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Abstract

LHCb is a forward spectrometer at the LHC covering the pseudorapidity region 2< η < 5.
Because of this forward coverage, LHCb can probe the proton parton distribution func-
tions (PDFs) in previously unexplored kinematic regimes, in particular at very high and
low Bjorken-x . This contribution presents LHCb measurements that can be used to con-
strain the proton PDFs, with a focus on the high-x and high-Q2 regime.

1 Introduction

The LHCb detector is a single-arm forward spectrometer at the LHC designed to study decays
of hadrons containing b or c quarks [1]. LHCb is fully instrumented in the region 2 < η < 5.
As a result of this forward acceptance, LHCb can probe the proton parton distribution functions
(PDFs) in kinematic regimes complementary to those accessible at central pseudorapidities.
LHCb studies hard interactions between partons carrying large fractions of the proton momen-
tum (high-x) and partons with small fractions of the proton momentum (low-x). Measure-
ments of electroweak boson production at LHCb have been used to constrain the quark PDFs
at high x and high momentum transfer (Q2). Futhermore, LHCb measurements of Z + jet
and W + jet production, as well as measurements using identified c- and b-quark jets, provide
additional information about the quark PDFs at high-x .

2 Forward W and Z production

LHCb has measured W and Z boson production using data from Run 1 of the LHC. The W
boson cross section has been measured at

p
s = 7 TeV using the W → µν channel [2] and

at
p

s = 8 TeV using both the W → µν [3] and W → eν channels [4]. W boson yields are
extracted using fits to the charged lepton pT spectra. The cross section is measured differen-
tially in lepton pseudorapidity (ηl). The Z boson cross section has been measured in both the
Z → µ+µ− and Z → e+e− channels at

p
s = 7 and 8TeV [3, 5–7]. The cross section is mea-

sured differentially in the rapidity of the Z boson (yZ). The measured W and Z differential
cross sections at

p
s = 8 TeV in the muon channels are shown in Fig. 1 and are compared to

next-to-next-to-leading-order (NNLO) calculations. LHCb has also measured Z boson produc-
tion at

p
s = 13TeV in the Z → µ+µ− and Z → e+e− channels [8]. Additionally, LHCb has

measured the Z boson cross sections at
p

s = 7 and 8TeV in the Z → τ+τ− channel [9,10].
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Figure 1: Measured Z (left) and W (right) boson differential cross sections atp
s = 8TeV [3].

LHCb Run 1 measurements of electroweak boson production have been used in the state-
of-the-art CT18 [11], NNPDF3.1 [12], and MSHT20 [13] global PDF fits. LHCb data at large
ηl and yZ provide powerful constraints on the quark PDFs at high x . The LHCb Z and W
production measurements are particularly useful for constraining the independently param-
eterized charm quark PDF in the NNPDF3.1 fit. In this fit, LHCb data provides one of the
primary constraints on the charm quark PDF at x > 0.1.

3 Forward W + jet and Z + jet production

Measurements of W + jet and Z + jet production probe a larger kinematic region than that
probed by inclusive electroweak boson production. In particular, LHCb measurements of
W + jet and Z + jet could provide sensitivity to quark PDFs at x ¦ 0.5 [14]. Interpreta-
tion of these measurements is complicated by large factorization and renormalization scale
uncertainties. As a result, W + jet and Z + jet production results can be expressed in terms of
ratios and asymmetries given by

RX Y =
σ(X j)
σ(Y j)

, (1)

A(W j) =
σ(W+ j)−σ(W− j)
σ(W+ j) +σ(W− j)

. (2)

These quantities result in the cancellation of many experimental and theoretical systematic
uncertainties.

LHCb has measured W+jet and Z+jet production at
p

s = 8 TeV [15]. Both measurements
are performed using the muon channels, requiring pµT > 20 GeV and 2.0 < ηµ < 4.5. Jets
are reconstructed using the anti-kT algorithm with radius parameter R = 0.5 and must have
2.2 < η j < 4.2. The W + jet yield is extracted using a fit to the distribution of the muon
isolation variable pµT/p

µ- jet
T , where pµ- jet

T is the transverse momentum of the reconstructed jet
containing the muon. A summary of results is shown in Fig. 2.

4 Heavy flavor jets

LHCb’s excellent vertex resolution allows for the identification of heavy flavor jets using dis-
placed secondary vertices [16]. Heavy flavor jets are identified by the presence of a displaced
secondary vertex. The b- and c-jet yields are extracted using two boosted decision tree (BDT)
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Figure 2: Results of W + jet and Z + jet measurements at
p

s = 8TeV [15]. The
measurements are shown as bands, with the inner band showing the statistical un-
certainty and the outer band showing the total uncertainty. The theoretical predic-
tions are shown as points with errorbars, with the inner error bar showing the scale
uncertainty and the outer errorbar showing the total uncertainty.

classifiers. One BDT is designed to separate heavy and light flavor jets (BDTbc|udsg) and the
other is designed to separate b- and c-quark jets (BDTb|c). The resulting tagging algorithm
identifies b (c) jets with 65% (25%) efficiency with a 0.3% light parton mistag probability.
The LHCb heavy flavor tagging algorithm has been used to measure W + c-jet and W + b-jet
production at

p
s = 7 and 8TeV [17]. W+jet candidates are selected as described in Section 3,

and b/c-jet yields are extracted using 2D fits to the BDTbc|udsg vs. BDTb|c distributions in bins
of the muon isolation. The W + b/c yields are then extracted using template fits to the muon
isolation.

Comparisons of LHCb results and theory predictions are shown in Fig. 3. Identifying the
jet flavor in W + jet production provides information about the initial parton flavor. W + c is
sensitive to the s and s̄ PDFs via the process gs→W c, while W + b probes the b and b̄ PDFs
via qb→W bq′. The measured asymmetry A(W c) disagrees with the NLO QCD calculation by
about 2σ. This tension could point to an asymmetry between the s and s̄ PDFs.

The LHCb jet tagging algorithm has also been used to measure top-quark production. Most
recently, LHCb has measured t t̄ production at

p
s = 13 TeV [18]. This measurement uses the

high purity µ+ e+ b-jet final state. Top quark production at LHCb provides information about
the gluon PDF at high x and high Q2.

5 Intrinsic charm

Most PDF fits assume that the charm quark PDF is generated perturbatively for Q2 > m2
c ,

where mc is the charm quark pole mass. Charm content in the proton may also arise from an
“intrinsic” |uudcc̄〉 component of the proton wavefunction. The presence of intrinsic charm
(IC) implies

〈x〉IC ≡
∫ 1

0

xc(x ,Q2 = m2
c )dx > 0. (3)
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Figure 3: Comparison of W+b/c results and theoretical predicitons [17]. The theory
uncertainties are given by the colored bands, while the measurements are shown by
points with errorbars. The inner error bar shows the statistical uncertainty, while the
outer errorbar shows the total uncertainty.

Light front QCD calculations predict a valence-like IC contribution to the charm quark PDF
[19]. Valence-like IC would result in an increase in the charm quark PDF at high x . The
NNPDF3.1 PDF set is the first general purpose PDF set to allow for IC, and favors a small
valence-like IC contribution with about 1σ significance, [12].

LHCb has measured charm hadron production in fixed target pHe and pAr collisions at
p

sNN = 86.6 and 110.4GeV, respectively [20]. These measurements provide sensitivity to
the charm quark PDF at high x and low Q2. The measured D0 rapidity distributions are shown
in Fig. 4. The results show no evidence for significant intrinsic charm. However, low-Q2 fixed
target measurements are difficult to interpret and are usually omitted from PDF fits. Alterna-
tively, Z + c production at LHCb would probe the charm quark PDF in the valence region at
high Q2, providing a clean probe of intrinsic charm [21]. A study of Z + c production using
Run 2 LHCb data is in progress and should provide sensitivity to valence-like IC with 〈x〉IC as
small as about 1%. The same measurement using Run 3 data is expected to be sensitive to
〈x〉IC down to 0.3%.

y*
2− 1− 0

y*d 0
D

 /N 0
D

dN

0.2

0.4

0.6

0.8

1 LHCb data
Ar 	 CT14NLO+nCTEQ15p
 	 CT14NLOpp

Arp = 110.4 GeV NNsLHCb 

y*
2− 1− 0

da
ta

/C
T

14
N

L
O

0.4
0.6
0.8

1
1.2
1.4
1.6

y*
2− 1− 0

y*d 0
D

 /N 0
D

dN

0.2

0.4

0.6

0.8

1 LHCb data
Ar 	 CT14NLO+nCTEQ15p
 	 CT14NLOpp

Arp = 110.4 GeV NNsLHCb 

y*
2− 1− 0

da
ta

/C
T

14
N

L
O

0.4
0.6
0.8

1
1.2
1.4
1.6

Figure 4: Measured D0 rapidity distributions in fixed target pHe (left) and pAr col-
lisions [20]. The error bars show the statistical and uncorrelated systematic uncer-
tainties, and the gray shaded region shows the correlated systematic uncertainty.
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6 Conclusion

LHCb measurements provide significant constraints on proton PDFs at high x in state-of-the-art
PDF fits. In addition, LHCb has demonstrated the ability to measure heavy flavor jet production
in the forward region. This capability has allowed LHCb to make measurements sensitive to
heavy quark PDFs and will allow LHCb probe IC in proton at the level of 1% with Run 2 data
and 0.3% in Run 3.
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