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Abstract1

We consider a toy model for emergence of chaos in a quantum many-body2

short-range-interacting system: two one-dimensional hard-core particles in a3

box, with a small mass defect as a perturbation over an integrable system,4

the latter represented by two equal mass particles. To that system, we apply5

a quantum generalization of Chirikov’s criterion for the onset of chaos, i.e.6

the criterion of overlapping resonances. There, classical nonlinear resonances7

translate almost verbatim to the quantum language. Quantum mechanics in-8

tervenes at a later stage: the resonances occupying less than one Hamiltonian9

eigenstate are excluded from the chaos criterion. Resonances appear as con-10

tiguous patches of low purity unperturbed eigenstates, separated by the groups11

of undestroyed states—the quantum analogues of the classical KAM tori.12
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1 Introduction25

The celebrated Chirikov resonance-overlap criterion [1, 2] constitutes a simple analytic26

estimate for the onset of chaos in an integrable, deterministic Hamiltonian system weakly27

perturbed from integrability. This criterion can be considered as a heuristic and intuitive28

precursor to the rigorous Kolmogorov-Arnold-Moser (KAM) theorem [3–5] that serves29

the same purpose for classical systems. A quantum version of the KAM theorem remains30

elusive, in spite of a body of numerical and experimental attempts to address the quantum31

integrability-to-chaos transition [6–10]. However, the Chirikov criterion has yielded to32

quantum formulation [9, 11–14].33

Here we apply the quantum Chirikov criterion to a simple two-dimensional system: two34

one-dimensional hard-core particles in a box, with a small mass defect. This mass defect35

is treated as a perturbation over the integrable system with two equal-mass particles.36

In [15] it has been found that in a many-body case, relaxation in a one-dimensional two-37

mass mixture occurs in a few collisions per particle, similarly to a multidimensional gases of38

hard-core spheres. On the other hand, by analogy with other few-body toy models [16], this39

two-body model allows us to estimate the relaxation threshold in a many-body setting [10].40

Traditionally, research on KAM theory avoids considering short-range interactions be-41

cause they typically lead to no chaos threshold, c.f. [17]. However, we show that in this42

quantum model the threshold for the emergence of chaos is restored even for a system43

with short-range interactions.44

2 Chirikov condition45

For two-dimensional classical systems, the Chirikov criterion [1, 2] can be formulated as46

follows. Let47

H(θ1, I1, θ2, I2) = H0(I1, I2) + ε V (θ1, I1, θ2, I2)

be the Hamiltonian of an integrable system H0 weakly perturbed by a correction εV ,48

2π-periodic with respect to both θ1 and θ2. Here I1,2 and θ1,2 are the corresponding49

canonical actions and angles, respectively. (Note that upon quantization, the actions50

I1,2 = ~n1,2 become the two quantum numbers for the eigenstates and eigenstates for the51

quantum version of H0.) Consider a resonance point (Ī1, Ī2) in the action space where52

the frequencies ω1,2 ≡ ∂H0/∂I1,2|Ī1, Ī2 of the two subsystems are in a rational relationship53

between themselves:54
ω2

ω1
=
p

q
, (1)

where p and q are assumed to be mutually prime. In the resonant approximation, the non-55

resonant terms in the double Fourier decomposition of the perturbation can be replaced56

by a constant leading to57

V (θ1, I1, θ2, I2) ≈ Vp,q(pθ1 − qθ2, I1, I2) + const.

The Hamiltonian now depends on a single function of the two coordinates, indicating58

integrability. Indeed, under a canonical transformation θ1 = (p2 + q2)−1(pθ + qθ̃), I1 =59

Ī1 + pI + qĨ, θ2 = (p2 + q2)−1(−qθ + pθ̃), I2 = Ī2 − qI + pĨ, the action Ĩ becomes the60

sought-after second integral of motion.61

For a sufficiently weak perturbation, assume the motion is bound to a narrow region62

in the action space. Accordingly, the resonant Hamiltonian emerges when the Taylor63

expansion of the terms H0 and V are truncated to the second and the zeroth order in I,64
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respectively, while Ĩ is kept at zero. The Hamiltonian becomes H ≈ H + const., where65

the resonant Hamiltonian H for the (p, q) resonance at Ī1, Ī2 has the form66

H =
I2

2J
+ εV(θ) , (2)

with 1/J = ∂2H0/∂I2
∣∣
Ī1,Ī2

and V(θ) = Vp,q(pθ1 − qθ2, Ī1, Ī2).67

In the resonant Hamiltonian (2), the linear term in I term is absent because I controls68

shifts in the action space that are tangential to the equi-energy surface. As a result, the69

time evolution generated by the Hamiltonian (2) describes a motion along the surface. A70

bounded motion trajectory, with energies E in the range E ∈ [minθ V, maxθ V] (see Fig. 1),71

occupies a finite width segment of the equi-energy surface and is called a nonlinear reso-72

nance. These bound trajectories differ qualitatively from their unperturbed counterparts,73

and they signify an appearance of the destroyed tori in the KAM theory. The unbounded74

trajectories that live outside of the E ∈ [minθ V, maxθ V] energy region remain close to75

their unperturbed versions.76

According to the Chirikov theory, each point (I1, I2) on the equi-energy surface of77

interest must be tested for belonging to a resonance. If it does not belong to any, no matter78

what p and q are, this point constitutes a mobility-limiting, impenetrable boundary on79

the equi-energy surface, analogous to a KAM torus. To the contrary, if every point in a80

particular region of the equi-energy surface belongs to at least two resonances, the whole81

region is conjectured to be chaotic.82

Under quantization, an analogous Chirikov structure is preserved, with the resonant83

Hamiltonians assuming a form84

Ĥ =
(Î + ~δ)2

2J
+ εV. (3)

The action I takes the form of an angular momentum-like operator Î ≡ −i~ ∂
∂θ and is85

quantized as I = ~m, m = 0, ±1, ±2, . . .. The additional increment ~δ is a possible86

quantum offset from the mismatch of the quantized unperturbed states and the resonant87

equi-energy surface. One would further expect that quantization induces a quantum post-88

selection of the resonances eligible to enter the Chirikov criterion. Indeed, it may so89

happen that for a given p and q, the energy range [minθ V, maxθ V] contains one or fewer90

eigenstates of I: such resonance must be discarded as nonexistent (see Fig. 1). The91

Chirikov criterion for the onset of chaos must be modified accordingly.92

3 Quantum two-particle model93

In this article we find that for a particular dynamical system—two one-dimensional hard-94

core particles with slightly different masses in a box—this hypothesized logic for quantum95

version of the Chirikov condition exactly follows this minimal extension of the classical96

condition. We see the onset of chaos, as observed by the onset of Wigner-Dyson statistics97

for the energy level, occur where the mass difference (considered as a perturbation) crosses98

the threshold given by the quantum Chirokov condition and and the quantum analogs of99

the classical KAM tori are broken; c.f. Fig. (2). See the Appendix for a Chirikov analysis100

of a classical analogue of our system.101

Consider the two one-dimensional hard-core particles of masses and M2 > M1, with102

coordinates x1 ≤ x2, moving in a hard-wall box of size L. This system is often recast as a103

right triangular billiard (see, e.g., [18]), where after a change of variables, a two-dimensional104
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Figure 1: A schematic view of the Chirikov criterion for the onset of chaos (see text). For
three resonances (p, q), (p′, q′), (p′′, q′′) on an equi-energy surface, the effective resonant
Hamiltonian for bound states and the non-linear resonances are depicted. The parabolas
signify the unperturbed energy along a line tangential to the equi-energy surface with
energy E at the resonance point. The horizontal coordinate, I

√
p2 + q2 (see (2) for the

meaning of the resonance action I), is chosen in such a way that the distance between two
points on the tangential line is equal to the distance between their counterparts on the
(n1, n2) plane. For a classical system, these three resonances would constitute a fragment
of a chaotic region by the Chirikov criterion because the non-linear resonances overlap. In
the quantum version of the system, the two resonances (p, q) and (p′′, q′′) contain more than
one unperturbed energy eigenstate that survive quantization (represented by black dots).
However, they are separated by a (p′, q′) resonance that contains one or fewer unperturbed
eigenstates, meaning that this resonance disappears under quantization. Therefore, in
contrast to the classical system, for the quantum system the resonances (p, q) and (p′′, q′′)
are separated by a “KAM torus” given by the unpopulated resonance (p′, q′) and as such
remain isolated.

scalar-mass particle emerges, moving in a triangle with angles π/2, α/2, π/2 − α/2 with105

α/2 = arctan
[√

M2/M1

]
. However to frame the mass difference as a perturbation, the106

Hamiltonian107

Ĥ = Ĥ0 + ε V̂ (4a)

can be expressed in the form108

Ĥ0 =
1

2M0
(p̂2

1 + p̂2
2) (4b)

V̂ = − 1

2M0
(p̂2

2 − p̂2
1), (4c)

where p̂1,2 ≡ −i~∂/∂ x1,2 are the particle momenta, 1/M0 = 1/(2M1) + 1/(2M2), and109

ε = (M2−M1)/(M1+M2). The familiar spectrum of the unperturbed Hamiltonian (4b) has110
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eigenenergies E
(0)
(n1, n2) = T0(n2

1 + n2
2) and eigenstates Ψ

(0)
(n1, n2)(x1, x2) = φn1(x1)φn2(x2)−111

φn2(x1)φn1(x2), with φn(x) =
√

2/L sin(knx), kn = πn/L, and 1 ≤ n1 < n2. The energy112

scale T0 is given by T0 ≡ ~2π2/(2M0L
2).113

The energy-scaled matrix elements of the perturbation (4c) in the unperturbed basis114

|(n1, n2)〉115

v(n1,n2),(n′
1,n

′
2) ≡

1

T0
〈(n1, n2)|V̂ |(n′1, n′2)〉 (5)

are zero unless the sum n1 + n2 + n′1 + n′2 is odd. When the sum is odd, we find the116

expression117

v(n1,n2),(n′
1,n

′
2) =

256

π2

[
n1n

′
1n2n

′
2(n2

1 − n2
2)
(
(n′1)2 − (n′2)2

)]
/
[
(n1 + n′1 + n2 + n′2)

× (n1 + n′1 − n2 − n′2)(n1 − n′1 + n2 − n′2)(n1 − n′1 − n2 + n′2)

× (n1 + n′1 + n2 − n′2)(n1 + n′1 − n2 + n′2)

× (n1 − n′1 + n2 + n′2)(−n1 + n′1 + n2 + n′2)
]

which simplifies to the approximate result118

v(n1,n2),(n′
1,n

′
2) ≈

4

π2

N2
1 −N2

2

∆n2
1 −∆n2

2

(6)

when ∆n1,2 � N1,2 with N1,2 ≡ (n1,2 + n′1,2)/2 and ∆n1,2 ≡ n1,2 − n′1,2. Note that while119

N1,2 can be both integer and half-integer, the numbers ∆n1,2 are strictly integer.120

The perturbation (4c) breaks the integrability of H0 and the new eigenstates Ψλ of121

the full Hamiltonian (4a) obeying ĤΨλ = EλΨλ can be decomposed into sums over the122

unperturbed eigenstates Ψ
(0)
(n1, n2) using the expansion coefficients 〈λ|(n1, n2)〉 as123

Ψλ(x1, x2) =
∑

(n1, n2)

〈λ|(n1, n2)〉Ψ(0)
(n1, n2)(x1, x2).

For a sufficiently strong perturbation strength ε, there are eigenstates Ψλ of the per-124

turbed Hamiltonian (4a) that consist of broad superpositions of the unperturbed eigen-125

states Ψ
(0)
(n1, n2). Our goal is to interpret such states in terms of the nonlinear resonances126

of the Chirikov theory [1, 2]. Similarly to the classical case, we will attempt to interpret127

an overlap between the resonances as an onset of chaos.128

Let us construct the quantum analogy to a classical nonlinear resonance of order p :q by129

constructing lines of unperturbed states tangent to the equi-energy surface. Two mutually130

prime integers p and q define a ray in (n1, n2) space pointing out from the origin. Each131

unperturbed state (n1, n2) lies on a ‘resonance line’ with slope −q/p perpendicular to the132

p : q ray. The point of intersection of the resonance line through (n1, n2) with the p : q133

ray occurs at a position (n̄1, n̄2) =
(
qk/(p2 + q2), pk/(p2 + q2)

)
, where the positive integer134

k = qn1 + pn2 serves as a convenient label for the resonance line through (n1, n2). Denote135

the energy at the intersection point (n̄1, n̄2) by Ē = T0k
2/(p2 + q2) ≡ T0n̄

2.136

Generally, a resonance line intersects multiple unperturbed states. If (n1, n2) is on137

resonance line k, then so is (n1 + pj, n2 − qj) for all integers j such that the constraints138

0 < n1 < n2 are fulfilled. Denote the unperturbed state on resonance line k that is closest139

to the p : q ray by (n∗1, n
∗
2) = (n̄1 + δp, n̄2 − δq) and the other states on resonance line140

k by (n∗1 + mp, n∗2 − mq). The increment δ can be interpreted as the quantum offset141

from the classical resonance point to the lowest unperturbed quantum state on the same142
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resonance tangent line (see Fig. 1). Note that by this construction, each unperturbed state143

is uniquely identified by a pair (k,m)144

(n1, n2)(k,m) = (n̄1 + (m+ δ)p, n̄2 − (m+ δ)q) (7)

The energy of the unperturbed eigenstates on the k resonance line of the p :q resonance145

now reads146

Em = Ē + T0(p2 + q2)(m+ δ)2. (8)

For p, q ∼ 1, the prefactor of the parabola is as small as the ground state energy. In147

contrast to states on the same resonance line k, the typical energy distance between148

neighboring unperturbed energy states is n̄ times greater, and thus, a even a relatively149

small perturbation can potentially couple a range of m indices in the vicinity of m = 0.150

The resulting eigenstates of the perturbed system will then be represented by large, mul-151

ticomponent superpositions of the unperturbed states. Such broad eigenstates constitute152

quantum “nonlinear” resonances, the quantum analogues of the classical nonlinear reso-153

nances. Indeed at the point (n̄1, n̄2), the classical frequencies ω1,2 ≡ ∂E
(0)
(n1, n2)/∂(~n1,2)154

obey the classical resonance condition (1)1.155

In what follows, we truncate the Hilbert space to only the states lying on a particular156

resonance line k. Then, let us interpret the index m in (8) as a momentum index of a157

fictitious one dimensional particle on a ring of a circumference 2π. The Hamiltonian for158

such a fictitious particle coincides with the conjectured expression (3), where the moment159

of inertia J is given by ~2/(2J ) = T0(p2 + q2) and the quantum offset δ is defined above.160

The potential energy εV in (3) can be inferred from the matrix elements (5)-(6) restricted161

to states on the resonance line k with different m:162

Vm,m′ ≡ 〈(n1, n2)(k,m)|V̂ |(n1, n2)(k,m′)〉. (9)

Our eventual goal is to find the width of the resonance mmax that in analogy to163

the classical construction [1, 2] corresponds to the momentum width of the separatrix164

trajectory, the boundary between the bound and unbound motion. As a first step, we165

consider the approximation (6) valid for ∆n1,2 � N1,2 and require that the states with166

|m| . mmax yield this inequality. Substituting the definition of the quantum numbers167

(k,m) for unperturbed states on the same resonance line (7) into the inequality, and168

assuming p ∼ q, we obtain the following condition2
169

mmax �
n̄√

p2 + q2
=

k

(p2 + q2)
.

This condition for the validity of the approximation (6) has to be verified a posteriori for170

each p :q resonance line k.171

When the condition |m|, |m′| � n̄/
√
p2 + q2 is met, then the perturbation matrix172

elements (9) simplify to173

Vm,m′ =

{
0 for m−m′ = even

− 4
π2T0

n̄2

p2+q2
1

(m−m′)2 for m−m′ = odd

The above are precisely the matrix elements of a potential174

V(θ)
ε�1
≈ −V0(1− 2|θ|/π) (10)

− π ≤ θ < +π ,

1Such a resonance is qualitatively different from the “quantum resonance” proposed in [19]. An example
of that kind a resonance in our system would be T0/(~ω1) = p/q. While our condition (1) is, so far,
completely classical, the “quantum resonance” of [19] has no classical analogue.

2See Appendix for a special case of 1 :0 resonance.
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between the unperturbed eigenstates Φm(θ) = 1√
2π

exp[imθ] with V0 = T0n̄
2/(p2 +q2) (see175

Fig. 5). Interestingly, the Hamiltonian (3) is identical to its classical counterpart obtained176

using a resonant approximation (see Appendix).177

Physically, a quantum “nonlinear” resonance would manifest itself in appearance of178

bound states of (3)—similarly to the classical case (2). Energetically, only the states179

for which the kinetic energy Î2/(2J ) does not exceed the span of the potential, |V(θ =180

±π) − V(θ = 0)| can participate in such bound states. This condition limits the state181

index m to |m| . mmax, with182

mmax =
√
ε

√
2

p2 + q2
n̄ . (11)

Notice that for a sufficiently small perturbation parameter ε, the necessary condition183

mmax � n̄/
√
p2 + q2 for establishing (10) will be automatically satisfied for all ε that184

yield ε�
√
p2 + q2. Recall that by construction, ε can not be greater than unity, and the185 √

p2 + q2 border can only be reached for a combination of extreme mass ratios and small186

p and q.187
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Figure 2: The inverse purity, IPR−1 ≡ (
∑

λ |〈λ|n1, n2〉|4)−1 (i.e. the inverse of the inverse
participation ratio IPR), of the eigenstates |λ〉 of two one-dimensional equal mass hard-core
particles in a box with respect to the eigenstates |(n1, n2)〉 of the same system but with a
small mass defect, ε ≡ (M2−M1)/(M2 +M1). The values of ε are 0.006 (a), 0.02 (b), and
0.06 (c). Darker squares represent the unperturbed states destroyed by the perturbation,
while the lighter one—the analogues of the classical KAM tori—are insensitive to it.
Colored lines show the location of the classical resonances, further post-selected under
a requirement that a resonance must span more than one unperturbed quantum state.
Quantum post-selected resonances are depicted for the following p : q ratios: 1 : 0 (black),
2 : 1 (green), 3 : 2 (blue), 4 : 1 (orange), 4 : 3 (indigo), 5 : 2 (yellow), 6 : 1 (red), and 5 : 4
(purple). The smaller the sum p2 + q2, the earlier a resonance p :q appears. The quantum
lower bound on the resonance width has been chosen to be (mmax)min = 0.5. The insert
shows level statistics for a range of perturbed energies E = T0n̄

2 with 37.1 < n̄ < 52.0, in
comparison with the Poisson (green) and Wigner-Dyson (blue) distributions.

So far, the quantum “nonlinear” resonances described above were constituting a ver-188

batim copy of the classical phenomenon [1, 2]. The quantum limitation emerges from a189
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requirement for the resonance to occupy more than one unperturbed eigenstate:190

mmax & (mmax)min ∼ 1 . (12)

Trivial as it is, such a limitation dramatically depletes the set of allowed resonances.
According to (11)-(12), in order to have any resonances on an equienergy surface of radius
n̄, on the n1 − n2 plane, one needs to have

ε & εfirst resonance ∼
1

n̄2
.

To the contrary, the classical analogue of our system yields the Chirikov criterion for chaos191

for all ε > 0 (see Appendix).192

(a) (b)

(c) (d)

Figure 3: An example of two separate quantum nonlinear resonances, 2:1 (b) and 4:1
(c), separated by a KAM gap (a), at ε = 0.02, overlap and fuse into a single, broad
eigenstate (d) that also comprises the already existing 1:0 and 3:2 resonances and newly
emerged 4 : 3, 5 : 2, 6 : 1, and 5 : 4 ones, at ε = 0.06 (see caption of Fig. 2 for the color
scheme and for the value of (mmax)min). Grey scale reflects contributions |〈λ|(n1, n2)〉|2
of the individual unperturbed states |(n1, n2)〉 to the perturbed state |λ〉. For clarity, on
each of the four plots, the grey scale spans the whole range between white and black,
white corresponding to zero overlap and black corresponding to the maximal value of the
overlap, maxn1, n2 |〈λ|(n1, n2)〉|2 = 0.614, 0.315, 0.194, and 0.070 for (a), (b), (c), and (d)
respectively.

The condition for the resonances to overlap everywhere—with no gaps—and hence,193

according to the Chrikov criterion, for chaos to occur is even more stringent. In the194

Appendix, we invoke the density of the classical resonances and then, at the final stage,195

apply the quantum limitation (11)-(12). This analysis leads to the following estimate for196

the chaos threshold:197

ε & εno gaps ∼
1

n̄
2
3

∼ ~
2
3

M
1
3

0 Ē
1
3L

2
3

. (13)

8
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As expected, minimal perturbation strength for chaos to occur tends to zero if ~ is moved198

to zero.199

The above expression for the chaos threshold can be further improved (see Appendix),200

leading to201

ε & εno gaps ≈
π

8
3

32

((mmax)min)
2
3

n̄
2
3

, (14)

where, again (mmax)min ∼ 1, and its precise value is a matter of convention.202

Fig. 2(b) demonstrates that when ε crosses the ‘no gaps’ threshold, the quantum-203

post-selected classical nonlinear resonances begin to overlap and the the level statistics204

undergoes a transition from the Poisson (Fig. 2(a)) to the Wigner-Dyson (Fig. 2(c)) type,205

signifying an integrability-to-chaos transition. The quantum analogues of the classical206

resonances appear as contiguous patches of low purity unperturbed eigenstates. This207

results were obtained using exact diagonalization, within a 4950-state strong basis of208

eigenstates of an integrable reference system, represented by two equal mass balls in a box209

(see [20,21] for an overview of the method).210

Note that while the Wigner-Dyson statistics of Fig. 2(c) is reached at a perturbation211

strength ε = 0.6, the Chirikov prediction for the chaos threshold, Eq. (14), computed for212

(mmax)min = 0.5 (the same as at Figs. 2-3), at n̄ = 44.5 (i.e. in the middle of the band213

used for the level statistics) gives ε = 0.7.214

An alternate perspective is depicted in Fig. 3, which shows that classical nonlinear215

resonances can constitute a meaningful taxonomy of the perturbed eigenstates in the in-216

termediate between integrability and chaos regime. Interestingly, even when two or more217

resonances fuse together at stronger perturbation (Fig. 3(d)), the constituent resonances218

allow one to predict the location and the width of the resulting state. Intriguingly, the219

appearance of the eigenstates that span significant portions of the available state space220

(Fig. 3(d)) can also be seen as an approach towards the Eigenstate Thermalization [22–24]221

for the observables p̂1 and p̂2 (see (4a)) and functions thereof.222

4 Conclusions and outlook223

In summary, for a Hamiltonian system, we constructed quantum analogues of the classical224

nonlinear resonances. The set of quantum ”nonlinear” resonances must be post-selected225

to exclude those resonance lines containing only one quantum eigenstate or none at all.226

Such post-selection leads to a chaos suppression at low energies. This suppression stands227

in contrast to Anderson localization [25] which would manifest itself in appearance of228

multi-state resonances that are shorter than classically predicted; we observed no evidence229

for this effect in our system. We extend the notion of the Chirikov criterion for the230

onset of chaos to the quantum case and show that resonance overlap remains a sensitive231

predictor for the onset of chaos even in the quantum case. The classical resonances appear232

as bands of low purity unperturbed quantum eigenstates separated by the undestroyed233

ones—the quantum analogues of the KAM tori. We hope that our work can be used to234

advance understanding of a KAM threshold in low-dimensional cold quantum gases [10]. In235

particular, following an analogy with a toy model [16], a quantum thermalization threshold236

in a one-dimensional two-mass mixture of hard-core particles [15] can be estimated as237

ε &

(
TF

T

) 1
3

, (15)
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where T is the temperature, TF ∼ ~2n2
1D/MkB is the Fermi temperature, M is the particle238

mass scale, ε ∼ ∆M/M is a dimensionless mass defect, kB is the Boltzman constant, and239

n1D is a typical density.240
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A Classical analysis of two-particle model246

Consider two one-dimensional hard-core particles of masses m̃1 and m̃2, with coordinates247

x1 < x2, moving in a hard-wall box of size L (Fig. 4 (a)). The Hamiltonian for the system248

has a form249

H = H0 + ε V (16)

with

H0 = η(0)(p2
1 + p2

2) (17)

V = −η(0)(p2
2 − p2

1) (18)

0 ≤ x1 ≤ x2 ≤ L ,

with250

0 ≤ x1 ≤ x2 ≤ L ,

where p1,2 are the particle momenta, 1/M0 = 1/(2M1) + 1/(2M2), ε = (M2 −M1)/(M1 +251

M2) and η(0) ≡ 1/(2M0). In what follows, we will assume ε � 1 and treat V as a252

perturbation.253

One can perform a canonical transformation of the phase space coordinates so that in254

the new coordinates the unperturbed Hamiltonian H0 describes free motion in an infinite255

space. This transformation is performed in two steps.256

1. At the first stage, we unfold the unperturbed motion in variables the configuration257

space triangle 0 ≤ x1 ≤ x2 ≤ L to that inside a square −L ≤ ρ1, ρ2 ≤ L; see258

Fig. 4(b). This is accomplished by the following invertable canonical transformation259

of the phase-space coordinates:260

~r = ĝ~ρ · ~ρ
~p = (ĝ~ρ)

−1 · ~π ,

with ~ρ ≡ (ρ1, ρ2), ~r ≡ (x1, x2), ~π ≡ (π1, π2), and ~p ≡ (p1, p2). The linear transforma-261

tion ĝ~ρ is one of the eight elements of the point symmetry group of the square that262

brings ~ρ to a chamber 0 < x1 < x2. The conjugate transformation (ĝ~ρ)
−1 restricts263

the new canonical momenta so it now resides in the domain 0 < π1 < π2 < ∞.264
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Under this transformation, the Hamiltonian becomes265

H = H0 + ε V

with

H0 = η(0)(π2
1 + π2

2)

V = −η(0) (π2
2 − π2

1) sign(|ρ2| − |ρ1|) . (19)

2. The second transformation unfolds the square −L ≤ ρ1, ρ2 ≤ L to an infinite two-266

dimensional space; see Fig. 4(c)). This one-to-many, non-invertiable transformation267

emerges when one attempts to solve the unperturbed evolution of the ρ1, ρ2 coordi-268

nates using method of images:269

ρ1 = x1 mod−L 2L

ρ2 = x2 mod−L 2L

~π = ~p ,

with ~p ≡ (p1, p2). Here and below, a modd b ≡ a − bba−db c is the modulo function270

with an offset, and b. . .c is the floor function. The domain of the new momenta271

0 < p1 < p2 < ∞ is unchanged, but now the positions ~x ≡ (x1, x2) range over the272

whole plane ~x ∈ R2. Under this transformation, the Hamiltonian becomes273

H = H0 + ε V

with

H0 = η(0)(p2
1 + p2

2)

V = −η(0) (p2
2 − p2

1) sign(|x2 mod−L 2L| − |x1 mod−L 2L|) . (20)

A.1 Nonlinear resonances274

In these new coordinates, nonlinear resonances are identified using temporal averaging of275

the perturbation V over the unperturbed motion, i.e. a constant velocity propagation along276

a straight line parallel to a particular momentum vector ~p. To calculate this time average,277

consider an unperturbed trajectory with momentum vector (p̃2, p̃1) that crosses a point278

x′1 = x
′(0)
1 , x′2 = 0 (see Fig. 4(c) for notations). The temporal average of the perturbation279

(20) becomes280

V = −η(0) (p̃2
2 − p̃2

1) sign(|x2 mod−L 2L| − |x1 mod−L 2L|) .

The temporal average of the sign-function is related to the probability Probgrey(p̃1, p̃2, x
′(0)
1 ),

defined as follows: Consider a straight line parallel to (p̃1, p̃2) that crosses a point x′1 =

x
′(0)
1 , x′2 = 0. Choose a point on this line at random. The probability of interest becomes

Probgrey(p̃1, p̃2, x
′(0)
1 ) ≡ Probability of landing on a gray square, Fig. 4(c) .

This probability gives the temporal average through the relation

sign(|x2 mod−L 2L| − |x1 mod−L 2L|) = 2Probgrey(p̃1, p̃2, x
′(0)
1 )− 1 .

Below, we list the relevant results, omitting the derivation:281

11
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(i) When the ratio of momentum components282

p̃2

p̃1
=
p

q
(21)

is given by p and q, a mutually prime integers of opposite parity. Recall that the283

unperturbed trajectory given by (21) corresponds to a resonance between the two284

degrees of freedom in the system, see Eq. (1). For this case, the probability depends285

on the particular value of the intercept x
′(0)
1 :286

(a) We find

Probgrey =
1

2
+

1

2(p2 − q2)
,

when
x
′(0)
1 = 2l(p, q)× integer ,

where

l(p, q) ≡ p+ q√
p2 + q2

L .

(b) We find

Probgrey =
1

2
− 1

2(p2 − q2)

when

x
′(0)
1 = 2l(p, q)× (integer +

1

2
) .

(c) For the remaining values of x
′(0)
1 , the probability Probgrey is given a linear287

interpolation between the cases (a) and (b).288

Overall, the averaged perturbation assumes the form289

V = − Ē

p2 + q2
saw[

x
′(0)
1

l(p, q)
] . (22)

where saw[ξ] is function with period 2 and in the interval −1 < ξ < +1 takes the290

form saw[ξ] = 1− 2|ξ|. The reference energy Ē will defined later. Remark that after291

a trivial coordinate transformation x
′(0)
1 /l(p, q) = θ/π, the potential V (θ) becomes292

identical to the form (10) inferred from the quantum version of the problem.293

(ii) In all other cases,

Probgrey =
1

2
,

rendering a vanishing averaged perturbation:

V = 0 .

Consider a particular pair of mutually prime opposite parity integers, p and q, and294

rotate the coordinates in such a way that the “y axis” coincides with the direction governed295

by (21):296

x′1 =~x · ~e′1
x′2 =~x · ~e′2
p′1 = ~p · ~e′1
p′2 = ~p · ~e′2 ,

12
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x1

x2

ρ1

ρ2

�1

�2

�′ 1

�′ 2

L

L

(a)

(b)

(c)

�′ (0)
1

(!̃1, !̃2)
θ

Figure 4: Three coordinate systems used to find and analyze classical nonlinear reso-
nances. (a) The original system of coordinates. The size of the box is L. Particle 2 is
assumed to be to the right from the particle 1. (b) Unfolding the triangle to a square.
The original triangle is unfolded, using mirror reflections about the x1 = 0 cathetus and
the x1 = x2 hypothenuse, to a square of a side 2L. While the coordinate space is enlarged
by a factor of 8, momenta are constrained to a 0 < π1 < π2 sector. There is no reflective
walls inside the square; the outer wall, generated by the x2 = L cathetus remains. Grey
areas correspond to positive values of a function sign(|ρ2| − |ρ1|); this function is a part
of the perturbation (19). (c) Unfolding the square to a plane. The square of Fig. (b) is
unfolded to a plane, via sequential mirror reflections with respect to its walls. Reflective
walls disappear completely. The grey areas correspond to the positive values of a function
sign(|x2 mod−L 2L| − |x1 mod−L 2L|); this function is a part of the perturbation (20).

with297

~e′1 ≡
1√

p2 + q2

(
+p
−q

)
~e′2 ≡

1√
p2 + q2

(
+q
+p

)
.

Now, for a sufficiently small perturbation parameter ε, motion along the ~e′2 axis can be298

approximated by its unperturbed counterpart:299

p′2 ≈ p̄ = const

x′2 ≈
p̄

M0
t .
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θ ≡ �′ (0)1
l(p, q) π

+π−π 0

ϵ!(θ)
2ϵ Ē

p2 + q2

Figure 5: The form of the potential that appears in the study of a nonlinear resonance
in our system.

Furthermore, the perturbation V can be replaced by its time-averaged value,300

V ≈ V .

The Hamiltonian becomes
H ≈ Ē +H(x′1, p

′
1) ,

where

Ē ≡ p̄2

2M0
,

and301

H(x′1, p
′
1) ≡ p′21

2m(0)
+ εV (x′1) , (23)

with V (x′1) given by (22). Finally, applying a canonical transformation302

θ =
x′1

l(p, q)
π

I =
p′1l(p, q)

π
,

we arrive at the classical analogue of the quantum resonant Hamiltonian (3), with the303

quantum offset δ being neglected. Recall that the momentum I is the classical analogue304

of the quantum number m, i.e. ~m→ I (see Fig. 5).305

Let us return to the form (23). Notice that the behavior of our system will crucially
depend on the magnitude of the momentum p′1. For

|p′1| > 2
√
ε

√
M0Ē√
p2 + q2

the motion along x′1 is unbounded, remaining close the unperturbed scenario. For

|p′1| < 2
√
ε

√
M0Ē√
p2 + q2

however, the one observes oscillation about the resonant ratio p/q between the momentum306

components: the motion along the x1 and x2 become phase-locked. All of the above is,307

verbatim, the setting for a nonlinear resonance described in Chirikov’s original paper [1].308
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�1

�2 θ⋆

� ≡
2m

(0) Ē

θres.(p, q)

Δθres.(p, q)

q

p

1 2 3 4 5 6 7 ⋯

1
2
3
4
5
6
7
⋮

0
0 θ⋆

2 3
2 ϵ

∼ ϵ 1
4

m(0)Ē L
ℏ

Figure 6: Steps in construction of the classical and quantum Chirikov criteria for an
offset of chaos. (left) A point of on an equienergy surface Ē in the momentum space, at
an angle θ? to the horizontal, is shown to lie outside of a nonlinear resonance p :q. (right)
As shown in the text, the angular width of a resonance p : q, on an equienergy surface,
is proportional to 1/

√
p2 + q2. As a result, if a point θ? belongs to a resonance p : q, the

point (q, p) must lie in a stripe, in the q, p space. The total width of the stripe can be

shown to be 2
3
2
√
ε. Classically, the stripe is infinitely long, and any point θ? belongs to

an infinite number of allowed resonances (colored and grey points, color scheme is the
same as at Figs. 2-3. Every point on the equienergy surface turns out to be dynamically
connected to any other point there resulting in chaos. Quantum mechanics sets an upper
bound on the length of the stripe:

√
p2 + q2 . ε1/4n̄, with n̄ being the typical quantum

number along any of thee two directions. As a result, both the appearance of the first
resonance (at ε &∼ 1/n̄2) and the chaos threshold (at ε & 1/n̄

2
3 ) requires a finite strength

perturbation.

From the geometry depicted in Fig. 6, one deduces that the angular half-width of a
resonance in an equi-energy surface is

∆θres.(p, q) ≈
√

2

√
ε√

p2 + q2
.

To see this, consider a point at the equi-energy surface Ē, at an angle θ? to the horizontal.
For a resonance p :q to contain the point, it needs to lie—in the q, p space—in an interval
of a (full) length

2∆θres.(p, q)
√
p2 + q2 = ∆r ≡ 2

3
2
√
ε ,

around a point θ?, on a surface of a constant
√
p2 + q2. In general any allowed resonance309

in a stripe of a width 2
3
2
√
ε, along the θ? ray, in the q, p space, contains the probe point310

θ? in the momentum space.311
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Classically, Chirikov criterion predicts that in our system, motion is always chaotic,
no matter how small ε is. Indeed, the density of the allowed resonances where q and p are
opposite parity and mutually prime is (6/π2) × (2/3). The first factor is the probability
for two randomly chosen integers to be mutually prime [26] and the second selects the
opposite parity mutually prime pairs. Quantum Mechanics—through the condition (12)
that resonance occupies at least one quantum state—limits the “radius”

√
p2 + q2 by√

p2 + q2 < rquant. = 2
1
4 ε

1
4

√
n̄√

(mmax)min

.

A threshold for the onset of chaos requires that any point θ? on the energy surface of
interest belongs to at least one resonance. Thus

∆r rquant. ≈ 1

leading to the chaos condition (Eq. 13 in the main text). However, for a given energy312

Ē, the limit rquant. tends to infinity in the classical limit ~ → 0. Hence, classically the313

system is predicted, according to the Chirikov criterion, to be always chaotic, no matter314

how small the perturbation is.315

A.2 Special case of the 1:0 resonance316

In the case of p = 1, q = 0, the resonance is located near the point (n1, n2) = (0, n̄). This317

point requires a different approximation for the matrix elements of the perturbation. As318

before, the resonant Hamiltonian reads319

Ĥ = T̂ + εV(θ) , (24)

with320

T̂ =
Î2

J
, (25)

where the angular momentum I is defined as I ≡ −i~∂/∂θ, the moment of inertia J is321

given by 1/(2J ) = T0(p2 + q2). Notice that for this resonance, the δ correction vanishes322

and the unperturbed state is exactly on the resonance line.323

An important change however is that now the “angular momentum” I is strictly pos-
itive,

I > 0 ,

and it can no longer interpreted as I ≡ −i~∂/∂θ. This follows from the resonance line (7)
with n̄1 = 0 and p = 1, that gives

m = 1, 2, 3, . . . .

A different approximation will be required to evaluate the matrix elements of the324

perturbation. Assume that the yet unknown resonance width mmax obeys325

mmax � n̄ . (26)

In the case p = 1, q = 0, this condition, to be verified a posteriori, allows to simplify the326

perturbation matrix elements (Eqs. 6 and 6 in main text) as:327

Vm,m′ ≡ 〈m, n̄|V̂ |m′, n̄〉
m,m′�n̄
≈ − 4

π2
T0

n̄2

p2 + q2

{
0 for m−m′ = even
1 for m−m′ = odd

}{
1

(m−m′)2
− 1

(m+m′)2

}
,

(27)
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(see Eq. 7 for p = 1, q = 0, ň1 = 0, and m′′ = m).328

The following can be shown however. Let us keep the potential described by (10),329

but redefine the basis states as Φm(θ) = (1/
√
π) sin[mθ]. Physically, the Hilbert space a330

resonance spans is now associated with the odd function subspace of the Hilbert space of331

periodic functions of θ: the Hamiltonian acting on this space remains exactly the same.332

After some algebra, one arrives at the matrix elements (27). The expression for the333

resonance width (11) remains thus unaltered.334
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