
SciPost Physics Codebases Submission

jVMC: Versatile and performant variational Monte Carlo
leveraging automated differentiation and GPU acceleration

Markus Schmitt1* and Moritz Reh2

1 Institut für Theoretische Physik, Universität zu Köln, Köln, Germany
2 Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany

* markus.schmitt@uni-koeln.de

August 7, 2021

Abstract

The introduction of Neural Quantum States (NQS) has recently given a new
twist to variational Monte Carlo (VMC). The ability to systematically reduce
the bias of the wave function ansatz renders the approach widely applicable.
However, performant implementations are crucial to reach the numerical state
of the art. Here, we present a Python codebase that supports arbitrary NQS
architectures and model Hamiltonians. Additionally leveraging automatic dif-
ferentiation, just-in-time compilation to accelerators, and distributed comput-
ing, it is designed to facilitate the composition of efficient NQS algorithms.

Contents

1 Introduction 1

2 Variational Monte Carlo algorithms 2

3 Design choices 10

4 Performance 19

5 Examples 20

6 Conclusion 23

A The underlying JAX library in a nutshell 24

References 27

1 Introduction

The numerical simulation of strongly correlated quantum many-body systems constitutes
a major challenge in computational physics. Even when fully exploiting modern super-
computers, direct solutions that involve the complete state vector are restricted to a few
dozen degrees of freedom, because the dimension of the underlying Hilbert space grows

1

SciPost Physics Codebases Submission

exponentially with system size [1]. Therefore, suited approximate methods are required in
order to address large or infinite system sizes, which are typically of interest when study-
ing universal behavior. Particularly desirable are controlled methods, which can become
numerically exact by tuning a control parameter.

During the past decades the development of a number of powerful numerical methods
enabled substantial advances of our understanding of quantum many-body systems in and
out of equilibrium. Prime examples are tensor network algorithms for low-dimensional
systems [2–4], dynamical mean field theory in high dimensions [5–8], and quantum Monte
Carlo [9] for equilibrium properties in the absence of a sign problem. However, despite
the broad applicability of these methods, various physical problems remain elusive for
state of the art numerical approaches, among which, e.g., systems in intermediate spatial
dimensions, long time dynamics, and frustrated systems. Since the limitations of the
established methods in these regards are well understood, novel paths need to be explored
to address these shortcomings.

The recent proposal of neural quantum states (NQS) as a new ansatz class for varia-
tional quantum Monte Carlo opened new perspectives and holds the potential to overcome
existing limitations [10]. With their expressive power and their applicability independent
of specific spatial structures NQS are a suited basis to devise a new family of broadly
applicable algorithms. Their utility has been outlined in a number of fundamental works.
It has been shown that NQS can be used to describe ground states of critical systems in
two dimensions [11] or states with (chiral) topological order [12–14] and their suitability
to study frustrated magnets is under investigation [15–19]. Moreover, various approaches
have been developed for the simulation of non-equilibrium dynamics in closed [10, 20–26]
and open quantum systems [27–29]. Other directions include the incorporation of NQS in
quantum chemical simulations [30], quantum state tomography [31,32], and the simulation
of quantum computation [33].

A key practical aspect that NQS algorithms have in common with many other deep
learning applications is the possibility to harness cutting edge supercomputing resources at
large scales; in fact, exploiting the intrinsic parallelism is crucial to achieve state-of-the-art
results. In this paper we introduce the jVMC Python codebase that provides efficient im-
plementations of the typical tasks that will be at the core of any algorithm involving NQS,
namely composing and evaluating arbitrary network architectures, sampling, and evalu-
ating quantum operators. The implementations and the interfaces are designed to enable
the straightforward composition of custom algorithms and the utilization of distributed
compute clusters, ideally with GPU or TPU accelerators. For this purpose the code is
based on the JAX library [34], that provides functionality for automatic differentiation
and optimized just-in-time compilation targeted at the available compute resources. Dis-
tributed computing across multiple nodes is enabled by incorporating the Message Passing
Interface (MPI) through the mpi4py library [35,36].

The repository containing the jVMC source code and a detailed documentation are
available online [37, 38]. The codebase and all dependencies can be installed as a Python
package via

>>> pip install jVMC

2 Variational Monte Carlo algorithms

In this section we outline common Variational Monte Carlo (VMC) algorithms in order
to highlight what are the core building blocks for which the jVMC codebase provides

2

SciPost Physics Codebases Submission

solutions. For this purpose we discuss how to find ground states and low-lying excited
states and how to simulate real time dynamics of isolated or open systems using a time-
dependent variational principle (TDVP).

For simplicity we will consider spin-1/2 degrees of freedom and corresponding compu-
tational basis configurations s = (s1, . . . , sN) with si =↑, ↓. The generalization to higher-
dimensional local Hilbert spaces is straightforward.

2.1 Quantum expectation values

The starting point of variational Monte Carlo is a variational ansatz for the coefficients
ψθ(s) with θ = (θ1, . . . , θK), such that without further assumptions the generally unnor-
malized wave function reads

∣ψ(θ)⟩ = ∑
s

ψθ(s) ∣s⟩ . (1)

In the following we assume that θk ∈ R. Given a wave function in this form the expectation
value of any quantum operator Ô can be rewritten as

⟨ψ(θ)∣Ô∣ψ(θ)⟩
⟨ψ(θ)∣ψ(θ)⟩

= ∑
s,s′

ψθ(s)∗ψθ(s′)
⟨ψ(θ)∣ψ(θ)⟩

⟨s∣Ô∣s′⟩ = ∑
s

∣ψθ(s)∣2

⟨ψ(θ)∣ψ(θ)⟩ ∑s′
⟨s∣Ô∣s′⟩ ψθ(s

′)
ψθ(s)

. (2)

Since pθ(s) ≡ ∣ψθ(s)∣2/ ⟨ψ(θ)∣ψ(θ)⟩ constitutes a probability distribution on the computa-
tional basis configurations, we can write

⟨ψ(θ)∣Ô∣ψ(θ)⟩
⟨ψ(θ)∣ψ(θ)⟩

= ∑
s

pθ(s)Oθloc(s) ≡ ⟪Oθloc⟫θ (3)

where we introduced the local estimator

Oθloc(s) = ∑
s′

⟨s∣Ô∣s′⟩ ψθ(s
′)

ψθ(s)
(4)

and the notation ⟪⋅⟫θ for an expectation value with respect to pθ(s). Since typical quantum
operators are sparse in the computational basis, the sum ∑s′ in Eq. (4) can be evaluated
efficiently.

By contrast, the sum over all basis states, ∑s, in Eq. (3) becomes unfeasible for large
system sizes N , because the Hilbert space dimension grows exponentially with N . There-
fore, one has to resort to Monte Carlo (MC) sampling of pθ(s) to efficiently estimate these
expectation values; for this purpose, only the functional form of ψθ(s) must allow for ef-
ficient evaluation [39]. Then samples {s(1), . . . , s(NMC)}s∼pθ(s) can be obtained using, e.g.,
Metropolis sampling, and the expectation value can be approximated by the empirical
mean

⟪Oθloc⟫θ ≈
1

NMC

NMC

∑
n=1

Oθloc(s
(n)) . (5)

2.2 Finding low-energy states

Given a variational ansatz ψθ(s) the ground state of a many-body Hamiltonian Ĥ can
be approximated variationally using gradient-based optimization. The goal is to find the
minimal energy expectation value

E(θ) = ⟨ψ(θ)∣Ĥ ∣ψ(θ)⟩
⟨ψ(θ)∣ψ(θ)⟩

(6)

3

SciPost Physics Codebases Submission

that is permitted by the chosen ansatz. The gradient with respect to the variational
parameters θk takes the form

∂θkE(θ) = 2Re(∑
s

pθ(s)[Oθk(s)]
∗
Eθloc(s) −∑

s

pθ(s)[Oθk(s)]
∗
∑
s

pθ(s)Eθloc(s))

= 2Re(⟪(Oθk)
∗
Eθloc⟫θ − ⟪(Oθk)

∗⟫
θ
⟪Eθloc⟫θ) ≡ 2Re(⟪(Oθk)

∗
Eθloc⟫

c

θ
) (7)

Here, Eθloc(s) = ∑s′ ⟨s∣Ĥ ∣s′⟩ ψθ(s
′)

ψθ(s) as in Eq. (4) is the local energy. Moreover, we introduced
the logarithmic derivatives

Oθk(s) = ∂θk logψθ(s) , (8)

which appear due to a multiplication by a unity ψθ(s)/ψθ(s) in order to obtain factors of
∣ψθ(s)∣2 analogous to Eq. (4).

The energy gradient is again an expectation value with respect to pθ(s), which we
can estimate by MC sampling. Therefore, we can set up an iterative procedure to mini-
mize the energy by updating the variational parameters according to the gradient descent
prescription

θ
(n+1)
k = θ(n)k − τ∂θkE(θ)∣

θ=θ(n) (9)

using a small learning rate τ .
However, the energy landscape E(θ) is typically not convex, meaning that the plain

gradient descent optimization is prone to getting stuck in saddle points or local minima.
Among other choices of advanced optimizers, the convergence can be accelerated by em-
ploying the Stochastic Reconfiguration (SR) method [40], where the update step (9) is
altered to

θ
(n+1)
k = θ(n)k − τS−1k,k′∂θk′E(θ)∣

θ=θ(n) (10)

with Sk,k′ = Re(Sk,k′) and the quantum Fisher matrix

Sk,k′ = ⟪(Oθk)
∗Oθk′⟫

c

θ
. (11)

The quantum Fisher matrix is the metric tensor of the Fubini-Study metric – a natural met-
ric on the projective Hilbert space [41]. It provides information about the local geometry
of the variational manifold, which is exploited by adjusting the gradient step accordingly
in Eq. (10). The quantum Fisher matrix is often (approximately) rank-deficient, which
means that changing the parameters along some directions in the variational manifold
leaves the physical state invariant. This ill-conditionedness demands careful regulariza-
tion when inverting S for the SR update step in Eq. (10), see Section 2.5 for details.

Besides ground states, it is also possible to address low-lying excited states with VMC
techniques. In the method introduced in Ref. [42] the first step is to perform a ground
state search resulting in a set of optimal parameters θ∗ and a variational ground state
∣ϕ(θ∗)⟩. Subsequently, the ansatz for the excited state is projected onto the subspace
orthogonal to the ground state by defining

∣Ψexc.(θ)⟩ ≡ ∣ψ(θ)⟩ − λ ∣ϕ(θ∗)⟩ (12)

with

λ = ⟨ϕ(θ∗)∣ψ(θ)⟩
⟨ϕ(θ∗)∣ϕ(θ∗)⟩

= ∑
s

∣ϕθ∗(s)∣2

⟨ϕ(θ∗)∣ϕ(θ∗)⟩
ψθ(s)
ϕθ∗(s)

= ⟪ ψθ
ϕθ∗

⟫
θ∗
. (13)

4

SciPost Physics Codebases Submission

The excited state search is then performed with alternating steps, first computing λ and
then performing one SR step with the ansatz (12).

The pseudocode below summarizes the computational steps required to perform an SR
step. We will see in the following subsections that solving a TDVP to simulate real time
evolution of open and closed systems requires almost identical tasks. The jVMC codebase
provides efficient implementations of these fundamental building blocks.

Algorithm 1 Single SR or TDVP time step

1: procedure timeStep(psi, H, n Samples)
2: configs ← psi.sample(n Samples) ▷ obtain samples
3: amp Configs ← psi.evaluate(configs) ▷ obtain sample amplitudes
4: gradients ← psi.gradients(configs) ▷ obtain gradients of the sample amplitudes
5:

6: offdConfigs, offdElements ← H.get offdConfigs(configs) ▷ obtain coupled configs
7: amp offdConfigs ← psi.evaluate(offdConfigs) ▷ evaluation on coupled configs
8:

9: S, F ← obtain tdvpEq(gradients, amp Configs, gradients, amp offdConfigs)
10: θ̇ ← solve tdvpEq(S, F) ▷ obtain S & F and get regularized solution
11: return θ̇

2.3 Unitary dynamics

For the simulation of real time dynamics the goal is to obtain equations of motion for
the time-dependent variational parameters θ(t) that yield an approximate solution of the
Schrödinger equation

i
d

dt
∣ψ(θ(t))⟩ = Ĥ ∣ψ(θ(t))⟩ , (14)

where Ĥ denotes the system Hamiltonian. While alternative approaches have been ex-
plored recently [43], there are two long established ways to formulate a TDVP for the
Schrödinger equation – (i) based on the principle of least action [44,45], and (ii) based on
the maximization of overlaps or similar measures of proximity in the underlying Hilbert
space [10, 45, 46]. These two derivations yield the identical result in the special case,
where the parametrized wave function ψθ(s) ≡ ψϑ(s) is holomorphic, i.e., fulfills Cauchy-
Riemann equations as function of complex variational parameters ϑl = θ2l + iθ2l+1 ∈ C [45].
The corresponding TDVP equation is a first order differential equation for the variational
parameters:

Sl,l′ ϑ̇l′ = −iFl (15)

Here, the force vector is defined as

Fl = ⟪Eϑloc(O
ϑ
l)

∗⟫c
ϑ
, (16)

and Sl,l′ is the quantum Fisher matrix as in Eq. (11). In this case Oϑl (s) = ∂ϑl logψϑ(s)
denotes the complex derivative of the logarithmic wave function coefficients.

The TDVP equation (15) defines a Hamiltonian dynamics of the variational parame-
ters, which conserves the quantum expectation value of energy [44]. Notice, however, that
other constants of motion of the quantum dynamics are in general not conserved under
this TDVP.

5

SciPost Physics Codebases Submission

When releasing the requirement of a holomorphic ansatz, the different approaches to
the TDVP yield closely related, but different results. The principle of least action, (i),
results in

Im[Sk,k′]θ̇k′ = Im[− iFk] , (17)

while the minimization of some distance measure, (ii), gives

Re[Sk,k′]θ̇k′ = Re[− iFk] . (18)

While both equations correspond to a valid TDVP, only Eq. (17) preserves the symplectic
structure of the variational manifold and thereby the conservation of energy under time
evolution; by contrast, following Eq. (18), energy is not necessarily conserved. Moreover,
solving Eq. (15) for complex parameters ϑl = θ2l + iθ2l+1 is equivalent to solving Eq. (17)
for the corresponding real parameters θk.

For a unified notation we can write

[[Sk,k′]]θ̇k′ = −[[iFk]] , (19)

where [[⋅]] denotes the identity, Re[⋅] or Im[⋅], depending on which version of the TDVP is
used. Accordingly, inverting [[S]] yields an ordinary differential equation in the standard
form, which can be integrated in order to obtain the time-evolved wave function. Again,
[[S]] is typically ill-conditioned, meaning that a suited regularization has to be applied
in order to obtain a stable solution, see Section 2.5.

As a final remark, notice that for the purpose of VMC we consider wave functions
ψθ(s) with no further constraints on θ. Therefore, the solution of Eq. (19) is always part
of the variational manifold we consider. A prominent example of an ansatz class with
additional constraints on the variational parameters θ are the matrix product states. In
that case an explicit projection onto the variational manifold has to be included as part
of the TDVP [46,47].

2.4 Dissipative dynamics

The object of interest in a dissipative setting is the density operator ρ̂, whose dynamics is
dictated by so-called jump operators in addition to the Hamiltonian defining the unitary
part of the system’s evolution. The resulting time evolution is described by the Lindblad-
master-equation

˙̂ρ = −i[Ĥ, ρ̂] +∑
i

[L̂iρ̂L̂i
†
− 1

2
{L̂i

†
L̂i, ρ̂}] . (20)

Here, [⋅, ⋅] and {⋅, ⋅} denote the commutator and the anti-commutator, respectively.
The TDVP for unitary dynamics can be generalized to variational approaches to solve

the Lindblad equation. One possibility is based on representing the density matrix in a pu-
rified form [27]. While implementing the purification approach is also within the scope of
the jVMC codebase, we focus in the following on a method that relies on the Positive Oper-
ator Valued Measurements (POVM)-formalism [28,29,32,48,49] for a purely probabilistic
formulation of quantum mechanics. Given a many-body POVM M̂a = M̂a1 ⊗ . . . ⊗ M̂aN

associated with the outcome a = (a1, . . . , aN) of a tomographically complete measurement
on N spins the density matrix can be fully characterized by an L1-normalized, positive
probability distribution [32],

P a = tr (ρ̂M̂a) . (21)

The dissipative dynamics may then be reformulated as dynamics of the probability distri-
bution

Ṗ a = LabPb , (22)

6

SciPost Physics Codebases Submission

where the linear operator Lab contains the physical information equivalent to the Lindblad
equation (20), see Ref. [29] for details.

For the variational approach, an ansatz P a
θ is chosen in order to find an efficient

representation of the POVM distribution, and a TDVP yields a first-order differential
equation for the variational parameters θ,

Sk,k′ θ̇k′ = Fk , (23)

see Ref. [29]. Here, S denotes the Fisher matrix Sk,k′ = ⟪Oa
kO

a
k′⟫

c
a∼P , and

Fk = ⟪Oa
kL

ab Pb

Pa ⟫
c

a∼P , where the repeated indices b inside the brackets are summed over.
The brackets again denote connected correlation functions ⟪AB⟫c = ⟪AB⟫ − ⟪A⟫⟪B⟫ of
expectation values with respect to the POVM-distribution P and Oa

k = ∂θk logP a.

2.5 Regularization to invert the (quantum) Fisher matrix

In many cases the (quantum) Fisher matrix turns out the be ill-conditioned with an
eigenvalue spectrum that spans all numerical orders of magnitude. Therefore, ground
state search with SR and time evolution via TDVP require suited regularization schemes
when inverting the Fisher matrix. Three possible approaches are outlined below.

2.5.1 Diagonal shift

An effective regularization for SR is to introduce a diagonal shift, i.e., to replace the Fisher
matrix Sk,k′ by

S̃k,k′ = (1 + νδk,k′)Sk,k′ . (24)

Artificially amplifying the diagonal elements of the S-matrix mitigates the rank-deficiency
and renders the matrix invertible. The shift parameter ν is typically reduced during the
optimization according to a suited schedule [10].

The regularization via diagonal shift is not applicable for time evolution, because
the TDVP relies on an accurate solution of the actual TDVP equation at each time
point; by contrast, the ground state search is more forgiving in this regard due to its
projective nature. Moreover, other than the regularization schemes discussed below, the
diagonal shift regularization can be combined with iterative solvers for the linear equation
Sk,k′ θ̇k′ = Fk, such as conjugate gradient [10].

2.5.2 Pseudo-inverse

The Moore-Penrose pseudo-inverse generalizes matrix inversion to rank-deficient matrices.
The pseudo-inverse S+ of a hermitian/symmetric matrix S with eigendecomposition S =
V DV †, where D = diag(λ1, . . . , λK), can be constructed as S+ = V diag(λ+1 , . . . , λ+K)V †,
where

λ+j =
⎧⎪⎪⎨⎪⎪⎩

0 if λj = 0

λ−1j if λj ≠ 0
(25)

For the case of ill-conditioned matrices with small but non-vanishing eigenvalues this can
be generalized to an approximate pseudo-inverse with

λ+j =
⎧⎪⎪⎨⎪⎪⎩

0 if ∣λj/λ1∣ < εpinv
λ−1j if ∣λj/λ1∣ ≥ εpinv

(26)

7

SciPost Physics Codebases Submission

where we introduced the cutoff parameter εpinv and assumed ordered eigenvalues ∣λ1∣ ≥
. . . ≥ ∣λK ∣.

For real time evolution it can be beneficial to choose a soft cutoff instead of Eq. (26),
because eigenvalues that cross the cutoff can otherwise introduce spurious discontinuities
in the dynamics. One possibility is

λ+j = [λj(1 + (
εpinv

∣λj/λ1∣
)
6
)]

−1

. (27)

The regularization with approximate pseudo-inverses requires diagonalization of the
(quantum) Fisher matrix. Since the size of the Fisher matrix is determined by the number
of variational parameters, this imposes immediate restrictions on the size of the variational
ansatz.

2.5.3 Eliminating noisy contributions

Monte Carlo fluctuations that are blown up by the inversion of small eigenvalues of the
Fisher matrix constitute a major source of instabilities when simulating real time evolution
[24,50]. A mitigation strategy introduced in Ref. [24] takes the signal-to-noise ratio (SNR)
of the MC estimates in the TDVP equation into account for the regularization. Denoting
the force vector Fk transformed to the eigenbasis of S as ρk = V †

k,k′Fk′ , its signal-to-noise

ratio SNR(ρk) can be estimated using the available MC data. Then, a regularization that
ignores exceedingly noisy components of the TDVP equation can be defined in analogy to
the pseudo-inverse with

λ+j = [λj(1 + (εSNR

SNR(ρk)
)
6

)]
−1

. (28)

The cutoff parameter defines a lower bound for the εSNR that is tolerated and the number of
discarded components can be tuned systematically by varying the number of MC samples,
and thereby the SNR.

This SNR-based regularization can be combined with the pseudo-inverse approach
discussed above.

2.6 Neural quantum states

In the discussion of the previous sections we made no reference to any specific choice of
the variational ansatz ψθ(s) (or P a

θ). While these variational approaches are formulated
for arbitrary wave function ansatzes, the particular choice will in general introduce a bias
to the obtained results. Numerically exact simulations, however, require the possibility to
systematically reduce this bias.

Artificial neural networks (ANNs) have been proven to be universal function approx-
imators in the limit of large network sizes [51–55]. Hence, by choosing ANNs as the
variational ansatz for the wave function the inductive bias of the NQS can be reduced
systematically by increasing the network size. Thereby, the network size plays a similar
role for NQS as the bond dimension in the established tensor network techniques [2–4].

In its most basic form, the ANN is a function that is composed from an alternating
sequence of affine-linear and non-linear transformations. Each affine-linear transformation
maps a vector of activations a(l−1) to a new vector of pre-activations

z
(l)
i = ∑

j

W
(l)
ij a

(l−1)
j + b(l)i , (29)

8

SciPost Physics Codebases Submission

from which the new activations are obtained by applying a non-linear function σ(⋅)
element-wise,

a
(l)
i = σ(z(l)i) . (30)

This iterative prescription is initialized by identifying a(0) with the input of the ANN.

The set of weights W
(l)
ij and biases b

(l)
i constitutes the variational parameters, which we

will in the following summarize in the variable θ.
For our purposes, we assume that the ANN encodes the logarithm of the wave function

coefficients, i.e.,

logψθ(s) ≡ fθ(s) (31)

where fθ(s) represents the ANN. In the following two subsections we discuss further pos-
sible design choices, namely holomorphic vs. non-holomorphic ANNs and the possibility
to equip the NQS with an autoregressive structure to enable direct sampling.

2.6.1 (Non-)holomorphic neural quantum states

The wave function coefficients ψθ(s) are in general complex numbers, which can be ob-
tained in different ways from an ANN. Three possible options are:

1. Single holomorphic network: Allow the weights and biases to be complex numbers,
η ∈ C, and choose holomorphic activation functions σ. Then fη itself is a holomorphic
function of the variational parameters η.

2. Single non-holomorphic network: Construct an ANN with real parameters, θ ∈ R,

with two real outputs, fθ(s) = (f (1)θ (s), f (2)θ (s)) ∈ R2. This yields a complex wave
function coefficient through

logψθ(s) = f
(1)
θ (s) + if (2)θ (s) . (32)

3. Two real (non-holomorphic) networks: Use two separate ANNs fθ(f) and gθ(g) for
real and imaginary part

logψθ(s) = fθ(f)(s) + igθ(g)(s) . (33)

In this case, independent variational parameters are used for the real and the imag-
inary part, θ = (θ(f), θ(g)).

2.6.2 Autoregressive neural quantum states

Any joint probability distributions p(s) = p(s1, . . . , sN) can be factorized and written as a
product of conditional probabilities:

p(s1, . . . , sN) = p1(s1)p2(s2∣s1)p3(s3∣s1, s2) . . . pN(sN ∣s1, . . . , sN−1) . (34)

If the random variables si have few discrete outcomes, this property can be exploited to
efficiently generate uncorrelated samples s ∼ p without resorting to Markov Chain Monte
Carlo. Instead, the individual realizations of si are sampled directly in a sequential manner.
Since the si have only few outcomes, it is straightforward to draw a sample outcome for
s1 from p1. Subsequently, the same is true for si, because pj(sj ∣s1, . . . , sj−1) is again a
distrbution with few outcomes for the given s1, . . . , sj−1.

ANNs, which incorporate this factorization into conditionals are called autoregressive
models. There are different architectures with this property, such as Neural Autoregressive
Density Estimators [11,56] or recurrent neural networks [57]. Utilizing direct sampling can
be advantageous in cases where Markov Chain Monte Carlo (MCMC) becomes inefficient
due to exceedingly long autocorrelation times [11].

9

SciPost Physics Codebases Submission

GPUNode

GPU

GPUNode

GPU

GPUNode

GPU

GPUNode

GPU

Figure 1: Schematic depiction of the parallelization scheme. Each of the blue boxes
represents the task to evaluate the NQS on an individual basis configuration. These tasks
are evenly distributed across the available compute nodes and separated into batches,
which can be executed concurrently by vectorized operations on the local accelerators.

3 Design choices

The jVMC codebase is devised as a transparent implementation of the core computational
tasks required when dealing with NQS, which simultaneously provides efficiency and large
flexibility. The primary purpose is to equip the user with these building blocks that enable
the composition of a large variety of algorithms.

The code is designed to fully exploit the algorithms’ typical amenability to hybrid
parallelization, combining distributed single program multiple data (SPMD) computing
with vectorization that can benefit substantially from the availability of accelerators like
GPUs. Automatic differentiation is used to enable the composition of arbitrary ansatz
functions for the variational quantum states. The code relies on the JAX library [34], which
provides the functionality for automatic differentiation as well as vectorization and just-
in-time compilation; see Appendix A for basic examples illustrating JAX’s functionality.

In this section we first explain how different levels of parallelism are exploited and how
this is reflected in the API before describing the core modules of the package.

3.1 Parallelism

The computationally intense part of NQS-based algorithms is typically the evaluation of
the ANN on large numbers of computational basis states. Since each individual ANN
evaluation is independent of the others and largely consists of vectorizable operations,
these algorithms are well suited to exploit the resources of distributed compute clusters
with accelerators. The parallelization scheme that is supported by the jVMC codebase is
depicted in Fig. 1. In the depiction the small blue boxes represent the task to evaluate
the ANN on an individual computational basis configuration. The total set of input con-
figurations is distributed across the available compute nodes, where, in turn, the assigned
configurations are split up among the locally available accelerators. The accelerators work

10

SciPost Physics Codebases Submission

most efficiently when evaluating the ANN on large batches of input configurations simul-
taneously, see Section 3.1.2 below.

This parallelization scheme applies straightforwardly to the computation of observables
following Eq. (4) when a large number of sample configurations s is given and it is appli-
cable in a similar fashion to MC sampling. To achieve optimal performance in MCMC, it
is beneficial to assign multiple independent Monte Carlo chains to each accelerator. The
MCMC steps of all chains on one device can be performed in sync, again allowing for
vectorized ANN evaluation on mutliple input configurations.

The code was designed with this hybrid parallelization scheme as a guiding principle.
An important manifestation are the required array dimensions when interfacing jVMC: All
data that is related to network evaluations will have two leading dimensions, namely the
device dimension and the batch dimension. These are indicated by the stacks, which are
assigned to individual nodes in Fig. 1. The corresponding layers of parallelism, multiple
accelerators per node and vectorization, are explained in more detail in the following
subsections.

3.1.1 Multiple accelerators per node

The jVMC codebase supports two possibilities to deal with compute clusters where mul-
tiple accelerators are attached to each node, namely,

1. Launch one MPI process per accelerator.

2. Distribute computation across the available devices, while working with a single
process.

While the former is straightforward using the mpi4py package, the latter is enabled by
automatic parallelization across devices using the pmap functionality of the JAX library.
The jVMC.set pmap devices() function enables the user at the beginning of a program
to choose for each MPI process which subset of the available devices to work with. For a
homogeneous treatment of both options, all data arrays that are passed through the jVMC
API have an additional leading device dimension to account for potential parallelization
across devices. The size of this dimension corresponds to the number of devices used by
the process and any computation will be distributed among the devices.

It is important to realize and keep in mind that when working with multiple devices
the device dimension is also physically distributed across the different devices. Hence, any
computation on data with device dimension larger than one should be performed on the
respective devices to avoid memory transfer overheads.

The default behavior of the JAX library is to allocate all available GPU memory at the
beginning of a program. This can lead to conflicts if multiple processes can access the same
GPU devices. This issue can be avoided by setting the XLA PYTHON CLIENT PREALLOCATE

environment variable prior to running the program as

>>> export XLA_PYTHON_CLIENT_PREALLOCATE=false

3.1.2 Batching for vectorization

The computationally intense operation during network evaluations is the matrix-vector
product of the affine-linear transformation in Eq. (29), which can be turned into a matrix-
matrix product when evaluating the ANN simultaneously on a batch of input configura-
tions. The arithmetic intensity of multiplying a m×n-matrix with a n×k-matrix, i.e., the

11

SciPost Physics Codebases Submission

number of arithmetic operations per memory access, is

I(m,n, k) = mnk

mn + nk +mk
. (35)

This contains the arithmetic intensity of a matrix-vector product as the special case with
k = 1, which is bounded from above irrespective of the values of m and n:

I(m,n,1) = mn

mn + n +m
= 1

1 + n
m + m

n

< 1 (36)

By contrast, I(m,n, k) grows with increasing k (linearly for k ≪ min(m,n)), meaning
for the typical affine-linear transformation of ANNs that a suited batching of computa-
tional tasks can substantially enhance the arithmetic intensity. Therefore, any operation
implemented in jVMC is performed on a batch of input data. This means that following
the leading device dimension, all data arrays have an additional batch dimension, which
should always be chosen as large as possible in order to keep the arithmetic units of the
GPU busy.

3.2 Core modules

In the following we describe the main functionality of the core modules of the codebase.
A detailed documentation is available online [38].

A recurring pattern is the possibility to create custom objects, e.g., network architec-
tures or quantum operators. Their behavior has to be defined in the form of functions
acting on a computational basis configuration. As a consistent design choice, these func-
tions are always defined acting on a single input configuration. The vectorization for
batched evaluations is then taken care of automatically within the respective classes of
the jVMC codebase.

3.2.1 Variational wave functions

A core part of the jVMC codebase is the NQS class provided in the jVMC.vqs module
– a wrapper class for variational wave functions, which provides an interface that other
parts of the code rely on. The NQS class is used to wrap ANNs that are defined using
the Flax module system Linen [58]. In this framework ANNs are defined in a very similar
manner as in the popular Pytorch or Keras packages as classes that are derived from
the flax.linen.Module base class. The minimal requirement for this new class is the
implementation of a call member function, which evaluates the neural network on a
single input configuration. For example, a Restricted Boltzmann Machine (RBM) with
complex parameters, for which

logψθ(s) =
Nh

∑
i=1

log(cosh (∑
j

Wijsj + bj)) (37)

with Nh the number of hidden units, can be defined as follows:

class MyRBM(flax.linen.Module):

numHidden: int = 2 # number of hidden units

@flax.linen.compact

def __call__(self, s):

s = 2 * s - 1 # Go from 0/1 representation to 1/-1

12

SciPost Physics Codebases Submission

Apply dense layer

h = flax.linen.Dense(features=self.numHidden,

dtype=jVMC.global_defs.tCpx)(s)

Apply activation function

h = jax.numpy.log(jax.numpy.cosh(h))

return jax.numpy.sum(h)

Notice in this example code that the flax.linen package provides basic modules like, e.g.,
dense layers (flax.linen.Dense). Moreover, the flax.linen.compact decorator enables
the inlined definition of such submodules, which otherwise have to be defined in a separate
setup member function (see Flax documentation for details [58]).

In order to work with autoregressive NQS (see Section 2.6.2), a member function
called sample has to be implemented as part of the corresponding Flax Linen mod-
ule. This sample member function has to take the desired number of samples and a
jax.random.PRNGKey as input arguments and it should return the resulting configura-
tions.

The jVMC.nets module contains a number of pre-defined common network architec-
tures, including Restricted Boltzmann Machines, Convolutional Neural Networks, and
Recurrent Neural Networks. Notice, however, that these classes of architectures delineate
general design principles, but leave a lot of freedom regarding the details of the implemen-
tation. The jVMC codebase is intended to encourage the exploration of new architectures,
for which the provided examples should be regarded as possible starting points.

Once the network architecture is defined in the form of a flax.linen.Module, an
instance of it can be initialized. Continuing the example from above, an RBM can be
obtained as follows:

>>> net = MyRBM(numHidden=7) # Initialize custom ANN

The NQS class supports the three types of NQS introduced in Section 2.6.1, i.e., a
single holomorphic or non-holomorphic ANN or two separate ANNs encoding logarithmic
amplitude and phase, respectively. The corresponding ANNs in the form of Linen modules
are passed to the NQS class at instantiation. In our example, we define a holomorphic RBM
NQS with the following line:

>>> psi = jVMC.vqs.NQS(net) # Initialize an NQS object

In order to use two separate networks for phase and amplitude, the two networks are
passed as a tuple. In addition to this, the constructor takes as optional arguments a
batchSize (the meaning of which is explained below) and a seed for the initialization of
the network parameters.

The main purpose of the NQS class is to provide an interface for computing wave
function coefficients as well as gradients of the variational ansatz. For a given sample
of input configurations s the call method yields the logarithmic wave function coef-
ficients logψθ(s) and the gradients method returns the logarithmic gradients Oθk(s) =
∂θk logψθ(s). These methods automatically vectorize the evaluation, meaning that the in-
put requires the additional device and batch dimension as explained in Section 3.1 above.
Since the batch-vectorization is limited by the available memory, the batch is prior to
evaluation split into mini-batches of size batchSize, which are evaluated simultaneously.
The batchSize used by the NQS class is fixed at instantiation (see above) and it should
be chosen as large as possible with the given memory resources in order to render the

13

SciPost Physics Codebases Submission

network evaluation compute-bound, see Section 3.1.2.
Finally, the NQS class provides member functions get parameters, set parameters,

and update parameters to manipulate the network parameters; see the documentation
for details [37].

3.2.2 Operators

The jVMC.operator module implements the evaluation of the action of operators on com-
putational basis configurations. In terms of an operator Ô acting on the Hilbert space this
corresponds to “on-the-fly” generation of matrix elements. Generally, this amounts to a
mapping

Ô ∶ s↦ {s′j},{Oss′j} (38)

Here, s denotes the input basis configuration and the s′j are the basis configurations for

which the matrix elements are non-zero, Oss′j = ⟨s∣Ô∣s′j⟩ ≠ 0.

The abstract Operator class defines an interface for the implementation of mappings
given in Eq. (38). Any specific operator can be implemented as a child of Operator, which
has to implement a compile() member function. Such an implementation should return
a JAX-jit-able function (see Appendix A.1) that returns for a given basis configuration s
a tuple of two arrays, one containing the configurations s′j – the other the corresponding
matrix elements Oss′j .

The following example code shows the implementation of a σ̂xl operator acting on a
chain of spin-1/2 degrees of freedom, i.e., s ∈ {0,1}N :

class SxOperator(jVMC.operator.Operator):

"""Define a ‘\hat\sigma_l^x‘ operator."""

def __init__(self, siteIdx):

self.siteIdx = siteIdx

super().__init__() # Constructor of base class Operator has to be called!

def compile(self):

def get_s_primes(s, idx):

Create copy of input

sp = s.copy()

Define matrix element

matEl = jax.numpy.array([1.,], dtype=global_defs.tCpx)

Define mapping of Sx: 0->1, 1->0

sMap = jax.numpy.array([1, 0])

Perform mapping

sp = jax.ops.index_update(sp, jax.ops.index[idx], sMap[s[idx]])

return sp, matEl

Create a pure function that takes only a basis configuration as argument

map_function = functools.partial(get_s_primes, idx=self.siteIdx)

return map_function

14

SciPost Physics Codebases Submission

As mentioned above, the new SxOperator class inherits from the abstract Operator

class. Crucially, the parent constructor has to be called at the end of the constructor of
the new class, i.e., super(). init () has to be included. The compile member function
constructs and returns a function that defines the operator’s action. In our example we
can test its behavior as follows:

>>> mySx = SxOperator(siteIdx=1) # Initialize operator

>>> testFunction = mySx.compile() # Get operator evaluation function

>>> testConfig = jax.numpy.array([0, 0, 0, 0], dtype=np.int32) # Test

configuration

>>> sp, matEl = testFunction(testConfig) # Evaluate operator on test

configuration

>>> print(sp)

[0 1 0 0]

>>> print(matEl)

[1.+0.j]

Any child of the abstract Operator class inherits the following member functions, which
employ the operator action defined by the specific compile function:

• get s primes(s): Returns s′j and Oss′j for a batch of input states s. In accordance

with Section 3.1 the input dimension is D × B × (spatial dimensions), where D is
the device dimension and B is the batch size. The output is a tuple of two arrays
of shape D ×M × (spatial dimensions) and D ×M , where M is the total number of
non-zero matrix elements across the whole batch.

• get O loc(logPsiS, logPsiSP): Assuming that get s primes(s) has been called
before on a batch of input states s, this function computes the corresponding Oθloc(s)
for each element of the batch. As input it requires the logarithmic wave function
coefficients logψθ(s) (argument logPsiS) and logψθ(s′) (argument logPsiSP). It
returns an array of size D ×B with the complex-valued Oθloc(s).

Thereby, children of the Operator class provide comprehensive functionality to evaluate
Oθloc(s) for arbitrary operators Ô in an automatically vectorized manner. Consider, for

example, that H is an operator object implementing the action of a Hamiltonian Ĥ, psi is
the variational wave function, i.e., an instance of the NQS class, and sampleConfigs is a
batch of basis configurations. Then, evaluating Eθloc(s) is achieved by the following lines
of code:

sampleOffdConfigs, matEls = H.get_s_primes(sampleConfigs)

sampleLogPsi = psi(sampleConfigs)

sampleLogPsiOffd = psi(sampleOffdConfigs)

Eloc = H.get_O_loc(sampleLogPsi, sampleLogPsiOffd)

Besides the abstract Operator class that serves as a basis to implement arbitrary
operators, the jVMC codebase provides two derived classes for typical applications:

• BranchFreeOperator: This class provides functionality to compose many-body op-
erators as tensor products of branch-free operators acting on local Hilbert spaces.
The term “branch-free” means that the local operators contain only a single non-
zero entry in each row/column. An example are the Pauli operators, which are
pre-defined as part of the module.

• POVMOperator: The POVMOperator class comprises utility to construct time-evolution
operators in the POVM-formalism. Note that the computation of observables differs

15

SciPost Physics Codebases Submission

in this formalism, such that the returned operator may only be interpreted as the
object generating the real time-evolution.

The documentation [37] explains the corresponding API in detail.

3.2.3 Sampler

The purpose of the sampler module is to handle all sampling-related tasks in a unified
manner. The module provides two classes, the ExactSampler and the MCSampler. The
ExactSampler evaluates the network on all the (exponentially many) basis configurations.
Obviously, there is no associated computational speedup with this method and its main
purpose is to make troubleshooting easier when testing new functionalities. In contrast,
the MCSampler may be used to generate MC samples from the Born distribution of ψθ(s)
either by direct sampling from an autoregressive NQS or by Metropolis MCMC.

The common interface of both sampler classes is a sample member function, which
generates a sample in the respective manner and returns a tuple of the generated basis
configurations, the corresponding coefficients logψθ(s), and the probabilities ∣ψθ(s)∣2 in the
case of the ExactSampler or None in the case of the MCSampler. Hence, after instantiating
a sampler object called mySampler, generating a set of samples amounts to the line

sampleConfigs, sampleLogPsi, sampleProb = mySampler.sample()

At instantiation both sampler types need to be passed the variational wave function and
the sample shape. The ExactSampler furthermore requires the local Hilbert space dimen-
sion lDim.

For the initialization of a MCSampler a jVMC.random.PRNGKey is an additional neces-
sary argument. An updateProposer function needs to be provided for MCMC sampling.
The expected signature is updateProposer(key, config, **kwargs) and the function
is supposed to return an updated basis configuration that is used as proposed move in
the Metropolis MCMC algorithm. If the optional argument updateProposerArg is given
when instantiating a MCSampler, its value is passed to the updateProposer as kwargs.
Further initialization arguments are the number of samples to generate numSamples, and
for MCMC sampling the number of update proposals per sweep sweepSteps and the num-
ber of sweeps used for initial thermalization (“burn-in”) thermalizationSweeps. The
argument numChains defines the number of MCMC chains that are run in a vectorized
manner in order to enhance the computational efficiency.

If the NQS which was given during the initialization of the MCSampler is an autore-
gressive model, i.e., if a sample member function exists in the respective Linen module,
direct sampling is automatically used instead of MCMC sampling.

In both the ExactSampler and the MCSampler the generation of samples is automati-
cally distributed across MPI processes and locally available devices. This means for MC
sampling that when running NP MPI processes and calling the sample member function
to obtain NMC samples, each of the processes will produce NMC/NP samples. Due to the
internal vectorization the total number of samples produced by the MCSampler can slightly
exceed the number of samples asked for in order to match array dimensions.

3.2.4 MPI wrapper

It’s amenability to parallelization across distributed compute clusters is a key feature
of VMC algorithms, see Section 3.1. After generating samples locally on the different
nodes, the results have to be collected in order to compute the quantities of interest. The
mpi wrapper module provides a system for the distributed sampling and the subsequent

16

SciPost Physics Codebases Submission

reduction tasks. For this purpose, it wraps the required MPI communications, for which
the mpi4py package [35,36] is used.

The function jVMC.mpi wrapper.distribute sampling distributes sampling tasks
across the available processes and devices. For a desired total number of samples this
function determines how many samples should be generated by each sampling process.
The ExactSampler or MCSampler class invoke this function to automatically distribute
the sampling tasks.

Assume that mySampler is an instance of a sampler class, psi is a variational quantum
state, and op is an instance of a class derived from the Operator class, associated with a
quantum operator Ô. Then we can get samples and the corresponding Oθloc(s) via

>>> s, logPsi, _ = mySampler.sample()

>>> sPrime, _ = op.get_s_primes(sampleConfigs)

>>> logPsiOffd = psi(sPrime)

>>> Oloc = op.get_O_loc(logPsi, logPsiOffd)

Now, on each MPI process Oloc is a two-dimensional array of size (number of devices) ×
(number of samples per device). On this basis, the mpi wrapper module contains different
functions to evaluate the distributed data. To get, for example, the Monte Carlo estimate
of the expectation value of Ô as defined in Eq. (5), we can use the get global mean

function

>>> Omean = jVMC.mpi_wrapper.get_global_mean(Oloc)

Further options are get global variance, get global covariance, and get global sum

to compute the variance, co-variance matrix, and the sum of all elements, respectively.

3.2.5 Utilities

The jVMC.util module comprises higher-level code which is not at the heart of the jVMC
codebase. The code in this module

• either contains functionality to combine the workings of the codebase on an inter-
mediate (e.g., jVMC.util.tdvp, jVMC.util.stepper) or higher (e.g., ground state
search or network initialization in jVMC.util.util) level,

• or solves tasks that are not immediately related to the core functionality (e.g. IO-
tasks in jVMC.util.output manager or symmetry transformations in
jVMC.util.symmetries).

TDVP The jVMC.util.tdvp module is centered around solving the equation

[[Sk,k′]]θ̇k′ = −[[γFk]] , (39)

where γ ∈ {1, i} is either the real or the imaginary unit. The module comprises a TDVP class
with a call member function that returns a (regularized) solution θ̇ of Eq. (39), which
corresponds to an SR step, Eq. (10), for γ = 1 or a real time step following the TDVP
equation (19) for γ = i. The signature of the call method matches the standard right
hand side required by ordinary differential equation solvers of the scipy library [59] or
those provided as part of the jVMC codebase in the jVMC.util.stepper module (see
below). Hence, an instance of the TDVP class can be passed as right hand side to these
integrators. Invoking the call member function of a TDVP object, essentially amounts
to carrying out the steps of Algorithm 1.

For solving Eq. (39) the TDVP class offers a number of options, of which we highlight a
few, while referring to the detailed documentation [38] for a complete list:

17

SciPost Physics Codebases Submission

• Choose γ by setting the rhsPrefactor at initialization.

• Choose [[⋅]] to be Re(⋅) or Im(⋅) by passing "real" or "imag" for the argument
makeReal at initialization.

• Set the regularization parameters ν, εpinv, and εSNR described in Section 2.5. The
respective regularization scheme is not effective if the corresponding parameter is set
to zero.

• The hamiltonian argument may be an Operator object or a function that takes a
real number as argument and returns an Operator object. The latter can be used
to solve the TDVP equation with time-dependent Hamiltonians.

• We observed that the CUDA implementation of the diagonalization can be unstable
if the (quantum) Fisher matrix S is ill-conditioned. To circumvent this issue, we
introduced the diagonalizeOnDevice initializer argument, which allows to choose
where to perform the diagonalization of the matrix.

• If the call function receives the optional intStep keyword argument, and if
intStep==0, various quantities like energy mean and variance, S and F , as well
as residuals and the TDVP error of the solution are stored. These quantities can
subsequently be retrieved via the corresponding get * member functions of the TDVP
class.

Stepper The stepper module comprises two classes for the integration of ordinary
differential equations: A simple Euler integrator and an AdaptiveHeun integrator. Both
classes contain a step member function as common interface. Assuming that the ODE is
given in the standard form ẏ(t) = f(y(t), t, p), the step function takes tn, f , y(tn), and
optional additional parameters p as argument and returns yn+1 ≡ y(tn+1) following the
respective integration scheme.

The AdaptiveHeun stepper is a second-order consistent adaptive integrator that adjusts
the integration step size τ to achieve a given accuracy εstep. For this purpose, it computes

solutions y
(τ)
n+1 and y

(τ/2)
n+1 using a Runge-Kutta scheme with two different step sizes τ and

τ/2. Based on the difference of the solutions δ = ∥y(τ)n+1 − y
(τ/2)
n+1 ∥ the time step is adjusted

according to τ ← τ(εstep/δ)1/3 in order to guarantee the desired accuracy.
One important point to observe is that the choice of the normalization measure,

which is in principle arbitrary, can have a severe impact on the performance (i.e., the
resulting step size). The norm can be chosen by passing a function that computes it as
normFunction argument to the step function. A natural choice is to be sensitive only to
deviations which correspond to actual changes in the wave-function. This is given, when
using the (quantum) Fisher norm ∣∣v∣∣S = 1

Np

√
∑k,k′ v∗kSkk′vk′ , where Np is the number of

components of v [24].

Output Manager The output manager handles all IO-related tasks in a unified fashion.
For output to a file it relies on the hdf5 data-format which is handled using the h5py

library [60]. During evolution, three different types of data are typically stored:

• physical observables, corresponding to the write observables function expecting a
timestamp and a dictionary of to-be-written observables,

• metadata, corresponding to the write metadata function expecting a timestamp
and a dictionary of to-be-written metadata,

18

SciPost Physics Codebases Submission

• network checkpoints, corresponding to the write network checkpoints function
expecting a timestamp and the set of network parameters at that time step. This
allows to restart the simulation at arbitrary times or to sample observables which
have not been stored during the initial run, using the get network checkpoint

function to set desired network parameters for all MPI-processes.

Moreover, the OutputManager class provides a print function for printing to the standard
output, which blocks all MPI processes except for the root process to avoid repeated
output.

Symmetries Incorporating symmetries in the NQS turned out essential for high ac-
curacy in various applications. For the symmetrization a typical task is to produce the
symmetry-transformed input configurations sω(l) for all transformations ω ∈ Ω; see, e.g.,
Section 5.1 or Refs. [10, 17].

The jVMC.util.symmetries module contains functions that return the complete sets
of symmetry transformations Ω for simple lattices in the form of permutation matrices.
These can be used in definitions of NQS architectures to produce all symmetry-related
configurations by simple dot-products, see the code of symmetrized architectures in the
jVMC.nets module for examples.

4 Performance

One of the key features of the jVMC codebase is the efficient exploitation of large scale su-
percomputing resources for NQS simulations. Ideally, many accelerators (GPUs or TPUs)
are available to share the independent workload for each batch of samples as described in
Section 3.1.

Fig. 2a demonstrates close to ideal speedup achieved by the MPI parallelization of the
code. As a benchmark we consider an SR step for a 50-site transverse-field Ising chain
with periodic boundary conditions. The NQS architecture is a symmetrized RNN with
1510 variational parameters and the expectation values are estimated using NMC = 3×105

Monte Carlo samples. The displayed timings were taken on the JUWELS Booster module
at the Jülich Supercomputing Centre, where each node is equipped with four NVIDIA A100

GPUs. Using the single-node performance as baseline, we observe almost ideal speedup
for up to 16 nodes or 64 GPUs. The breakdown of compute times on a single node in
Fig. 2b shows that network evaluations account for the majority of the computational
cost, which explains the efficiency of the parallelization. Notice the negligible contribution
of the sample generation, which is due to direct sampling from the autoregressive NQS.

Additionally, we benchmark the performance gain obtained when increasing the batch
size and, thereby, the arithmetic intensity of the network evaluation tasks. As discussed
in Section 3.1.2, the batch size should ideally be chosen to saturate the GPU’s memory
capacity. To illustrate the significance of suited batching, we again time one SR update
step, for this purpose considering a 30-site spin chain and an RNN without symmetries.
For NMC = 104, the speedup gained by increasing the batch size is shown in Fig. 2(c). The
acceleration of the forward pass by more than a factor of 100 compared to the baseline
with batch size 16 underlines the importance of batching for optimal performance.

The performance gain by batching is also the reason why running multiple parallel
Monte Carlo chains can enhance the performance. However, there exists a sweet spot in
the number of chains as shown in Fig. 2(d). For very few MC-chains the GPU is not used
to its full capacity as the network is evaluated on too small batches. In the opposite limit
of many chains the ’burn-in’ process amounts to computational overhead, which eventually

19

SciPost Physics Codebases Submission

20 21 22 23 24

No. of Nodes

20

21

22

23

24
Sp

ee
du

p
ideal
measured

(a)

Steps
Forward Passes: 128.95s
Backward Passes: 11.65s
Sample Generation: 2.61s
Diagonalization: 1.36s
MPI communication: 1.14s

(b)

102 103 104

Batch Size

100

101

102

Sp
ee

du
p

Forward Passes
Backward Passes
Sample Generation

(c)

100 101 102 103

MC-chains

1

2

3
4

6

Sp
ee

du
p

(d)

Figure 2: (a) Scaling of the computational runtime with the number of compute nodes.
Here, each node is equipped with NVIDIA A100 GPUs. (b) Execution times of the differ-
ent tasks in a single step in case of a single node. The benchmark script is available at
vmc jax/examples/ex4 benchmarking.py. (c) Speedup gained by increased arithmetic
intensity via batching. (d) Effect of multiple MC-chains on the runtime. Initially, batching
accelerates the sampling, but eventually the thermalization overhead impairs the perfor-
mance.

outweighs the enhanced arithmetic intensity, as it has to be carried out for each process
separately. Fig. 2(d) shows optimum performance with of the order of 100 parallel Monte
Carlo chains, which we found to be a good number in various simulations.

5 Examples

5.1 Ground state search

For the exemplary ground state search we consider the one-dimensional transverse-field
Ising model

Ĥ = −∑
l

ẐlẐl+1 − g∑
l

X̂l (40)

with Pauli operators X̂l and Ẑl acting on lattice site l and periodic boundary conditions.
Fermionization of the Hamiltonian yields an analytical solution, which serves as a reference
for the exact ground state energy [61].

The un-normalized wave function ansatz is a fully connected single-layer CNN with real
parameters, meaning that the NQS automatically incorporates the translational symmetry
of the Hamiltonian:

logψθ(s⃗) =
α

∑
a=1
∑
ω∈T

fELU(Walsω(l) + ba) (41)

20

https://github.com/markusschmitt/vmc_jax/blob/dev_0.1.0/examples/ex4_benchmarking.py

SciPost Physics Codebases Submission

10 4

10 3

10 2

10 1

100

(E
E 0

)/L
L = 10

= 2
= 8
= 16

L = 20 L = 100

0 250 500 750 1000
Iteration number n

10 4

10 3

10 2

10 1

100

Va
r(E

)/L

0 250 500 750 1000
Iteration number n

0 250 500 750 1000
Iteration number n

Figure 3: Example ground state search for the transverse-field Ising model using NQS
and Stochastic Reconfiguration for different network sizes α and system sizes L. The top
row shows the deviation from the exact reference energy E0. The bottom row shows the
corresponding energy variance, which vanishes in an exact eigenstate.

Here, T is the set of translations and fELU(x) denotes the ELU activation function

fELU(x) =
⎧⎪⎪⎨⎪⎪⎩

x if x > 0

ex − 1 if x ≤ 0
. (42)

The ground state search is performed by Stochastic Reconfiguration, see Section 2.2,
using the learning rate τ = 10−2, NMC = 4× 104 MC samples, an initial regularization with
diagonal shift ν0 = 10 that decays with increasing step number n as ν = 0.95nν0, and a
pseudo-inverse cutoff parameter εpinv = 10−8 (see Section 2.5).

Fig. 3 shows the evolution of energy and energy variance during the optimization for
different system sizes L = 10,20,100 and g = 0.7. The parameter α controls the size of the
NQS (see Eq. (41)) and thereby the quality of the result.

This basic ground state search is implemented in the example notebook
examples/ex0 ground state search.ipynb, which is contained as an example in the
codebase repository and reproducing them is feasible on a single GPU.

5.2 Real time dynamics

5.2.1 Unitary dynamics of pure states

As an example of unitary dynamics we simulate a quench in the transverse-field Ising
model on a square lattice

Ĥ = −J ∑
⟨i,j⟩

ẐiẐj − g∑
j

X̂j (43)

where X̂j and Ẑj are Pauli operators and ⟨i, j⟩ denotes pairs of nearest neighbors on the
lattice. The initial state ∣ψ0⟩ is the paramagnetic ground state at J = 0, which we find
by an initial ground state search. Subsequently, the system evolves with the Hamiltonian
parameters J = 1 g = 1.5gc, where gc = 3.04438J [62] is the critical transverse field strength

21

https://colab.research.google.com/github/markusschmitt/vmc_jax/blob/master/examples/ex0_ground_state_search.ipynb

SciPost Physics Codebases Submission

0 1 2 3 4 5 6
hxt

0.90

0.92

0.94

0.96

0.98

1.00

X

= 8
= 16
= 24
= 32

0

2

4

6
hxt = 0.5 hxt = 2

0 2 4 6

0

2

4

6
hxt = 3.5

0 2 4 6
hxt = 5

0.05

0.00

0.05

0.10

0.15

0.20

Z
L/

2,
L/

2Z
ij

a) b)

Figure 4: Quench dynamics in a two-dimensional quantum Ising model of size 8 × 8. (a)
Time evolution of the transverse magnetization at the center of the lattice. (b) Spatio-
temporal spreading of correlations.

at which the model exhibits a phase transition. We consider open boundary conditions,
meaning that the physical setting is a variant of the situation addressed in [24].

The network architecture of the NQS is a single-layer fully connected complex CNN
with suited zero-padding of the computational basis configuration to account for the open
boundary conditions. The activation function is the Taylor series of log cosh(x) truncated
at sixth order. For a system of 8× 8 lattice sites we show in Fig. 4a) the time evolution of
the transverse magnetization at a central site, ⟨X̂L/2,L/2⟩, obtained with different network
sizes to demonstrate convergence, namely 8, 16, 24, and 32 channels in the CNN. Fig. 4b)
displays the spatio-temporal spreading of correlations based on the correlation function
⟨ẐL/2,L/2Ẑi,j⟩.

This result was obtained using NMC = 106 Monte Carlo samples. The TDVP equation
was solved using cutoff parameters εpinv = 10−8 and εSNR = 2. The tolerance for the
adaptive time step of the integrator was εstep = 10−6.

5.2.2 Dissipative dynamics

The object of interest in an open quantum setting is the density matrix ρ̂, taking on the role
of the wave-function ψ in a closed scenario. Different paths to variational approximations
of ρ̂ using neural networks have been explored [27–29], which were briefly introduced in
Section 2.4. We here want to showcase results that were obtained in Ref. [29] employing
the probability based POVM approach in conjunction with the proposed codebase. Here,
we study a quench of a z-polarized state in a one-dimensional quantum Ising model with
transverse and longitudinal field; the openness consists of dephasing with relative strength
γ/J = 0.25, which eventually drives the system to the featureless steady state ρ̂SS ∝ 1.
The system’s Hamiltonian is accordingly given by

Ĥ = ∑
⟨ij⟩

JzẐiẐj +∑
i

(hzẐi + hxX̂i) . (44)

and is of interest as it exhibits confinement effects which may be regulated by tuning
hz [63]. Non-zero values of hz break the Z2 symmetry of the TFIM-Hamiltonian and
function as an energy penalty for domains that point in opposite direction from hz, thereby
suppressing the spreading of correlations. The obtained results are shown in Fig. 5.

Here, an RNN with 5 layers was used where in each layer, latent information is carried
in the form of a hidden state of length 12. The corresponding transformations are described

22

SciPost Physics Codebases Submission

10 2 10 1 100 101 102

Jt

0.0

0.2

0.4

0.6

0.8

1.0(a)
X - ANN
Y - ANN
Z - ANN

X - MCWF
Y - MCWF
Z - MCWF

0 20 40 60 80 100 120
Jt

15
13
11

9
7
5
3
1
1
3
5
7
9

11
13
15

d

Dissipative

Unitary

(b)

light cone (Unitary case)
MCWF system size

10 2

10 1

Figure 5: (a) Mean magnetizations in a spin chain of length N = 32 with the quench
parameters hx/Jz = 0.25, hz/Jz = 0.05 and the dissipation channel L̂ = Ẑ with relative
strength γ/Jz = 0.25 compared to MCWF-data for N = 16 spins starting in the product
state ⟨Ẑ⟩ = 1. (b) Spreading of correlations in the spin chain. Top: Dissipative system
with γ = 0.25, Bottom: MPS simulation of the unitary system where γ = 0.0. After an
initial linear light-cone spreading, the nature of the dissipative propagation grows more
diffusive, before all correlations eventually vanish. Notice that the slight deviations in
panel (a) coincide with the time at which the dissipative correlations cross the MCWF
system size boundary. Data taken from Ref. [29].

by 1456 variational parameters, which are updated using NMC = 1.6× 105 samples in each
time step with a prescribed integration tolerance εstep = 10−3 and εpinv = 10−8. The SNR
scheme was not used and translational invariance was enforced as described in Sec. 3.2.5.

6 Conclusion

The jVMC codebase provides a basic and flexible framework for the composition of NQS
algorithms. The typical building blocks – on-the-fly computation of operator matrix ele-
ments, sampling from the Born distribution, and evaluating the wave function ansatz and
its gradients – are implemented in an efficient manner. While designed to fully exploit the
resources of distributed compute clusters, the underlying just-in-time compilation allows
the user to run the identical Python code just as well on a desktop computer without
accelerators.

Compared to the existing NetKet library [64], the jVMC codebase was devised follow-
ing a different philosophy. While NetKet provides implementations of many different NQS
algorithms, network architectures, and physical models, the jVMC codebase focuses on
exposing a minimal system of efficiently implemented modules that facilitates the custom
composition of such algorithms. This bottom-up ansatz is intended to free future method
development from the necessity of first having to create parallelized and performant im-
plementations of the core tasks; at the same time we aimed to impose only minimal bias
with respect to the details of resulting algorithms.

The presented codebase has already been used in research applications to compute the
energy gap of a two-dimensional quantum Ising model and its unitary dynamics across a
quantum phase transition [25], and also for the simulation of open quantum spin systems
in one and two dimensions [29]. We expect that it will serve as a useful basis for further
method development and applications in these and other directions, where VMC with
NQS can potentially push our classical simulation capabilities.

23

SciPost Physics Codebases Submission

Acknowledgements

Funding information MR was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-
390900948 (the Heidelberg STRUCTURES Excellence Cluster) and within the Collabora-
tive Research Center SFB1225 (ISOQUANT); moreover, MR was partially supported by
the Baden-Württemberg Stiftung gGmbH. The authors gratefully acknowledge the Gauss
Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by pro-
viding computing time through the John von Neumann Institute for Computing (NIC)
on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC) [65]. Fur-
thermore, the authors acknowledge support by the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG) through grant no INST 40/575-1
FUGG (JUSTUS 2 cluster).

A The underlying JAX library in a nutshell

The jVMC codebase is built on the JAX library, which provides automatic differentia-
tion, vectorization, and just-in-time compilation to accelerators in order to enable “high-
performance numerical computing and machine learning research” [34]. JAX can automat-
ically differentiate and vectorize functions that are written in Python and it can compile
the Python code for efficient execution on the CPU or on GPUs/TPUs if available. As
a basis the JAX library contains an own implementation of (most of) the NumPy [66]
functionality in the jax.numpy submodule. In the following we sketch the main compo-
nents of a system of composable function transformations, namely just-in-time compilation
with jax.jit, automatic differentiation with jax.grad, vectorization with jax.vmap, and
parallelization across multiple accelerators with jax.pmap.

Importantly, the ability to perform the various function transformations imposes a
number of constraints on how those functions are written. Here, we highlight the following:

• Pure functions: All input data have to be passed to the function as arguments and
all results given as return values. Global variables and side effects lead to unexpected
behavior of JAX-transformed functions. Some workarounds are needed to reconcile
JAX with object-oriented code.

• Control flow needs some care. Replace Python for-loops or if-branching with
primitives from the jax.lax sub-module, see the JAX documentation for details.

• JAX arrays are immutable in order to enable function tracing. However, when
attempting to change the content of a JAX array, the thrown error gives hints to
the correct pure analog of this operation.

>>> jax_array = jax.numpy.ones((3, 3), dtype=jax.numpy.float32)

>>> jax_array[1, :] = 2.0

TypeError: ’<class ’jaxlib.xla_extension.DeviceArray’>’ object does not

support item assignment. JAX arrays are immutable; perhaps you want

jax.ops.index_update or jax.ops.index_add instead?

One additional option besides the suggestions to resolve the issue is

>>> jax_array.at[1, :].set(2.0)

24

SciPost Physics Codebases Submission

For a comprehensive list, we refer the reader to the section about “the sharp bits” of the
JAX documentation [67]. The example codes below are variations of examples shown in
the JAX documentation.

A.1 Just-in-time compilation

jax.jit returns a compiled version of the function that is given as the argument. Impor-
tantly, the function will be recompiled whenever the input data type or shape is changed.

def selu(x, alpha=1.67, lmbda=1.05):

return lmbda * jax.numpy.where(x>0, x, alpha * jax.numpy.exp(x)-alpha)

selu_jitd = jax.jit(selu)

x = jax.numpy.arange(-2,2,1)

print(selu_jitd(x)) # [-1.5161895 -1.1084234 0. 1.05]

When running this piece of code, the function will first be compiled when the last line
is executed and then the compiled function will be called. In this example, calling the
jitted function instead of the original Python function will not exhibit any significant
differences (besides a compilation overhead when calling the jitted function for the first
time). Compiling functions that execute considerable computational workload, instead,
can yield significant gains in performance.

jax.jit can be used to showcase an example of unexpected behavior when global
variables are involved in JAX-transformed functions:

>>> global g

>>> g = 3

>>> def f(x):

... return x + g

>>> f_jit = jax.jit(f)

>>> f_jit(0)

DeviceArray(3, dtype=int32)

>>> g = 4

>>> f_jit(0)

DeviceArray(3, dtype=int32)

>>> f_jit(0.)

DeviceArray(4., dtype=float32)

As mentioned above, a jitted function is recompiled if invoked with new data types, which
is the reason for the output of the last line.

A.2 Automatic differentiation

The restriction to pure functions is the basis for an easily accessible implementation of au-
tomatic differentiation in JAX. The derivative of arbitrary pure functions can be computed
with jax.grad. Moreover, the function returned by jax.grad can be used in further trans-
formations, for example to compute the second derivative in the code below. If derivatives
for more than the first argument are required, the keyword-argument argnums needs to
be specified.

Define a function

def f(x):

return x**2

df = jax.grad(f) # Get the gradient of the function

25

SciPost Physics Codebases Submission

ddf = jax.grad(df) # Get the second gradient of the function

x_list = jax.numpy.arange(0,1,.2)

print(jax.numpy.array([df(x) for x in x_list])) # [0. 0.4 0.8 1.2 1.6]

print(jax.numpy.array([ddf(x) for x in x_list])) # [2. 2. 2. 2. 2.]

A.3 Vectorization

To accelerate typically slow Python for-loops and in order to enable the full exploitation
of accelerators, JAX comprises can transform a single-instruction single-data (SISD) op-
eration (like the function f defined above) into a function that works on multiple data
(single-instruction multiple-data, SIMD). For a given function that operates on some in-
put data, jax.vmap returns a vectorized version of that function, that applies the original
function element-wise to vectors of input data.

As mentioned above, all JAX function transformation are composable, meaning that
one can arbitrarily combine jax.jit, jax.grad, and jax.vmap as demonstrated in the
following example:

Define a function

def f(x):

return x**2

df = jax.vmap(jax.grad(f)) # Get the vectorized gradient of the function

x_list = jax.numpy.arange(0,1,.2)

print(df(x_list)) # [0. 0.4 0.8 1.2 1.6]

A.4 Parallelization across multiple accelerators

When multiple accelerators are available, jax.pmap can map a function to these devices,
such that the function is executed in parallel with the elements along one axis of the input
data as arguments. Thereby, jax.pmap is superficially very similar to jax.vmap. But,
in fact, the effect of both transformations is quite different: While jax.vmap vectorizes
a function, jax.pmap creates copies of the function which are then carried out on each
device individually. This means, for example, that the data that is passed to a pmapped
function has to be physically scattered across different devices.

There are some pitfalls that one needs to be aware of; one example is that the leading
axis dimension of inputs must not be greater than the number of devices. A practical
way of circumventing such issues and to obtain good parallelization results is to reshape
the leading axis of datasets into the number of devices, which can be obtained using
jax.local device count(). In the example below we assume that two GPUs are avail-
able.

Define a function

def f(x):

return x**2

df = jax.pmap(jax.grad(f)) # Get the vectorized gradient of the function

x_list = jax.numpy.arange(0,1.2,.2).reshape((jax.local_device_count(), -1))

print(df(x_list)) # [[0. 0.4 0.8], [1.2 1.6 2.0]]

26

SciPost Physics Codebases Submission

References

[1] H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito,
S. Yuan and K. Michielsen, Massively parallel quantum computer simula-
tor, eleven years later, Computer Physics Communications 237, 47 (2019),
doi:https://doi.org/10.1016/j.cpc.2018.11.005.

[2] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Annals of Physics 326(1), 96–192 (2011), doi:10.1016/j.aop.2010.09.012.

[3] R. Orús, A practical introduction to tensor networks: Matrix product states
and projected entangled pair states, Annals of Physics 349, 117–158 (2014),
doi:10.1016/j.aop.2014.06.013.

[4] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck and C. Hubig,
Time-evolution methods for matrix-product states, Annals of Physics 411, 167998
(2019), doi:https://doi.org/10.1016/j.aop.2019.167998.

[5] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory
of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod.
Phys. 68, 13 (1996), doi:10.1103/RevModPhys.68.13.

[6] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet and C. A.
Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev.
Mod. Phys. 78, 865 (2006), doi:10.1103/RevModPhys.78.865.

[7] W. Metzner and D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions, Phys.
Rev. Lett. 62, 324 (1989), doi:10.1103/PhysRevLett.62.324.

[8] A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45,
6479 (1992), doi:10.1103/PhysRevB.45.6479.

[9] J. Gubernatis, N. Kawashima and P. Werner, Quantum Monte Carlo Methods: Al-
gorithms for Lattice Models, Cambridge University Press, ISBN 9781316483121,
doi:10.1088/1742-6596/1036/1/012020 (2016).

[10] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial
neural networks, Science 355(6325), 602 (2017), doi:10.1126/science.aag2302.

[11] O. Sharir, Y. Levine, N. Wies, G. Carleo and A. Shashua, Deep autoregressive models
for the efficient variational simulation of many-body quantum systems, Phys. Rev.
Lett. 124, 020503 (2020), doi:10.1103/PhysRevLett.124.020503.

[12] Y. Huang and J. E. Moore, Neural network representation of tensor network and
chiral states, arXiv:1701.06246 (2017).

[13] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez and J. I. Cirac, Neural-network
quantum states, string-bond states, and chiral topological states, Phys. Rev. X 8,
011006 (2018), doi:10.1103/PhysRevX.8.011006.

[14] R. Kaubruegger, L. Pastori and J. C. Budich, Chiral topological phases from artificial
neural networks, Phys. Rev. B 97, 195136 (2018), doi:10.1103/PhysRevB.97.195136.

[15] K. Choo, T. Neupert and G. Carleo, Two-dimensional frustrated J1−J2 model
studied with neural network quantum states, Phys. Rev. B 100, 125124 (2019),
doi:10.1103/PhysRevB.100.125124.

27

https://doi.org/https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1088/1742-6596/1036/1/012020
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1103/PhysRevB.100.125124

SciPost Physics Codebases Submission

[16] T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I. Katsnelson and A. A.
Bagrov, Generalization properties of neural network approximations to frustrated
magnet ground states, Nature Communications 11(1) (2020), doi:10.1038/s41467-
020-15402-w.

[17] Y. Nomura, Helping restricted boltzmann machine with quantum-state representation
by restoring symmetry, Journal of Physics: Condensed Matter (2021).

[18] N. Astrakhantsev, T. Westerhout, A. Tiwari, K. Choo, A. Chen, M. H. Fischer,
G. Carleo and T. Neupert, Broken-symmetry ground states of the heisenberg model
on the pyrochlore lattice, arXiv:2101.08787 (2021).

[19] M. Bukov, M. Schmitt and M. Dupont, Learning the ground state of a non-stoquastic
quantum Hamiltonian in a rugged neural network landscape, SciPost Phys. 10, 147
(2021), doi:10.21468/SciPostPhys.10.6.147.

[20] S. Czischek, M. Gaerttner and T. Gasenzer, Quenches near ising quantum critical-
ity as a challenge for artificial neural networks, Phys. Rev. B 98, 024311 (2018),
doi:10.1103/PhysRevB.98.024311.

[21] G. Fabiani and J. Mentink, Investigating ultrafast quantum magnetism with machine
learning, SciPost Physics 7(1) (2019), doi:10.21468/scipostphys.7.1.004.

[22] I. L. Gutiérrez and C. B. Mendl, Real time evolution with neural-network quantum
states, arXiv:1912.08831 (2021).

[23] Y. Wu, L.-M. Duan and D.-L. Deng, Artificial neural network based compu-
tation for out-of-time-ordered correlators, Phys. Rev. B 101, 214308 (2020),
doi:10.1103/PhysRevB.101.214308.

[24] M. Schmitt and M. Heyl, Quantum many-body dynamics in two dimen-
sions with artificial neural networks, Phys. Rev. Lett. 125, 100503 (2020),
doi:10.1103/PhysRevLett.125.100503.

[25] M. Schmitt, M. M. Rams, J. Dziarmaga, M. Heyl and W. H. Zurek, Quan-
tum phase transition dynamics in the two-dimensional transverse-field ising model,
arXiv:2106.09046 (2021).

[26] H. Burau and M. Heyl, Unitary long-time evolution with quantum renormaliza-
tion groups and artificial neural networks, Phys. Rev. Lett. 127, 050601 (2021),
doi:10.1103/PhysRevLett.127.050601.

[27] M. J. Hartmann and G. Carleo, Neural-network approach to dissipa-
tive quantum many-body dynamics, Phys. Rev. Lett. 122, 250502 (2019),
doi:10.1103/PhysRevLett.122.250502.

[28] D. Luo, Z. Chen, J. Carrasquilla and B. K. Clark, Autoregressive neural network for
simulating open quantum systems via a probabilistic formulation, arXiv:2009.05580
(2020).

[29] M. Reh, M. Schmitt and M. Gärttner, Time-dependent variational principle for open
quantum systems with artificial neural networks, arXiv:2104.00013 (2021).

[30] K. Choo, A. Mezzacapo and G. Carleo, Fermionic neural-network states for ab-initio
electronic structure, Nature Communications 11, 2368 (2020), doi:10.1038/s41467-
020-15724-9.

28

https://doi.org/10.1038/s41467-020-15402-w
https://doi.org/10.1038/s41467-020-15402-w
https://doi.org/10.21468/SciPostPhys.10.6.147
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.21468/scipostphys.7.1.004
https://doi.org/10.1103/PhysRevB.101.214308
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevLett.127.050601
https://doi.org/10.1103/PhysRevLett.122.250502
https://doi.org/10.1038/s41467-020-15724-9
https://doi.org/10.1038/s41467-020-15724-9

SciPost Physics Codebases Submission

[31] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko and G. Carleo,
Neural-network quantum state tomography, Nature Physics 14(5), 447 (2018),
doi:https://doi.org/10.1038/s41567-018-0048-5.

[32] J. Carrasquilla, G. Torlai, R. G. Melko and L. Aolita, Reconstructing quantum
states with generative models, Nature Machine Intelligence 1(3), 155–161 (2019),
doi:10.1038/s42256-019-0028-1.

[33] B. Jónsson, B. Bauer and G. Carleo, Neural-network states for the classical simulation
of quantum computing, arXiv:1808.05232 (2018).

[34] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang, JAX: compos-
able transformations of Python+NumPy programs, http://github.com/google/jax
(2018).

[35] L. Dalćın, R. Paz and M. Storti, Mpi for python, Journal of Parallel and Distributed
Computing 65(9), 1108 (2005), doi:https://doi.org/10.1016/j.jpdc.2005.03.010.

[36] L. D. Dalcin, R. R. Paz, P. A. Kler and A. Cosimo, Parallel distributed
computing using python, Advances in Water Resources 34(9), 1124 (2011),
doi:https://doi.org/10.1016/j.advwatres.2011.04.013, New Computational Methods
and Software Tools.

[37] jVMC: Versatile and performant variational Monte Carlo leveraging automated
differentiation and GPU acceleration (Python codebase), https://github.com/

markusschmitt/vmc_jax.

[38] jVMC online documentation, https://jvmc.readthedocs.io.

[39] M. Van Den Nest, Simulating quantum computers with probabilistic methods, Quan-
tum Info. Comput. 11(9–10), 784–812 (2011).

[40] S. Sorella and L. Capriotti, Green function monte carlo with stochastic reconfigura-
tion: An effective remedy for the sign problem, Physical Review B 61(4), 2599–2612
(2000), doi:10.1103/physrevb.61.2599.

[41] C.-Y. Park and M. J. Kastoryano, Geometry of learning neural quantum states, Phys.
Rev. Research 2, 023232 (2020), doi:10.1103/PhysRevResearch.2.023232.

[42] K. Choo, G. Carleo, N. Regnault and T. Neupert, Symmetries and many-body exci-
tations with neural-network quantum states, Physical Review Letters 121(16) (2018),
doi:10.1103/physrevlett.121.167204.

[43] I. L. Gutiérrez and C. B. Mendl, Real time evolution with neural-network quantum
states, arXiv:1912.08831 (2019).

[44] P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational
Principle in Quantum Mechanics, Springer, Berlin, Heidelberg, 1 edn.,
doi:https://doi.org/10.1007/3-540-10579-4 (1981).

[45] J. Broeckhove, L. Lathouwers, E. Kesteloot and P. Van Leuven, On the equivalence of
time-dependent variational principles, Chemical Physics Letters 149(5), 547 (1988),
doi:https://doi.org/10.1016/0009-2614(88)80380-4.

29

https://doi.org/https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s42256-019-0028-1
http://github.com/google/jax
https://doi.org/https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/https://doi.org/10.1016/j.advwatres.2011.04.013
https://github.com/markusschmitt/vmc_jax
https://github.com/markusschmitt/vmc_jax
https://jvmc.readthedocs.io
https://doi.org/10.1103/physrevb.61.2599
https://doi.org/10.1103/PhysRevResearch.2.023232
https://doi.org/10.1103/physrevlett.121.167204
https://doi.org/https://doi.org/10.1007/3-540-10579-4
https://doi.org/https://doi.org/10.1016/0009-2614(88)80380-4

SciPost Physics Codebases Submission

[46] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde and F. Verstraete,
Time-dependent variational principle for quantum lattices, Physical Review Letters
107(7) (2011), doi:10.1103/physrevlett.107.070601.

[47] L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler and J. I. Cirac, Geometry
of variational methods: dynamics of closed quantum systems, SciPost Phys. 9, 48
(2020), doi:10.21468/SciPostPhys.9.4.048.

[48] A. Peres, Quantum Theory: Concepts and Methods, Springer, Dordrecht, ISBN
0-792-33632-1, doi:10.1007/0-306-47120-5 (2002).

[49] J. Carrasquilla, D. Luo, F. Pérez, A. Milsted, B. K. Clark, M. Volkovs and L. Aolita,
Probabilistic simulation of quantum circuits with the transformer (2019), 1912.11052.

[50] D. Hofmann, G. Fabiani, J. H. Mentink, G. Carleo and M. A. Sentef, Role of stochastic
noise and generalization error in the time propagation of neural-network quantum
states, arXiv:2105.01054 (2021).

[51] G. Cybenko, Approximation by superpositions of a sigmoidal func-
tion, Mathematics of Control, Signals, and Systems 2(4), 303 (1989),
doi:https://doi.org/10.1007/BF02551274.

[52] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural
Networks 4(2), 251 (1991), doi:https://doi.org/10.1016/0893-6080(91)90009-T.

[53] T. Kim and T. Adalı, Approximation by fully complex multilayer perceptrons, Neural
Computation 15(7), 1641 (2003), doi:10.1162/089976603321891846.

[54] N. Le Roux and Y. Bengio, Representational power of restricted boltzmann
machines and deep belief networks, Neural Computation 20(6), 1631 (2008),
doi:10.1162/neco.2008.04-07-510.

[55] F. Voigtlaender, The universal approximation theorem for complex-valued neural net-
works, arXiv:2012.03351 (2020).

[56] B. Uria, M.-A. Côté, K. Gregor, I. Murray and H. Larochelle, Neural autoregressive
distribution estimation, arXiv:1605.02226 (2016).

[57] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko and J. Carrasquilla, Re-
current neural network wave functions, Phys. Rev. Research 2, 023358 (2020),
doi:10.1103/PhysRevResearch.2.023358.

[58] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner and M. van
Zee, Flax: A neural network library and ecosystem for JAX, http://github.com/

google/flax (2020).

[59] Scipy library, https://scipy.org.

[60] A. Collette, Python and HDF5, O’Reilly (2013).

[61] P. Pfeuty, The one-dimensional ising model with a transverse field, Annals of Physics
57(1), 79 (1970), doi:https://doi.org/10.1016/0003-4916(70)90270-8.

[62] H. W. J. Blöte and Y. Deng, Cluster monte carlo simulation of the transverse ising
model, Phys. Rev. E 66, 066110 (2002), doi:10.1103/PhysRevE.66.066110.

30

https://doi.org/10.1103/physrevlett.107.070601
https://doi.org/10.21468/SciPostPhys.9.4.048
https://doi.org/10.1007/0-306-47120-5
1912.11052
https://doi.org/https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1162/089976603321891846
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1103/PhysRevResearch.2.023358
http://github.com/google/flax
http://github.com/google/flax
https://scipy.org
https://doi.org/https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevE.66.066110

SciPost Physics Codebases Submission

[63] M. Kormos, M. Collura, G. Takács and P. Calabrese, Real-time confinement following
a quantum quench to a non-integrable model, Nature Physics 13(3), 246–249 (2016),
doi:10.1038/nphys3934.

[64] G. Carleo, K. Choo, D. Hofmann, J. E. Smith, T. Westerhout, F. Alet, E. J. Davis,
S. Efthymiou, I. Glasser, S.-H. Lin, M. Mauri, G. Mazzola et al., Netket: A ma-
chine learning toolkit for many-body quantum systems, SoftwareX 10, 100311 (2019),
doi:https://doi.org/10.1016/j.softx.2019.100311.

[65] Jülich Supercomputing Centre, JUWELS: Modular Tier-0/1 Supercomputer at the
Jülich Supercomputing Centre, Journal of large-scale research facilities 5(A135)
(2019), doi:10.17815/jlsrf-5-171.

[66] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus et al., Array
programming with NumPy, Nature 585(7825), 357 (2020), doi:10.1038/s41586-020-
2649-2.

[67] JAX online documentation, https://jax.readthedocs.io.

31

https://doi.org/10.1038/nphys3934
https://doi.org/https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://jax.readthedocs.io

	Introduction
	Variational Monte Carlo algorithms
	Design choices
	Performance
	Examples
	Conclusion
	The underlying JAX library in a nutshell
	References

