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Abstract

Three-dimensional topological insulators (TIs) host helical Dirac surface states
at the interface with a trivial insulator. In quasi-one-dimensional TI nanorib-
bon structures the wave function of surface charges extends phase-coherently
along the perimeter of the nanoribbon, resulting in a quantization of trans-
verse surface modes. Furthermore, as the inherent spin-momentum locking
results in a Berry phase offset of π of self-interfering charge carriers an en-
ergy gap within the surface state dispersion appears and all states become
spin-degenerate. We investigate and compare the magnetic field dependent
surface state dispersion in selectively deposited Bi2Te3 TI micro- and nanorib-
bon structures by analysing the gate voltage dependent magnetoconductance
at cryogenic temperatures. Hall measurements on microribbon field effect de-
vices show a high bulk charge carrier concentration and electrostatic simula-
tions show an inhomogeneous gate potential profile on the perimeter of the
TI ribbon. In nanoribbon devices we identify a magnetic field dependency of
the surface state dispersion as it changes the occupation of transverse sub-
bands close to the Fermi energy. We quantify the energetic spacing in between
these subbands by measuring the conductance as a function of the applied
gate potential and use an electrostatic model that treats the inhomogeneous
gate profile and the initial charge carrier densities on the top and bottom sur-
face. In the gate voltage dependent transconductance we find oscillations that
change their relative phase by π at half-integer values of the magnetic flux
quantum applied coaxial to the nanoribbon providing evidence for a magnetic
flux dependent topological phase transition in narrow, selectively deposited TI
nanoribbon devices.
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1 Introduction

Quasi-one-dimensional structures of three-dimensional topological insulators (TI) are of
great interest, as they are predicted to host Majorana zero modes, when proximity coupled
to an s-wave superconducting metal [1–3]. Two pairs of these exotic quasiparticle excita-
tions can be used to encode the state of a topological quantum bit (qubit) [4, 5]. Large
arrays of one-dimensional TI nanoribbons are envisioned for a scalable approach to define a
quantum register of topological qubits [6,7]. Novel epitaxial methods have been developed
in order to grow TI nanoribbons selectively by molecular beam epitaxy (MBE) [8, 9]. On
silicon hexagonal surfaces, partially covered by SiO2 and amorphous Si3N4, this approach
promises a high yield of selectively grown nanoribbons and highly scalable device networks.

The class of three-dimensional TI materials have Dirac surface states with linear disper-
sion and a unique helical spin texture as the spin of charge carriers is locked to their momen-
tum [10–12]. When the phase-coherence length exceeds the perimeter of the nanoribbon,
counterpropagating waves of surface charge carriers will self-interfere and their wave func-
tions form standing waves that fit within the perimeter of the nanoribbon [13, 14]. As
a result transverse-momentum subbands along the nanoribbon perimeter are quantized.
Due to the inherent property of spin-momentum locking a Berry phase of π is picked up
by charges that perform one full rotation in momentum space (one full rotation along the
nanoribbon perimeter) [10,15]. The boundary conditions of self-interfering charge carriers
are therefore antiperiodic and cause the surface state spectrum to be gapped in narrow
nanoribbon structures [13]. In order to restore a pair of gapless, linear Dirac surface
subbands a magnetic flux of Φ = (l + 1/2)Φ0 needs to thread the cross section of the
nanoribbon [16–18]. Here Φ0 = h/e is the magnetic flux quantum and l = 0,±1,±2, .. the
transverse-mode index of quantized surface subbands. When the Dirac point resides close
to the Fermi energy magnetic flux quantum-periodic Aharonov–Bohm-type (AB) mag-
netoconductance oscillations reflect the periodic appearance of the gapless, linear Dirac
subbands as the system undergoes a topological phase transition [14, 19]. In bulk insu-
lating TI nanoribbon devices, where only these linear Dirac subbands are populated by
mobile charge carriers, a perfectly transmitted mode will establish as charge carriers can
not scatter into states of opposite momentum and opposite spin [2, 3, 20].

Thin films and nanoribbons of TI materials often suffer from a high bulk charge carrier
density [11, 21, 22]. AB-type magnetoconductance oscillations in bulk doped TI nanorib-
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bons reflect the flux-periodicity of the surface state dispersion as the number of occupied
transverse subbands below the Fermi energy changes [12, 16, 22–25]. The relative position
of the quantized transverse subbands to the Fermi energy can be changed by accumulating
or depleting charge carriers using a top gate-voltage, which effectively changes the occu-
pation of transverse subbands along the nanoribbon perimeter P at fixed magnetic fields.
Gate voltage-dependent magnetoconductance oscillation patterns have previously been re-
ported to quantify the energetic spacing of quantized transverse-momentum subbands in
rectangular HgTe nanoribbons defined by wet-chemical etching [18].
In this research article we report on the electrical investigation of selectively-deposited
Bi2Te3 micro- and nanoribbon field-effect devices at cryogenic temperatures. We first study
the magnetic field and gate-voltage dependency of the selectively-deposited microribbon
Hall bar devices. As the perimeter of the microribbon exceeds the phase-coherence length
of surface charge carriers [22] no AB-type oscillations are observed in the magnetocon-
ductance data of the wide ribbon device. We find that the gate tunability is partially
obstructed by the high density of bulk charges as well as the asymmetric field-effect due
to the device geometry. We proceed to investigate low-dimensional nanoribbon field-effect
devices of selectively-deposited Bi2Te3. Despite the high bulk carrier density we identify
surface-specific AB-type oscillations when applying a coaxial magnetic field. We analyse
the coaxial magnetic field and gate voltage dependency of the transconductance within the
nanoribbon devices and identify the flux dependent surface state dispersion as well as the
transverse-momentum subband level spacing within the surface states of our selectively-
deposited Bi2Te3 nanoribbon devices. Due to the inhomogeneous electric field distribution
we consider an effective capacitance model [18] adapted to our highly bulk-doped nanorib-
bon devices. Our analysis shows evidence of quantized transverse-momentum states on
the perimeter of the TI nanoribbon and the electrostatic model treatment allows to distin-
guish these features from bulk effects or conventional two dimensional space charge layers
without spin-momentum locking.

2 Selectively deposited nanoribbon devices

2.1 Selective area epitaxy

Hall bar devices of different widths have been prepared by MBE following a selective area
growth (SAG) approach [8, 9, 22]. Trenches of different widths W have been defined in a
layer stack of 20 nm Si3N4 and 5 nm SiO2 layer on top of a Si(111) substrate. First the
oxide layer is created by thermal oxidation of the surface of the Si(111) substrate. After
the oxidation the 20 nm thick Si3N4 layer is deposited using a low pressure chemical vapor
deposition process. The ratio of the layer thicknesses of the SiO2 buffer layer and the Si3N4

layer is chosen in order to remove any strain these layers impose onto the Si(111) surface.
The trenches are defined by a combination of wet- and dry-chemical etching using a posi-
tive electron beam resist. Reactive ion etching (RIE) (CHF3 and O2 gas mixture) has been
used to transfer the trench structures from the electron beam resist into the nitride layer.
After resist removal the SiO2 within the nanotrenches is wet chemically removed using
hydrofluoric (HF) acid, which renders the revealed Si(111) surfaces atomically smooth.
The Bi2Te3 binary TI has been grown in the Te-overpressure regime at Tsub=290 ◦C se-
lectively within the defined nanotrenches. After deposition of the TI layer a 2-3 nm-thin
Al2O3 layer is deposited using an electron beam evaporator and a stoichiometric target.
The dielectric capping layer is used to protect the TI film from oxidation or other kinds of
reactions with air.
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2.2 Field effect in TI ribbon devices

A false-colored scanning electron micrograph of a 200 nm wide ribbon Hall bar is shown in
Fig. 1 a). An applied electric field (as schematically depicted in Fig. 1 b)) will simultane-
ously change the charge carrier density within the top surface (green), the bulk (red) and
the bottom surface (green) of the Bi2Te3 field-effect device [26, 27]. An applied gate po-
tential Vg changes the two-dimensional charge-carrier density in a parallel plate capacitor
geometry given by

∆n2D =
C

e
·∆Vg, (1)

where C is the capacitance of the field-effect device. The geometry of devices investigated
induces a non-homogeneous electric field distribution and the capacitance on the nanorib-
bon perimeter P becomes a position dependent value C(s), where s = [0, P ]. An effective
capacitance model can be used to describe the gate effect on the surface state spectrum
on the perimeter of a nanoribbon or nanowire geometry [18]. The average, gate dependent
energy of the surface state charge carriers can be determined following

〈E(s, Vg)〉 = EDP + h̄vF
√

4π

〈√
nTSS2D (s) + C(s)Vg/e

〉
= EDP + h̄vF

√
4π[nTSS,av.2D + CTSS

eff Vg/e],

(2)

where vF is the Fermi velocity, 〈...〉 denotes the average along the nanoribbon perimeter P ,
EDP the Dirac point energy and nTSS2D the charge carrier density on the topological surface
states (TSSs). nTSS,av.2D is the average charge carrier density on the topological surface
states and CTSS

eff the effective capacitance. In systems where the surface state spectrum is
initially pinned to the Dirac point (nTSS2D = 0) the equation simplifies to [18]

〈E(s, Vg)〉 = EDP + h̄vF

√
4πVgCeff/e, (3)

where the effective capacitance can be obtained by integration Ceff = (1/P
∫ P
0

√
C(s)ds)2.

When the surface state spectrum is not initially pinned to the Dirac point, the initial
average charge carrier density as well as the effective capacitance need to be considered.
Molecular beam epitaxy grown Bi2Te3 micro- and nanoribbons [22] are unintentionally
bulk doped during deposition. In such highly bulk conductive samples it can be assumed
that the change in charge carrier density for small gate potentials applied is smaller than
the initial charge carrier density C(s)Vg � nTSS2D (s). With this assumption the effective
capacitance in highly bulk doped systems can be calculated using

Ceff =

〈√
nTSS2D (s)

〉〈
C(s)/

√
nTSS2D (s)

〉
, (4)

where the average charge carrier concentration can as well be determined through integra-

tion
〈√

nTSS2D (s)

〉
= nTSS,av.2D = (1/P

∫ P
0

√
nTSS2D (s)ds)2.

2.3 Confinement in narrow TI nanoribbons

Here we investigate selectively deposited Hall bars of width W = 1µm and W = 200 nm.
Due to the SAG approach the layer thicknesses vary slightly, dependent on the width of
the nanoribbon [22], which measure t = 10 nm and t = 15 nm for the wide and narrow
nanoribbon, respectively. The perimeter P ≈ 2µm of the wide nanoribbon is expected to
be longer than the phase-coherence length of surface charges at T = 1.5K [22]. The surface
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states of the wide nanoribbon are therefore expected to resemble the Dirac dispersion as
observed in slabs of Bi2Te3 (schematically depicted in Fig. 1 c), left) [11,28,29]. The phase-
coherence length is however expected to be comparable to the perimeter P = 430 nm of
the narrow nanoribbon. The confinement in the narrow nanoribbon device is expected
to result in a quantization of transverse-momenta kl [13, 30, 31] (schematically depicted
in Fig. 1 c), right). The coaxial- and transverse-momentum-dependent energy dispersion
E(kx, kl) within the confined nanoribbon structure is expressed by [13]

E(kx, kl) = ±h̄vF
√
k2x + k2l

= ±h̄vF

√
k2x +

(
2π(l + 1/2− Φ/Φ0)

P

)2

,

(5)

where kx is the coaxial-momentum and kl = 2π(l+1/2−Φ/Φ0)/P the confined transverse-
momentum, with Φ0 = h/e being the magnetic flux quantum. The nanoribbon dispersion
is characterised by quantized transverse-momentum subbands of quantum number l =
0,±1,±2, ... . Only for an applied magnetic flux Φ/Φ0 = l + 1/2 there is a state at zero
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Figure 1: Dispersion relation in thin films and in confined nanoribbons of Bi2Te3. a) A
false-colored scanning-electron micrograph of a gated, 200 nm-wide Hall bar is shown. The
contact electrodes on the TI (green) are highlighted in ochre and the top gate electrode
is highlighted (blue). b) The device geometry including the SAG mask (yellow and dark
grey), the Bi2Te3 nanoribbon (green and red highlighting the surface and bulk regions,
respectively), the gate dielectric (rose) and the top gate electrode (blue) are schematically
shown. c) The dispersion E(kx, kl) of the surface states on the surfaces of an infinite slab of
Bi2Te3 represent a Dirac cone. In narrow nanoribbon geometries the subband level spacing
∆kl = 2π/P increases with decreasing nanoribbon perimeter P = 2 · (W + t), where W
and t are the width and the thickness of the nanoribbon, respectively.
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energy. Without applied magnetic flux or at other values of the magnetic flux applied the
surface state dispersion features a finite energy gap around zero. The size of this energy
gap in the surface state spectrum of quantized transverse modes is given by [13]

∆ =
2πvFh̄

P
. (6)

For an applied magnetic flux of Φ = Φ0/2 = h/2e the energy dispersion for the l = 0
transverse-momentum state is linear and offers zero-energy solutions. A pair of gapless,
linear Dirac surface subbands establishes. When the magnetic flux further increases the
surface state spectrum will again be gapped. The topological phase transition can be ob-
served with a period of one full integer flux quantum [14].

3 Electrical characterization of micro- and nanoribbon field
effect devices

3.1 Gate-dependent microribbon Hall measurements

Devices have been characterized usig a variable temperature insert (VTI) cryostat with
1.5K base temperature. Magnetic fields of up to 13T field strength can be applied per-
pendicular and coaxial to the TI ribbon. By applying an a.c. current bias along the
microribbon Hall bar the longitudinal magnetoresistance Rxx as well as the Hall resistance
Rxy have been determined in a perpendicular magnetic field using standard lock-in tech-
niques. The Hall resistance Rxy and the longitudinal magnetoresistance Rxx have been
determined as a function of the gate voltage Vg. For the 1µm-wide ribbon Hall bar a
15 nm-thick HfO2 (εr = 18.75) dielectric layer has been deposited by atomic layer deposi-
tion. Using a source-meter the leakage current has been determined to be negligible up to
a top gate voltage of |Vg| ≤ 16V (Ileakage ≤ 1 nA).
The anticipated initial band alignment is schematically depicted in Fig. 2 a). The bulk
band gap for Bi2Te3 measures about Egap = 165meV [28]. In previous measurements on
selectively-deposited Bi2Te3 Hall bar structures it has been observed that the bands on the
bottom surface bend towards the p-type Si(111) substrate [22] and the Fermi energy from
an analysis of Shubnikov–de Haas oscillations has been determined to reside 90meV above
the Dirac point, which is buried within the bulk valence bands [32]. On the top surface
angle-resolved photoemission spectra (ARPES) show that the Fermi energy resides within
the bulk conduction band, about 70meV above the bulk conduction band minimum [32,33].
By performing Hall measurements the initial charge carrier density in the investigated de-
vices can be determined. From Hall measurements at Vg = 0 (shown in Fig. 2 b), grey
curve) the Hall slope is determined (AH = dRxy/dB) and the two-dimensional charge
carrier density has been calculated to be n2D = (AHe)

−1 = 8.5× 1013 cm−2. In Hall mea-
surements the combined charge carrier density of the materials bulk and the surface states
is probed. From previous studies of Shubnikov–de Haas oscillations the charge carrier den-
sity on the bottom surface has been identified as n2D,bot = 5.3 × 1011 cm−2 [22]. From
ARPES measurements a top surface charge carrier density of n2D,top = 8.2 × 1012 cm−2

can be inferred [32,33] leaving a bulk charge carrier density of n2D,bulk = 7.6× 1013 cm−2.
Results therefore indicate a high density of bulk charges. The intrinsic n-type doping of
the bulk is due to Te antisite defects in Bi2Te3 [11, 21]. Assuming an effective mass of
m∗ = 0.58me [34] the Fermi energy in the bulk can be estimated to lie about 100meV
above the conduction band minimum.
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When a negative gate voltage Vg < 0 is applied to the top gate electrode, electronic
charges on the top surface of the TI will be depleted. As a result, the Hall slope in Fig. 2 b)
increases. Simultaneously, the longitudinal resistance Rxx, shown in the inset of Fig. 2 b),
increases as well. Charge carrier density as well as mobility values (µ = L · (WRxxAHe)

−1

with L being the channel length), as determined from the Rxx(Vg) and Rxy(Vg) data, are
shown as a function of the applied gate voltage in Fig. 2 c). In between 0V ≥ Vg ≥ −5V
the charge-carrier density decreases linearly. As the amount of charge-carriers decreases,
the mobility value increases gradually from an initial value of about 300 cm2/Vs at zero
gate voltage to a value of about 360 cm2/Vs at Vg = −5V. The increase in mobility can
be explained as bulk scattering of surface charges on the top surface is reduced [35]. From
a linear fit to the gate-dependent charge-carrier density (following Eq. 1) in between −5V
≥ Vg ≥ 0V (dashed black line), a capacitance of Cexp = 9.8 × 10−3 Fm−2 can be esti-
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Figure 2: Gate-dependent Hall- and longitudinal resistance of the 1µm wide Hall bar. a)
Expected relative position of the Fermi energy within the bulk as well as band bending
on top and bottom surface of the ribbon device. b) Hall resistance Rxy measurements at
different gate voltages Vg. The extracted Hall slopes dRxy/dB have been used to evalu-
ate the sheet carrier concentration n2D shown in c) (black dots). The mobility µ values
(red dots) have been evaluated by considering the gate-dependent sheet resistance RS ,
extracted from the gate-dependent longitudinal resistance Rxx(Vg) at zero magnetic field
shown in the inset of b). In d) the simulated relative gate potential (top) and calculated
capacitance (bottom) along the microribbon perimeter P are displayed. The dashed black
line represents the experimentally determined capacitance from c).
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mated. Given this experimentally-determined capacitance the charge-carrier density on
the top surface will be depleted at ∆Vg = (e · 8.2 × 1016m−2)/9.8 × 10−3 Fm−2 = 1.3V.
As the linear trend of the gate voltage dependent charge-carrier density exceeds this value
it can be concluded that both bulk and surface charges are depleted simultaneously. In
the regime below Vg ≤ −5V the charge-carrier density saturates, while the mobility values
decrease gradually. It can be assumed that the Fermi energy on the top surface drops
below the conduction band, rendering charge accumulation more difficult [27, 36]. Since
the Hall slope does not change sign the majority of bulk carriers, however, remains n-type
throughout the range of gate voltages applied.
The experimentally-determined capacitance of the microribbon field-effect device is com-
pared to the geometrical capacitance of the device. The relative gate potential V/Vg over
the perimeter of the device as shown in Fig. 1 c) is simulated. A generalized Poisson solver
is applied to a finite-element mesh of 35.000 points on a regular square lattice of 1 nm
spacing in the yz-plane (for details on the simulation of the electrostatic behavior of the
devices, the reader is referred to Appendix A). For the simulation the surface of the ma-
terial is treated as a perfect metallic conductor i.e., the electric field cannot penetrate the
interior of the microribbon. The results are shown in the top part of Fig. 2 d). A line cut
(A-B-C-D-A) along the microribbon perimeter P is extracted and the local capacitances
C(s) are calculated. The results are shown in the bottom part of Fig. 2 d) including the
experimentally determined capacitance C (dashed black line). This value is compared to
the effective capacitance calculated from the simulated capacitance profile on the perimeter
of the nanoribbon using Eq. 4. The calculated effective capacitance Ceff = 3.6×10−3 Fm−2

is smaller than the experimentally determined capacitance Cexp � Ceff due to the high
density of bulk charges and the effective screening of the electric field on the bottom sur-
face. As only charge carriers close to the surface of the microribbon are depleted the
system resembles a parallel plate capacitor geometry. This includes charge carriers on the
top surface as well as bulk charge carriers that reside close to the surface. The difference
in the experimentally determined capacitance and the calculated capacitance on the top
surface of the microribbon can be explained by small differences of the dielectric constants
or the layer thicknesses of the layers involved compared to the values used in the simulation.

3.2 Magnetic field and gate voltage dependent conductance oscillations
in nanoribbons

For the narrow nanoribbon Hall bar a 100 nm-thick LaLuO3 (εr = 32 [37]) dielectric layer
has been deposited by pulsed-laser deposition. Applied gate voltages result in a smaller
change of the charge carrier density compared to previously analysed microribbon field
effect devices. This results in a better resolution when investigating electric and magnetic
field dependent transconductance oscillations. Leakage currents in the nanoribbon field-
effect devices are negligible up to gate voltages of |Vg| ≤ 35V.
Due to confinement, the topological surface-state spectrum is expected to be quantized,
forming transverse-momentum subbands [13] following Eqs. 5 and 6. The magnetic flux
dependency of the quantized subband dispersion of topological surface charges along the
perimeter of the nanoribbon result in Aharonov–Bohm (AB) [38,39] type oscillations that
have previously been reported for different topological insulator materials [16,23,25,40–42]
and also recently for selectively-deposited Bi2Te3 nanoribbon devices of different cross sec-
tional areas [22]. For a 200 nm wide Bi2Te3 nanoribbon field-effect device presented here
the longitudinal magnetoconductance Gxx(B) (black curve) has been measured in mag-
netic fields up to 13T and equivalently show AB-type oscillations, as exemplary shown in
Fig. 3 a) at Vg = −10V . These oscillations have been measured to be reproducible after

8



SciPost Physics Submission

two alternate cooldown cycles and can be distinguished from universal conductance fluc-
tuations by studying the dependency of the oscillation frequency with respect to the angle
span in between the nanoribbon and the applied magnetic field [22]. Due to a strong back-
ground, mainly due to the weak antilocalization (WAL) effect, the AB-type oscillations are
better visible, when subtracting a slowly varying background (δGxx(B), red curve). The
background is created using a Savitzky–Golay filter with an averaging window of 3001 data
points (corresponding to a range of 3T). The applied magnetic flux Φ = B · S, where S is
the cross section of the nanoribbon, is displayed normalized to the magnetic flux quantum
Φ0. As observed before [22], the cross sectional area determined from the flux periodicity
S = 2 × 10−15m2 of the AB-type oscillations is slightly smaller than the geometrically
determined cross sectional area S = 2.6 × 10−15m2. This has previously been attributed
to the actual penetration depth of the wave function of the topological surface states [43],
effectively reducing the cross sectional area. When applying a gate voltage, the position of
the quantized transverse-momentum subbands with respect to the Fermi energy changes.
The transconductance through the nanoribbon changes periodically dependent on the rel-
ative position of the subbands. Minima in the gate voltage dependent transconductance
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Figure 3: Gate-dependent magnetoconductance oscillations of the narrow nanoribbon in
a parallel applied magnetic field. a) The magnetoconductance of a narrow nanoribbon
device shows periodic Aharonov–Bohm oscillations, exemplary shown at a gate voltage of
Vg = −10V before (black curve) and after subtracting a slowly varying background (red
curve). The low field is governed by the weak antilocalization effect (WAL). b) A set of
magnetoconductance measurements performed at different gate voltages Vg. Each δGxx
curve shows a dominant WAL feature at low fields (Φ/Φ0 ∼ 0, red area) as well as flux
quantum-periodic, symmetric oscillations at higher magnetic field strengths (|Φ/Φ0| > 0).
The flux-quantum periodicity of observed oscillations is further verified in the fast Fourier
transformation performed on each dataset. In c) the sum of all FFT amplitudes of each
respective scan are shown. The scale bar highlights the error of expected frequencies for
the observation of flux-quantum periodic AB-type oscillations due to mentioned geometric
uncertainty.
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G(Vg) thereby correspond to the Fermi energy residing at the edge (energetic minimum) of
a transverse-momentum subband. At these points scattering is enhanced due to an increase
in the density of states (van Hove singularities) [18]. When half a flux quantum is applied
the energetic position of the subband minima are maximally shifted and the transconduc-
tance oscillations as a function of the applied gate voltage are shifted by ∆φ = π [13,19]. In
the following the dependency of the magnetoconductance as a function of an applied gate
voltage and an applied coaxial magnetic field G(Vg, B) in the narrow nanoribbon device
are investigated. Following the geometry argument (cf. Eq. 6) the anticipated spacing of
individual subbands measures ∆ = 4.5meV.

For gate voltages in between −21V ≥ Vg ≥ 3V the magnetoconductance modula-
tions (after subtracting a smooth background) as a function of the applied magnetic flux
and the gate voltage δGxx(Φ, Vg) are shown in Fig. 3 b). The low-field data in between
−0.5 ≥ Φ/Φ0 ≥ 0.5 is dominated by the WAL effect and is generally neglected in the fol-
lowing analysis. At higher magnetic fields AB-type oscillations that vary with the applied
gate voltage can be observed. For each magnetic field sweep a fast Fourier transformation
(FFT) is performed and the sum of all resulting FFT amplitudes is taken. The results are
shown in Fig. 3 c) and show a clear peak around 1/Φ = 1/Φ0 corresponding to AB-type
oscillations of period Φ0. The error bar in the graph takes into account the deviation
of the geometrically defined cross sectional area. The amplitude of these oscillations in
quasi-ballistic systems is anticipated to be e2/h [13,24,43] as each subband acts as a single
ballistic channel. In measurements presented here the observed AB-type oscillations have
an amplitude of a fraction of a single conductance quantum. Reason therefore is that
the channel length L = 5µm is much longer than the elastic mean free path of surface
charges [22].

Observed Φ0-periodic AB oscillations show that the surface charges interfere on the
nanoribbon perimeter phase-coherently. In order to quantify the phase-coherence length of
surface state charges on the nanoribbon perimeter we evaluate the temperature dependency
of the AB-type oscillations at a fixed gate voltage of Vg = −12V. The magnetoconductance
modulations δGxx in between T = 1.5K base temperature up to T = 30K are shown in
Fig. 4 a). The AB oscillation amplitudes for two different peak positions (black square
and red circle) are extracted and plotted as a function of the temperature T in Fig. 4
b). From the decay of the AB oscillation amplitude the phase-coherence length can be
estimated as δG(T ) ∝ exp(−P/lφ(T )) [44]. The δGxx(T ) data has been fitted using
δG = δG0exp(−aT 1/2), as lφ ∝ T−1/2 [45]. The phase-coherence length at T = 1K can be
estimated to be lφ = (360± 30) nm.

After identifying phase-coherent AB oscillations on the nanoribbon perimeter we now
focus on the quantitative description of the subband level spacing of confined states. Anal-
ogous to the analysis procedure described by Ziegler et al. [18] we take the average of
line cuts taken at multiples of integer values i · Φ0 and multiples of half-integer values
(i + 1/2) · Φ0 of the magnetic flux quantum from Fig. 3 a). In this analysis the zero flux
and the ±Φ0/2 line cuts are excluded, due to the strong influence of the WAL feature in
this region. The resulting curves are shown in Fig. 5 a) for applied gate voltages in the
range of −2V ≥ Vg ≥ −12V. Both curves show a clear anticorrelated behavior, where
maxima in the red curve coincide at the same gate voltage with minima of the black curve.
As discussed before these minima in the transconductance as a function of the gate voltage
are due to van Hove singularities at the edge of each transverse-momentum subband [18].
The anticorrelated maxima (minima) in the red (black) curve are indexed as indicated in
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Figure 4: Temperature dependency of AB-type oscillations at Vg = −12V. a) The back-
ground subtracted magnetoconductance data δGxx of the narrow gated nanoribbon is
shown at different temperatures. The temperature-dependent oscillation amplitude at
B = ±4.15T (black circles) and at B = ±7.1T (red circles) is shown in b). An exponen-
tial fit has been performed to both datasets. An exponential fit as described in the main
text is performed on both curves and the best fits are highlighted as a dashed black and
dashed red line, respectively.

Fig. 5 a). The running index N is thereby a relative value with respect to the number
of occupied subbands N0 at Vg = 0. Since for Bi2Te3 the Dirac point lies within the
bulk valence band (EF − EDP ≈ 300meV) [12, 28, 32, 33] it is not possible to identify the
initial number of occupied subbands. The number of occupied subbands is, however, ef-
fectively reduced by applying a negative gate voltage Vg < 0. In the range of applied gate
voltages (0V ≥ Vg ≥ −21V) a total of more than 60 anticorrelated extrema have been
identified, where the energetic spacing in between two subbands has been estimated to
measure about ∆ = 4.5meV (cf. Eq. 6). It is therefore likely that within the range of
gate voltages applied (N ·∆ = 270meV) the Dirac point moves close to the average Fermi
energy. The indexed anticorrelated minima are displayed versus the absolute value of the
gate voltage applied in Fig. 5 b). At every conductance minimum in the gate-dependent
transconductance the Fermi wavevector can be related to the amount of occupied sub-
bands by kF = k0 − N∆kl. Depending on the spin-degeneracy of the system, the Fermi
wave vector can also be expressed following kF =

√
(4π/gs)nTSS2D , with the spin degeneracy

factor gs = 1 for topologically non-trivial and gs = 2 for topologically trivial states. The
gate-dependent subband filling can therefore be expressed following [18]

Vg − V0 =
gse

4πCTSS
eff

[
2k0(N −N0)∆kl + (N −N0)

2∆k2l
]
. (7)

The initial values are taken V0 = 0 and N = N0 to consider the relative change from the
initial occupation of subbands at zero gate voltage. The initial Fermi wave vector can be

determined from the effective charge-carrier density k0 =
√

4πnTSS,av.2D (Vg = 0) = 0.09Å−1.
The subband spacing within the model in the above equation can be approximated from
the effective geometry of the nanoribbon as obtained from the periodicity of the AB os-
cillations ∆kl = 2π/P = 1.55 × 107m−1. The only free parameter left for the fit is the
effective capacitance Ceff. For gs = 1, indicating the subband spacing in topologically
non-trivial surface states, the best fit performed is shown in Fig. 5 b), blue curve. The
effective capacitance from the fit measures CTSS

eff = 1.4 × 10−3 Fm−2. For absolute gate
voltages above |Vg| ≥ 12V the gate voltage needed to shift another subband through the
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Figure 5: Gate-dependent subband spacing in the narrow nanoribbon. a) The average
oscillation pattern of line-cuts at full integer (black curve) and half-integer (red curve)
values of the magnetic flux quantum extracted from Fig. 4 a) are shown. The grey dashed
lines show the extracted subband indices N , which are shown in b) as a function of the
absolute applied gate voltage Vg. The black lines indicate the range of values shown in
a). The blue dashed line indicates the fit performed following Eq. 7 and the values for
the best fit performed are mentioned within the inset. c) Simulated relative gate potential
V/Vg along the perimeter of the nanoribbon (top) and calculated local capacitances C(s)
(bottom).

Fermi level decreases. When the Dirac point moves closer to the Fermi energy the charge
carrier density within the surface states changes more abruptly and the approximation
to get Eq. 4 is no longer valid. Therefore the evaluation of the effective capacitance is
restricted to the range of gate voltages in between 3V ≤ |Vg| ≤ 12V.
The experimentally determined value for the effective capacitance is compared to the ef-
fective capacity determined from the electrostatic model discussed in Eqs. 1-4. The rela-
tive gate potential on the nanoribbon perimeter is determined using previously mentioned
Poisson solver. The results of the simulations are shown in Fig. 5c) (top) and include
the calculated values for the local capacitances C(s) (bottom). From these values the
effective capacitance has been evaluated to be Ceff,sim = 1.6 × 10−3 Fm−2, which matches
the experimentally determined effective capacitance quite well. Within the graph both
the experimentally determined effective capacitance Ceff,exp (black dashed line) and the
effective capacitance determined from our electrostatic model Ceff,sim (red dashed line) are
highlighted.

4 Conclusions

We have electrically characterized selectively-deposited Bi2Te3 micro- and nanoribbon field-
effect devices at cryogenic temperatures and used an electrostatic model to investigate the
geometry dependence of the topological surface state dispersion. Our model considers that
in Hall measurements on the microribbon Hall bar device, the Bi2Te3 layer has been identi-
fied to be strongly bulk conductive, which affects the gate tunability of topological surface
charges on the perimeter of the device. Additionally, the device geometry results in an
inhomogeneous gate potential profile, with the bottom surface being effectively screened
from the electric field of the top gate potential. For that reason the change in charge carrier
density of the microribbon Hall bar device is captured by a parallel plate capacitor model.
Surface charges and bulk charges close to the top surface are being depleted simultaneously,
which is verified by comparing the effective capacitance determined from the gate voltage
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dependent change of the charge-carrier density to the calculated capacitance on the top
surface. This model is limited by the observation that the charge carrier density decreases
linearly first but then saturates. The saturation most likely occurs as charges from the top
surface are being depleted while the bulk of the device remains highly conductive. The
majority of charge-carriers in Hall measurements stay n-type throughout the whole range
of gate voltages applied.

Unlike the wide microribbon field-effect device phase-coherent states span around the
perimeter of the nanoribbon. Due to the geometrically well defined coherent conduc-
tance paths on the perimeter of the nanoribbon these transverse-momentum states are
flux sensitive, resulting in magnetic flux quantum-periodic AB-type oscillations. The
phase-coherence length from the temperature dependency of the AB oscillation amplitude
lφ = 360±30 nm has been determined to be comparable to the perimeter P of the nanorib-
bon device only. We identify the energetic spacing of the quantized transverse-momentum
subbands, which corresponds well with the energetic spacing determined from geometric
considerations [14]. We evaluate the magnetic flux dependent surface state dispersion and
identify clear anti-correlated conductance maxima and minima in the gate voltage depen-
dent transconductance at full-integer Φ = i · Φ0 and half-integer Φ = (i+ 1/2) · Φ0 values
of the magnetic flux quantum applied coaxial to the nanoribbon. In the analysis of the
gate voltage dependent occupation of these quantized states we use a spin degeneracy
factor of gs = 1 [18]. We find that the effective capacitance from this analysis compares
well with the effective capacitance determined using our electrostatics model. Results pro-
vide evidence for a magnetic-flux dependent topological phase transition in our narrow TI
nanoribbons, which provides an odd number of surface-state band crossings at half-integer
values of the magnetic flux quantum. This is an important requirement for the realiza-
tion of gate-tunable Majorana devices that are partially covered by a superconducting
metal [2]. The asymmetric chemical potential along the nanoribbon perimeter within such
devices has just recently been reported to be advantegeous for the detection of Majorana
bound states [46]. We show that our selectively deposited TI nanoribbon devices can be
used to fabricate highly-scalable and gate-tunable networks of quasi-1D TI nanoribbon
structures and networks for Majorana experiments [6,7,47], despite the presence of a high
bulk background doping typically identified in these molecular beam epitaxy grown devices.
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Appendix A:

To resolve the shift of the charge density locally on the nanoribbon perimeter, we solve the
generalized Poisson equation for an inhomogeneous dielectric medium:

∇ · [ε(r)∇V (r)] = 0 (8)

The boundary conditions are given by V (r) = Vg at the surface of the metal gate, and
V (r) = 0 at the the nanowire surface (assumed to be a perfect metal that completely
screens the electric field in the interior with a shift of charge density on the surface).
For the remaining (artificial) boundaries of the simulated region, we consider Neumann
boundary conditions, n · ∇V (r) = 0 (corresponding to dielectric with ε → +∞), with n
the unit vector normal to the boundary, keeping the value of the potential floating. At the
interface between two insulating materials with different dielectric constants, the following
relation holds:

ε1n · ∇V (r)|1 = ε2n · ∇V (r)|2, (9)

with n a unit vector normal to the interface and the subscript 1 or 2 denoting the different
sides of the interface at which the dielectric constant and the gradient of the voltage profile
are evaluated.
The induced (2D) charge density on the nanowire surface can be obtained from the following
expression:

n(r) =
ε(r)

e
n · ∇V, (10)

with n the unit vector normal to the nanowire surface this time around. This induced
charge density can be related to the capacitance C(r) (locally) through the relation:
C(r) = en(r)/Vg.
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