
CERN-TH-2020-132

The Fate of Discrete 1-Form Symmetries in 6d

Fabio Apruzzi1, Markus Dierigl2, Ling Lin3

1 Mathematical Institute, University of Oxford,

Andrew-Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK

2Department of Physics and Astronomy, University of Pennsylvania,

Philadelphia, PA 19104, USA

3CERN Theory Department, CH-1211 Geneva, Switzerland

Recently introduced generalized global symmetries have been useful in order to understand

non-perturbative aspects of quantum field theories in four and lower dimensions. In this paper

we focus on 1-form symmetries of weakly coupled 6d supersymmetric gauge theories coupled

to dynamical tensor multiplets. We study the consistency of global 1-form symmetries cor-

responding to the center of the gauge groups, or subgroups thereof, by activating their back-

ground fields, which makes the instanton density fractional. In 6d, an instanton background

for a given gauge theory sources BPS strings via tadpole cancelation. The non-trivial 1-form

symmetry background configurations contribute to the charge of the BPS strings. However,

Dirac quantization imposes restrictions on the consistent 1-form backgrounds, since they can

in general lead to and induce fractional charges, thus making (part of) the putative higher-

form symmetry inconsistent. This gives explicit criteria to determine whether the discrete

1-form symmetries are realized. We implement these criteria in concrete examples originating

from string compactifications. We also corroborate this by finding that a non-trivial fractional

contribution is related to states which explicitly break the global 1-form symmetry appearing

as massive excitations of the 6d BPS strings. For 6d theories consistently coupled to gravity,

this hints at a symmetry breaking tower of states. When the fractional contributions are

absent, the F-theory realization of the theories points to the gauging of the 1-form symmetry

via the presence of non-trivial Mordell–Weil torsion.
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1 Introduction

Global symmetries have always played a crucial role in the investigation of quantum field

theories. In recent years the usual notion of global symmetries which act on local operators has

been generalized to higher-form symmetries [1]. These generalized symmetries act on non-local

operators that probe more than the local dynamics of the theory. Prominent examples with

global 1-form symmetries are non-Abelian gauge theories with gauge group G. In the absence

of matter fields that transform non-trivially under the center Z(G), such theories possess a

discrete global Z(G) 1-form symmetry, which is generated by Gukov–Witten codmension-2

operators [2, 3], whose charged objects are one-dimensional Wilson lines. The spectrum of

these extended operators is crucial in order to fully specify the theory, [4, 5]. The 1-form

symmetry can be coupled to a background 2-form field, whose configurations encode possible

twisted boundary conditions, i.e., non-trivial ’t Hooft fluxes [6]. Furthermore, for non-Abelian

gauge theories, this center 1-form symmetry can sometimes be gauged, by path-integrating

over the higher-form gauge fields that couple to the charged extended objects. This affects the

global structure of the gauge group: it results in a theory with a non-simply connected gauge

group G/Z(G).

Coupling the theory to background fields for various symmetries is very important and it

leads to various applications. A first one is given by the computation of ’t Hooft anomalies [7]

for global symmetries. By coupling the theory to background fields for the global symmetries,

’t Hooft anomalies are non-trivial ambiguities of the partition function under the transfor-

mation rules of these symmetries, which cannot be reabsorbed by adding local counterterms

to the action. Very importantly, ’t Hooft anomalies can also be mixed, meaning that the

partition function is not invariant under the transformation rule of a symmetry, and that this

ambiguity further depends on the background fields of another symmetry. ’t Hooft anomalies

can be also understood as an obstruction to gauging the symmetries involved. In the context

of 0-form symmetries, anomalies have been widely utilized to study dynamics of quantum field

theories (see, e.g., [8–10] for reviews).

An analogous treatment for anomalies of 1-form symmetries, in particular center symme-

tries of non-Abelian gauge theories, has been initiated more recently in [1, 11–15]. With the

main focus on four dimensional adjoint QCD, the anomaly in question arises from the coupling

of the θ-angle to the instanton density Tr(F ∧ F ) of a G gauge field configuration F . Since

Tr(F ∧F ) can develop a fractional instanton number in a non-trivial background of the Z(G)

1-form symmetry, there is a mixed anomaly between the chiral symmetry acting on the ad-

joint fermions and the θ-angle, and the Z(G) 1-form symmetry. This anomaly has been very

3



useful for understanding the IR dynamics of SQCD theories in four dimensions [1, 12, 14–16].

Another example arises in five dimensional gauge theories. The Tr(F ∧ F ) can couple to a

U(1) vector potential which can be a background or dynamical field of the theory. In both

cases, if the gauge theory does not have matter that transforms non-trivially under the cen-

ter, the partition function is ambiguous once the theory is coupled to a background field for

the 1-form center symmetry and shifted by a large U(1) (gauge) transformation of the vector

potential. This leads to a trivial partition function and can be interpreted as an obstruction

for activating a non-trivial background for the center 1-form symmetry in 5d; this is analyzed

extensively in [17].1

Another application of coupling the theory to the background fields for a symmetry is to

understand whether the symmetry is realized in the full theory or just approximate/emergent

at certain energy scales. For instance, a symmetry can be broken by non-perturbative objects

which becomes massless at some point in the moduli space of the theory. To check this it is

useful to indeed look at the Dirac quantization conditions for various non-perturbative (also

extended) objects of theory in the presence of non-trivial backgrounds for these symmetries.

A violation of these conditions implies that the symmetry is not consistent, and therefore not

a symmetry of the full theory including non-perturbative sectors.

In this work, we study discrete 1-form symmetries of six-dimensional theories with min-

imal, i.e., N = (1, 0) supersymmetry. In particular we look at 6d theories at low energies

on their tensor branch (on which the scalar component of the tensor multiplets acquires a

vacuum expectation value), where a weakly coupled description with an effective (pseudo2)

Lagrangian is available. The effective theory oftentimes contains six-dimensional non-Abelian

gauge sectors, where a 1-form global symmetry seems to arise. In general a 6d N = (1, 0)

theory can be seen as an effective description of some non-trivial theory in the UV. There

are several possibilities. The theory can UV-complete to a 6d superconformal field theory

(SCFT) [18, 19], see [20] for a review. In this case there can only be discrete global 1-form

symmetries [21], which do not have a conserved 2-form current.3 Alternatively, the effective

theory can complete to a little string theory (LST) in the UV [23–25], which allows for contin-

uous global 1-form symmetries at low energy with current being J1-form = ∗6Tr(F ∧ F ), [21].

1F.A. would like to thank Pietro Benetti Genolini and Luigi Tizzano for making him aware of a similar
phenomenon in 5d and for very useful discussions about their work, which have been inspirational for this
paper.

2This is because of (anti)-self duality of the tensor multiplets, like IIB supergravity and the self-dual five-form
flux F5.

3In our paper we do not attempt to describe all 1-form symmetries of the strongly coupled SCFTs. Other
non-perturbative effects can enhance or break these symmetries. On the other hand, we believe that our low
energy analysis provides non-trivial information about the discussed symmetries and their fate in the UV, since
as observed in [22] the global realization of symmetries can modify their tensor branch.
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The third option is to couple the gauge theory to gravity, and regard it as the 6d low-energy

supergravity description of a quantum theory of gravity.

In six dimensions there are 2-form tensor fields Bi, which can be background fields for a

global U(1) 1-form symmetry (which mixes non-trivially with 0-form symmetries [21]). Alter-

natively the Bi can be dynamical if tensor multiplets are part of the low energy dynamics of

the theory. The tensors couple to the instanton density of the non-Abelian gauge theory. This

coupling is necessary in order to cancel reducible local gauge anomalies via (a generalization

of) the Green–Schwarz–West–Sagnotti (GSWS) mechanism [26,27]. However, it also provides

a source for an ambiguity of the partition function of the effective field theory4 involving the

1-form center symmetry.

In this paper we focus on the cases where the Bi are dynamical fields, which means

that their U(1) 1-form symmetries are gauged. In this case, a non-trivial background flux

for the gauge instanton density Tr(F ∧ F ) necessarily implies the addition of charged BPS

strings, in order for the partition function to be non-vanishing [30], or, in other words, for

tadpole cancellation. Combining this with the presence of a non-trivial Z(G) background field,

which can contribute fractionally to the instanton number, one encounters possible tensions

with quantization of the BPS string charges. We will show in explicit examples how the 1-

form symmetry background can induce fractional charge of the BPS strings present in the

theory, violating therefore their Dirac quantization condition. Assuming the 6d theory to be

consistent, we interpret this as an obstruction to activating the non-trivial background for

the center symmetry, and consequently the absence of the discrete global 1-form symmetry.

Based on this we propose a very simple criterion where the input are the data of the 6d theory

and the fractional instanton densities. This in particular does not allow the gauging of global

1-form symmetry in the presence of such ambiguities, which involved the summation over

non-trivial backgrounds. In principle there could be an analogous story for the dual 3-form

symmetries. In this paper we choose to focus on honest G gauge theories where the 1-form

symmetries are meaningful. String theory constructions on the other hand should allow for

both possibilities, and it should be possible to see these by computing the couplings of the 1-

and 3-form symmetry background fields, [29,31–34]. We will also attempt to give an effective

field theory perspective on this.

4Many 6d theories, which come from string theory constructions, have a partition vector (rather than
function) when the defect group is non-trivial, [28, 29]. In such cases one can add a free tensor with related
periodicities to the theory with a partition vector and define a standard partition function. In the string theory
background this can be done by specifying boundary conditions for certain fluxes. This singles out a component
of the vector as the partition function [29]. In any case we expect that the ambiguity we discuss in our paper
will affect the entire partition vector of 6d theory in the tensor branch (e.g., for NHCs), and that our results
then apply also to these cases.
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In order to corroborate that the BPS strings are a necessary ingredient that can make

the discrete 1-form symmetry incompatible, we are also able to identify the states, which

explicitly break the 1-form symmetry, as indeed fluctuations of the BPS strings. This explicit

breaking demonstrates a posteriori why the inclusion of the non-trivial background for the 1-

form Z(G) symmetry is inconsistent. While these state are massive in the effective field theory,

in some regime they become massless states of a strongly coupled sector, which is non-trivially

charged under the weakly coupled gauge theory with center Z(G). We explicitly identify the

charged states by studying the elliptic genera of BPS strings of 6d theories previously analyzed

in [35–39]. As expected, these states are massive in the full tensor branch, so in principle

they are integrated out at low energies. Nevertheless, they impose consistency conditions

concerning the coupling to the global 1-form symmetry. This can be understood as the GSWS

term Bi∧Tr(F∧F ), from which the anomaly originates, being produced in the effective action.

If we assume that at some point of the tensor branch the theory has a sector consisting of

non-Abelian 2-form tensor multiplet (when the scalar component has vanishing expectation

value), this mechanism can be thought of as integrating out W-boson strings of a non-Abelian

tensor theory. This is better defined in the circle compactification of a 6d theory to 5d. In

this context the non-Abelian tensor theory reduces to a standard non-Abelian gauge theory.

In the Coulomb branch of the 5d theory the W-bosons are massive, and by integrating them

out certain Chern–Simons terms are produced [40, 41], which result from circle reducing the

GSWS coupling in 6d. So in this way we can see that the GSWS coupling as well as the mixed

anomaly, which is generated from it, are inevitably linked to the massive BPS string states.5

On the other hand, these states can become massless in some region of the moduli space,

when the associated BPS strings are tensionless. In these regimes, the 6d models which we

analyze can be still viewed as a weakly coupled gauge theory interacting with strongly coupled

matter, such as the ones defined in [42]. Then the 1-form symmetry is explicitly broken by the

light states coming from the tensionless strings and therefore we cannot couple the theory to

its background field. Thus, the interpretation is that the violation of the Dirac quantization

due to induced fractional charges on the BPS strings is a low-energy effect, which practically

allows us to detect whether the theory contains symmetry breaking states becoming massless

at some points in the moduli space. Using this method our findings are perfectly consistent

with the results obtained via circle reduction of 6d theories to 5d KK-theories [43] and recent

geometric studies of discrete M-theory fluxes related to higher-form symmetries in 5d field

theories [33,34,44].

5These are also distinct from the hypermultiplet matter coupled to the gauge theory, which is massless
everywhere on the tensor branch.
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Very interestingly, for supergravity theories we find a non-trivial interplay between the

obstruction to gauging the 1-form symmetries and swampland considerations [45] (see also

[46, 47] for recent reviews). Namely, in a quantum theory of gravity there is strong evidence

that global symmetries are absent [48–50] This is believed to hold also for discrete as well as

higher-form symmetries [51–55]. Therefore, there are two possibilities for theories with non-

trivial 1-form center symmetries to couple to gravity. Either, the 1-form symmetry is gauged,

which means that the gauge group is G/Z(G). Otherwise, the center symmetry is broken (or

even absent), in which case the gauge group G has a different “charge lattice” (i.e., the set

of allowed matter representations) than G/Z(G). By the completeness hypothesis [50], which

demands that in any consistent quantum gravity theory the full charge lattice is populated,

there must exist states transforming non-trivially under Z(G) that explicitly break the center

symmetry.6. Note that the gauging of a higher-form symmetry induces the appearance of a

dual magnetic symmetry, a magnetic 3-form symmetry in the present case in six dimensions.

In a consistent theory of quantum gravity this higher-form symmetry must be broken by the

presence of charged extended objects. The investigation of these states on the field theory level

can be challenging and goes beyond the scope of the present paper, in string theory realizations

one often can identify the magnetically charged objects with certain wrapped brane states.

We provide strong evidence that in 6d supergravity theories, a 1-form center symmetry is

gauged precisely when the BPS string charges induced by the 1-form symmetry background

are integer. Namely, we verify in various examples that whenever the induced charges are

fractional, the BPS string carries excitations which have non-trivial center representations

and thus explicitly break the 1-form symmetry. These states in turn rule out the activation

of a non-trivial background for the center 1-form symmetry. Moreover, using F-theory on

elliptically-fibered Calabi–Yau threefolds [57–59], we find in cases of vanishing anomaly a

corresponding torsional Mordell–Weil group, which geometrically encodes a non-trivial global

gauge group structure [60,61], thus also entailing that the 1-form symmetry has been gauged.

The rest of the paper is organized as follows. In Section 2 we investigate the interplay

between a shift in the dynamical tensor fields and the center 1-form symmetries in N = (1, 0)

theories in six dimensions. A non-trivial background for the global 1-form symmetry will be

excluded by charge quantization of the BPS strings, and this suggests an explicit breaking

via charged states. We briefly mention the connection to five-dimensional theories derived via

circle compactification, and provide the dual perspective in terms of the 3-form symmetry. In

Section 3 we demonstrate the general techniques in explicit examples corresponding to super-

gravity models as well as SCFTs and LSTs. We comment on the different interconnections

6There can be subtle exceptions to this statement for non-Abelian discrete gauge symmetries, see [53,56].

7



between the different regimes. We study the explicit breaking of the higher-form symmetries

via string states in Section 4. If a non-trivial and anomaly-free global symmetry remains it

can be gauged which is treated in the F-theory framework in Section 5, utilizing the structure

of the Mordell–Weil torsion. We conclude and discuss some open questions in 6. Some more

technical aspects can be found in the appendices.

2 Discrete 1-form Symmetries in 6d

In this section we first introduce some basic aspects of chiral 6d supersymmetric theories

following [20]. The content of supermultiplets of 6d theories can always be expressed in terms

of minimal N = (1, 0) multiplets. For instance, N = (2, 0) multiplets can be decomposed

into (1, 0) components. Supersymmetry together with the representations of the little group

of SO(1, 5), which is Spin(4) ∼= SU(2) × SU(2) provide a useful organizational principle in

order to list the massless supermultiplets7:

1. Gravity Multiplet: a graviton, gµν , two gravitinos ηIµ (I = 1, 2), and a self-dual

antisymmetric tensor B̂µν , which in terms of the little group respectively are

(1, 1)⊕ 2×
(

1
2 , 1
)
⊕ (1, 0) . (2.1)

2. Tensor Multiplet: a anti self-dual antisymmetric tensor Bµν , two fermions γI (I =

1, 2), and a scalar, φ. The multiplet can be written in terms of the little group as

(0, 1)⊕ 2×
(
0, 1

2

)
⊕ (0, 0) . (2.2)

3. Vector Multiplet: a vector field Aµ, and two fermions λI (I = 1, 2). This multiplet

can be expressed in terms of the little group as follows(
1
2 ,

1
2

)
⊕ 2×

(
1
2 , 0
)
. (2.3)

4. Hypermultiplet: two fermions ψI (I = 1, 2), and four scalars, h`

2× (0, 1
2

)
⊕ 4× (0, 0) . (2.4)

In this paper we will study gravitational or non-gravitational theories, in the latter the gravity

multiplet is absent.

6d theories have a tensor branch moduli space when 〈φi〉 6= 0. On the tensor branch an

effective theory is available at low energies, and it is given in terms of the free fields listed above

7Here we present the representations of SU(2) as given by the spin s with dim(s) = 2s+ 1, i.e. s ∼ 2s + 1.
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with certain interactions switched on. A Lagrangian for these effective theories always suffers

some issue due to (anti) self-duality constraints for some tensor (similarly to the Lagrangian of

IIB supergravity with self-dual F5 RR flux, or chiral bosons in two-dimensional field theories).

However, it is possible to write some effective Lagrangian interactions at low energies and then

impose the (anti) self-duality constraints on-shell.

The general structure of a 6d theory is given by NT dynamical tensor multiplets cou-

pled to some gauge vectors, and the formal bosonic action contains the following kinetic and

interaction terms, see e.g., [62, 63],

S ⊃ 2π

∫
gij
(
− 1

2dφ
i∧∗dφj− 1

4dB
i∧∗dBj

)
+Ωij

(
φi∧ 1

4Tr(F j∧∗F j)+Bi∧ 1
4Tr(F j∧F j)

)
(2.5)

where i, j = 1, . . . , NT , F j are the field strengths of the gauge vectors, and the trace is

normalized such that one instanton has 1
4

∫
M4

Tr(F 2) = 1.8 The kinetic matrix gij for the

tensor sector is given by

gij = φiφj + Ωij , (2.6)

with φi = −Ωij φ
j . We use conventions in which −Ωijφ

iφj = 2, as in [63].

Moreover, Ωij is the Dirac pairing in the lattice of NT (anti) self-dual tensors. In 6d

there are BPS strings charged with respect to Bi. Their tensions are Ti ∼ |Ωij〈φj〉|, and they

become tensionless when 〈φj〉 = 0. These strings lead to massive excitations in the tensor

branch, and the string charges obey the following lattice rule,

〈Qi, Qj〉6d = Ωij Q
iQj , Ωij ∈ Z , ∀ i, j . (2.7)

The coupling between the dynamic tensors Bi and Tr(F j ∧ F j),

LGSWS = 2πΩij

(
Bi ∧ 1

4Tr(F j ∧ F j)
)
, (2.8)

plays a fundamental role in our discussion. First of all, this term is crucial in order to cancel

reducible one-loop continuous gauge anomalies due to gauge transformations of the vector

multiplets, that is the Green–Schwarz–West–Sagnotti mechanism [26, 27], see also [65–68].

8In order to avoid introducing extra notation we have adopted a standard convention where it looks like
there is a non-trivial gauge group associated to each tensor multiplet. However, there are cases where the gauge
group associated to a tensor is trivial, for these we simply have Tr(F j ∧ F j) = Tr(F j ∧ ∗F j) = 0. Examples of
this are (2, 0) tensors, which formally have SU(1) gauge group associated to each tensor, or E-string theories
which formally have Sp(0) gauge groups for each tensor. More generally, a G gauge sector in 6d is labelled
by a vector qG in the tensor lattice, so that (2.8) is 2πΩijB

iqjG(Bi ∧ 1
4
Tr(F 2)) (see, e.g., [64] for a review).

For tensor branch theories of SCFTs, qG typically are the basis vectors, hence the above simplified notation.
However, non-trivial qG will play a role in SUGRA theories discussed in sections 3 and 5.
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For instance, the one-loop anomalies can be expressed in terms of an anomaly polynomial

8-form, I8, via the descent procedure. Non-reducible gauge anomalies must vanish at 1-loop,

whereas reducible ones take the form

I8 = 1
2Ωij I

i
4 ∧ I

j
4 . (2.9)

Here,

Ij4 = 1
4Tr(F j ∧ F j) + (global symmetry/gravity backgrounds) , (2.10)

and I4 receives contribution from global symmetries when we turn on backgrounds field for

them. These are important in order to compute ’t Hooft (mixed) anomalies. The coupling

(2.8) implies that the one-loop gauge anomalies are canceled provided that the Bi transform

as follows under gauge transformation, δ,

δBi = −I2, δI3 = dI2, I4 = dI3 . (2.11)

For example if I4 = 1
4Tr(F 2), I3 = 1

4Tr
(
A ∧ F − 1

3A
3
)

and I2 = 1
4Tr(λdA), where λ is the

gauge transformation parameter, and

δF = [F, λ], δA = dλ+ [A, λ] . (2.12)

The term (2.8), however, can pose a restriction to gauging 1-form symmetries that seem to be

present in a low energy description of the theory.

2.1 Activating Backgrounds for the Discrete 1-Form Symmetries

In this section we briefly summarize properties of non-Abelian gauge theories and their gen-

eralized higher-form symmetries, by reviewing the results of [1, 14]. We will then apply these

to 6d theories on their tensor branch, where we have an effective Lagrangian, (2.5), with field

content given by tensor, vector and hypermultiplets.

Non-Abelian gauge theories with a simply-connected gauge group G in any dimension

have a discrete 1-form symmetry which corresponds to the center Z(G), if matter fields which

transform non-trivially under Z(G) are absent [1]. In 6d the 1-form symmetry is analogous to

the electric 1-form symmetry in 4d, whereas the magnetic dual is a 3-form symmetry, which

again for gauge theories without matter transforming under Z(G), is Z(G).

The 1-form symmetry is realized by shifting the gauge potential by a flat gauge field a

A→ A+ a , (2.13)

where a is closed with periods in Z(G). In order to study (’t Hooft) anomalies of this 1-form

symmetry one couples the theory to a background field, which can be formulated in terms of a
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Z(G)-valued 2-form gauge field C2. Summing over all possible background fields would result

in a theory in which the center 1-form symmetry is gauged and the gauge group is modified

to G/Z(G), see [11]. We first consider C2 a fixed non-trivial background,

C2 = w2(G/Z(G)) ∈ H2(M6, Z(G)) , (2.14)

where w2 is the second Stiefel–Whitney (SW) class of the quotient bundle, which encodes

the obstruction to lift the G/Z(G)-bundle to a bundle in the simply-connected cover, i.e., a

principal G-bundle. The instanton density,

I4(G) = 1
4Tr(F ∧ F ) , (2.15)

in case of a simply-connected group is integer valued upon integration over a four-dimensional

subspace in the 6d spacetime of the theory. When the bundle is twisted to the non-simply

connected quotient G/Z(G) due to the background C2, the instanton density generically in-

tegrates to fractional values parametrized by αG,

I4(G/Z(G)) = αGP(C2) mod Z , (2.16)

where P(C2) is the Pontryagin square [14,69]. If the spacetime manifold has trivial torsion the

Pontryagin square can be represented by a cup product of Z(G)-valued 2-cocycles specified

by C2, P(C2) = C2 ∪ C2, [12, 70].9 For example, if Z(G) = Zk with k even, P(C2) is a map

H2(M6,Zk)→ H4(M6,Z2k), given by

P : C2 7→ C ′2 ∪ C ′2 mod 2k , (2.17)

where C ′2 is the lift of C2 to an integral cocycle in H2(M6,Z). For odd k, P : H2(M6,Zk)→
H4(M6,Zk) simply coincides with the cup product. We collect the 1-form center symmetries

for simply-connected groups in table 1, together with the fractional coefficients αG in (2.16).

Once a non-trivial background C2 for the 1-form center symmetry is activated the action

contains a term of the form10

S ⊃ 2πΩij

∫
M6

Bi ∧ αjGP(Cj2) . (2.18)

For N = (1, 0) theories in six dimensions, the GSWS mechanism requires the presence

of the coupling between the dynamical Bi and the instanton densities of the gauge groups,

9How the Pontryagin square is defined in terms of a cup product and in which cohomology group it lives
depends very much on G, see [11,15,70].

10Note that our notation is slightly abusive, since we use the wedge product and the cup product in the same
expression. However, in the cases of interest the Pontryagin square also has a continuum limit as discussed
e.g. in [12] and it is in this limit that we interpret the given expression, see section 2.4. If one considers a flat
[Bi] ∈ H2(M6,R/Z) it can be written in terms of the cup product [Bi] ∪ αj

G P(Cj
2).
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G Z(G) αG

SU(N) ZN N−1
2N

Sp(N) Z2
N
4

Spin(N), N odd Z2
1
2

Spin(4N + 2) Z4
2N+1

8

Spin(4N) Z2 × Z2

(
N
4 ,

1
2

)
E6 Z3

2
3

E7 Z2
3
4

Table 1: Center 1-form symmetries for simply-connected gauge groups [14], and coefficients of
the fractional instanton density in a non-trivial background C2 [15,69]. For Spin(4N) we have

two coefficients αG because in this case there are two contributions given by P(C
(L)
2 + C

(R)
2 )

and C
(L)
2 ∪ C(R)

2 , respectively. Moreover, F4, G2, E8 do not have center symmetries.

(2.8), in the low-energy Lagrangian. We now look at large gauge transformations of the tensor

fields.11 A consequence of this is that the GSWS coupling in the action in the presence of a

fractional instanton density background will make the partition function ambiguous, and this

ambiguity is not cancelled by local counterterms. This precisely looks like an anomaly. We

will realize in the next subsection that BPS strings necessary for tadpole cancellation will cure

the anomaly at the cost of inducing a fractional charge on them, making Dirac quantization

inconsistent. The gauge transformation for Bi include the following shifts,

Bi → Bi + bi , (2.19)

where bi are closed 2-forms with integer periods. In this case we also assumed that the U(1)

1-form gauge symmetry shifting Bi and the discrete 1-form symmetry are really distinct and

their transformations do not mix. The reason for this is that the Bi are dynamical fields

and their U(1) symmetries are already gauged, whereas the discrete Z(G) 1-form symmetry,

when unbroken, is a global symmetry of the tensor branch theory. Note especially, that for

this reason the partition function needs to be invariant under the transformations (2.19) of

the dynamical tensor fields. In cases for which the Bi are just background fields we cannot

exclude a possible mixing a priori. We will comment on this possibility again in what follows,

especially in the context of possible counterterms, but we defer a more detailed study for future

work, which necessarily involves the description in terms of differential cohomology. Finally,

one might wonder whether other similar anomalies are generated by the interplay between the

transformation (2.11) under 0-form gauge transformations and a non-trivial background for

11From this point of view, it is convenient to view the tensor fields as non-dynamical.
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the 1-form symmetry. However, these contributions will be canceled by terms generated at

1-loop by the fermionic content of the theory.

If the background Cj2 is trivial the partition function is unchanged under (2.19). If, however,

we activate the background fields (2.14), the gauge bundle gets twisted into a G/Z(G) bundle

and (2.8) generally shifts by,

S → S + 2πΩij

∫
M6

bi ∪ αjGP(Cj2) , (2.20)

which can take fractional values when integrated12 and lead to a phase in the partition function,

Z[Ci2]→ Z[Ci2]e2πiΩij α
j
G . (2.21)

In particular, Ωij α
j
G is not always an integer, signaling that the partition function might

not be invariant under a (large) gauge transformation of the dynamical Bi in a non-trivial

background for the 1-from center symmetry. We mention in passing that there exists a 7d

bulk theory, which shifts by the same anomalous phase with opposite sign on the 6d boundary.

The 7d bulk theory is given by

S7 = 2πΩij

∫
M7

H i
3 ∪ α

j
GP(Cj2) , (2.22)

where H i
3 ∼ dBi+ . . . is a 3-cochain on a 7-dimensional manifold M7 which under (2.19) shifts

as

H i
3 → H i

3 − hi , (2.23)

hi restricts to bi on the boundary M6 = ∂M7. Moreover, when M7 is closed and H i
3 becomes

a 3-cocycle, (2.22) is generically non-trivial, similarly to the 5d analog in [16]. This indeed

points towards the presence of a mixed anomaly, meaning that there is no topological term in

6d which can completely absorb the shift.

We analyze possible local 6d counterterms which potentially could eliminate the anomalous

shift, that is

A(bi2, C
j
2) ≡ 2πΩij α

j
G

∫
M6

bi ∪ P(Cj2) (2.24)

of the partition function under the transformation (2.19) when

Ωij α
j
G /∈ Z , (2.25)

where we do not sum over the index j. An obvious local counterterm is

LCT = pBi ∧P(Cj2) , (2.26)

12In order to integrate on a closed manifold it is better to work in Euclidean signature, and therefore we
would need to perform a Wick rotation. The relevant contributions will acquire the necessary factor of i.
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which with p = −Ωijα
j
G could remove the variation (2.20). However, this counterterm is not

invariant under discrete 1-form symmetry transformations.

To see this, we note that a discrete 1-form gauge transformation is given by

Cj2 → Cj2 + ωj2 , (2.27)

where for gauge group SU(N), ωj2 = Nλj2, and λj2 is an integral 2-cochain [12]. The GSWS

coupling is invariant under this transformation. For gauge group SU(N) this can be seen

locally by adding an extra U(1) 0-form symmetry which also shift under the ZN 1-form

symmetry (2.27) as in [11, 12, 71], which formally extends it to a U(N) gauge theory. We

will briefly review this in the next section. For the other groups G this can be achieved by

embedding a maximal set of SU subgroups into G, as in [15]. Under (2.27) the Pontryagin

square formally shifts as

P(Cj2)→ P(Cj2) + ωj4 , (2.28)

where ωj4 is a non-trivial 4-form which depends on ωj2 and Cj2 . For example, for G = SU(N)

with N odd, in which case the Pontryagin square is given in terms of the cup product, we

have

ωj4 = ωj2 ∪ ω
j
2 + ωj2 ∪ C

j
2 + Cj2 ∪ ω

j
2 , (2.29)

where the cup product on the level of cochains is in general non-commutative.

This induces the shift S → S + 2πp
∫
Bi ∧ ωj4. This is better defined if we take a flat

[Bi] ∈ H2(M6,R/Z) as

S → S + 2πΩijα
j
G

∫
[Bi] ∪ ωj4. (2.30)

This is a shift under the symmetry transformation of the 1-form symmetry that involves the

dynamical field Bi, which, if Ωijα
j
G /∈ Z, further does not vanish for Cj2 = 0. This indicates

an Bi-operator dependent anomaly of the involved symmetries, like an ABJ-anomaly. Adding

further counterterms which respect the 1-form symmetries and are of the form ΩijB
i ∧ P j ,

where P j are local densities invariant under the 1-form gauge transformations cannot possibly

cancel the shift (2.20). Therefore, we conclude that (2.20) and (2.30) cannot simultaneously

be cancelled. This might lead to the conclusion that the symmetry is violated. However, one

has to further analyze whether it is possible to absorb the anomalous shift of the partition

function by including physical objects in the theory. This perspective, as motivated by [30],

will be studied in the section 2.2. We will find that even after the inclusion of these effects the

center symmetry is broken whenever the ambiguity of the effective field theory is non-trivial.

To summarize, we have found for Ωijα
j
G /∈ Z an ambiguity of the partition function under

large gauge transformations of Bi in the presence of a background field Cj2 for the discrete

14



Z(Gj) 1-form symmetry. This provides a practical way to check in which cases the center

1-form symmetries in gauge theories without matter charged under Z(G) are realized in the

tensor branch of the theory. Further, it is possible to consider subgroups Z ⊂
∏
j Z(Gj) such

that the corresponding anomaly coefficient (2.25) is integer valued, implying an anomaly-free

combination of the individual discrete 1-form symmetries. We will see examples of this in

section 3.

Finally, it is possible to add counterterms of the type C2 ∪ C2 ∪ C2 and C2 ∪ u4, where

u4 is the gauge field for the dual 3-form (magnetic) symmetry. While these might modify

the ’t Hooft anomalies and the mixing of the global 1- and 3-form symmetries, they cannot

possibly reabsorb the shift induced by the large gauge transformations B → B + b, since we

assumed that the U(1) gauge symmetry acting on Bi and the center symmetries of the gauge

theories do not mix. Nevertheless, the inclusion of these additional topological terms might

allow for interesting additional structure in the theories and affect various ’t Hooft anomalies.

In fact the term C2 ∪ u4 is relevant in order to understand the interplay with the dual 3-form

symmetry. We will partially analyze these effects in subsection 2.4 and appendix A. For more

detailed analysis of these counterterms and in general of the ’t Hooft anomalies we hope to

come back in future work.

2.2 BPS Strings, Induced Charges and Dirac Quantization

We now analyze the possible consequences of the couplings (2.8) and (2.18), which generates

the shifts (2.20) or (2.30), and possibly lead to ambiguities of the partition function. It might

be tempting to directly claim that in the presence of this anomaly the 1-form symmetry is

broken and not gaugable. However, we need to first take into account that any topologically

non-trivial configuration for the instanton density would lead to a vanishing of the partition

function. In fact, even before the activation of non-trivial Cj2 the partition function seems to

vanish for any topologically non-trivial configuration of the instanton density Ij4 .13 This is

due to the fact that the path integral contains an integration over flat fields Bi, for which

SGSWS = 2πΩij

∫
M6

[Bi] ∪ [NAj ]Z , (2.31)

integrates to zero. Here, [NAj ]Z = [1
4Tr(F j∧F j)] denotes the cohomology class of the instanton

background. This analysis fits into the framework of [30]. Taking [Ij4 ] for a global background,

this can possibly be interpreted as the path integral measure for the dynamical field Bi to

acquire a charge under the global symmetries.14 Since [Ij4 ] ⊃ [NAj ]Z contains, however, a non-

13F.A. thanks Kantaro Ohmori for suggesting this possibility, and pointing out the reference [30].
14F.A. thanks Kazuya Yonekura for sharing this interpretation.
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trivial configuration for a gauge field, this would make the theory inconsistent unless the effect

is canceled. The cancellation proceeds by adding operators which transform with opposite

charge compared to the path integral measure. In our case this is achieved by including the

6d BPS strings coupling to Bi. In 6d this phenomenon coincides with tadpole cancellation,

which requires the inclusion of (non-perturbative BPS strings) charged objects.

More precisely, at the level of the effective field theory one has to add the operators defined

in [72]

WQi = exp
(

2πi

∫
Σ
QiB

i
)
. (2.32)

This represents the electric coupling of the dynamical 2-form field Bi to a string with world-

volume Σ which carries charge Qi = ΩijQ
j defined by the string charge lattice (2.7) of the 6d

theory. Therefore, when a string is present the Bianchi identity of the corresponding tensor

field is modified to

dH i = Ii4 +Qi σ4 , (2.33)

with σ4 the Poincaré dual to the string worldvolume Σ. The phase in the partition function

is absorbed once we demand

[Ii4] = −Qi σ4 , (2.34)

i.e., the presence of strings in a topologically non-trivial instanton background. In 6d vacua

coming from F-theory on Calabi–Yau threefolds the available strings are D3-branes wrapping

curves in the base of the compactification manifold. The constraint (2.34) can then indeed be

understood as a tadpole cancellation of the D3-brane charge in the non-trivial background.

We ask now what happens when fractional values of Ii4 induced by the non-trivial background

for Ci2 are activated. These are encoded into αjG defined in the previous subsections. The

consistency condition on the induced charge dictated by the lattice of BPS string with minimal

charge qi unit vector is

〈qi, αjG〉 = QiΩijα
j
G ∈ Z ⇒ Qi = Ωijα

j
G ∈ Z. (2.35)

However, if (2.25) holds, then, due to the coupling (2.18) to the Z(G) 1-form symmetry

background, it seems that a BPS string (with Qi a unit vector) acquired a fractional charge,

Qi = Ωijα
j
G /∈ Z. This is not acceptable from the perspective of charge quantization, which is

dictated by the string charge lattice (2.7), and for which the charges Qi need to be integers

unless the fermion content on the worldvolume theory is modified, see [73].15 In our case, since

15Alternatively, a fractional charge for a string can be interpreted as a (gauge) anomaly of the worldvolume
theory, which can be sometimes canceled by worldvolume fermions. This cancellation indeed happens, for
example, when orientifold-plane charges are considered, see [73].
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Cj2 charges the same (0, 4) BPS strings as [NAj ]Z, the fermion content is unchanged when the

background Cj2 is turned on and this cancellation is not possible.16 Therefore, we conclude

that a fractional Ωij α
j
G leads to an obstruction to turning on the non-trivial background for

the discrete 1-form symmetry, which consequently is not a global symmetry of the quantum

theory, and in particular cannot be gauged. In other words, the 1-form symmetries realized in

6d theories need to be compatible with the charge quantization of the strings in the spectrum.

In section 4, we support this claim by checking the explicit representation with respect

to the gauge algebras of the states, which come from excitations of 6d strings necessary for

tadpole cancellation. The states are massive in the full tensor branch, but there will be some

regimes where the gauge theory is still weakly coupled and some of the string states are

massless (even though they are non-perturbative). Exactly when Ωij α
j
G /∈ Z, these states

will transform in representations of the gauge algebra which are not compatible with the

center being a symmetry of the theory. Additionally, we will see in the next sections that in

6d examples constructed from string theory, there can be subgroups or linear combinations of

Z(Gi) and centers of flavor symmetries which do furnish actual global center 1-form symmetry

of the theory.

2.3 Circle Reduction Perspective

An analogous perspective is provided when the 6d theory on the tensor branch is reduced on

a circle. These 5d theories are called Kaluza–Klein (KK-)theories, and they UV complete in

6d [43,62,74–83]. The GSWS coupling reduces to the following Chern–Simons coupling

LCS = 2πΩij A
i
U(1)T6d

∧ 1
4Tr(F j ∧ F j) . (2.36)

AiU(1)T6d
is the circle reduction of Bi, and can be seen as a dynamical gauge field which couples

to the topological currents descending from the 6d gauge groups,

JT ≡ ∗5 1
4Tr(F j ∧ F j) . (2.37)

The tensor branch scalars φi become Coulomb branch scalars associated with the AiU(1)T6d
.

The AiU(1)T6d
can combine with the Cartan U(1) symmetries of the 6d gauge theory to form a

5d gauge theory description with an enhanced gauge algebra. The 5d gauge theory description

can be useful to explicitly check candidate 1-form flavor symmetries coming from 6d 1-form

and 2-form symmetries [33,34].

16This is perhaps clearer in explicit examples of BPS strings of 6d theories coming from string constructions.
An example of this can be given by the E-strings, whose charges transform in an integral lattice, even when we
gauge a subgroup of H ⊂ E8. If Z(H) 6= 0, a background for this symmetry does not change the worldvolume
theory of the E-strings and its fermion content, but it only fractionally charges them. On the other hand we
know that these strings are nevertheless consistent.
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The 5d perspective is indeed useful to support that the GSWS coupling comes from inte-

grating out some massive states. It is believed that a 6d tensor multiplet defines a non-Abelian

tensor when its tensor scalar 〈φi〉 = 0. This reduces to a non-Abelian gauge theory in 5d,

which breaks into its Cartan U(1)iT6d
when 〈φi〉 6= 0. The W-bosons of this gauge theory

are in general also charged under the vector fields Aj of Gj , which can inherit the 1-form

symmetries from 6d. The Chern–Simons coupling (2.36) between U(1)iT6d
and Gj then comes

by integrating out these massive W-bosons [40,41].

We discuss a 5d SU(3) gauge theory example where an analogous phenomenon happens in

the Coulomb branch. For instance, a similar ambiguity is present when a W-boson is integrated

out the theory is Higgsed to SU(2)× U(1). This connects the anomaly with charged massive

states in appendix B.

2.4 Stückelberg Mechanism, Local Presentation, and Discrete 3-Form Sym-
metries

In this section we come back to the 6d effective theory described by tensors and vector multi-

plets. So far we have discussed theories with gauge group G. However, in general string com-

pactifications one only has access to the Lie algebra of the gauge group with no specified global

structure, unless certain boundary conditions or certain couplings are fixed [29,31–33,33,34].

To see how this works field theoretically let us discuss an explicit example in the continuum

limit.

We start from an SU(N) gauge theory in 6d, coupled to a dynamical tensor B, 17

L ⊃ B ∧ 1
4Tr(F ∧ F ) . (2.38)

We continue by extending the gauge theory to U(N) with connection A′. The background

fields for the 1-form symmetry ZN are given by a pair (C2, C), with C2 a ZN 2-form background

field which is the continuous version of C2 in the previous section and C a U(1) gauge field.

They satisfy the relation NC2 = dC. The action of the 1-form symmetry transformation

reads,

A′ → A′ + λI ,

C → C + df +Nλ ,

C2 → C2 + dλ ,

(2.39)

17Here we discuss a simple model of one single tensor coupled to a SU(N) gauge theory, which is enough for
the purpose of this section. As explained in the previous section, in general 6d theories have a more complicated
quiver structure and the coupling between the instanton densities and the tensors are integers different from
the unit. We will see in the next section of this structure could affect the coupling to non-trivial backgrounds
Cj

2 and the presence of global 1-form symmetries.
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where I is the N×N unit matrix, λ is a U(1) gauge field, and a f is a periodic gauge parameter

which is not relevant in the following discussion. We now perform the following redefinition,

F → F ′ − C2 I , (2.40)

The coupling (2.38) gets modified as follows

B ∧ 1
4Tr(F ∧ F )→ B ∧ 1

4Tr(F ′ ∧ F ′)− 1
NB ∧ Tr(F ′) ∧ dC + 1

2NB ∧ dC ∧ dC , (2.41)

which is invariant under (2.39). In terms of Chern classes one has

1
4Tr(F ′ ∧ F ′) = 1

2c1(F ′)2 − c2(F ′) , (2.42)

where c2(F ′) integrates to integer values.

The U(1) arises naturally in string theory constructions as the center-of-mass U(1) of

brane stacks whose world-volume theory realizes the U(N) gauge theory. However, this U(1)

generally acquires a mass due to a Stückelberg mechanism, which in 6d can be written in

terms of a coupling u4 ∧ Tr(F ′) with a dynamical 4-form field u4 [84, 85]. In this case u4 will

act as a Lagrange multiplier, which integrates out the U(1) gauge field. Before the inclusion

of the 1-form symmetry background and the transformations (2.39), u4 is just the dual 3-form

symmetry background field which couples to the current J
(4)
U(1) = ∗6Tr(F ′). However, once one

requires invariance with respect to (2.39), the Stückelberg term gets modified,

LSt = u4 ∧ (Tr(F ′)− dC) . (2.43)

By considering u4 a dynamical field, and by varying the action with respect to it, we get the

constraint Tr(F ′) = dC = NC2. This tells us that the 1-form fields eliminates the 0-form

U(1) gauge field. Moreover, substituting this into (2.41), we get

L ⊃ B ∧ 1
4

(
Tr(F ′ ∧ F ′)− 1

NB ∧ dC ∧ dC
)

= −B ∧ c2(F ′) + N−1
2N B ∧ dC ∧ dC , (2.44)

where c2(F ′) = −1
4(Tr(F ′ ∧ F ′) − 2Tr(F ′) ∧ Tr(F ′)), and we added and subtracted the term

1
2Tr(F ′) ∧ Tr(F ′). The second term in (2.44) is the one which leads to the anomalous phase

of the partition function under large gauge transformation for B, which we discussed in the

previous section.

Another possibility that the coupling (2.43) allows is gauging the non-anomalous part of the

1-form symmetry, (i.e., C2 is not a fixed background, but becomes dynamical). This demands

that u4 is a background field with holonomies in ZN , or, in other words, a background 4-form

field for the 3-form symmetry ZN . This also affect the 0-form U(1) degrees of freedom, which
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are removed by making C2 dynamical in connection with the gauge transformation (2.39).

This is consistent with the interpretation that one now has a G/Z(G) gauge theory in 6d. By

adding 1-form symmetry invariant counterterms involving B ∧u4 and B ∧NC2 ∧C2 or others

involving (C2,Tr(F ′)), the mixed anomaly (2.24) can be translated into a mixed anomaly for

the 3-form symmetry and large gauge transformation of B18. We work out a specific choice

of counterterms in appendix A, which is consistent with this view. As we saw in subsection

2.1, one could also add terms which are not invariant under the 1-form symmetry shift. This

might eliminate the anomaly coming from the shift of the dynamical field B, however, at the

same time these counterterms introduce operator (B) dependent ambiguities of the partition

function (2.30).

From a geometric engineering perspective in string theory both G/Z(G) and G should be

allowed as gauge theories. The way to see this would be to compute the possible couplings

between the background fields at low energy from 10/11-dimensional supergravity and by

expanding brane world-volume actions. These couplings should allow for the gauging of at

least one of the two symmetries, or more generally of an isotropic subgroup [29, 31–34]. In

the examples we discuss in this paper we made the choice of focusing on the global 1-form

symmetries of theories with group G.

3 Explicit Examples

Before discussing the presence or absence of the mixed (gauge-global symmetries) anomaly

(2.24) in some explicit models, which, as discussed in section 2, does not allow the coupling

to a non-trivial background C2, we first briefly describe the geometric constructions of 6d

N = (1, 0) theories on their tensor branch via F-theory, [18,19].

We list here some of the most important features of consistent 6d theories on the tensor

branch, as given by the geometry of the base of the torus-fibered Calabi–Yau threefolds in

F-theory. The base generically looks like a set of compact curves Σi, which intersect according

to

Σi ∩ Σj = −Ωij . (3.1)

The tensors Bi originate from the type IIB 4-form RR-field reduced on the Σi (more precisely,

their dual harmonic 2-forms). Gauge algebras and matter arise from intersecting 7-branes

wrapping Σi, which are geometrized by singularities of the torus fiber in F-theory. The BPS

strings come from D3-branes wrapping Σi. In order to summarize the base geometry we use

18Note that we trade the anomalous ZN part for C2 with an anomaly for the ZN encoded in u4. The
dualization, however, involves the U(1) realization of the higher-form fields.
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the following notation, which in the example of the tensor branch of an SCFT is

[gfl1 ]
g1
n1 · · ·

gi
ni

[gflNi
]
· · ·

gNT
nNT

[gflNT
] . (3.2)

Here, the compact curves Σi are denoted by their negative self-intersection ni, and only

neighboring curves mutually intersect with intersection number 1. Recall again that gi can be

trivial. The fiber can be singular also over non-compact curves which corresponds to flavor

symmetries of the tensor branch theory, which we denote by [gfl]. Such flavor symmetries are

absent in supergravity models, since these are realized in F-theory on compact bases which

cannot have any non-compact curves.

At last, there are three types of N = (1, 0) theories. The intersection pairing is crucial in

order to understand if the theory is a supergravity in six dimensions or if it UV-completes to

a little string theory or superconformal field theory:

• The pairing of 6d superconformal field theories (SCFTs) is negative definite.

• Little string theories (LSTs) have pairings with a single zero eigenvalue, and in general

there can be NT tensor multiplets with negative definite paring. Therefore the signature

is (0, NT ).

• The pairing of 6d supergravities has signature (1, NT ), i.e., one self-dual tensor with

positive signature, and NT anti-self dual tensors with negative signature. Moreover, the

intersection pairing has to be unimodular [72].19

These are the only constraints which together with continuous anomaly cancellation condi-

tions, see [88–90], give rise to a landscape of possible bases and tensor branches.

3.1 Tensor Branches of 6d Superconformal Field Theories

In this section we will demonstrate how the general procedure described above works by

computing the mixed anomalies (2.24) involving the center 1-form symmetries for simple

examples of 6d SCFTs on their tensor branch. Computing the discrete mixed anomalies for

all 6d SCFTs coming from F-theory is far beyond the scope of this paper. Rather we select

some very simple illustrative examples, and we defer a complete scan for future work. If a

non-trivial induced charge Qi = Ωij α
j
G is encountered the 6d theory in the tensor branch

cannot be coupled to the non-trivial background of the center 1-form, which points towards

the presence of charged states as we will see in the next section.

19For more subtle anomaly constraints in the F-theory context see also [86,87].
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Minimal 6d SCFTs: These theories have a single tensor with string pairing Ωij = (n),

which is coupled to a gauge group G usually without matter. These so-called non-Higgsable

clusters (NHCs) can be summarized as follows:

Σ2 = (−n) −3 −4 −5 −6 −7 −8 −12

g su3 so8 f4 e6 e7 + 1
256 e7 e8

(3.3)

The groups F4 and E8 do not have any center, and therefore there is no 1-form global symmetry.

The case of e7 + 1
256 on a self-intersection (−7) curve does not have any 1-form symmetry. In

fact, it is broken by the presence of the massless half-hyper in the fundamental representation.

For the other cases, we can see that with these values of n and the αG in table 1, we have

G 6= Spin(8) : Ωij α
j
G = nαG ∈ Z , (3.4)

and for the special case of Spin(8), which has two independent contributions (see table 1), we

have

Ωij α
(1)
Spin(8) = 1 , Ωij α

(2)
Spin(8) = 2 , (3.5)

where the evenness of the second term as the coefficient of C
(L)
2 ∪ C(R)

2 is necessary for con-

sistency [70]. Therefore there is no mixed induced fractional charge on the BPS strings and

the Z(G) 1-form symmetries of these NHCs are not broken on the tensor branch.

Multi-curve NHCs: Beyond the NHCs with only a single tensor there are three clusters

descending from several mutually intersecting compact curves. In the notation explained in

(3.2) these are given by

g2

3
su2

2 ,
g2

3
su2

2 2 ,
su2

2
so7

3
su2

2 . (3.6)

In the first two cases the only possible 1-form center symmetry originates from the su2 fac-

tors. However it is broken explicitly already at the massless level since one finds massless

hypermultiplets in the representation 1
2(7,2) ⊕ 1

2(1,2) of the G2 × SU(2) gauge symmetry,

which transforms non-trivially under the Z2 center of SU(2). The third case is more interest-

ing since all the involved simply-connected gauge groups deduced from the algebras have Z2

center symmetry. Labelling the tensor fields and gauge sectors from left to right and using

the adjacency matrix given by

Ω =

 2 −1 0
−1 3 −1
0 −1 2

 , (3.7)
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we obtain the contribution (2.18) to the action

S ⊃ 2π

∫ (
B1 ∧

(
1
2P(C1

2 )− 1
2P(C2

2 )
)

+B3 ∧
(

1
2P(C3

2 )− 1
2P(C2

2 )
)

+B2 ∧
(

3
2P(C2

2 )− 1
4P(C1

2 )− 1
4P(C3

2 )
)
,

(3.8)

for non-trivial backgrounds for all the Z2 1-form symmetries parametrized by P(Cj2). We

see that each individual factor has fractional contributions, which would render this coupling

inconsistent with Dirac quantization for the induced charge on the BPS strings. Moreover,

we will always present the result in terms of the full GSWS topological action, and not just

the violation of condition (2.35) in terms of the induced charges. This is useful because

sometimes we will see that certain combination of the center symmetry backgrounds will be

consistent with induced charge quantization. In the above example, the breaking of each

individual center factor is clear from the hypermultiplet sector since there are massless states

in the representations 1
2(2,8) and 1

2(8,2), which transform transform non-trivially under the

individual Z2 factors and break the 1-form symmetries explicitly. However, the diagonal

Z(d)
2 ⊂ Z(SU(2) × Spin(7) × SU(2)) ∼= Z3

2 leaves the matter fields invariant. An [SU(2) ×
Spin(7)×SU(2)]/Z(d)

2 gauge bundle can be constructed by tensoring three SU(2)/Z2 bundles

(where one embeds into Spin(7)), all with the same second SW class C2 [15]. In terms of the

individual background fields Ci2, this effectively amounts to setting

C1
2 = C2

2 = C3
2 = C2 , (3.9)

which reduces the contribution (3.8) to

S ⊃ 2π

∫
B2 ∧P(C2) , (3.10)

with integer coefficient. Thus, the diagonal Z2 1-form symmetry is anomaly-free and can

be coupled to a non-trivial background. This also allows the summation over non-trivial

configurations of C2, i.e. a gauging of the 1-form symmetry.

To summarize, this ambiguity (2.24) provides a complementary perspective which also

confirms the geometric prediction about the 1-form symmetries in the 5d reduction of these

theories [33].

Minimal 6d Conformal Matter Theories: Minimal conformal matter theories are en-

gineered in F-theory by collisions of non-compact curves carrying Lie algebras gflL
and gflR

,

respectively. The tensor branch is generically described by

[gflL
]
g1
n1 · · ·

gi
ni · · ·

gNT
nNT

[gflR
] . (3.11)
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For example let us consider gflL
= gflR

= e6, the tensor branch is

[e6] 1
su3

3 1 [e6] . (3.12)

The action coupled to the 1-form center symmetry background of SU(3), which is Z3, is

1
2πS ⊃

∫
M6

(
3B2 ∪ αSU(3) P(C2)−B1 ∪ αSU(3) P(C2)−B3 ∪ αSU(3) P(C2)

)
, (3.13)

where only the first term integrates to an integer, whereas the second and third are fractional

and take values in Z3, since αSU(3) = 1
3 . Therefore the naive 1-form symmetry associated to

the center of SU(3) cannot be coupled to a non-trivial background due to the fractional string

charge induced on the BPS strings associated to curves with self-intersection (−1).

Again, our result confirms the geometric computation of [33,34], and it is consistent with

the 5d circle reduction perspective of the theory, which at low-energy is described by quiver

gauge theories with (anti)-fundamental matter [91] transforming under some continuous flavor

symmetry.

Another example is given by the collision of two [so8+2n] singularities with n ≥ 0. The

tensor branch of the theory is given by

[so8+2n]
spn
1 [so8+2n] , (3.14)

where we define sp1 ∼ su2. The hypermultiplet spectrum contains massless states transforming

in the fundamental representation of Sp(n) that explicitly break the 1-form center symmetry.

Other examples: Let us consider the following tensor branch,

e6
6 1

su3

3 (3.15)

Naively, there are two 1-form symmetries due to the center of E6 and SU(3), which do not

have coupled massless matter. The topological term in the action in the tensor branch is

1
2πS ⊃

∫
M6

(
6B1 ∪ αE6 P(C1

2 )−B2 ∪ αE6 P(C1
2 )

+3B3 ∪ αSU(3) P(C2
2 )−B2 ∪ αSU(3) P(C2

2 )
)
,

(3.16)

The dangerous terms which could lead to induced fractional charges are

1
2πS ⊃

∫
M6

(
− 2

3 B
2 ∪P(C1

2 )− 1
3 B

2 ∪P(C2
2 )
)
. (3.17)

From this, we can see that while the individual centers cannot be coupled to non-trivial

backgrounds, the diagonal combination C1
2 = C2

2 = C2 leads to an integer induced charge and
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is therefore consistent with Dirac quantization. So only the diagonal combination survives as

a global 1-form Z3 symmetry.

We can do a similar analysis of the conformal matter from so8+2n singularities. When

gauging an so factor, we introduce an additional sp flavor symmetry, and the tensor branch

configuration is

[spn]
so8+2n

4
spn
1 [so8+2n] . (3.18)

The so gauge theory now lives on a curve with self-intersection (−4). As above the massless

matter states contain fields in the representation (8 + 2n,n), where 8 + 2n is the vector

representation of so8+2n. These states break the entire Z2 center of Sp(n), but are invariant

under a Z2 subgroup of Z(Spin(8 + 2n)) = Z4 or Z2 × Z2 for odd or even n. Up to integer

contributions the relevant terms of the action in the presence of background fields for the

center symmetries are

1
2πS ⊃ −

∫
M6

Bso ∪
(
n
4 P(Csp

2 )
)

(even n) ,

1
2πS ⊃

∫
M6

Bso ∪
(
n
2 P(Cso

2 )− n
4 P(Csp

2 )
)

(odd n) ,

(3.19)

for the tensor field from the curve with self-intersection (−4). We see that this vanishes for n

a multiple of 4. However, there are also terms associated to the curve with self-intersection

(−1) given by

1
2πS ⊃

∫
M6

Bsp ∪
(
n
4 P(Csp

2 )− n+4
8 P(C

so,(L)
2 + C

so,(R)
2 )− 1

2 C
so,(L)
2 ∪ Cso,(R)

2

)
(even n) ,

1
2πS ⊃

∫
M6

Bsp ∪
(
n
4 P(Csp

2 )− n+4
8 P(Cso

2 )
)

(odd n) .

(3.20)

Note that this poses an obstruction for the 1-form backgrounds, even for the Z2 ⊂ Z(Spin(8+

2n)) subgroup that leaves the vector representation invariant. Namely, a non-trivial back-

ground field C̃2 for this Z2 amounts to setting C
so,(L)
2 = C

so,(R)
2 = C̃2 for even n, and C̃2 = 2Cso

2

for odd n, which nevertheless leads to fractional charges of the BPS strings. One can also

verify that no other linear combination, including the Z2 center of the Sp gauge factor, is

admissible.

If one allows the inclusion of center symmetries in the flavor sectors, then there is a way

to cancel the fractional charges. Denoting by C
spf
2 and Csof

2 the center backgrounds of the sp
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and so flavor part, respectively, the relevant terms, for even n, in the action become∫
M6

Bso ∪
(
n
4 P(Csp

2 ) + n
4 P(C

spf
2 )
)

+Bsp ∪
(
n
4 P(Csp

2 )− n+4
8 P(C

so,(L)
2 + C

so,(R)
2 )− 1

2 C
so,(L)
2 ∪ Cso,(R)

2

− n+4
8 P(C

sof,(L)
2 + C

sof,(R)
2 )− 1

2 C
sof,(L)
2 ∪ Csof,(R)

2

)
,

(3.21)

which would have no fractional charges if Csp
2 = C

spf
2 = C

so,(L)
2 = C

sof,(L)
2 ≡ C̃2 and C

so,(R)
2 =

C
sof,(R)
2 = 0, which corresponds to a “diagonal” Z2 subgroup with background C̃2 which leaves

all matter hypermultiplets invariant.20 For odd n, the relevant terms are∫
M6

Bso ∪
(
n
2P(Cso

2 )− n
4 P(Csp

2 )− n
4 P(C

spf
2 )
)

+Bsp ∪
(
n
4 P(Csp

2 )− n+4
8 P(Cso

2 )− n+4
8 P(Csof

2 )
)
,

(3.22)

which allows for a diagonal Z4 with background fields aligned as Csp
2 = C

spf
2 = Cso

2 = Csof
2 ≡

C̃2.21

3.2 Tensor Branches of 6d Supergravity Theories (SUGRAs)

Let us consider 6d supergravity models descending from F-theory on compact bases, which are

Hirzebruch surfaces, Fn. There are two distinct curve classes and the corresponding adjacency

matrix is given by

Ωij =

(
n −1
−1 0

)
, (3.23)

where we focus on n = 3, 4, 5, 6, 7, 8, 12. Similarly to the non-compact NHCs the curve with

negative self-intersection hosts a non-trivial gauge algebra given by (3.3), and there is no gauge

algebra on the self-intersection 0 curve. Let us consider the models whose simply-connected

version of the gauge groups have a non-trivial center symmetry. The coupling of the theory

to a background for the 1-form symmetry, leads to

1
2πS ⊃

∫
M6

(
nB1 ∪ αGP(C2)−B2 ∪ αGP(C2)

)
. (3.24)

The first term is integer-valued, whereas by evaluating αG in table 1 for the groups of (3.3), we

can see that the second term is always fractional, thus leading to a induced fractional charge for

the BPS strings associated with the self-intersection 0 curve. Therefore, we have verified that

the 1-form global symmetries of NHCs on single negative self-intersection curves are always

20Note that each so factor in this case has a symmetry (L) ↔ (R) which corresponds to exchanging the
(co-)spinors. For simplicity, we have made a particular choice here.

21This corresponds to the subgroup generated by (1, 1, 1, 1) ∈ Z2×Z4×Z2×Z4 = Z(Spf(n)×Spin(8+2n)×
Sp(n)× Spinf(8 + 2n)).
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broken if coupled to gravity. This is consistent with the conjecture that there are no global

symmetry, including higher form symmetries, in a consistent theory of gravity [48,53,54].

More generally, we will consider, in section 5, also examples where gauge sectors are

realized on a curve in the base B of the F-theory geometry that is not a basis element for

the tensor lattice. E.g., in the above example with B = Fn, we can consider a gauge sector

G on a curve [qG] = q1
G[v] + q2

G[s], where [v] and [s] are the classes of the (−n) and 0-curve,

respectively. Then, the GWSW coupling is 2πΩijB
i ∧ qjG

1
4Tr(F ∧F ) with Ωij given in (3.23).

The corresponding couplings, analogous to (3.16), in the presence of a background C2 for the

Z(G) 1-form symmetry is then

S ⊃ 2πΩij q
j
G αG

∫
M6

Bi ∪P(C2) . (3.25)

With the rest of the discussion going through straightforwardly, we arrive at the analogous

condition, but with the vector qjG,

Ωij q
j
G αG ∈ Z , (3.26)

for the absence of any induced fractional charges of the existing BPS strings resulting from

(3.25).

3.3 Tensor Branches of 6d Little String Theories (LSTs)

For little string theories the matrix Ωij has a single zero eigenvalue. This implies that there

is a linear combination of the currents

J i = 1
4Tr(F i ∧ F i) , (3.27)

which is not coupled to a dynamical 2-form field Bj . Consequently, the resulting theory

contains a continuous global 1-form symmetry [21]. Let vi denote the null direction, i.e.,

Ωijv
j = 0 . (3.28)

The current of the U(1) 1-form symmetry is then given by

J =
∑
i

viJ i . (3.29)

In order to analyze the global group structure we need to take the anomalous transformations

into consideration. This proceeds along the same lines as discussed above, which we will

demonstrate in a simple example.
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Consider a circle of r curves of self-intersection (−2), with the adjacency matrix given by

Ωij =


2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0
...

...
−1 0 . . . 0 −1 2

 , (3.30)

each of which hosts a sun gauge algebra, which in pictorial form is given by

2
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(3.31)

The eigenvector with eigenvalue 0 is given by

vi =

1
...
1

 . (3.32)

One finds a continuous U(1) 1-form symmetry with the current

J = 1
4

∑
i

Tr(F i ∧ F i) . (3.33)

Let us analyze what happens to the center symmetries of the SU(n). The possible ob-

structions to switch on a non-trivial background for the center 1-form symmetries are induced

by the terms

1
2πS ⊃

∫
M6

ΩijB
i ∧ J j = −

∫
M6

( r∑
j=1

(Bj−1 − 2Bj +Bj+1) ∧ J j
)

= −
∫
M6

( r∑
i=1

Bi ∧ (J i−1 − 2J i + J i+1)
) (3.34)

with the periodic identification j ∼ j+r and i ∼ i+r. Coupling the theory to the background

for the center 1-form symmetries we have

1
2πS ⊃ −

∫
M6

Bi ∪ (αi−1
G P(Ci−1

2 )− 2αiGP(Ci2) + αi+1
G P(Ci+1

2 )) . (3.35)

28



We see that there is a non-trivial obstruction to activate the 1-form background in the sun

factors due to fractional charges induced on the certain BPS strings. The condition to gauge

part of the 1-form symmetry is that the charges induced by the 1-form symmetry background

on the BPS strings are all integer. This implies that the sum of the three terms coupling to a

certain tensor field Bi has to have an integer quantization. In this case the bundle classes of

the different gauge sectors are correlated. Note that, since these also appear in the variations

of Bi±1 the correlation of bundle classes propagates through the full quiver. This leads to the

allowed global gauge groups given by

G =

(
SU(n)

)r
Zk

, (3.36)

with k a divisor of n. Note that this can be understood as gauging a Zk subgroup of the global

U(1) 1-form symmetry discussed above.

In a next step we can decompactify one of the self-intersection (−2) curves which leads

to an A-type 6d SCFT. The corresponding adjacency matrix is obtained by deleting the j-th

line and column. Without loss of generality we set j = r and obtain

Ωij =


2 −1 0 . . . 0
−1 2 −1 0 . . .
...

...
0 . . . 0 −1 2

 (3.37)

leading to the quiver

[sun]
sun
2 · · ·

sun
2 · · ·

sun
2 [sun] . (3.38)

There is no zero eigenvalue anymore and the continuous 1-form symmetry is lost in the de-

compactification process. Note that now there are states transforming in the bi-fundamental

representation, with one fundamental factor in the flavor symmetry. These states explicitly

break the continuous 1-form symmetry. Now we can investigate the individual terms possible

induced fractional charges. In the middle of the quiver the topological action coupled to the

center 1-form symmetry background is given by (3.35). However, at the end of the quiver,

e.g., for i = 1, one finds,

1
2πS ⊃

∫
M6

B1 ∪
(
− 2α1

GP(C1
2 ) + α2

GP(C2
2 )
)
. (3.39)

There is no combination with no fractional induced charges that only involves the gauge fields

on the tensor branch of the SCFT. However, if we include a discrete background field for the

center of the two sun flavor symmetries, then one can find an a combination of the center

symmetries with no fractional induced charges, which essentially is the discrete remnant of

the combination found in the LST example.
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3.4 Interpolating Between Limits

The different UV embeddings of the 6d low-energy theories discussed above are of course

not disconnected. In fact they often allow for continuous interpolations among them. These

interpolations between theories further have nice geometric interpretations in their F-theory

realizations. A variation of the scalar fields in the tensor multiplets in combination with the

variation of the overall volume of the base manifold then allows to continuously connect the

different regimes.

Starting with a compact base manifold we can consider the limit in which one sends the

overall volume to infinity, consequently decoupling gravity, while keeping some of the curve

volumes finite. If this leads to a theory with a zero eigenvalue in the intersection form of the

remaining compact curves this points towards a little string sector. Since we have seen that

little string theories can contain continuous higher-form symmetries this limit needs to be at

infinite distance in moduli space, see, e.g., [63,92–94], as is already guaranteed by sending the

Planck mass to infinity. However, one can also take the limit in which one remains at finite

base volume. This corresponds to the vanishing of the volume of a non-contractible curve

configuration and is also at infinite distance in moduli space. It would be interesting to relate

the 1-form symmetries in these limits to the discussion in [63,95], where one finds an emergent

dual heterotic string description.

From a general little string theory one can obtain a 6d superconformal field theory as

discussed in [25], which can be understood as the further decompactification of some of the

curves in the little string geometry. As discussed above the continuous 1-form symmetries have

to be lost in this limit [21]. Alternatively, one can start with a supergravity theory and then

contract a contractible set of curves which corresponds to the SCFT sector of the resulting

theory. This point lies at finite distance in moduli space. In this description the potential

discrete 1-form symmetries are either gauged or broken.

We see that the various different limits are not disconnected and their F-theory embed-

ding allows for a fruitful geometrical interpretation. The connection to swampland criteria,

especially the implications of the swampland distance conjecture, are intriguing and we wish

to come back to their detailed investigation in future work. For a suggestive set of examples,

given by the Hirzebruch surfaces we demonstrate the various limits and their distance in the

tensor branch moduli space in appendix C.
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4 1-Form Symmetry Breaking States

In this section we show in explicit examples that in case there is a non-trivial shift in the

action under large gauge transformations of the dynamical tensor fields, there are states which

explicitly break the 1-form symmetry. These states are massive in the full tensor branch and

originate from the fluctuations of the BPS strings discussed in subsection 2.2. They become

massless when the associated BPS strings are tensionless. There are indeed regimes where

these states, even if non-perturbative, interact with the weakly coupled gauge theory with

non-Abelian gauge group G. Moreover, when they transform non-trivially under Z(G), the

Wilson line operators of the non-Abelian gauge theory are screened. The BPS strings, which

give rise to these modes, are indeed the ones required even at the effective field theory level

for tadpole cancellation. This demonstrates from another point of view why in these cases a

coupling to a non-trivial background for the 1-form symmetry is inconsistent. Therefore the

perspective of this section and the one given in section 2 are fully compatible.

We will first focus on simple examples of 6d SCFTs on their tensor branch as a warm-up,

and subsequently we will discuss the breaking in 6d supergravity theories. In the latter case,

these states fit into a larger web of consistency conditions of quantum gravity. In particular,

the absence of global symmetries means that also 1-form symmetries are either broken or

gauged [48–54]. On the other hand, if a subgroup Z of the center Z(G) is gauged, then the

gauge group is G/Z. The difference to G manifests itself in the charge lattice, which by the

completeness conjecture [50] must be fully occupied. If there is an anomaly associated to the

1-form symmetry Z preventing the gauging, there must exist states in the charge lattice of

G which are not representations of G/Z. These states are not invariant under Z, and hence

explicitly break the 1-form symmetry. We find that these states originate as excitations of

dynamical strings, which also provides an interesting connection to the swampland distance

conjecture [49, 63, 92–94, 96]. Here, the necessary tower of light states can sometimes be

associated to the same string excitations in the effective theory.

To show this, recall that the a fractional charge induced on the BPS strings arises from

coupling the theory to a non-trivial center 1-form symmetry background (2.14). In 6d theories

there are indeed states which are charged under the Bi as well as under the gauge potentials

Aj . They arise from excitations of BPS strings whose tensions are Ti ∼ |Ωij〈φj〉|, and charged

under the Bi with charges Qi (2.7). We claim that if there exists i, j such that

S ⊃ 2πΩij α
j
G

∫
M6

Bi ∪P(Cj2) /∈ Z , (4.1)

then the excitations of strings charged under Bi and Gj are the ones breaking the 1-form
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symmetry and restrict to trivial Cj2 . In the F-theory context the BPS strings come from D3-

branes wrapping Σi in the base of the T 2-fibered Calabi–Yau threefold. They are electrically

charged under the Bi that arise from the reduction of the type IIB RR 4-form field on Σi. At

intersections with curves Σj carrying a gauge group Gj , there are 3-7 string states charged

under Gj which are precisely the states that can break the 1-form center of Gj .22 Of course

this is all encoded in the Dirac pairing Ωij , and whether there is a non-trivial gauge group Gj

on Σj .

Let us try to understand this more concretely in some examples, starting with (E6, E6)

minimal conformal matter in the tensor branch description (3.12). In this example there is

naively a Z3 1-form symmetry due to the presence of the SU(3) gauge theory without matter.

However, the GSWS topological coupling involving the 1-form symmetry background reads

S ⊃
∫
M6

(
− 1

3 B
1 ∪P(C2)− 1

3 ∪B
3 ∪P(C2)

)
, (4.2)

signaling that the Z3 backgrounds lead to an incosistency with Dirac quantization for the BPS

strings of the theory. The states which break the Z3 are excitations of the strings charged

under B1 and B3, both having Dirac self-pairing given by 1, and which are additionally charged

under SU(3). They correspond to two sets of E-strings, and they can be seen as transforming

under an E8 flavor symmetry, of which an SU(3) subgroup has been gauged. In the F-theory

setting they correspond to D3 branes wrapping Σ1 and Σ3, which both have self-intersection

number (−1). In fact, a subsector of the 2d BPS states coming from fluctuations of the string

are captured by the elliptic genus of the 2d theory living on these strings [97]. In turn, the

elliptic genus enters in the genus expansion of the topological strings partition function, which

can be computed from the compactification geometry [35–39]. For our purposes, it is enough

to analyze the genus-zero BPS states.

Before analyzing the full conformal matter example, we study the elliptic genus expansion

of the minimal 6d SCFTs. These theories consist of a single curve in the base, whose self-

intersection is (−n), therefore they contain a single dynamical 2-form B coupled to a gauge

group G associated to the NHC. As demonstrated in Section 3.1 there is no fractional induced

charge in these cases and we expect that the center Z(G) = Z3,Z2×Z2,Z3,Z2 to be preserved

when G = SU(3), SO(8), E6, E7 and n = 3, 4, 6, 8, respectively. Consistently, we find that the

string states entering the elliptic genus all transform trivially under the center. The elliptic

genus of the strings coming from D3-branes wrapping the (−n) curves has been analyzed

in [37, 38]. To explicitly extract the expansion it is easier to look at the limit of the elliptic

22Note while these states are massless states in the 2d world-volume description of the string on Σi, they
cannot be in general thought of as massless particle states in the full 6d spacetime.
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genus which corresponds to the Schur index of the 4d theory living on the D3 branes [98]. The

first few orders of the expansion have been written in [38, Section 7 and Appendix A], and we

do not repeat them here. The coefficients in this expansions correspond to representations of

the Lie algebra of G, with respect to which the excited states transform. It can be checked

that these representations are tensor products of the adjoint, which is neutral under Z(G).

Therefore also the components of these tensor products are neutral under Z(G). For example

consider n = 3 and G = SU(3). The first representations that appear in the elliptic genus are

,

8,10,10,27,35,35,64,125, . . . (4.3)

These representations appear in tensor products of the adjoint representation 8 with itself:

8⊗4 =8(1)⊕ 32(8)⊕ 20(10⊕ 10)⊕ 33(27)⊕ 2(28⊕ 28)

⊕15(35⊕ 35)⊕ 12(64)⊕ 3(81⊕ 81)⊕ 125 ,
(4.4)

and therefore they are all neutral under Z(G) = Z3. A very similar story holds for the other

minimal 6d SCFTs.

Returning to the (E6, E6) minimal conformal matter, we now find states that break the

Z3 center symmetry of the SU(3) gauge factor explicitly. This can be deduced from the

fact that the E-string has an E8 flavor symmetry in general. In fact, in the elliptic genus

expansion [36, 39] of the E-string, the states all transform in the adjoint representation 248

of E8 as well as tensor products thereof. It decomposes as

248→ 8 + 27× 3 + 27× 3 + 78× 1. (4.5)

with respect to an SU(3) subgroup. Therefore, if we gauge such a subgroup, we see that the

fundamental representation of SU(3) appears which is not invariant under center transforma-

tions, and in turn breaks the Z3 1-form symmetry. We find that the restriction to trivial Cj2

due to the fractional charge is induced by the presence of massive states charged under the

center symmetry. In this way the induced fractional charges pose a low-energy indication of

the presence of charged states.

We now turn to supergravity theories, and as an illustrative example, we again discuss

models engineered in F-theory on a threefold whose base is a Hirzebruch surface, Fn, which

we also analyzed in section 3. This example is very similar to the non-Higgsable cluster SCFTs,

where we expect the Z(G) with G = SU(3), SO(8), E6, E7 to survive due to the absence of

induced fractional charges on the BPS strings. In the supergravity models, however, one has

an extra dynamical 2-from tensor field in the gravity multiplet interacting with the gauge

theory on the curve of negative self-intersection. On a Hirzebruch base, the additional tensor
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is associated to the self-intersection 0,23 which leads to induced fractional charges (3.24).

Because of this, the gauge group of the supergravity theory is G rather than G/Z(G). By the

completeness hypothesis, there should hence be dynamical states charged non-trivially under

Z(G), which are in the charge lattice of G but not that of G/Z(G). Since we know for the

models over Fn that there are no massless hypermultiplets except in the adjoint representation,

these states have to originate from somewhere else. Again, these states are associated to the

string from D3 branes wrapping the 0-curve. They can be thought of as critical heterotic

strings at finite coupling [58, 59], whose elliptic genus can also be computed by summing

two E-string elliptic genera [36]. In any case, it is clear that the visible gauge group G =

SU(3), SO(8), E6, E7 is a subgroup of an E8 flavor symmetry of the heterotic string. Therefore

the (anti)-fundamental of G ⊂ E8 will appear in the decomposition of 248 of the E8, and thus

break the Z(G) 1-form symmetry explicitly.

These states appear in other contexts to guarantee the consistency of quantum gravity

theories. Namely, the very same states (from D3-branes wrapping the 0-curve on Hirzebruch

surfaces) have been shown [94, 95] to furnish an infinite tower of states that occupy the full

charge lattice of the 0-form gauge symmetry (in the references, only U(1) gauge symmetries

were considered), and that these have the necessary charge-to-mass ratio to satisfy the Weak

Gravity Conjecture [49]. Moreover, in accordance with the Swampland Distance Conjecture

[45], these states become exponentially light as one approaches an infinite distance limit in

moduli space where the 0-form symmetry becomes a global symmetry. In this limit, the notion

of the 1-form symmetry becomes somewhat tenuous, as the effective description breaks down,

due to the massless tower. On the other hand, the 1-form symmetry is “restored” in the

limit when the 0-curve decompactifies, in which case the above string states, together with

the tensor field, decouple. In this limit, also gravity decouples (see appendix C), so there is

no conflict with having a global 1-form symmetry.

5 Gauging 1-Form Symmetries with Mordell–Weil Torsion

In the previous section, we have seen that induced fractional charges on BPS strings in the

presence of a non-trivial center 1-form symmetry background is related to the existence of

massive states which explicitly break the symmetry and impose the restriction Cj2 = 0. We

have indeed seen in section 2 from the effective field theory description, that the necessary

presence of BPS strings together with a topologically non-trivial fractional configuration for

23Strictly speaking, the tensor of the gravity multiplet is dual to a linear combination of the −n and the
0-curve. These form a basis of tensors in the supergravity setting, so the charges associated with each must be
integer.
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P(C2) leads to an inconsistency with Dirac quantization. In contrast, if the induced charge

are integer, the states are compatible with Cj2 6= 0. Then one can contemplate the possibility

of gauging the 1-form symmetry Z by summing over the different non-trivial backgrounds for

Cj2 . We approach this possibility by recalling that if a subgroup Z of the full center Z(G) is

gauged, then the actual gauge group is G/Z. This perspective leads to a connection between

the induced charges on the BPS strings and geometric structures in F-theory compactifications,

which we will focus on in the following.

Previous works have argued that in F-theory compactifications, the global gauge group

structure is encoded in the Mordell–Weil group of the elliptic fibration [60, 61]. However,

strictly speaking, these arguments are only verified at the level of massless states, i.e., the

massless spectrum is compatible with a non-trivial global gauge group structure G/Z if the

Mordell–Weil group has a torsion part Z.24 The spectrum of massive states cannot be con-

strained a priori by the same arguments. On the other hand, as we have seen in the previous

sections, a compatible massless spectrum alone is clearly not enough to guarantee a gauged

center symmetry.

Moreover, this condition coming from coupling the theory to the 1-form symmetry back-

ground and the Dirac quantization of the induced charges on the BPS strings can provide

a novel set of swampland constraints, if we include as a characterizing feature of an 6d su-

pergravity theory not only the 0-form, but also the 1-form symmetries. For example, it is

clear that local 0-form gauge anomalies, which only constrain massless matter, cannot detect

possible obstructions from massive states to gauging a 1-form symmetry. On the other hand, a

necessary condition for the 1-form symmetry Z ⊂ Z(G) to be gauged is the absence of massless

matter in non-trivial representations of Z, which leaves imprints on local anomaly conditions.

One can in principle combine anomalies for both 0-form and 1-form gauge symmetries to con-

strain possible configurations of string charge lattices encoded in Ωij and non-Abelian gauge

algebras to allow for a consistent 1-form center symmetry, i.e., a non-trivial global gauge

group structure of a supergravity model. We hope to return to a detailed investigation of this

interplay in future work.25

In this work, we focus on a more “streamlined” geometric criterion. Namely, we find

that the Mordell–Weil group appears to automatically ensure such swampland constraints:

Whenever the Mordell–Weil group of a compact F-theory model π : Y → B has torsion

24We are not considering abelian gauge groups in this work. For these, the global structure (at the massless
level) is encoded in the embedding of the free part of Mordell–Weil into the Néron–Severi group [99].

25In 8d supergravity models, an analogous interplay between center and continuous higher-form symmetries
allows for a more direct analysis of possible global gauge groups, see [100].
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Z,26 there is also a consistent 1-form symmetry Z. This in turn means that the presence

of the torsional sections should forbid not only massless hypermultiplets, but also the string

states found in the previous section. This can be understood from M-/F-theory duality, which

relates the 6d theory to its S1-reduced 5d description in terms of M-theory on the Calabi–

Yau threefold Y . Under this duality, the elliptic genus of 6d strings can be inferred from

the topological string partition function in 5d, which in turn receives contributions from M2-

branes wrapping irreducible holomorphic curves in Y [103, 104]. The representation of these

M2-states under the 6d gauge algebra g is determined by the intersection numbers of the

curves with exceptional (“Cartan”) divisors Dk that resolve the elliptic singularities of type

g.

In the presence of a torsional section τ , the allowed representations are restricted, due to

a homology relation of the form

[τ ] = [σ0] + π−1(DB) +
∑
k

nkDk , (5.1)

where DB is a divisor of the base determined by the intersection properties of τ and the zero

section σ0 [90, 105, 106]. Importantly, since the nk are fractional, the intersection numbers

between Dk and irreducible curves C are restricted by the condition [τ ] · C ∈ Z, which is

required because [τ ] is an integral class [61]. By Poincaré duality, there must exist curve

classes which fill out the full 6d charge lattice of G/Z [86]. In general, these curve classes

are linear combinations of curves which are not all fibral, hence they do not give massless

hypermultiplets. The non-fibral irreducible curves have non-zero intersections with π−1(DB),

which precisely indicates that the 6d origin of their M2-brane states are the excitations of

strings wrapping the S1, which carry non-zero charge under the tensor dual to DB [40].

For non-compact models, the situation is slightly ambiguous: Since an SCFT (and its ten-

sor branch) is defined by local data, there can be deformations that change the global fibration

without affecting the local singularity structure. These geometric deformations correspond to

vacuum expectation values of operators which are irrelevant in the SCFT limit, which are

known to break ordinary (0-form) global symmetries on the tensor branch. By a suitable tun-

ing, one can make the global symmetries explicit geometrically in (nearly) all cases [107,108].

In the context of 1-form global symmetries, we find a similar situation. Namely, whenever the

SCFT does not shift under the large gauge transformations of the dynamical tensor fields in a

non-trivial background for the center 1-form symmetry, we can find a complex structure defor-

mation of the generic Weierstrass model which engineers the corresponding torsional section

26For the role of the Mordell–Weil group, and more generally the interplay between geometry and physics in
F-theory, we refer to recent reviews [101,102].
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without altering the local singularity structure.

5.1 NHCs with Mordell–Weil Torsion

As we have seen above, non-Higgsable clusters with gauge algebra g can have a consistent

1-form center Z(G) ≡ Z which is broken once coupled to gravity. For these NHCs, we can

always tune the corresponding elliptic fibration to have a compatible torsional Mordell–Weil

group Z without modifying the singularity structure on the tensor branch [22]. Globally, this

tuning induces additional gauge sectors h, with center Z(H) ⊃ Z, on divisors that do not

intersect the NHC curve(s) in the base. Their presence guarantees that the diagonal center

Z ⊂ Z(G)×Z(H), represented geometrically by the Mordell–Weil torsion Z, is consistent with

Dirac quantization of the induced charges, and thus gauged. Said differently, the geometric

conditions for an elliptic threefold Y → B to have Mordell–Weil torsion Z automatically

ensures that the corresponding supergravity theory, with a tensor spectrum specified by B,

has 0-form gauge symmetries compatible with a consistent 1-form Z symmetry.

In the following, we will demonstrate this general pattern with concrete examples. For

NHCs with a single tensor field we will consider the simplest “gravity completions” in terms

of F-theory on Hirzebruch surfaces Fn. We denote the homogeneous coordinates on Fn by

(u, v, s, t), with scaling relations

u v s t

0-curve n 0 1 1
(−n)-curve 1 1 0 0

(5.2)

The 0-curve has class [s] = [t], and the (−n)-curve is [v], with [s] · [v] = 1. They form the

homology basis in which the tensor pairing takes the form (3.23). The anti-canonical class is

K = 2[v] + (n+ 2)[s]. In the following, the (+n)-curve class [u] = [v] + n[s] with [u] · [v] = 0

will appear frequently.

Non-Higgsable su3 on F3

To illustrate the observations outlined above, we focus on the NHC su3 gauge algebra on a

curve with n = 3. In this case, the generic Weierstrass model takes the form

f = v2 f̃ , g = v2 g̃ , ∆ = v4(4v2f̃3 + 27g̃2) . (5.3)

Importantly, [{g̃ = 0}] = 6K − 2[v] = 10[u], which means that {g̃ = 0}, and hence also the

residual discriminant {4v2f̃3 + 27g̃2 = 0}, do not intersect the su3 divisor {v = 0}. To have a

Z3 torsional section, f and g must exhibit the structure

fZ3 = a1

(a3

2
− a3

1

48

)
, gZ3 =

a2
3

4
− a3

1a3

24
+

a6
1

864
, (5.4)
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where ai are sections of the i-th power of the anti-canonical class K of the base [60]. On an

F3 base, any section of these bundles has an overall factor of v, i.e., a1 = va′1 and a3 = va′3.

Therefore we find

fZ3 = v2 a′1

(a′3
2
− a′1

3v2

48

)
, gZ3 = v2

(a′32

4
− a′1

3a′3 v
2

24
+
a′1

6 v4

864

)
,

∆Z3 =
v4

16
a′3

3
(27a′3 − a′1

3
v2) .

(5.5)

One can immediately verify that, because the class of [a′3] = 3K − [v] = 5[u] has trivial

intersection with [v], none of the other discriminant components intersect {v = 0}. Thus,

the local singularity structure over {v = 0} remains unchanged, and still describes the non-

Higgsable su3, albeit with a torsion section making the Z3 1-form symmetry manifest.

However, the global geometry clearly has changed drastically, most notably it now contains

another s̃u3 gauge algebra on {a′3 = 0}. Note that the residual discriminant intersects the s̃u3

divisor at a′3 = a′1 = 0, however, only leading to a singularity enhancement I3 → IV that is

not accompanied by any massless hypermultiplet.

Naively, one could conclude that, since the two su3 divisors do not intersect, we have

two completely independent gauge factors with no massless hypermultiplets, and therefore

the gauge group is (SU(3)/Z3)2. However, as discussed above, a non-trivial 1-form center

symmetry background of the non-Higgsable su3 in the global setup induces fractional charges

for the string associated to the self-intersection 0 curve [s]. The same reasoning applies to

s̃u3 on {a′3 = 0}: The class [a′3] = 5[u] enters the condition (3.26) in terms of qs̃u3
with

Ωij q
i
s̃u3

[v]j = [a′3] · [v] = 0 and Ωij q
i
s̃u3

[s]j = [a′3] · [s] = 5. Therefore, the action, in the

presence of a background field C
(2)
2 for the center of the s̃u3, is (see (3.25))

1
2πS ⊃ 5α

S̃U(3)︸ ︷︷ ︸
/∈Z

∫
M6

B[s] ∪P(C2
2 ) , (5.6)

with B[s] denoting the tensor dual to the 0-curve class [s]. However, under the diagonal

Z3 ⊂ Z3 × Z3 = Z(SU(3) × S̃U(3)), i.e., after turning on a 1-form symmetry background

associated to the second SW class C2 of an [SU(3)× S̃U(3)]/Z3 bundle, the action reads

1
2πS ⊃

∫
M6

(
3αSU(3)B

[v] +
(
αSU(3) + 5α

S̃U(3)︸ ︷︷ ︸
6αSU(3)∈Z

)
B[s]

)
∪P(C2) .

(5.7)

Hence, this diagonal Z3 does not induce fractional string charges.

This is in accordance with the excitations of the string from D3-branes wrapping the curve

with self-intersection zero in the class [s], which transform as bifundamentals under su3⊕ s̃u3.
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Since in the compact setting, the string has finite tension, these excitations are dynamic

(massive) states of the theory, and break the individual Z3 center symmetries, but preserve

the diagonal combination. In a consistent model of quantum gravity, this diagonal 1-form

symmetry must therefore be gauged.

Note that this is in agreement with the geometry: there is by construction only one

independent Z3 torsional section rather than two. More precisely, we can see that the Z3-

section really “affects” both su3 factors geometrically: The torsional section can be made

explicit by the rational solutions (x, y) =
(

(a′1 v)2

12 ,−a′3 v
2

)
of the Weierstrass equation y2 =

x3 + fx + g with f, g given as in (5.5). One can then verify that this section passes through

the fiber singularities of the type IV resp. I3 fiber over v = 0 resp. a′3 = 0.

To explicitly demonstrate that this leads to the typical homology relation (5.1) signaling

an [SU(3) × S̃U(3)]/Z3 group structure, we have to resolve the fiber singularities over v = 0

and a3 = 0. While we relegate the details of this resolution to appendix D, we find as a result

that the homology class [τ ] of the Z3-torsional section inside the resolved Calabi–Yau threefold

satisfies

[τ ] = [σ0] + π−1(K)− 1
3

(
D

(1)
1 + 2D

(1)
2 +D

(2)
1 + 2D

(2)
2

)
, (5.8)

which indeed involves the Cartan divisors D
(1/2)
i of both su3 factors.

In the limit where the volume of the curve class [s] goes to infinity, also the class [u] =

[v]+ [s] decompactifies. Therefore the string sector from D3-branes on [s] as well as the s̃u3 on

{a′3 = 0} become non-dynamical, leaving behind just the non-Higgsable su3. One may view

the 1-form center symmetry of this NHC as the remnant of the gauged Z3 1-form symmetry

in the compact model: Since s̃u3 completely decouples, with no dynamic states charged under

it, its center also decouples, so that the previously “diagonal” Z3 can be identified with the

center of the NHC.

Non-Higgsable so8 on F4

For a slightly more complicated example, we consider the n = 4 case with a non-Higgsable so8

on {v = 0}. This gauge algebra has two independent SW classes, C
(L)
2 and C

(R)
2 , associated

with each factor of the Z(L)
2 ×Z(R)

2 center. They give two contributions , P(C
(L)
2 +C

(R)
2 ) and

C
(L)
2 ∪ C(R)

2 , both with coefficients 1
2 , respectively (see table 1):

1
2πS ⊃ −[v]2

∫
B[v] ∪

(
1
2P(C

(L)
2 + C

(R)
2 ) + 1

2C
(L)
2 ∪ C(R)

2

)
=

∫
B[v] ∪ 2

(
P(C

(L)
2 + C

(R)
2 ) + C

(L)
2 ∪ C(R)

2

)
.

(5.9)
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Making the 1-form symmetry explicit in the elliptic fibration, we consider the generic Weier-

strass model with a Z2 × Z2 Mordell–Weil group [60],

f = 1
3(a2c2 − a2

2 − c2
2) = 1

3v
2(a′2c

′
2 − a′2

2 − c′2
2
) ,

g = 1
27(a2 + c2)(2a2 − c2)(2c2 − a2) = 1

27v
3(a′2 − c′2)(2a′2 − c′2)(2c′2 − a′2) ,

∆ = −v6a′2
2
c′2

2
(a′2 − c′2)2 ,

(5.10)

where we used the fact that on the base F4, global sections ω ∈ {a2, c2} of 2K factorize as

ω = v ω′, with [ω′] = 3[u]. Again, this means that the other discriminant components do not

intersect {v = 0}, thus leaving the local so8 NHC unchanged.

Globally, the center of Spin(8) is again broken by the coupling to the tensor dual to [s],

which induces fractional string charges, as can be seen from

1
2πS ⊃ − [s] · [v]︸ ︷︷ ︸

=1

∫
B[s] ∪

(
1
2P(C

(L)
2 + C

(R)
2 ) + 1

2C
(L)
2 ∪ C(R)

2

)
. (5.11)

However, in the geometry (5.10), this tensor also couples to three su2 factors, which we label

as follows: su2,1 on {a′2 = 0}, su2,2 on {c′2 = 0}, and su2,3 on {a′2 − c′2 = 0}, each of which has

curve class 3[u]. A non-trivial 1-form center symmetry background for each of these contribute

to the coupling to the tensor dual to [s] as

1
2πS ⊃ −3[u] · [s]

∫
B[s] ∪ 1

4P(C
(k)
2 ) = −3

4

∫
B[s] ∪P(C

(k)
2 ) , k = 1, 2, 3 . (5.12)

This allows for the gauging of a “diagonal” Z2 ×Z2: by identifying C
(1)
2 = C

(L)
2 , C

(2)
2 = C

(R)
2 ,

and C
(3)
2 = C

(L)
2 + C

(R)
2 , and using the fact that P(C

(L)
2 + C

(R)
2 ) = P(C

(L)
2 ) + P(C

(R)
2 ) +

2C
(L)
2 ∪ C(R)

2 [70], the total contribution becomes

1
2πS ⊃ −

∫
B[s] ∪

((
1
2 + 2 · 3

4

)
(P(C

(L)
2 ) + P(C

(R)
2 )) +

(
1 + 1

2 + 2 · 3
4

)
C

(L)
2 ∪ C(R)

2

)
, (5.13)

which is indeed integral. This identifies C
(L)
2 and C

(R)
2 as the SW classes of a [Spin(8) ×

SU(2)1 × SU(2)2 × SU(2)3]/[Z(L)
2 × Z(R)

2 ] bundle, where the Z(L)
2 factor is also the diagonal

center of SU(2)1 × SU(2)3, and Z(R)
2 is coupled to the diagonal center of SU(2)2 × SU(2)3.

Note that this identification is also prescribed by the interplay between the torsional

sections and the su2 singularities. Namely, one can check that the Weierstrass equation

y2 = x3 + fx + g, with f, g given in (5.10), has three rational Z2-sections (all with y = 0),

corresponding to (1, 0), (0, 1), (1, 1) ∈ Z2 × Z2, with x-coordinate

x1,3 = 1
3(2a′2 − c′2)v , x2,3 = 1

3(2c′2 − a′2)v , x1,2 = −1
3(a′2 + c′2)v . (5.14)
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Clearly, they all pass through the fiber singularity at (x, y) over the so8 locus {v = 0}.
Moreover, as indicated by the subscripts, each section (x, y) = (xi,j , 0) intersects the fiber

singularities over two of the three su2 loci with the indices i and j.27 This identifies the first

Z2, generated by (1, 0), as coupling the Z(L)
2 factor of Z(Spin(8)) with the diagonal Z2 ⊂

Z(SU(2)1 × SU(2)3), and the second Z2, generated by (0, 1), as coupling Z(R)
2 of Z(Spin(8))

with the diagonal Z2 ⊂ Z(SU(2)2 × SU(2)3). Consistently, the Z2 generated by (1, 1), which

is not an independent subgroup, then couples the diagonal Z2 of Z(Spin(8)) with the diagonal

of Z(SU(2)1 × SU(2)2).

Multi-curve NHCs

As discussed in section 3.1, there are three multi-curve non-Higgsable clusters. For two of

them,
g2

3
su2

2 and
g2

3
su2

2 2 , (5.15)

the center 1-form symmetry is broken explicitly. Geometrically, this is reflected by the fact

that one cannot tune a non-trivial Mordell–Weil torsion without modifying the local singularity

structures [22]. In the remaining NHC,
su2

2
so7

3
su2

2 , (5.16)

the diagonal Z2 ⊂ Z(SU(2)× Spin(7)× SU(2)) ∼= (Z2)3 is the only one that does not induce

fractional string charges. Geometrically, one can indeed tune a Z2 torsional section in the

elliptic fibration without modifying the local singularity structure [22]. Globally, we would

find (on a generic base) at least another su2 gauge algebra; this is necessary to cancel the

fractional string charges associated to tensor from other curves that are non-compact in the

local limit and hence decouple from the field theory perspective.

5.2 Anomaly Cancellation in Generic Torsion Models

It is amusing to consider these constraints for generic F-theory models with Mordell–Weil

torsion [60]. For simplicity, we focus on models with a single Zn factor. On a generic smooth

base (that is, no singularity enhancement beyond the ones induced by the torsional section),

these models have the following non-Abelian gauge algebras g on divisor classes Dg, which we

denote by (g, Dg):

Z2 :
(
su2, 4KB

)
, Z3 :

(
su3, 3KB

)
, Z4 :

(
su4, 2KB

)
,
(
su2,KB

)
,

Z5 : 2×
(
su5,KB

)
, Z6 :

(
su6,KB

)
,
(
su3,KB

)
,
(
su2,KB

)
.

(5.17)

27The su2 fiber singularities are (x, y) =
(
− c′2v

3
, 0
)

for su2,1 over {a′2 = 0}, (x, y) =
(
− a′

2v

3
, 0
)

for su2,2 over

{c′2 = 0}, and (x, y) =
( c′2v

3
, 0
)

for su2,3 over {a′2 = c′2}.
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Aside from the first two cases (Z2 and Z3), the other models all have non-minimal singularities

at the intersections of the gauge divisors Dg. By blowing up these points, one finds only

massless hypermultiplets in the adjoint representations of each gauge factor [109] (this holds

for the first two cases without the need of blow-ups), so it appears that the full center is

preserved in each case. However, only the subgroup that is isomorphic to the Mordell–Weil

group Zn has no obstruction to be gauged.

Namely, with a non-trivial Zn 1-form symmetry background, there would be fractionally

charged strings under the tensor associated to an integer divisor DB, if∑
g

k2
g αGDB ·Dg /∈ Z . (5.18)

Here, kg ∈ Z denotes a possible twist of the Zn embedding inside Z(G), that is, the Zn
background field C2 is kgw2, where w2 is the second SW class of G/Z(G). This immediately

shows that there is no obstruction for Z2 and Z3:

Z2 : k2αSU(2)DB ·Dsu2 = k2

4 · 4DB ·KB = k2DB ·KB ∈ Z ,

Z3 : k2αSU(3)DB ·Dsu3 = k2

3 · 3DB ·KB = k2DB ·KB ∈ Z ,
(5.19)

because DB must be an integer class.

For higher sum, the embedding depends on which codimension-one fiber component of

the affine g Dynkin diagram is intersected by the generating Zn section. For Z4, a suitable

resolution has been performed in [109], revealing that the generating Z4 section intersects

the first non-affine su4 node and the (unique) non-affine su2 node. This suggests that the

Z4 Mordell–Weil group corresponds to the “diagonal” Z4 ⊂ Z(SU(4) × SU(2)) ∼= Z4 × Z2,

generated by (1, 1), and therefore has ksu4 = 1. Then, there is no ambiguity given by (3.25),

(αSU(4) · 2KB + αSU(2) ·KB) ·DB =
(
2 · 3

8 + 1
4

)
KB ·DB ∈ Z , (5.20)

allowing for a gauging of this Z4 1-form symmetry, as indicated geometrically by the presence

of Mordell–Weil torsion. For the Z5 model, the obstruction would be

(k2
1 + k2

2)αSU(5)KB ·DB =
2(k2

1 + k2
2)

5
KB ·DB , (5.21)

which is trivial if k2 = 2k1. We leave a verification of this relation on threefolds for the future,

but remark that, since it is a intersection of sections with codimension one fibers, the structure

should be the same as for K3 surfaces which indeed satisfy a similar relationship [110]. For

the Z6 model, there is, similar to the Z4 case, no ambiguity for the twist in SU(6), which must

be k = 1. Then, the obstruction is again trivial:(
αSU(6) + αSU(3) + αSU(2)

)
KB ·DB =

(
5
12 + 1

3 + 1
4

)
KB ·DB ∈ Z . (5.22)
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Note that in the cases Z4, Z5, and Z6, the remainder of Z(G), whose 1-form background

field would induce fractional string charges, is explicitly broken, in accordance of our findings

in Section 4. This breaking is again due to the presence of E-strings, which come from the

blow-up divisors that remove the loci in B with non-minimal fiber singularities.

5.3 Global Structure of Flavor Symmetries of SCFTs

In this section, we consider the interplay of Mordell–Weil torsion and conformal matter (CM)

theories, which unlike non-Higgsable clusters have 0-form flavor symmetries.

First, we revisit the example (3.15). We denote the (−6)-curve by {u = 0}, the (−3)-curve

by {v = 0}, and the (−1)-curve by {e = 0}. Then the corresponding Weierstrass model is

f = f̃ e u3v2 , g = g̃ u4v2 , ∆ = u8v4(4f̃3e3u v2 + 27g̃2) , (5.23)

where {g̃} does not intersect any of the three compact curves. By setting f̃ ≡ 0, and g̃ = a2
3

for suitable a3, we see, first, from

∆ = 27a4
3u

8v4 , (5.24)

that the local singularity structures over {u = 0}, {v = 0} and {e = 0} are not modified, since

{a3 = 0} does not intersect these curves either. Second, we find in the Weierstrass equation

y2 = x3 + a2
3u

4v2 two points of inflection (which are Z3 torsional points of opposite sign, see,

e.g., [111]) (x, y) = (0,±a3u
2v), making the Z3 1-form symmetry manifest.

We can now consider a decompactification of the (−6)- and (−3)-curves. In this case, the e6

and su3 become flavor algebras of a single E-string on {e = 0}. Since the Z3 1-form symmetry

was the diagonal center of these two algebras, what remains in the decompactification limit is a

non-trivial global structure of the flavor symmetry, namely [E6×SU(3)]/Z3. This is consistent

with the fact that the flavor symmetry of the E-string must be a subgroup of E8. Therefore,

the breaking pattern of e8 into maximal subalgebras come in general with non-trivial global

structure, e.g., the Z3 quotient in case of e8 → e6⊕ su3. Similarly, one also finds a compatible

Z2-torsional section in the case of an e7⊕su2 collision, or a Z5-torsion in case of su5⊕su5 [22].

Another example we discussed previously was the (E6, E6) CM, for which the anomaly is

non-trivial. However, let us suppose for the moment that we gauge the two E6 flavor symmetry

factors. To keep the notation in (3.13), we label the tensors associated to the e6 factors by

B0 and B4. Furthermore, let us denote the self-intersection numbers of the e6 divisors by n(0)

and n(4), respectively. Then, we can consider the diagonal Z3 ⊂ Z3
3 = Z(E6 × SU(3) × E6),
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whose 1-form background field gives a contribution to the action as

1
2πS ⊃

∫
M6

P(C2)∪(
− n(0)αE6 B

0 + (αE6 + αSU(3)︸ ︷︷ ︸
=1

)B1 + 3αSU(3)B
2 + (αSU(3) + αE6︸ ︷︷ ︸

=1

)B3 − n(4)αE6B
4
)
,

(5.25)

which is integral provided the self-intersection numbers n(0) and n(4) are multiples of three.

E.g., if n(0) = n(4) = −6, in which case the two e6’s are non-Higgsable, one ends up with the

6d SCFT

e6
6 1

su3

3 1
e6
6 (5.26)

which has a Z3 1-form symmetry. Then, the conformal matter model can be thought of as the

limit in which the (−6)-curves decompactify.

The local Weierstrass model is a transverse collision of two e6 singularities over {u = 0}
and {v = 0},

f = f̃ u3v3 , g = g̃ u4v4 , ∆ = u8v8(4f̃3 u v + 27g̃2) , (5.27)

where g̃ does not vanish on {u = 0} and {v = 0}. Blowing up u = v = 0 and any subsequent

non-minimal singularities yields the above tensor branch,

u=0
6

e1=0
1

e2=0
3

e3=0
1

v=0
6 , (5.28)

where the upper labels denote the local coordinates. The Weierstrass model (with only minimal

singularities) then is

f = f̃ e1e
2
2e3 u

3v3 , g = g̃ e2
2 u

4v4 , ∆ = e4
2u

8v8(4f̃3uve3
1e

2
2e

3
3 + 27g̃2) . (5.29)

Note that for consistency, prior to blowing up, {u = 0} and {v = 0} have self-intersection

(−4). Since the theory has a Z3 center whose background field does not induce fractional string

charges, the fibration should have a local Z3 torsional section. To make it explicit, we can

again set f̃ ≡ 0 and g̃ = a2
3 for suitable a3, which clearly does not change the local singularity

structure, hence also not the blown-up curve configuration. In this case, the generic elliptic

fiber (after base blow-up) takes the form,

y2 = x3 + a2
3 e2u

4v4 , (5.30)

with a Z3-torsional section at (x, y) = (0, a3 e2u
2v2). Note that the section passes through the

fiber singularity in the e6 (u = 0 and v = 0) and su(3) (e2 = 0) fibers, which is consistent with

the fact that the unobstructed Z3 center is the diagonal of Z(E6 × SU(3)× E6).
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Decompactifying the two e6 divisors, the surviving Z3 center is now a mix of the centers of

gauge and flavor algebras. This can be interpreted as a non-trivial global structure of the flavor

symmetry [15], which for the (E6, E6) conformal matter is [E6 × E6]/Z3. The existence of a

geometric description with a Z3 torsional section agrees with the field theoretic computation

that there are no inconsistencies for this global symmetry. Note that this statement is a priori

based on a tensor branch analysis, however, we expect this global symmetry, including its

non-trivial global structure, to persist at the SCFT point. It would be interesting to study

this through ’t Hooft anomalies with other possible higher-form symmetries of the theory.

6 Conclusions and Outlook

In this work we have studied discrete 1-form symmetries in 6d N = (1, 0) theories that act as

a subgroup Z ⊂ Z(G) of the center of a non-Abelian gauge symmetry G =
∏
j G

j . We have

focused on the interplay between this discrete higher-form center symmetry and the (gauge)

U(1) 1-form symmetries of (dynamical) tensor fields Bi arising from the Green–Schwarz–West–

Sagnotti coupling (2.8). In the presence of a background field for the center 1-form symmetry

of the gauge factor Gj , specified by a Z(Gj)-valued 2-cocycle Cj2 , the GSWS coupling leads

to a term

S ⊃ 2πiΩij

∫
M6

Bi ∪ αjGP(Cj2) . (6.1)

If this term is fractional, it induces fractional charges on BPS strings present in the 6d theory,

which are not allowed by Dirac quantization. Thus the 1-form center symmetry cannot be

realized by the theory. We have also verified this a posteriori by finding charged, massive

string excitations. Therefore, this provides a reliable low-energy criterion predicting when a

1-form symmetry is present or broken by non-perturbative BPS string states.

We have also studied this in explicit examples of 6d theories, varying from SCFTs on their

tensor branches, to little string theories, to 6d supergravity theories. In these examples, we

find a common feature: when there is an induced fractional charge due to 1-form symmetry

background, there are also dynamical strings carrying (in general massive) excitations charged

under the center, thus explicitly breaking it. This is reminiscent of what happens in the

(partial) Coulomb branch of 5d theories, where integrating out massive W-bosons generates

Chern–Simons couplings. In fact, by reducing the tensor branch theory on a circle, we find

similar mixed anomalies between the center 1-form symmetries and the U(1) (0-form) gauge

symmetries, which originates in 5d from Chern–Simons couplings to which the GSWS coupling

reduces under compactification. This agrees with recent discussion about discrete higher-form

symmetries in 5d N = 1 theories [33,34].
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Particularly interesting are theories coupled to gravity, where the above observation fits

into a larger web of swampland criteria. To begin with, the absence of global symmetries in

consistent quantum gravity theories [48,51–53] implies that the center symmetries need to be

either broken or gauged. On the other hand, a gauged (sub-)center Z means that the gauge

group is G/Z, which in turn has a different charge lattice than a theory with gauge group

G. Combined with the completeness hypothesis [50], it follows that in case there is a non-

trivial induced fractional charge for Z obstructing its gauging, there has to be states in the

charge lattice of G which transform non-trivially under Z. In our examples, we have shown

that these states are precisely the excitations of BPS strings that must exist in a consistent

6d supergravity theory. Note that the analogous states have also been shown to ensure the

validity of the Weak Gravity Conjecture [94,95] in 6d N = (1, 0) theories.

Furthermore, we have studied the mixed anomalies in models that arise from F-theory

compactifications on elliptic Calabi–Yau threefolds with Mordell–Weil torsion Z. The latter

is known to induce a gauge group of the form G/Z [60, 61], thus imposing the gauging of a

1-form Z symmetry. We have found in examples that the geometry guarantees the absence

of all mixed anomalies associated with Z. Oftentimes, this is achieved due to non-trivial

cancellations between different gauge factors of G =
∏
j G

j enforced geometrically by the

presence of the Mordell–Weil torsion.

Turning tables around, we can view these ambiguities as a sort of novel swampland-type

constraint for theories with non-trivial gauge group structures G/Z, or equivalently, gauged

0- and 1-form symmetries G and Z. Indeed, it has been previously pointed out that the

geometry forbids certain combinations of G and Z in F-theory compactifications [109]. For

example, one could have naively expected that a Z = Z4 center symmetry can be embedded

inside an G = SU(4) gauge theory. However, the generic F-theory model with Z = Z4

has G = SU(4) × SU(2), which, as we have shown, leads to a non-trivial cancellation for

the anomalous phases associated with Z4. Moreover, since local (gauge) anomalies in 6d

are particularly restrictive, these might conspire with the 1-form anomalies to rule out the

possibility to have an SU(4)/Z4 consistently coupled to gravity by itself. We leave a more

thorough analysis along these lines for future work.

It would also be interesting to better understand the role of Mordell–Weil torsion in local

F-theory models which engineer tensor branch descriptions of SCFTs. As shown in [22], one

can sometimes modify the elliptic fibration to explicitly exhibit torsion Z without affecting

the local singularity structure that characterizes the SCFT. This means that it is possible to

freely turn on the Mordell–Weil torsion without changing the resulting SCFT, and we have

shown that this is consistent with the necessary condition to have a combination consistent
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with Dirac quantization of the BPS strings including the center group of flavor symmetries,

which can be gauged. This is an indication that the true flavor symmetry of the SCFT is

the one which is modded out by this redundancy. This geometrically allows us to predict the

global structure of the flavor symmetry of the 6d SCFT.

It is known that one can use analogous geometric deformations, corresponding to vac-

uum expectation values of operators which are irrelevant in the UV, to make 0-form global

symmetries geometrically manifest on the tensor branch of an SCFT [107, 108]. More gener-

ally, these deformations are related via dualities to non-trivial gauge backgrounds in F-theory

compactifications [112–115]. Therefore, a similar interpretation for 1-form symmetries might

emerge by studying the relationship to non-commuting flux backgrounds of F-theory com-

pactifications, parallel to the discussion for 5d/4d theories from M-theory/IIB on Calabi–Yau

threefolds [33,34,44,116], which in turn determines the defect group structure formed by the

1-form electric and 3-form magnetic symmetries.

An interesting case to investigate would be when the there are non-dynamical tensor Bi

which can couple to continuous U(1) 1-form 1-form symmetries. This indeed could happen for

LST models as seen above, see also [21], with an interplay between this continuous U(1) and

the discrete 1-form symmetry coming from the center of non-Abelian 6d gauge theories (if not

broken by the matter or any other state), which effectively describe the LSTs at low energies.

It would be interesting to understand the obstructions to gauging these two symmetries, which

in a way could be technically similar to the obstructions to activating a non-trivial background

for the center 1-form symmetries encountered in this paper. For this case, it is possible that

the transformations mix, leading to generalized structures for the 1-form symmetry group.

Another important aspect that we left out is the presence of U(1) gauge symmetries in

supergravity models, and 1-form center symmetries Z ⊂ Z(G×U(1)) that embed non-trivially

into the U(1). In the absence of any non-Abelian factor G and any dynamic charged states,

one would expect a U(1) 1-form symmetry. It would be interesting to investigate these model

further, and eventually understand how they are broken or gauged.

More generally, there are also other discrete higher-form symmetries, e.g., the 2-form

symmetries that form the defect group for the strings [28]. It would be interesting to study

a possible gauging of these, as well as the 1-form symmetries, and understand whether they

can combine in an higher group structure or not.

As we have mentioned in section 3.4 it seems that one can restore global higher-form

symmetries in certain limits of the geometry. However, at these points in moduli space one

also expects a tower of light states, which potentially can be related to string excitations in

the effective theory [63,95]. It is therefore of interest to study the detailed connection between
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the charged string states breaking the center 1-form symmetries and the infinite distance

swampland criteria. It is further plausible that the relation and mixing between different

global symmetries arising at infinite distance can lead to a higher-group structure [21,117].
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A More on Counterterms

It is possible to understand the 1-form symmetry in a more local fashion related to the con-

tinuum description of the anomalies discussed in section 2. This was done in [11, 12, 71] by

embedding the sun theory into a un theory and gauging (part of) the U(1) 1-form symmetry.

A similar approach can be taken for other gauge algebras by embedding the twists of the bun-

dles into su2 subalgebras as demonstrated in [15]. We have briefly summarized the continuum

approach in section 2.4 applied to 6d weakly coupled theories in the case of SU(N) gauge

group with a Z(SU(N)) = ZN 1-form center symmetry. We further elaborate on the role of

counterterms.

As in section 2 we introduce a non-trivial background for the center 1-form symmetry

parametrized by a 2-form C2 with values in ZN . The continuum description introduces a

continuous U(1) gauge field C, and the relation to C2 is given as28

NC2 = dC . (A.1)

In the following we will only work in terms of the local fields. The 1-form (background) gauge

transformation acts as [11,12]

C2 → C2 + dλ , C → C + df +Nλ , (A.2)

where λ is a U(1) gauge field and the scalar f is related to standard gauge transformations

of C. The U(1) gauge field can also be understood as the Abelian part in an U(N) bundle

28Note that we do not include the factor of 2π as in [12], since we rescale the continuum field such that, e.g.,∮
dC1 ∈ Z. This also modifies some of the prefactors in the counterterms below.
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parametrized by the connection A′, see [11,12]. In terms of the U(N) connection the relevant

parts in the action, including the Stückelberg term (2.44) as discussed in section 2.4, is

1
2πS ⊃

∫
M6

(
B ∧ c2(F ′)− N(N−1)

2 B ∧ C2 ∧ C2 + u4 ∧
(
Tr(F ′)−NC2

))
, (A.3)

where we expressed everything in terms of C2. We can add a counterterms of the type

1
2π∆S =

∫
M6

−pB ∧
(

1
N u4 − C2 ∧ C2

)
, (A.4)

where p is an integer coefficient.29 This term is invariant under (A.2) provided that u4 shifts

under the 1-form symmetry as follows,

u4 → u4 + 2Ndλ ∧ C2 +Ndλ ∧ dλ . (A.5)

Evaluating the equation of motion for C2, one finds

u4 = −(N − 1)B ∧ C2 + 2 p
NB ∧ C2 + 1

N dC3 . (A.6)

By fixing the value of p = N(N−1)
2 we can get rid of the term proportional to B ∧ C2. This

implies that dC3 is integer valued and u4 = 1
N dC3. Plugging this back into the topological

action (A.3) above, one can eliminate C2 and find

1
2πS ⊃ B ∧ c2(F ′) + 1

N dC3 ∧ tr(F ′)− (N−1)
2N dC3 ∧B . (A.7)

We have seen that by fixing the gauge invariant counterterm (A.4) and gauging the 1-form

symmetry by making C2 dynamical, the gauge group becomes SU(N)/ZN , and we have arrived

at a formulation where u4 is the background field for the 3-form symmetry valued in ZN .

Applying this to a general 6d theory in the tensor branch, we still have an anomalous

phase coming from the shift of the dynamical B, but now mixing with the background field

for the 3-form symmetry u4,

A(bi2, u
j
4) ≡ 2πΩij α

j
G

∫
M6

bi ∪ uj4 . (A.8)

where u4 can be viewed as a 4-cocycle valued in ZN . This implies now that it is not consistent

to couple activate a non-trivial background for uj4. Accordingly, this suggests the presence

of massive magnetically charges states. It is an interesting question to find their explicit

realizations string theory setups.

29We can also try to add something which is not invariant under the 1-form symmetry shift. This might
eliminate the anomaly coming from the shift of the dynamical field B, however at the same time these coun-
terterms introduce operator B dependent ambiguities of the partition function, which are both ABJ and mixed
anomalies. In this work we chose counterterms such that the operator dependent anomalies are absent.
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One can further add a local counterterm which is proportional to dC ∧ dC ∧ dC with an

appropriately normalized coefficient. This additional counterterm would further shift u4 as

∆u4 ∝ C2 ∧ C2 , (A.9)

which modifies the relation between the electric and magnetic symmetry.

B Circle Reduction and Massive States

In this appendix we briefly discuss the 5d perspective of the anomalous shift involving a non-

trivial background for the center 1-form symmetries of the theory. The 5d perspective is indeed

useful to support that the GSWS coupling comes from integrating out some massive states.

It is believed that a 6d tensor multiplet defines a non-Abelian tensor when its tensor scalar

〈φi〉 = 0. This reduces to a non-Abelian gauge theory in 5d, which breaks into its Cartan

U(1)iT6d
when 〈φi〉 6= 0. The W-bosons of this gauge theory are in general also charged under

the vector fields Aj of Gj , which can inherit the 1-form symmetries from 6d. The Chern–

Simons coupling (2.36) between U(1)iT6d
and Gj then comes by integrating out these massive

W-bosons [40,41].

As a simplified example, let us consider a 5d theory constructed via M-theory on a local

Calabi–Yau threefold that is the normal bundle of F1 ∪ F1 ≡ S1 ∪ S2 — two Hirzebruch-1

surfaces glued along a common (−1)-curve. In the singular limit, where we shrink the P1

fiber of both surfaces, it realizes an effective SU(3) gauge theory with Chern–Simons level

0 [118]. Blowing-up one surface, say S1, makes one set of W-bosons of the SU(3) massive,

leading to an effective SU(2)×U(1) theory, where the SU(2) would have an Z2 1-form center

symmetry. This symmetry is explicitly broken by the massive W-bosons, as they have charge

1 under the SU(2) Cartan, thus effectively being fundamental states. While these states are

integrated out at low energies, their presence is in the coefficient of the Chern–Simons term

AU(1) ∧ Tr(FSU(2) ∧ FSU(2)). It is determined by the triple intersection number S1 · S2
2 = −1,

which yields the coupling (with normalization 1
4Tr(F 2) for the instanton density)

1
2πS ⊃

∫
M5

−A1
U(1) ∧

1
4Tr(FSU(2) ∧ FSU(2)) . (B.1)

This induces a non-trivial shift in 5d analogous to the one we analyze, see [17].

C Finite and Infinite Distance for Hirzebruch Surfaces

In this appendix we briefly comment on the different degenerations of Hirzebruch surfaces

with focus on limits in which one of the curve volumes goes to zero.
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The volumes of curves in the base manifold are controlled by the vacuum expectation

values of the scalars in the tensor fields, whereas the overall volume V is determined by a

hypermultiplet. In the following we set

V = 1
2

∫
B
J ∧ J = −1

2 Ωij φ
iφj = 1 , (C.1)

where we decomposed J = φiωi and ωi the harmonic 2-forms dual to the 2-cycle classes. Under

this condition the Hirzebruch surfaces Fn only have a single undetermined modulus:

2 = −n(φ1)2 + 2φ1φ2 ⇒ φ2 = 1
φ1 + n

2φ
1 . (C.2)

The metric on the moduli space is given by the kinetic matrix in the tensor sector,

gij = φiφj + Ωij . (C.3)

For the Hirzebruch surfaces this is given by

gij =

(
1
4n

2(φ1)2 + 1
(φ1)2 −1

2n(φ1)2

−1
2n(φ1)2 (φ1)2

)
, (C.4)

and one can measure the distance s in field space by (see also [63,119])

s(φ1
i , φ

1
f ) =

∫ φ1
f

φ1
i

(
gij dj

idjj
)1/2

=

∫ φ1
f

φ1
i

√
2 dφ1

φ1
, (C.5)

where, since there only is a single modulus, the distance is uniquely defined. The situation

complicates in the presence of multiple moduli fields for which the distance is path dependent,

and infinite distance points are points for which every possible path has infinite length.

We are interested in limits in which one of the curves goes to infinite volume. Denoting

the self-intersection (−n) curve by Cn and the self-intersection (0) curve by C0 one has

vol(Cn) =

∫
Cn

J = φ1 = 1
φ1 − n

2φ
1 , vol(C0) =

∫
C0

J = φ2 = φ1 . (C.6)

One sees that the point in moduli space where Cn has zero volume is given by

φ1 =
( 2

n

)1/2
, (C.7)

at which C0 remains of finite size. Moreover, this point is a finite distance away from a generic

point on the tensor branch indicating that the SCFT limit is at finite distance. However, there

is also an infinite distance limit for j1 → 0+, in which case the volume of C0 vanishes and the

volume of Cn diverges.
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Note that even though one could be tempted to regard the latter as a little string theory

limit, since the remaining intersection matrix has a single zero eigenvalue, this is not correct.

In the LST limit gravity is decoupled but there is still a scale in the theory [23–25] which

parametrizes the finite string tension. Therefore, one should regard the LST limit as a limit

in which one simultaneously scales up the overall volume V while keeping the volume of the

curve C0 fixed. The limit described above with vol(C0) → 0 also has a nice interpretation in

terms of a dual heterotic string as discussed in [63,94,96].

D Explicit resolution

The explicit resolution of the Z3-torsion model on F3 can be computed via methods described

in [120]. For that, we express the elliptic fibration in Tate form, x3 − y2 + a1xyz + a2x
2z2 +

a3yz
3 + a4xz

4 + a6z
6 = 0, where ai is a section of K

⊗i
. Then, to tune a Z3 Mordell–Weil

group, one sets a2 = a4 = a6 = 0 [60]. Furthermore, since on an F3, a1 = a′1v and a3 = a′3v,

we have

x3 − y2 + a′1vxyz + a′3vyz
3 = 0 . (D.1)

This fibration has two rational sections given by the intersection with x = 0:

τ : (x, y, z) = (0, 0, 1) and ρ : (x, y, z) = (0, a′3v, 1) . (D.2)

They are conjugate to each other with respect to the Z3 group law.

The fibration also has singularities at x = y = v = 0 and x = y = a′3 = 0. To resolve

these, we have to introduce two blow-ups for each singularity. Let us denote the blow-ups at

x = y = v = 0 by v1 and v2, and those at x = y = a′3 = 0 by u1 and u2, then the resolved

Calabi–Yau is the hypersurface

P := x3 u1 v1 − y2 u2 v2 + a′1 x y z v v1 v2 + a′3 y z
3 v = 0 , (D.3)

with the following Stanley–Reisner (SR) ideal for the ambient space:

{u1z, u2z, v1z, v2z, u1v, u2v, u1y, v1y, u1v1, u2v1, xyz, xyv, xvv2, a
′
3xy, xu0u2} . (D.4)

The exceptional divisors v1,2 and u1,2 are fibered over {v = 0} and {a′3 = 0} in the base,

respectively.

Because of the SR-ideal, the section τ intersects the P1-fibers of the exceptional divisors

{v2 = 0} and {u2 = 0}. For the Mordell–Weil group law to be compatible with the fiber

structure, ρ mus then intersect the other two exceptional fibers, i.e., {v1 = 0} and {u1 = 0}.
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This means that the Shioda-map [90, 121], which is a divisor class ϕ(s) = [s] − [σ0] + ... that

intersects none of the exceptional divisors, must take the form

ϕ(τ) = [τ ]− [σ0] +
1

3
(D

(1)
1 + 2D

(1)
2 +D

(2)
1 + 2D

(2)
2 ) + π−1(DB) ,

ϕ(ρ) = [ρ]− [σ0] +
1

3
(2D

(1)
1 +D

(1)
2 + 2D

(2)
1 +D

(2)
2 ) + π−1(D′B) ,

(D.5)

with the divisor classes D
(1)
1,2 = [v1,2] and D

(2)
1,2 = [u1,2], and σ0 the zero section. To infer the

vertical parts π−1(DB) and π−1(D′B), we first note that the Shioda-map of a torsional section

must be trivial in homology [61], implying

[τ ] = [σ0]− 1

3
(D

(1)
1 + 2D

(1)
2 +D

(2)
1 + 2D

(2)
2 )− π−1(DB) ,

[ρ] = [σ0]− 1

3
(2D

(1)
1 +D

(1)
2 + 2D

(2)
1 +D

(2)
2 )− π−1(D′B) .

(D.6)

Then, in the ambient space, we can use the homology relation

[x] = 2K + 2[z]−D(1)
1 −D

(1)
2 −D

(2)
1 −D

(2)
2 , (D.7)

with K the pullback of the anti-canonical bundle of the base K to the ambient space, which

is also fibered over B = F3. Since {x = 0} restricts to the two Z3 sections τ and ρ, they must

sum to the restriction of the above class to {P = 0}, with [z]|{P} = [σ0] the zero section. This

implies that π−1(DB) + π−1(D′B) = −2π−1(K). Because the sections are “symmetric” with

respect to the base, we must have π−1(DB) = π−1(D′B) = −π−1(K).
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[15] C. Córdova, D. S. Freed, H. T. Lam and N. Seiberg, Anomalies in the Space of

Coupling Constants and Their Dynamical Applications II, SciPost Phys. 8 (2020) 002,

[1905.13361].
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[83] J. Eckhard, S. Schäfer-Nameki and Y.-N. Wang, Trifectas for TN in 5d, JHEP 07

(2020) 199, [2004.15007].

[84] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories,

Nucl. Phys. B 529 (1998) 180–206, [hep-th/9712145].

59

http://dx.doi.org/10.1093/ptep/pty069
https://arxiv.org/abs/1803.07366
http://dx.doi.org/10.1007/JHEP06(2011)001
http://dx.doi.org/10.1007/JHEP06(2011)001
https://arxiv.org/abs/1103.0019
http://dx.doi.org/10.21468/SciPostPhys.7.5.058
https://arxiv.org/abs/1805.02772
http://dx.doi.org/10.1007/JHEP05(2013)124
https://arxiv.org/abs/1303.2661
http://dx.doi.org/10.1007/JHEP09(2017)147
https://arxiv.org/abs/1703.02981
http://dx.doi.org/10.1007/JHEP05(2019)187
https://arxiv.org/abs/1811.12400
http://dx.doi.org/10.1007/JHEP11(2019)068
http://dx.doi.org/10.1007/JHEP11(2019)068
https://arxiv.org/abs/1907.05404
https://arxiv.org/abs/1912.04264
https://arxiv.org/abs/1809.01650
https://arxiv.org/abs/2005.01722
https://arxiv.org/abs/1909.11666
https://arxiv.org/abs/1906.11820
http://dx.doi.org/10.1007/JHEP07(2020)199
http://dx.doi.org/10.1007/JHEP07(2020)199
https://arxiv.org/abs/2004.15007
http://dx.doi.org/10.1016/S0550-3213(98)00355-1
https://arxiv.org/abs/hep-th/9712145
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[111] F. Baume, M. Cvetič, C. Lawrie and L. Lin, When rational sections become cyclic —

Gauge enhancement in F-theory via Mordell-Weil torsion, JHEP 03 (2018) 069,

[1709.07453].

[112] G. Curio and R. Y. Donagi, Moduli in N=1 heterotic / F theory duality, Nucl. Phys. B

518 (1998) 603–631, [hep-th/9801057].

[113] R. Donagi, Heterotic / F theory duality: ICMP lecture, in 12th International Congress

of Mathematical Physics (ICMP 97), pp. 206–213, 2, 1998. hep-th/9802093.

61

http://dx.doi.org/10.1007/JHEP01(2018)157
https://arxiv.org/abs/1706.08521
https://arxiv.org/abs/2008.10605
https://arxiv.org/abs/1806.01854
http://dx.doi.org/10.22323/1.305.0020
https://arxiv.org/abs/1809.00012
http://dx.doi.org/10.1016/S0920-5632(97)00422-2
http://dx.doi.org/10.1016/S0920-5632(97)00422-2
https://arxiv.org/abs/hep-th/9607139
http://dx.doi.org/10.1016/S0550-3213(98)00426-X
https://arxiv.org/abs/hep-th/9802168
http://dx.doi.org/10.1112/S0010437X03000381
http://dx.doi.org/10.1007/JHEP07(2016)005
https://arxiv.org/abs/1510.08056
http://dx.doi.org/10.1007/JHEP03(2018)163
https://arxiv.org/abs/1711.05155
http://dx.doi.org/10.1007/JHEP04(2020)103
https://arxiv.org/abs/1910.04095
http://dx.doi.org/10.1007/BF01214900
http://dx.doi.org/10.1007/JHEP03(2018)069
https://arxiv.org/abs/1709.07453
http://dx.doi.org/10.1016/S0550-3213(98)00185-0
http://dx.doi.org/10.1016/S0550-3213(98)00185-0
https://arxiv.org/abs/hep-th/9801057
https://arxiv.org/abs/hep-th/9802093


[114] K. Intriligator, H. Jockers, P. Mayr, D. R. Morrison and M. Plesser, Conifold

Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes, Adv. Theor.

Math. Phys. 17 (2013) 601–699, [1203.6662].

[115] L. B. Anderson, J. J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014)

080, [1310.1931].
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