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Abstract

We study the exclusive production of J PC = 0++, 0−− charmonium states in proton-proton
collisions at the LHC energies. The pp→ ppηc reaction is discussed for the first time. We
observe a substantial contribution from the nonperturbative domain of gluon virtualities,
especially for ηc production. To model the nonperturbative region better, we utilize
models of the unintegrated gluon distribution based on parametrizations of the color
dipole cross-section.

1 Introduction

Central exclusive diffractive processes are distinguished by their very unusual final states. The
diffractively excited system, e.g. a meson or a few-particle state is produced in the central ra-
pidity region and is fully measured. There are no other tracks in the detectors, except perhaps
the tagged final state protons. Beyond the fully exclusive or “elastic” diffraction where the
incoming protons remain intact, in absence of proton tagging also “inelastic diffraction” must
be accounted for, where small mass hadronic systems, disappear into the beam pipe. Here we
give a brief summary of our recent work [1] where we have considered two such reactions,
pp → p χc0 p and pp → p ηc p. The final state mesons being composed of heavy (charm)
quarks, these processes appear to be well suited to be analysed in the framework of the pertur-
bative QCD (pQCD) based on the “Durham model” formulated by Khoze, Martin and Ryskin
(see Ref. [2] and references therein). Building upon the Durham formulation, the theory of the
central exclusive production (CEP) of single χcJ , J = 0,1, 2 mesons, with a correct account for
the spin of the mesons and precise kinematics of the process has been worked out by Pasech-
nik, Szczurek and Teryaev (PST) in a series of papers [3–5]. Here we review our recent work,
where we revisited and extended this analysis to account for additional effects and sources for
theoretical uncertainties (such as the shapes of the charmonia wave functions). Also, for the
first time, we studied the pseudoscalar ηc final state.
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2 Formalism and Results

2.1 pQCD description of central exclusive diffraction

For the production of bound states of heavy quarks, the quark mass provides a hard scale, and
one may attempt a pQCD formulation of the CEP process. The Durham group have proposed
a factorization of the CEP amplitude indicated graphically in Fig. 1 – for a review, see [2]. The
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Figure 1: A Feynman diagram for the CEP process.

production of the quarkonium proceeds through the fusion of two gluons. Another gluon –
the so-called screening gluon – is exchanged between protons and ensures that the t–channel
exchange is in the color-singlet. The factorization formula for the CEP amplitude reads:

M=
is

4π2

δc1c2

N2
c − 1

∫
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Foff
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Q2q2
1q2

2

, (1)

where V c1c2(q1,q2) is the vertex that describes the g∗g∗ → χc or g∗g∗ → ηc transitions. It
is contracted with the polarization vectors of off-shell gluons which are represented by the
light-like vectors n±µ :

n+µn−νVab
µν(q1,q2) =

4παs
p

Nc
δabT . (2)

For the case of the χc0, the transition amplitude can be decomposed into two form-factors

T = |q1||q2|G1(q
2
1,q2

2) + (q1 · q2)G2(q
2
1,q2

2) , (3)

for which we have derived a representation in terms of light-front wave functions (LFWFs) [7]:
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with lA = k − (1 − z)q2, lB = k + zq2 and ε2 = m2
c + z(1 − z)q2

1. The LFWFs are obtained
using the well-known Terent’ev prescription from potential model rest frame wave functions.
For the case of the pseudoscalar ηc , there is only one form factor,

T = (−i)[q1,q2]I(q
2
1,q2

2) , (5)

which reads [6]:
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Figure 2: a) Rapidity dependent cross section and b) transverse momentum depen-
dent cross section for ηc CEP for various UGD prescriptions; c) & d): the analogous
cross sections for χc0 CEP. Also shown are the cross sections for the relevant inclusive
(nondiffractive) cross section.

Foff
g,KMR(x , x ′,Q2,q2,µ2, t) = Rg

d
dlnq2

�

x g(x ,q2)
q

Tg(q2,µ2)
�

q 2=Q2 · F(t) , (6)

The coupling of gluons to protons is described by a generalized unintegrated gluon distribution
(UGD). Here several prescriptions exist in the literature:

Foff
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q
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·
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with Q̄2 = (Q2 + q2)/2

Foff
g,PST(x , x ′,Q2,q2,µ2, t i) =

Ç

Q2 f GBW
g (x ′,Q2)q2 f GBW

g (x ,q2)
q

Tg(q2,µ2) · F(t) , (8)

for more details, see [7]. The factor Rg takes into account the so-called skewedness correction,
which comes from the fact, that the screening gluon carries a much smaller x than the fusing
gluons. In Fig. 2 we show rapidity and transverse momentum dependent cross sections for ηc
and χc0 CEP for different prescriptions and choices of gluon distributions. In Fig. 3 distribu-
tions in Mandelstam-t1, t2 are shown. We observe the forward dip for ηc and peak for χc0 at
small t1,2.
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Figure 3: Cross section for a) ηc and b) χc0 CEP differential in Mandelstam-t1, t2.
Here we used the PST prescription.

2.2 Absorptive corrections

The results shown up to now do not contain the gap survival factors, which encode the effect
of absorptive corrections. We estimate the latter in an admittedly crude elastic rescattering
approximation. The full amplitude is written as

M(Y, y, p1, p2) =M(0)(Y, y, p1, p2)−δM(Y, y, p1, p2) , (9)

with the Born amplitude described above, and the absorptive correction being:

δM(Y, 0, p1, p2) =

∫

d2k
2(2π)2

T (s, k)exp
�

−
1
2

BD(p1 + k)2
�

exp
�

−
1
2
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�

× V (p1 + k, p2 − k) , (10)

with an effective vertex V that describes the fusion of two Pomerons into the meson. It is
adjusted to the Born results of the previous sections together with parameter BD. Above,

T (s, k) = σpp
tot(s) exp

�

−
1
2

Bel(s)k
2
�

, (11)

is the elastic pp amplitude. We show the gap survival factor

S2 ≡
dσ/d y

�

�

�

y=0

dσBorn/d y
�

�

�

y=0

. (12)

in Table 1 for χc0 and in Table 2 for ηc .

3 Conclusion

We have revisited the pQCD formulation of CEP in the example of the production of spinless
quarkonia [1]. The case of the pseudoscalar ηc was calculated for the first time. The novelty
consists of the treatment of the transition amplitude for g∗g∗→ ηc and g∗g∗→ χc0 which was
calculated [6, 7] using the light-cone wave functions of cc̄ states in the framework of poten-
tial models. It turns out that the CEP processes in proton-proton collisions studied by us are
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χc0
dσ
d y tot
|y=0 [nb] dσ

d y
abs

tot
|y=0 [nb] S2

y=0

PST GBW 17 3.7 0.22
PST RS 21 4.5 0.21
CDHI GJR08NLO 42 7.5 0.18
KMR GJR08NLO 29 3.7 0.13
BPSS GJR08NLO 61 8.0 0.13

Table 1: Gap survival factors for χc0 CEP for various prescriptions and UGD choices.

ηc
dσ
d y tot
|y=0 [nb] dσ

d y
abs

tot
|y=0 [nb] S2

y=0

PST GBW 1.8× 10−2 3.9× 10−3 0.22
PST RS 9.0× 10−3 1.9× 10−3 0.21
CDHI GJR08NLO 1.8× 10−1 4.0× 10−2 0.22
KMR GJR08NLO 1.3× 10−1 3.0× 10−2 0.23
BPSS GJR08NLO 5.8× 10−2 2.2× 10−2 0.38

Table 2: Gap survival factors for ηc CEP for various prescriptions and UGD choices.

sensitive to rather low momentum scales. This is the case especially for the ηc , and is respon-
sible for the main uncertainties in the results. We consequently proposed a way to calculate
the soft effects (in the region of small gluon transverse momenta) using UGDs obtained from
color dipole models and a simple (PST) prescription for its off-diagonal extrapolation. In our
treatment of absorptive corrections, we restricted ourselves to the so-called elastic rescatter-
ing correction. Depending on the UGD used, we obtain for the χc the gap survival values of
S2 = (0.13−0.21), while for the ηc production, they are somewhat higher, S2 = (0.21−0.38).
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