitals. We see that in
the region g ≤ 6, the VWF with unrestricted orbital-
s does not improve much over the VWF with Lorentz
orbitals neither by energy nor by overlap. According-

ly, the predicted correlation function 〈a†0ax〉 is close to
that predicted by the Lorentz VWF, as can be seen by
comparing Figs. 11(a)-(c) with Figs. 4(a)-(c). Howev-
er, in the region g ≥ 6, unrestricted orbitals do lead to
improvement over both the Lorentz and the exponential
orbitals, both by the criterions of energy and overlap.
For instance, at g = 8 and with N = L = 12, the overes-
timate in energy (difference between the variational and
exact ground state energy) reduces from 0.0127 (Lorentz)
and 0.0106 (exponential) to 0.0039 (unrestricted), and si-
multaneously the deficiency in overlap (1 − |〈GS|Φe〉|2)
reduces from 0.0213 (Lorentz) and 0.0203 (exponential)
to 0.0026 (unrestricted). These numbers indicate that
the algorithm produces really good approximation of the
exact ground state. Indeed, as Figs. 11(d)-(f) show, now

the VWF-predicted correlation function 〈a†0ax〉 almost
coincides with the exact values for g ≥ 8.

Overall, in Figs. 10 and 11, we see that for a system
as large as N = L = 12 and in the whole range of g,
the ground state can be very well approximated by a
permanent state. This is very impressive in view of the
dimension of the many-body Hilbert space, which is as
large as D = 1 352 078. The exact ground state is ob-
tained by exact diagonalization and is a vector of this
size with the Fock states as a basis. In contrast, the
permanent variational state is constructed with N = 12
orbitals, each of which is a vector of size L = 12. That
the orbitals are not even independent but related to each
other by translations means that the permanent state is
encoded with a 12× 12 circulant matrix with only 12 in-
dependent variables. From the data compression point
of view, with the permanent state as an approximation
of the exact ground state, the compression ratio is very
high while the fidelity is still very good.

B. More general models

We now turn to more general models.
First of all, let us break the periodic boundary con-

dition of the Bose-Hubbard model above and replace it
with the open boundary condition. The Hamiltonian is

Hobc = −
L0−1∑
x=−L0

(a†xax+1 + h.c.) +
g

2

L0∑
x=−L0

a†xa
†
xaxax.(60)
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FIG. 10. (Color online) (a) Energy per particle of the energy-minimizing permanent states Φe constructed with either the
Lorentz-type (40a) or the exponential-type (40b) primitive orbitals, or unrestricted orbitals. The solid line indicates the exact
ground state energy calculated by exact diagonalization (ED). (b) Overlap between the energy-minimizing permanent states
|Φe〉 and the exact ground state |GS〉. In this figure, the parameters are N = L = 12.
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FIG. 11. (Color online) Single-particle correlator 〈a†0ax〉. In each panel, the ∗ markers are for the exact ground state |GS〉,
while the circles are for the unrestricted energy-minimizing VWF Φe. The common parameters are N = L = 12. Note that
because of the periodic boundary condition, the largest possible distance between two sites is 6.

We still assume unit filling, so the particle number N =
L = 2L0 + 1. By the mere change of the boundary con-
dition, the translation symmetry is lost and now the or-
bitals should differ in shape. It is then unclear what
orbitals to choose to construct the permanent state—We
have to resort to the numerical algorithm.

In Fig. 12(a), with N = L = 11, the permanent esti-
mated ground state energy is compared with the exact
diagonalization result, and in Fig. 12(b), the overlap be-
tween the permanent variational state Φe and the exact
ground state |GS〉 is shown. We see that like the period-
ic boundary condition case, across the full range of the
on-site interaction g, the permanent state is a very good
approximation of the exact ground state. The overlap is
as large as 0.964 even in the worst case, and the relative
error in energy is at most 2%.

In Fig. 13, for three different values of g, we show
the constituent orbitals, the density distribution func-
tion ρ(x, x) and the correlation function ρ(0, x). For each
value of g, we start from N random orbitals, and then

update each orbital 100 times. In the top panels, we see
that besides the bulk orbitals which are similar to each
other in shape, there are two edge orbitals, which are
maximal on the edges and decay into the bulk. As the
permanent state is very close to the exact ground state
by overlap, these orbitals provide a very good picture of
the exact ground state. We also see that the permanen-
t state predicted values of the density distribution and
the correlation function agree with the exact results very
well.

As a second example, let us consider the one-
dimensional Bose-Hubbard model in a harmonic trap,
with the Hamiltonian of (56). In Fig. 14, we show
the variational ground state energy Egs and the overlap
|〈GS|Φe〉|2, calculated with various numbers of configu-
rations and with either real or complex orbitals, as func-
tions of g. We see that in the single configuration case
(M = 1), the real and complex approaches agree with
each other exactly. The discrepancy between the varia-
tional energy and the exact value is apparent, and the
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FIG. 12. (Color online) (a) Ground state energy (per parti-
cle) of a Bose-Hubbard model at unit filling with the open
boundary condition [see (60) for the Hamiltonian]. The sol-
id line is obtained by exact diagonalization, while the dotted
line by the permanent variational approach. (b) Overlap be-
tween the exact ground state |GS〉 and the energy-minimizing
permanent state Φe. The parameters are N = L = 11.

overlap drops to 0.76 at g = 15. However, the situation
improves dramatically if we take M = 3 configurations.
With three configurations, both the real and the complex
approaches get the ground state energy so accurate that
the difference with the exact value is hardly visible in the
figures. Accordingly, the overlap |〈GS|Φe〉|2 is very close
to unity throughout the range of g. Actually, the minimal
value of the overlap is as large as 0.995 in the two fig-
ures. This means that with three configurations, be the
orbitals real or complex, we can recover the exact ground
state to very high precision. In the intermediate case of
M = 2 configurations, the energy and the overlap are
in-between. A peculiarity is that with real orbitals, the
curve of the overlap is discontinuous at some point. This
is due to the existence of local minima. At the critical
point, two local minima change order in energy, or more
precisely, the originally global minimum is surpassed by
another minimum which was originally just a local one.

In Figs. 15, 16, and 17, which correspond to M = 1,
M = 2, and M = 3, respectively, we show the (real)

orbitals φ
(α)
i , the density distribution ρ(x, x), and the

correlation function ρ(0, x) for three different values of
g. In Fig. 15, we see that the single configuration ap-
proximation, in accord with Fig. 14, is quantitatively
not very accurate for large values of g. However, the
orbitals are consistent with the fermionization picture in
the large-g limit [35–37]. In Fig. 16, with two configura-
tions, the similarity between the variational results and
exact results improves, but the difference is still appar-
ent for g = 10 and 15. A notable feature of the two-
configuration approximation is that it breaks the parity
symmetry of the model—the density distribution ρ(x, x)
and the correlation function ρ(0, x) are asymmetric. This

kind of phenomena is quite common in the conventional
Hartree-Fock approximation, and is equally so with us.
Below we shall see more examples. In Fig. 17, we have
M = 3 configurations, and now the variational results
almost coincide with the exact results, as is anticipated
by the energy and overlap information in Fig. 14.

In the three models above, we see that the permanent
approach with a very limited number of configurations
can yield very accurate results. The observation is that
regardless of the strength of the interaction, this is often
the case if the system is not very dilute, or more precisely,
if the ratio N/Leff is not too small, where by Leff we
mean the effective volume of the system, i.e., the volume
accessible to the particles. In the Bose-Hubbard model
at unit filling, regardless of the boundary condition, the
ratio is 1; in the Bose-Hubbard model in a harmonic trap
above, although the lattice is of size L = 13, by the
shapes of the orbitals or the density distribution, we infer
that the effective lattice size Leff ' 7, so the ratio is
about 3/7.

Our experience is that the most challenging situation
for the permanent variational approach is a dilute gas
in the Tonks-Girardeau limit, in which the system is
dilute (i.e., N � Leff ) and the on-site interaction g
is strong. We consider such a Bose-Hubbard model in
Fig. 18, where we have N = 4 particles on a flat, open
lattice of size L = 13. When g is as small as 1, the
single-configuration approximation can get the density
distribution ρ(x, x) and the correlator ρ(0, x) accurate-
ly. As g increases to 2, the error becomes visible but
is still small. However, if g further increases to 4, the
discrepancy becomes very apparent.

The natural remedy is to take multiple configurations.
In Fig. 19, we show how the variational energy and the
overlap improve as the number of configurations increas-
es. The improvement is steady but slow in comparison
with Fig. 14. At g = 4, which is small by the scale of
Fig. 14, even with M = 5 configurations, the deviation
of the variational energy from the exact value and the
deviation of the overlap from unity are still visible. In
Fig. 20, we show how the situation in Fig. 18(c) improves
by taking more and more configurations. We see that un-
like the situation in Fig. 17, with M = 3 configurations,
the variational curves are still manifestly different from
the exact ones. Only with M = 5, do the two almost
coincide.

The trend of the curves in Fig. 19 suggests that for
even larger values of g, we would need even more config-
urations to get a good approximation of the exact ground
state. In Fig. 21, we examine the case of g = 15. For this
value of g, the exact ground state is already very close
to its fermionization limit at g = +∞. We see that the
single configuration approximation fails blatantly and it
even breaks the parity symmetry of the model. With
M = 5 configurations, the situation improves but only
with M = 10 configurations do the variational predicted
density distribution and correlation function agree with
the exact values very well.
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FIG. 13. (Color online) The orbitals φi(x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x)
for three different values of g. The circles are for the permanent state, while the ∗ markers are for the exact diagonalization
results. The setting is a one-dimensional Bose-Hubbard model with the open boundary condition as defined in (60). The fixed
parameters are (N,L) = (11, 11).
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FIG. 14. (Color online) (a1) and (b1): Ground state energy per particle of a Bose-Hubbard model in a harmonic trap. The
solid lines are obtained by exact diagonalization, while the other lines are by the permanent variational wave functions with
different numbers of configurations. (a2) and (b2): Overlap between the exact ground state |GS〉 and the energy-minimizing
variational state Φe. The fixed parameters are (N,L, κ) = (3, 13, 0.2). The left (right) column is calculated with real (complex)
orbitals.

We thus see that generally taking multiple configura-
tions can effectively reduce the error. The concern is
how much price we have to pay. From Sec. IV A, we see
that with M configurations, the number of blocks that
we have to calculate for preparation of F̂ and Ĝ increases
by a factor of 1

2M(M + 1). This polynomial growth is
mild.

C. Symmetry breaking and restoration

It is a common observation in the practice of Hartree-
Fock approximation that the solution often spontaneous-
ly breaks the symmetries of the Hamiltonian [38, 39].
This could also happen with us, as we have seen in Fig. 16
and Fig. 21 above, where the permanent variational s-
tates do not respect the Z2 symmetry of the models.

We have two options to restore symmetry, i.e., to con-

struct a state sharing the same symmetry with the exact
ground state. The first approach is by brute force, we
can simply take more configurations. Hopefully, the ac-
curacy of the approximation will improve and the sym-
metry is restored alongside. This happens in Fig. 17 and
Fig. 21(c). The second approach is based on the group
representation theory. We can construct a projection op-
erator corresponding to the irreducible representation of
the exact ground state, and let it act on the variational
state. The resultant state is also a permanent variational
state, but generally with more configurations.

Below we take two concrete models to illustrate and
compare the two approaches. In the first model, we have
N = 3 bosons in a double-well potential. The Hamilto-
nian is

Hdw = Hobc +

L0∑
x=−L0

V (x)a†xax, (61)
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FIG. 15. (Color online) The orbitals φi(x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x)
for three different values of g. The circles are for the permanent state, while the ∗ markers are for the exact diagonalization
results. The setting is a one-dimensional Bose-Hubbard model in a harmonic trap as defined in (56). The fixed parameters are
(N,L, κ) = (5, 13, 0.25) as in Fig. 6. In the top panels, the dotted line sketches the harmonic potential.
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FIG. 16. (Color online) Same as Fig. 15, but with M = 2 configurations. Note that the variationally calculated density
distribution ρ(x, x) and the correlation function ρ(0, x) are asymmetric.

where the double-well potential V (x) is the superposition
of a harmonic trap and a Gaussian bump, i.e.,

V (x) = κx2 + h exp(−x2/σ2), (62)

where κ, h, and σ are parameters. The system has a Z2

symmetry, and it can be easily proven that the parity
of the ground state is even and consequently the parti-
cle density distribution and the correlator are both even
functions of x. However, in Fig. 22(a1), in the single con-
figuration approximation, we see that the orbitals are ap-
parently asymmetric, with one orbital located in the left
well and the rest two in the right well. Consequently, the
particle density and the correlator are both asymmetric,
and the deviation from the exact values is significant.

To reinstall symmetry by the first approach, we can
simply take one more configuration as in Fig. 22(c),
where we get symmetric orbitals, and the variational re-
sults agree with the exact ones perfectly. We can also
try the second approach. Let the permanent state in
Fig. 22(a) be Φe = Ŝ(φ1, φ2, φ3). An even-parity state
can then be easily constructed as

Φ̄e = Ŝ(φ1, φ2, φ3) + Ŝ(P̂ φ1, P̂ φ2, P̂ φ3), (63)

where the inversion operator P̂ is defined as (P̂ φ)(x) =
φ(−x). The newly constructed variational state Φ̄e con-

sists of two configurations, with the new configuration
transformed from the old one by inversion. The physi-
cal quantities calculated with the projected state Φ̄c are
shown in Fig. 22(b). We see significant improvement over
the pro-projection state Φe in Fig. 22(a). Qualitative-
ly, the symmetry is restored; quantitatively, the overlap
with the exact ground state has increased from 0.91786
to 0.99255, and the predicted ground state energy per
particle has decreased from 0.98983 to 0.97049 (the ex-
act value is 0.95831). Of course, by construction, we do
not expect Φ̄e to be optimal in energy among all the two-
configuration variational states. Indeed, its energy is s-
lightly higher than that of the optimal state in Fig. 22(c).
However, its advantage is that it is obtained for free and
is still a fairly good approximation.

The second model is simply the Bose-Hubbard model
with the periodic boundary condition. Because of the
boundary condition, the lattice can be visualized as a
closed lattice ring, and the symmetry group of the model
is recognized as that of a regular polygon, i.e., the dihe-
dral group DL. The group consists of L translations (or
rotations) and L reflections

DL = {ŜmT̂n, 0 ≤ m ≤ 1, 0 ≤ n ≤ L− 1}. (64)

Here the generating operators Ŝ and T̂ are defined as
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FIG. 17. (Color online) Same as Fig. 15 and Fig. 16, but with M = 3 configurations.
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FIG. 18. (Color online) The orbitals φi(x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x) for
three different values of g. In this figure, we have N = 4 bosons on an open chain of L = 13 sites.

(Ŝφ)(x) = φ(−x) and (T̂ φ)(x) = φ(x−1). By the Perron-
Frobenius theorem, the exact ground state |GS〉 is non-
degenerate and positive everywhere in the Fock basis. It
then follows easily that |GS〉 belongs to the trivial repre-
sentation of the dihedral group. The projection operator
for this irreducible representation is simply

P̂ =
1

2L

1∑
m=0

L−1∑
n=0

ŜmT̂n. (65)

Therefore, if we obtain an M -configuration variational
state in the form of (50) by the algorithm, by projection
we obtain immediately the following state invariant under
all the symmetry transforms of the model,

Φ̄e =

1∑
m=0

L−1∑
n=0

M∑
α=1

Ŝ(ŜmT̂nφ
(α)
1 , . . . , ŜmT̂nφ

(α)
N ), (66)

which is a 2LM -configuration state.
In Fig. 23, we consider such a model with (N,L, g) =

(3, 11, 5). In the top row, we see that with M = 1 to
M = 3, the variational state always breaks the symme-
try of the model completely, i.e., all the translation and
reflection symmetries are lost. This is most easily seen
from the density distribution. In the bottom row, with
the projected states, the symmetry of the exact ground
state is recovered. We see that generally, the projection
process not only restores the expected symmetry, but also

lowers the energy and increases the overlap. Remarkably,
it is most effective in the single configuration case.

D. When multiple configurations are perfect

In the proceeding sections, we have seen that taking
multiple configurations can get us very close to the target
state. Here, we discuss the scenario that a generic target
state can be exactly recovered by multiple configurations.

By Proposition 4, if the single-particle Hilbert space is
of dimension L = 2, then for arbitrary N , an N -boson
state is a permanent state, i.e., it consists of a single
configuration. For higher values of L, a generic state is
not a permanent state and a natural question is, at least
how many configurations we need to recover it exact-
ly. A quick lower bound is obtained by mere dimension
counting. The dimension D of the many-body Hilbert
space is given in (5). By (18), a permanent state has
d = N(L− 1) + 1 degrees of freedom. Hence, we need at
least

M0 = dD/de (67)

configurations to recover a generic state, where dxe de-
notes the least integer no less than x. There is no reason
that this lower bound can be achieved. Indeed, it is an
underestimate in the special case of N = 2. By Propo-
sition 4, we need b(L+ 1)/2c configurations to recover a
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FIG. 19. (Color online) (a) Ground state energy per particle
of a Bose-Hubbard model with the open boundary condition.
The solid line is obtained by exact diagonalization, while the
other lines are by the permanent variational approach with
M = 1 to M = 5 configurations (M increases in the direction
of the arrow). The variational calculation is done with real
orbitals. (b) Overlap between the exact ground state and
the energy-minimizing permanent state. As in Fig. 18, the
particle number N = 4 and the lattice size L = 13.

generic 2-boson state. Here the number scales as L/2 for
large L. However, the estimate of (67) is M0 ' L/4 for
large L.

Although (67) fails for N = 2, there are evidences
that for many pairs of (L,N), it does give the right an-
swer. Specifically, extensive numerical experiments in-
dicate that that if the pair (L,N) take values among
the set of {(3, 2), (3, 3), (3, 4), (3, 5), (4, 3)}, the N -boson
wave function can always be written as the summation of
M0 = 2 permanent states. Similarly, if (L,N) take val-
ues among the set of {(4, 4), (5, 3)}, the N -boson wave
function can always be written as the sum of M0 = 3
permanent states.

The numerical experiment is done in the following way.
We first generate a random N -boson state, then generate
a set of M0N random single-particle orbitals, with M0

given by (67), and then use the overlap maximization
algorithm to update the orbitals. The concern is whether
the overlap will surpass the threshold 1− 10−5 after 300
rounds of update. If not, a new set of random orbitals
are generated and the optimization process is restarted.
This process is repeated until in some run the threshold
is surpassed. If so, we turn to a new random N -boson
state and repeat the check.

For the set of values of (L,N) mentioned above, we
have checked over 105 random N -boson states, and they
all passed the check. This is strong evidence that for such
(L,N), the naive lower bound of (67) is achieved.

So far, we have failed to find a rigorous proof of the
findings above. Here we just reformulate the problem in
pure mathematics so that it might be more convenient for

further study. In second quantization, a generic N -boson
state is

Ψ =
∑
n

Cn

L∏
j=1

(
a†j

)nj

|vac〉. (68)

Here the summation is over all occupation tuple n =

(n1, n2, . . . , nL) with nj ≥ 0 and
∑L
j=1 nj = N . By (8),

that it can be written as the sum of M permanent states
means

Ψ =

M∑
α=1

N∏
i=1

 L∑
j=1

C
(α)
ij a†j

 |vac〉, (69)

where C
(α)
ij are constants. Because the a†j opera-

tors commute, and the (unnormalized) Fock states∏L
j=1

(
a†j

)nj

|vac〉 are linearly independent, this is equiv-

alent to saying that the degree-N homogeneous polyno-
mial in L variables

P (z1, z2, . . . , zL) =
∑
n

Cn

L∏
j=1

z
nj

j (70)

is expressible as

P (z1, z2, . . . , zL) =

M∑
α=1

N∏
i=1

 L∑
j=1

C
(α)
ij zj

 . (71)

Formulated in this way, we see the problem is very similar
to the polynomial Waring problem [40]. The difference
is just that while in the Waring problem, one seeks to
decompose a general degree-N homogeneous polynomial
in N -th powers of linear forms (linear polynomials), here
we seek a decomposition in terms of N -th products of
linear forms.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have explored the potential of the permanent s-
tate as variational wave functions for bosons. The result
is very encouraging. First, we found that for the one-
dimensional Bose-Hubbard model with periodic bound-
ary condition and at unit filling, the exact ground state
can be well approximated by a permanent state with
translation-related orbitals. The permanent state over-
laps well with the exact ground state, yields energy close
to the exact value, and produces correlation functions
close to the exact ones. Then with an iteration algorith-
m, we examined more general models. It is quite often
that the a single permanent state approximates the ex-
act ground state very well, by all the criterions of energy,
overlap, and correlation functions. In case the discrep-
ancy is apparent, it can be remedied by including more
configurations.
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FIG. 20. (Color online) The orbitals φ
(α)
i (x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x)

for three increasing values of M . The setting and parameters are the same as in Fig. 18(c).
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FIG. 21. (Color online) Same as Fig. 20, but the value of g is 15 instead of 4.

The algorithm has its advantages and disadvantages.
Let us first address its disadvantages. The primary draw-
back of a permanent-based approach is of course the per-
manent computation, which scales unfavorably with the
particle number N . However, with current computation-
al facilities, it is not prohibitively expensive. On our
laptop, in the single-configuration case, it takes about
5.1 seconds to update one orbital for N = L = 12, and
the time reduces to 1.0 seconds if N = 10. Hence, it is
totally feasible to study a large enough few-boson sys-
tem with the algorithm. Note that there is still room for
acceleration—computing the permanents of the minors of
the overlap matrix can be easily parallelized. While the
scaling of the complexity of the algorithm with respect to
the particle number N is not that favorable, the scaling
with respect to the system volume L is quite favorable.
The observation is that for L . N , most time is spent
on the permanent calculation and the L-dependence is
negligible. Only for L � N , the time needed to up-
date one orbital increases apparently with L, but still
it increases at most in a polynomial way. For example,
for N = 12, the time is 5.5, 7.6, and 21.4 seconds for
L = 25, 50, 100, respectively. Roughly speaking, while
we are indeed confined to a limited number of particles,
we have essentially no limitation on the system volume,
nor the dimensionality of the system. The memory need-
ed by the algorithm is also minimal. While in this paper
we have only considered the (N,L) pairs for which the

dimension of the many-body Hilbert space is at most on
the order of one million, so that exact diagonalization is
possible and we have exact results for comparison, the
algorithm can handle other values of (N,L) easily.

In this tentative work, we have only dealt with some
one-dimensional lattice models in the Bose-Hubbard cat-
egory. Generalization to continuum models [41, 42], high-
er dimensions, and multi-component systems should be
straightforward. A potential application or test of the ca-
pability of the current variational approach is to search
for few-body bound states [43, 44].

Below are some open problems.
The fact that for the one-dimensional Bose-Hubbard

model with periodic boundary condition and at unit fill-
ing, the exact ground state can be well approximated by a
permanent state with translation-related orbitals is very
impressive. This should arouse one’s interest in the per-
manent state in its own right. In the field of cold atom-
s, the folklore is that Bose-Einstein condensation occurs
as the temperature lowers, the de Broglie wave lengths
of the particles increase, and the wave-packets overlap.
Now, a permanent state with translation-related orbital-
s is in accord with this picture. The overlap between
adjacent orbitals can be well adjusted by changing the
length scale of the primitive orbital. The concern is, is
it possible to realize a transition by tuning the length
scale? How does the correlation function depend on the
primitive orbital? What is the effect of the dimension-
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FIG. 22. (Color online) The orbitals φi(x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x) for
N = 3 bosons in a double-well potential [see Eqs. (61) and (62)]. The parameters are L = 13, g = 2, κ = 0.5, h = 4.5, σ = 1.
In (a) and (c), the variational state consists of M = 1 or M = 2 configuration(s), respectively. In (b), the state is built out of
the state in (a) by the projection process in (63). In each column, the energy Egs of the variational state and its overlap O
with the exact ground state are shown. The exact value of the ground state energy per particle is 0.9583.
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FIG. 23. (Color online) The orbitals φi(x), the particle density distribution ρ(x, x), and the one-particle correlator ρ(0, x) for
N = 3 bosons on a closed chain with L = 11 sites. The on-site interaction strength g = 5. The top row corresponds to the
pro-projection variational states with M = 1 to M = 3 configurations. The bottom row corresponds to the projected variational
states. As in Fig. 22, for each state, its energy and its overlap with the exact ground state are shown. The exact value of the
ground state energy per particle is −1.8526.

ality of the lattice? In short, can we use a permanent
state with regularly distributed identical wave-packets as
a prototypical wave function to model the condensation
transition? Note that the problem does not refer to a
Hamiltonian.

That a single permanent state is often a very good
approximation of the exact ground state motivates two
problems. First, is it possible to construct an interacting
Hamiltonian [45] whose ground state is exactly a per-
manent state? Second, how dense are the permanent

states in the many-boson Hilbert space? Quantitatively,
is there a number δ > 0, such that for any many-boson
state there exists a permanent state whose overlap with
it is at least δ? Preliminary study suggests that δ ≥ 0.15
for (N,L) = (3, 13). This is not a small number in view
of the fact that the dimension of the few-body Hilbert
space is 455. The ground state of a realistic model is
non-generic, so the largest possible value of the overlap
of a permanent state with it should be much higher.

In this paper, we have focused on the energy-
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minimization problem. The other problem of overlap-
maximization, i.e., the problem of finding the optimal
single- or multi-configurational permanent approxima-
tion of a given bosonic wave function should also be a
worthy one. It is about the structure of a bosonic wave
function. At least for fermions, it is now well-known that
the anti-symmetry condition entails deep structures of
the fermionic wave function, with consequences far be-
yond the commonplace of the Pauli exclusion principle
[46–50], and the notion of optimal Slater approximation
has proven to be useful in this study [24, 25]. It is fair
to expect that for bosons, the symmetry condition also

has far-reaching consequences and hopefully, the notion
of optimal permanent approximation is a useful one too.
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Appendix: Expressions of F̂ and Ĝ in Sec. IV

Let us start with Ĝ which is simpler than F̂ . By an analogy of the Laplace expansion for the determinant, we have

〈Φ|Φ〉 = per(A) = 〈φ1|φ1〉per(A; 1|1) +

N∑
j1=2

〈φ1|φj1〉per(A; 1|j1)

= 〈φ1|φ1〉per(A; 1|1) +

N∑
j1=2

N∑
i1=2

〈φ1|φj1〉〈φi1 |φ1〉per(A; 1, i1|1, j1). (A.1)

From this expression, we can read off the operator Ĝ defined by 〈φ1|Ĝ|φ1〉 = 〈Φ|Φ〉. It is

Ĝ = per(A; 1|1)Î +

N∑
j1=2

N∑
i1=2

per(A; 1, i1|1, j1)|φj1〉〈φi1 |, (A.2)

where Î is the identity operator. Note that Ĝ depends on the orbitals φ2≤j≤N but not on φ1.

We then turn to F̂ . For the single-particle part, we have

〈Φ|H1|Φ〉 =

N∑
i1=1

N∑
j1=1

〈φi1 |K|φj1〉per(A; i1|j1)

= 〈φ1|K|φ1〉per(A; 1|1) +

N∑
j1=2

〈φ1|K|φj1〉per(A; 1|j1) +

N∑
i1=2

〈φi1 |K|φ1〉per(A; i1|1)

+

N∑
i1=2

N∑
j1=2

〈φi1 |K|φj1〉per(A; i1|j1)

= 〈φ1|K|φ1〉per(A; 1|1) +

N∑
j1=2

N∑
i1=2

〈φ1|K|φj1〉〈φi1 |φ1〉per(A; 1, i1|1, j1)

+

N∑
j1=2

N∑
i1=2

〈φ1|φj1〉〈φi1 |K|φ1〉per(A; 1, i1|1, j1) +

N∑
i1=2

N∑
j1=2

〈φi1 |K|φj1〉〈φ1|φ1〉per(A; 1, i1|1, j1)

+

N∑
i2 6=i1,2

N∑
j1 6=j2,2

〈φi1 |K|φj1〉〈φ1|φj2〉〈φi2 |φ1〉per(A; 1, i1, i2|1, j1, j2). (A.3)

Here in the last line, the summation
∑N
i2 6=i1,2 means that i1 and i2 both run from 2 to N , but they must take different

values. Similar summation expressions below should be interpreted similarly. We see that the contribution of H1 to
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F̂ is

per(A; 1|1)K +

N∑
j1=2

N∑
i1=2

K|φj1〉〈φi1 | ∗ per(A; 1, i1|1, j1) +

N∑
j1=2

N∑
i1=2

|φj1〉〈φi1 |K ∗ per(A; 1, i1|1, j1)

+

N∑
i1=2

N∑
j1=2

〈φi1 |K|φj1〉Î ∗ per(A; 1, i1|1, j1) +

N∑
i2 6=i1,2

N∑
j1 6=j2,2

〈φi1 |K|φj1〉|φj2〉〈φi2 | ∗ per(A; 1, i1, i2|1, j1, j2). (A.4)

Next we turn to the two-particle or the interaction term H2. We have by (34)

〈Φ|H2|Φ〉 =
1

2

N∑
i1 6=i2,1

N∑
j1 6=j2,1

〈φi1φi2 |U |φj1φj2〉per(A; i1, i2|j1, j2). (A.5)

For clarity, three cases will be considered separately. In the first case, two φ1’s are associated with U . We have

1

2

N∑
i2=2

N∑
j2=2

〈φ1φi2 |U |φ1φj2〉per(A; 1, i2|1, j2) +
1

2

N∑
i1=2

N∑
j1=2

〈φi1φ1|U |φj1φ1〉per(A; 1, i1|1, j1)

+
1

2

N∑
i1=2

N∑
j2=2

〈φi1φ1|U |φ1φj2〉per(A; 1, i1|1, j2) +
1

2

N∑
i2=2

N∑
j1=2

〈φ1φi2 |U |φj1φ1〉per(A; 1, i2|1, j1)

=

N∑
i2=2

N∑
j2=2

〈φ1φi2 |U |φ1φj2〉per(A; 1, i2|1, j2) +

N∑
i1=2

N∑
j2=2

〈φi1φ1|U |φ1φj2〉per(A; 1, i1|1, j2)

=

N∑
i2=2

N∑
j2=2

〈φ1φi2 |U |φ1φj2〉per(A; 1, i2|1, j2) +

N∑
i2=2

N∑
j2=2

〈φi2φ1|U |φ1φj2〉per(A; 1, i2|1, j2). (A.6)

Contributions of these expressions to the operator F̂ can be easily read off. For example, the operator O corresponding
to the matrix element 〈φ1φi2 |U |φ1φj2〉 is defined by 〈φ1|O|φ1〉 = 〈φ1φi2 |U |φ1φj2〉. For the Bose-Hubbard model in
which U is an on-site interaction (37), the operator O is actually a (generally complex) potential with the explicit
expression O(x) = gφ∗i2(x)φj2(x).

In the second case, one φ1 is associated with U . We have

1

2

N∑
i2=2

N∑
j1 6=j2,2

〈φ1φi2 |U |φj1φj2〉per(A; 1, i2|j1, j2) +
1

2

N∑
i1=2

N∑
j1 6=j2,2

〈φi1φ1|U |φj1φj2〉per(A; 1, i1|j1, j2)

+
1

2

N∑
i1 6=i2,2

N∑
j2=2

〈φi1φi2 |U |φ1φj2〉per(A; i1, i2|1, j2) +
1

2

N∑
i1 6=i2,2

N∑
j1=2

〈φi1φi2 |U |φj1φ1〉per(A; i1, i2|1, j1)

=

N∑
i2=2

N∑
j1 6=j2,2

〈φ1φi2 |U |φj1φj2〉per(A; 1, i2|j1, j2) +

N∑
i1 6=i2,2

N∑
j2=2

〈φi1φi2 |U |φ1φj2〉per(A; i1, i2|1, j2)

=

N∑
i1 6=i2,2

N∑
j1 6=j2,2

〈φ1φi2 |U |φj1φj2〉〈φi1 |φ1〉per(A; 1, i1, i2|1, j1, j2)

+

N∑
i1 6=i2,2

N∑
j1 6=j2,2

〈φ1|φj1〉〈φi1φi2 |U |φ1φj2〉per(A; 1, i1, i2|1, j1, j2). (A.7)

In the third case, none φ1 is associated with U . We have

1

2

N∑
i1 6=i2,2

N∑
j1 6=j2,2

〈φi1φi2 |U |φj1φj2〉per(A; i1, i2|j1, j2)

=
1

2

N∑
i1 6=i2,2

N∑
j1 6=j2,2

〈φi1φi2 |U |φj1φj2〉〈φ1|φ1〉per(A; 1, i1, i2|1, j1, j2)

+
1

2

N∑
i1 6=i2 6=i3,2

N∑
j1 6=j2 6=j3,2

〈φi1φi2 |U |φj1φj2〉〈φ1|φj3〉〈φi3 |φ1〉per(A; 1, i1, i2, i3|1, j1, j2, j3). (A.8)
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In the last line, we see that we have to calculate the permanents of a sereis of (N−4)× (N−4) matrices ((N−1)(N−
2)(N − 3)/6)2 times. By the improved Ryser algorithm, the total evaluation is on the order of N72(N−5). This is the
most time-consuming part of the calculation.
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