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Abstract1

Making use of the geometric formulation of the Standard Model Effective Field2

Theory we calculate the one-loop tadpole diagrams to all orders in the Stan-3

dard Model Effective Field Theory power counting. This work represents the4

first calculation of a one-loop amplitude beyond leading order in the Stan-5

dard Model Effective Field Theory, and discusses the potential to extend this6

methodology to perform similar calculations of observables in the near future.7
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1 Introduction21

The Standard Model Effective Field Theory (SMEFT) has become a cornerstone of LHC22

searches for physics beyond the Standard Model (SM). The approach of the SMEFT is to23

search for the effects of non-resonant heavy new physics, which decouples as 1/Λ, on mea-24

surable processes of the known particles. This approach makes two primary assumptions,25
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that the new physics is too heavy to directly produce at a collider and that the Higgs26

boson belongs to an SU(2)L doublet, as in the SM. With these assumptions the SMEFT27

is formulated as a tower of higher-dimensional operators suppressed by the new physics28

scale Λ and added to the SM Lagrangian:29

LSMEFT = LSM +
∞∑
n=5

∑
i

ci
Λn−4

Oi . (1)

Each subsequent power of 1/Λ should therefore be suppressed relative to the last, as Λ is30

a large mass scale well above that of a given scattering process.31

For most LHC relevant processes the leading terms come from dimension-six operators32

suppressed by Λ2. There is ongoing discussion on how to handle the truncation of this33

series in the literature, i.e. to understand the error associated with truncating the series at34

a given order. Many groups have included squares of dimension-six operator contributions35

to amplitudes in their work, this allows for an inferred error by comparing results with36

and without the the dimension-six squared term. This presents a theoretical concern –37

formally this is not the full contribution at order 1/Λ4 as it neglects dimension-six squared38

contributions to the amplitude as well as dimension-eight operator effects. There is also39

the more practical issue, that in many instances the squared term results in more stringent40

constraints, a result of, for example, chiral suppression of the interference of the 1/Λ2 term41

with the SM. This makes a definition of truncation error in this way less than satisfactory.42

An alternative approach is to compute the full contribution up to and including 1
Λ443

effects. This suffers from the seemingly insurmountable number of parameters in the44

SMEFT beyond leading order. This is to a great degree controlled by only considering45

resonant processes where four-fermion operators can be neglected as well as making sim-46

plifying assumptions on the flavor structure of the SMEFT. To date three works have47

considered the full 1
Λ4 dependence in phenomenological studies. In [1], the authors study48

associated production of a Higgs boson with a W by meticulously elaborating all operators49

contributing via the Hilbert series method [2–4], and then performing a phenomenological50

study. Using a similar procedure the authors of [5] study the Drell Yan process at the51

LHC. In [6], the authors studied Z-pole observables and instead used the geometric for-52

mulation of the SMEFT which allows for, currently in limited cases, all orders calculations53

in the SMEFT power couting (i.e. the 1/Λ power counting).54

The geometric SMEFT, or geoSMEFT, was born of an attempt to simplify the one loop55

calculation of H → γγ [7,8] and the resulting background gauge fixing of the SMEFT [9].56

Within this context it was realized that the SMEFT could be formulated in terms of57

field-space connection matrices of the form:58

MI1···In ∼
δnLSMEFT

δφI1 · · · δφIn

∣∣∣∣
L(α,β,··· )→0

. (2)

These field-space connections are then matrices of products of the Higgs doublet with59

generators of SU(2)L, and the evaluation at L(α, β, · · · ) → 0 represents setting various60

products of fields and their derivatives to zero. By constructing all gauge-variant, but61

Lorentz invariant, products of up to any three of the field strengths, covariant derivatives62

of the scalar field, and products of fermions, the geoSMEFT was formulated to include all63

three-point functions of SM fields plus arbitrarily many products of scalar fields [10]. This64

allowed for all-orders (in the SMEFT power counting) tree-level studies of the SMEFT65

in [11]. With all three-point functions defined to all orders in the geoSMEFT we can now66

use an alternative approach to studying the truncation error in the SMEFT. In [6] the67

full set of Z-pole observables at LEP were studied, and an alternative truncation error68
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estimate was proposed - varying the dependence on Wilson coefficients of the 1/Λ4 result69

in order to infer the error in the strictly 1/Λ2 terms.70

With an enormous interest being generated around loop calculations in the SMEFT71

an important next obstacle for the geoSMEFT is to define a similar system for estimating72

truncation error at one loop. As mentioned above the geoSMEFT only includes vertices of73

three fields with an arbitrary number of scalar insertions. As such, the geoSMEFT is only74

suitable for the calculation of the tadpole diagram. This article demonstrates the ability75

to calculate the tadpole at one-loop and all orders in the SMEFT power counting and76

motivates further development of the geoSMEFT in order to allow consistently defined77

truncation errors at both tree- and one-loop level.78

The article is organized as follows: In Section 2 we define the conventions used in79

the paper as well as introduce the set of relevant operator forms which contribute to80

the one-loop tadpole diagram, while in Section 3 we outline the Feynman rules derived81

from the classical Lagrangian. In Section 4 we gauge fix the geoSMEFT and derive the82

Feynman rules related to gauge fixing as well as the Feynman rules for ghosts. Then83

in Section 5 we give the main result of this article, the all orders tadpole, and Sec. 6 is84

dedicated to discussion of the outlook for the one-loop geoSMEFT and conclusions. The85

Appendix A includes relevant definitions and relations from the geoSMEFT which are86

used throughout this article, while App. B demonstrates the importance of the Tadpole87

diagram both phenomenologically and in preserving the gauge symmetry of the theory88

beyond tree level.89

2 Conventions90

In order to define the relevant terms of the Lagrangian for the calculation of the tadpole91

diagram, we follow the formulation of the geoSMEFT given in [10], as well as the gauge92

fixing of [9] and [12]. We begin by defining the field content of the geoSMEFT, the Higgs93

doublet of the the SM is rewritten in terms of a four-component real scalar field, φI by94

the following association:95

H(φI) =
1√
2

[
φ2 + iφ1

φ4 − iφ3

]
. (3)

The SU(2)L and U(1)Y gauge bosons, B and W I , are replaced with four component vector96

field WA = {W 1,W 2,W 3, B}. These weak-eigenstate fields are transformed to the mass97

basis by the matrices:98

UAC ≡
√
gABUBC , VIK ≡

√
h
IJ
VJK . (4)

Above and in what follows latin indices are four-component unless otherwise specified.99

The matrices,
√
g and

√
h are defined below and are the inverse-square roots of the field-100

space connections of the field combinations WA
µνW

B,µν and (Dµφ)I(Dµφ)J respectively.101

The matrices U and V take the weak eigenstate fields and rotate them to the physical102

basis of the SM, they are given by:103

UBC =


1√
2

1√
2

0 0
i√
2

−i√
2

0 0

0 0 c̄W s̄W
0 0 −s̄W c̄W

 , VJK =


−i√

2
i√
2

0 0
1√
2

1√
2

0 0

0 0 −1 0
0 0 0 1

 . (5)

U and V transform the weak eigenstate basis fields, W and φ, to the physical basis fields104

AI = {W+,W−, Z,A} and ΦI = {Φ−,Φ+, χ, h}. The barred Weinberg angles, s̄W and105
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c̄W are defined in the Appendix. In addition to the above we also have the ghosts for the106

electroweak gauge bosons, uA = UAC uC , the gluon field GA and the corresponding ghost107

uAG. The gluons and their corresponding ghosts are transformed to canonically normalized108

fields by:109

GA =
√
κ−1GA , uAG =

√
κ−1uAG . (6)

κ is defined below, and is the field space connection of the combination GAµνGA,µν . Script110

latin indices are SU(3)c gluon indices. In this article, fermionic fields only occur in loops111

and are therefore always summed over, as such we use the short hand ψ for all fermionic112

fields.113

The full set of operator forms contributing to two- and three-point functions of the114

SMEFT was derived in [10]. They include:115

hIJ(Dµφ)I(Dµφ)J , gABW
A
µνW

Bµν , κAIJ(Dµφ)I(Dνφ)JWµν
A ,

Yψ̄1ψ2 , κABGAµνGAµν ,

fABCW
A
µνW

B,νρWC,µ
ρ , dAψ̄1σ

µνψ2WA
µν , κABCGAνµGB,ρνGC,µρ ,

cψ̄1σ
µνTAψ2GAµν , LIAψ̄γ

µσAψ2(Dµφ)I .

(7)

The covariant derivative of the four component scalar and the field strength tensors of the116

vectors are then defined as:117

(Dµφ)I =

(
∂µδIJ −

1

2
WA,µγ̃IA,J

)
φJ , (8)

WA
µν = ∂µW

A
ν − ∂νWA

µ − ε̃ABCWB
µ W

C
ν , (9)

GAµν = ∂µGAν − ∂νGAµ − fABCGBµGCν . (10)

The matrices γ̃IA,J and ε̃ABC are defined in the Appendix. The fABC are the usual structure118

constants of SU(3)c.119

In addition to the operators defined in Eq. 7 we also define the all-orders Higgs poten-120

tial,121

V (φI) =
λ

4

(
φ2 − v2

0

)2 − ∞∑
n=1

c
(4+2n)
H

(
φ2

2

)2+n

. (11)

In the above, v0 is the vacuum expectation value that minimizes the tree-level Higgs122

potential for the SM. Spontaneous symmetry breaking occurs in the geoSMEFT for φI →123

vδI4 +
√
h
IJ
VJKΦK1, where v is the vacuum expectation value which minimizes the tree124

level potential of the geoSMEFT. c
(4+2n)
H is the Wilson coefficient of the dimension 4 + 2n125

pure Higgs operator suppressed by the heavy mass scale Λ2n, this Λ dependence is absorbed126

into the Wilson coefficient here and for the operators below for convenience. At tree level,127

requiring the coefficient of the tadpole term in the potential be zero gives the relation128

between v0 and v:129

t = 0 ∝ v2 − 1

λ

∞∑
n=1

(4 + 2n)v2+2n

22+n
c

(2n+4)
H − v2

0 . (12)

We note that solving this equation for v2 requires numerical methods for n ≥ 4 as it is a130

polynomial of order n+ 1 in v2.131

1This is a convenient choice of how to realize spontaneous symmetry breaking in the geoSMEFT which
is consistent with 〈H†H〉 = v2/2 [12].
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In what follows we will derive the one-loop correction to this result to all orders in the132

SMEFT power counting. The choice of t = 0 at one loop corresponds to the FJ tadpole133

scheme [13], with this choice we choose to expand about the true (one-loop) vacuum. This134

simplifying choice means tadpole diagrams need not be included in one-loop calculations135

(the tadpole and its counter term exactly cancel), however the loop improved vacuum136

expectation value needs to be used in tree level calculations. Further, this one-loop result137

is required to demonstrate the gauge invariance of observables, such as the masses of138

the gauge bosons in the on-shell renormalization scheme [14, 15]. This is discussed in139

Appendix B as well as in the conclusions.140

The terms from Eq. 7 which contribute to the one-loop tadpole diagram are those which141

involve a single Higgs boson coupling to two fermions, gauge bosons, or additional scalars.142

As such the last two lines do not contribute as they include three or more particles other143

than the Higgs boson and therefore only contribute at higher loop order. In the case of the144

connection LIA there is no contribution as these operators correspond to the Hermitian145

derivative form, (H†
←→
D µH)(ψ̄γµψ), which causes the Higgs-fermion couplings to vanish146

identically. While the operators coupling the Higgs boson to gluons will result in scale-less147

loop integrals which vanish identically, we retain them as the all-orders Feynman rules148

derived from the κAB operator form are the simplest and serve as intuitive examples of149

how the rules are derived. Reproducing the all-orders form of the relevant connections150

from [10] we have:151

hIJ =

[
1 + φ2c

(6)
H� +

∞∑
n=0

(
φ2

2

)n+2

(c
(8+2n)
HD − c(8+2n)

H,D2 )

]
δIJ

+
ΓIA,JφKΓKA,Lφ

L

2

(
c
(6)
HD

2
+

∞∑
n=0

(
φ2

2

)n+1

c
(8+2n)
HD,2

)
, (13)

gAB =

[
1− 4

∞∑
n=0

(c
(6+2n)
HW (1− δA4) + c

(6+2n)
HB δA4)

(
φ2

2

)n+1
]
δAB

−
∞∑
n=0

(
φ2

2

)n
(φIΓ

I
A,Jφ

J)(φLΓLB,Kφ
K)(1− δA4)(1− δB4)

+

[ ∞∑
n=0

c
(6+2n)
HWB

(
φ2

2

)n]
[(φIΓ

I
A,Jφ

J)(1− δA4)δB4 + (A↔ B)] , (14)

κAIJ = −1

2
γI4,JδA4

∞∑
n=0

c
(8+2n)
HDHB

(
φ2

2

)n+1

− 1

2
γIA,J(1− δA4)

∞∑
n=0

c
(8+2n)
HDHW

(
φ2

2

)n+1

−1

8
(1− δA4)[φKΓKA,Lφ

L][φMΓMB,Lφ
N ]γIB,J

∞∑
n=0

c
(10+2n)
HDHW,3

(
φ2

2

)n
+

1

4
εABC [φKΓKB,Lφ

L]γIC,J

∞∑
n=0

c
(8+2n)
HDHW,2

(
φ2

2

)n
, (15)

Yψpr = −
(∼)

H (φI)[Yψ]†+
(∼)

H (ψI)

∞∑
n=0

c
(6+2n)
ψH,pr

(
φ2

2

)n+1

, (16)

κAB =

[
1− 4

∞∑
n=0

c
(6+2n)
HG

(
φ2

2

)n+1
]
δAB → κ ≡

[
1− 4

∞∑
n=0

c
(6+2n)
HG

(
φ2

2

)n+1
]
. (17)

152

The matrices ΓIA,J and γIA,J are given in the Appendix for brevity. We have also used153

φ2 = φIφI = φIδ
IJφJ . The c

(n)
i are the Wilson coefficients of operators of dimension n154

and are suppressed by a factor of Λn−4 which has been absorbed into their definition for155
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the sake of compactness of these and the following expressions. The inverse-square root156

of gIJ and hIJ are the matrices of Eq. 4 which with the matrices U and V take the weak157

eigenstate fields to the mass eigenstate fields of the SMEFT.158

The above is all that is needed to define the relevant all-orders three-point functions159

for the classical Lagrangian in the geoSMEFT:160

Lcl(φ
I ,WA,GA, ψ) = hIJ(Dµφ)I(Dµφ)J − V (φ) + gABW

A
µνW

B,µν + κGAµνGA,µν

+κAIJ(Dµφ)I(Dνφ)JWµν
A +

∑
ψ

Yψ̄1ψ2] . (18)

In Section 4 we will choose to adopt the background field method of gauge fixing. Therefore161

in the discussion of the classical Lagrangian that follows we will double the bosonic field162

content of the above Lagrangian as:163

Lcl(φ
I ,WA

µ ,GAµ , ψ)→ Lcl(φ
I + φ̂I ,WA + ŴA,GA + ĜA, ψ) . (19)

The choice of the background field method has various advantages, one of which is the164

preservation of the naive Ward Identities as discussed in [12, 16, 17]. This methodology165

has been adopted in many SMEFT related publications because of its nice properties, see166

for example [7, 18, 19]. In this methodology all external particles for a given amplitude167

correspond to background field while internal lines are quantum fields. Therefore in what168

follows we derive the couplings ĥ to two quantum fields.169

3 The all-orders vertices170

In order to define the relevant three-point functions for the one-loop tadpole diagrams171

we must obtain the relevant Feynman rules from Eq. 7. We will do this while preserving172

the form of the field-space connections when possible in order to maintain results that173

are manifestly all orders in the 1
Λn power counting. The Feynman rules that follow were174

checked using FeynRules and are written in the FeynRules output format, i.e. the sub-175

script of a field in {} corresponds to the momenta, Lorentz indices, and color indices with176

the same subscript on the right side of the equations below.177

The simplest Feynman rules to derive are from the field space connections gAB, κAB,178

and Y ψ
pr as the Higgs dependence is purely in the connection matrix. Varying Eq. 17 with179

respect to the background field ĥ gives the coupling of a Higgs boson to two gluons:180

{ĥ, G1, G2} = i

〈
δκ

δĥ

〉(√
κ−1

)2
(pµ21 pµ12 − p1 · p2η

µν)δA1A2 . (20)

It should be noted there are implied rotations of the quantity φI within the field-space181

connections such as κ: beyond leading order
√
κ is a function of φI =

√
h
IJ
VJKΦK .182

Explicitly taking the variations gives instead:183

{ĥ, G1, G2} → i
√
h

44
(√

κ−1
)2
vT

∞∑
i=0

v2n
T (n+ 1)

2n−2
c

(6+2n)
HG Π1,2δ

A1A2 . (21)

Where, for convenience, we have defined,184

Π1,2 ≡ (pµ21 pµ12 − p1 · p2η
µ1µ2) . (22)
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Similarly for the yukawa-like couplings:185

{ĥ, ψ̄r, ψr} = −i

〈
δYψrr
δĥ

〉
(23)

= i

√
h

44

v
M̄ψ,pp − i

√
h

44

√
2

∞∑
n=0

c
(6+2n)
ψH,pp

v2n+2

2n+1
(2n+ 2) . (24)

As only like-flavors will contribute to the Tadpole diagram we have only considered diago-186

nal entries of Yψ and substituted in terms of the barred tree-level masses of the fermions.187

The tree-level fermion mass to all orders is simply the expectation of the field connection188

Y of Eq. 16:189

M̄ψ = 〈(Yψ)†〉 . (25)

The remaining terms are more complicated than the above, as such we only write the190

vertex functions in terms of variations on the field-space connections. Some examples of191

the field-space connections expanded in terms of Wilson coefficients can be found in the192

Appendix. The coupling to two gauge bosons coming from gAB is given by:193

{ĥ,W+
1 ,W

−
2 } = −i

〈
δg11

δĥ

〉
(
√
g

11
)2 Π1,2 , (26)

{ĥ, A1, A2} = −iΣAAΠ1,2 , (27)

{ĥ, Z1, Z2} = −iΣZZΠ1,2 , (28)

ΣAA ≡
4∑

i,j=3

(
c̄2W

〈
δgij

δĥ

〉
√
g
i4√

g
j4

+ 2c̄W s̄W

〈
δgij

δĥ

〉
√
g

3i√
g
j4

+ s̄2
W

〈
δgij

δĥ

〉
√
g

3i√
g

3j

)
,

(29)

ΣZZ ≡
4∑

i,j=3

(
c̄2W

〈
δgij

δĥ

〉
√
g

3i√
g

3j − 2c̄W s̄W

〈
δgij

δĥ

〉
√
g

3i√
g
j4

+ s̄2
W

〈
δgij

δĥ

〉
√
g
i4√

g
j4

)

= ΣAA(s̄W → −c̄W , c̄W → s̄W ) . (30)

194

In order to form a tadpole diagram from the connection κAIJ one of the covariant deriva-195

tives must generate a vector boson while the other must correspond to the background196

Higgs boson, as such the rules are straightforward to derive as well:197

{ĥ1,W
+
2 ,W

−
3 } = ḡ2

√
g11
√
h

44
v
[
(〈κ1

13〉 − i〈κ1
14〉)p

µ2
1 pµ32 − (〈κ1

13〉+ i〈κ1
14〉)p

µ3
1 pµ23

+
(
〈κ1

13〉[p1 · p3 − p1 · p2] + i〈κ1
14〉[p1 · p2 + p1 · p3]

)
ηµ2µ3

]
, (31)

{ĥ1, Z2, Z3} = −i
√
h

44
ḡZv

[(
c̄W
√
g33 − s̄W

√
g34
)
〈κ3

34〉+
(
s̄W
√
g44 − c̄W

√
g34
)
〈κ4

12〉
]

× [pµ21 pµ32 + pµ31 pµ23 − p1 · (p2 + p3)ηµ2µ3 ] . (32)

No coupling to the photon is generated as one of the vector bosons must come from the198

covariant derivative which has no A dependence for the Higgs boson. In simplifying these199

7
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expressions we have used:200

〈κ1
13〉 = −〈κ1

24〉 = −〈κ1
31〉 = 〈κ1

42〉 = 〈κ2
14〉 = 〈κ2

23〉 = −〈κ2
32〉 = −〈κ2

41〉 , (33)

〈κ1
14〉 = 〈κ1

23〉 = −〈κ1
32〉 = −〈κ1

41〉 = −〈κ2
13〉 = 〈κ2

24〉 = 〈κ2
31〉 = −〈κ2

42〉 , (34)

〈κ3
12〉 = −〈κ3

21〉 , (35)

〈κ3
34〉 = −〈κ3

43〉 , (36)

〈κ4
12〉 = −〈κ4

21〉 = −〈κ4
34〉 = 〈κ4

43〉 . (37)

As the rules for interactions derived from κAIJ necessarily depend on the momentum of the201

background Higgs boson (i.e. one of the derivatives must be acting on the Higgs boson)202

these rules will not contribute to the tadpole diagram.203

Finally, the Feynman rules arising from the field-space connection hIJ are slightly more204

complicated as the background Higgs boson can come from either the metric or the (Dµφ)205

terms. These operator forms also contribute not only to Higgs-gauge couplings, but also206

to Higgs-goldstone couplings. For ĥ sourced from the field space connection we have the207

following rules:208

{ĥ,Φ0
1,Φ

0
1} = −i

〈
δh33

δĥ

〉
(
√
h

33
)2 p1 · p2 , (38)

{ĥ,Φ+
1 ,Φ

−
2 } = −i

〈
δh11

δĥ

〉
(
√
h

11
)2 p1 · p2 , (39)

{ĥ, h1, h2} = −i
〈
δh44

δĥ

〉
(
√
h

44
)2 p1 · p2 , (40)

{ĥ,W+
1 ,W

−
2 } = i

〈
δh11

δĥ

〉
M̄2
W (
√
h

11
)2ηµ1µ2 , (41)

{ĥ, Z1, Z2} = i

〈
δh33

δĥ

〉
M̄2
Z(
√
h

33
)2ηµ1µ2 . (42)

The coupling ĥγγ vanishes identically, which follows from the fact the operator forms209

of the field-space connection hIJ correspond to rescalings of the SM Higgs couplings to210

vector bosons. In the case that ĥ is sourced from the covariant derivative terms we have211

two contributions. The first is from the 〈h〉 which can only generate ĥ-vector three point212

functions2:213

{ĥ,W+
1 ,W

−
2 } = 2i

√
h

44 M̄2
W

v
ηµ1µ2 , (43)

{ĥ, Z1, Z2} = 2i
√
h

44 M̄2
Z

v
ηµ1µ2 . (44)

As above, the ĥγγ coupling vanishes identically. Secondly, ĥ couplings to goldstone bosons214

from variations of the metric with respect to the goldstone bosons could be present, how-215

ever they vanish identically.216

In addition to the above we need to include terms like c
(2n−4)
H (H†H)2n. The Feynman217

rules for ĥ coupling to two quantum fields can be generalized from Eq. 4.2 of [10] by using218

2Also ĥΦ0,±-vector couplings which do not contribute to the Tadpole diagram.
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the multinomial coefficient:219

{ĥ, h, h} = −2i(
√
h

44
)3v

[
3λ−

∞∑
n=3

1

2n

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

]
, (45)

{ĥ,Φ0,Φ0} = −2i(
√
h

33
)2
√
h

44
v

[
λ−

∞∑
n=3

1

2n−1

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

]
, (46)

{ĥ,Φ+,Φ−} = −i(
√
h

11
)2
√
h

44
v

[
2λ−

∞∑
n=3

1

2n−2

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

]
. (47)

In the above the multinomial for ĥh2 can be understood to come from (v+ ĥ+h)2n terms,220

the Φ0 rule from [(Φ0)2 + 2ĥv+ v2]n, and the rule for Φ± from [2|Φ+|2 + 2ĥv+ v2]n. This221

explains the minor differences between the Feynman rules above.222

The above constitute all the rules from the classical Lagrangian necessary to perform223

the calculation of the tadpole diagrams to all orders in the SMEFT power counting, what224

remains are the gauge-fixing and ghost contributions.225

4 Gauge fixing the geoSMEFT226

Background gauge fixing for the SMEFT was performed first in [9]. This was first done for227

the gluons in [18], then later repeated in [16] in a manner more consistent with the gauge228

fixing of the weak gauge bosons of [9] which is adopted here. The gauge fixing terms are229

given by:230

LGF = − ĝAB
2ξW
GAGB − κ

2ξG
GAcolorG

A
color , (48)

GA = ∂µW
A,µ − ε̃ABCŴB

µ W
Cµ +

ξ

2
ĝABφI ĥIK γ̃

K
B,J φ̂

J , (49)

GAcolor = ∂µG
µ,A − g3f

ABCĜµ,BG
µ
C . (50)

Where in the above, unhatted fields are understood to be quantum fields and the hatted231

field-space connections are the normal field space connections with all quantum fields set232

to zero. This notational choice is also the case below in the ghost Lagrangian. Starting233

with the gluonic gauge fixing as it is the simplest we obtain the Feynman rule:234

{ĥ, G1, G2} =
i

ξG

〈
δκ

δĥ

〉
(
√
κ−1)2pµ11 pµ22 δA1A2 . (51)

In the case of the electroweak gauge fixing a coupling of the background Higgs field to gauge235

bosons can be obtained from the variation with respect to the field-space connection of236

Eq. 48 and the square of the derivative term of Eq. 49. The second terms of Eqs. 49 and 50237

cannot contribute as they include a background gauge field, while the final term allows238

for a ĥ coupling to goldstone bosons when all but one of the ĝ, ĥ, and φ̂ are set to their239

9
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expectation values. This results in the following Feynman Rules:240

{ĥ,W+
1 ,W

−
2 } =

i

ξ

〈
δg11

δĥ

〉
(
√
g11)2pµ11 pµ22 , (52)

{ĥ, A1, A2} =
i

ξ
ΣAAp

µ1
1 pµ22 , (53)

{ĥ, Z1, Z2} =
i

ξ
ΣZZp

µ1
1 pµ22 , (54)

{ĥ,Φ+,Φ−} = −i
M̄2
W

v

[
2

〈
δh11

δĥ

〉
(
√
h

11
)2v + 2

√
h

44
+

〈
δg11

δĥ

〉
(
√
g11)2v

]
ξW ,(55)

{ĥ,Φ0,Φ0} = −i
M̄2
Z

v

[
2

〈
δh33

δĥ

〉
(
√
h

33
)2v + 2

√
h

44
− ΣZZv

]
ξW . (56)

(57)

Note no ĥ coupling to two quantum Higgs bosons is generated.241

The ghost Lagrangian was also derived in [9]3, it is reproduced here excluding any242

terms with gauge fields as they cannot contribute to the one-loop Tadpole diagram (the243

ghost Lagrangian is by definition quadratic in the ghost fields):244

Lghost = −ĝABūB
[
∂2 +

ξ

4
ĝAD(φJ + φ̂J)γ̃ICJ ĥIK γ̃

K
DLφ̂

L

]
uC − κ̂ ūGA∂2uGA . (58)

As was the case for the gauge fixing terms, ĥūu couplings can be obtained either from a245

variation with respect to one of the field-space connections or explicitly from φ̂, ĥ, or ĝ:246

{ĥ, ūG1 , uG2 } = i

〈
δκ

δĥ

〉
(
√
κ−1)2p2

2δA1A2 , (59)

{ĥ, ūW+

1 , uW
+

2 } = −i
[〈

δh11

δĥ

〉
M̄2
W (
√
h

11
)2ξ + 2M̄2

W

√
h

44
ξ − (

√
g11)2

〈
δg11

δĥ

〉
p2

2

]
(60)

= {ĥ, ūW−1 , uW
−

2 } , (61)

{ĥ, ūA1 , uA2 } = iΣAA p
2
2 ,

{ĥ, ūZ1 , uZ2 } = iΣZZ p
2
2 − iM̄2

Z

(
2
√
h

44
+ (
√
h

33
)2

〈
δh33

δĥ

〉)
ξ . (62)

In the case of the ghosts associated with the photon, the ξ dependent term vanishes247

identically. This is analogous to the case of the classical contribution from the field space248

metric hIJ , see the discussions around Eqs. 42 and 44. With the above, all Feynman rules249

necessary to calculate the tadpole diagram at one loop and to all orders in the SMEFT250

expansion are now defined.251

5 The all-orders SMEFT tadpole252

The one loop diagrams that contribute are shown in Figure 1, as was noted in Section 2253

the Feynman rules coupling the Higgs boson to gluons as well as those coupling the Higgs254

boson to colored ghosts do not contribute to the tadpole diagram as the loop integral is255

3Here we have adopted the sign choice of [18].
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scaleless. Making use of dimensional regularization in d = 4−2ε dimensions, the fermionic256

couplings result in the following contribution at one loop:257

TψH = −NcM̄ψ

4π2

〈
δYψ

δĥ

〉
A0(M̄ψ) (63)

=
NcM̄ψ

4π2

√
h

44

(
M̄ψ

v
− 1√

2

∞∑
n=0

v2n+2

2n+1
(2n+ 2)

)
A0(M̄ψ) (64)

=
NcM̄ψ

4π2

[
M̄ψ

v
− v

4

(
2
√

2vc
(6)
ψH + M̄ψ[c

(6)
HD − 4cH�]

)
− v4

8

√
2
(
c
(8)
ψH + [4c

(6)
H� − c

(6)
HD]c

(6)
ψH

)
+
M̄ψ

32

(
4c

(8)
HD + 4c

(8)
HD,2 − 3[c

(6)
HD − 4c

(6)
H�]2

)]
A0(M̄ψ) +O

(
1

Λ6

)
. (65)

Where we have used the Passarino-Veltman scalar A function,258

A0(M) = M2

[
1 +

1

ε
− γE + log

(
4πµ2

M2

)]
. (66)

The three equivalences of Eq. 65 show first the geoSMEFT result, the result with the259

variation of the field-space connection written explicitly in terms of the relevant Wilson260

coefficients while keeping the compact form for the transformations that canonically nor-261

malizes the Higgs background field, and finally the full expansion in terms of the Wilson262

coefficients to order 1
Λ4 . The barred quantities are not expanded as they are more closely263

related to input parameters that would be chosen in a phenomenological study, this also264

serves to simplify the expressions so they fit in paper format. This demonstrates that the265

geoSMEFT trivially sums the Wilson coefficient dependence of the SMEFT. In a tradi-266

tional SMEFT approach one would enumerate all the contributing operators to a given267

order in the SMEFT power counting and the corresponding Feynman rules, perform the268

calculations, and again expand to a given order. Here we perform the all orders calculation269

and can expand to a given order after the full calculation is performed.270

The compactness of the expressions also allows for a cleaner understanding of cancel-271

lations in the theory such as in the case of cancellations between gauge-boson, ghost, and272

goldstone boson contributions as we see next. Below we neglect to expand in terms of273

individual Wilson coefficients until the terms are added together as many simplifications274

occur after summing the diagrams. In the case of the W and Z bosons we have:275

TWH =
M̄2
W

16π2

[
(
√
g

11
)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )− ξWA0(
√
ξW M̄W )

]
,

(67)

TZH =
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)− ξA0(
√
ξW M̄Z)

]
.

(68)

276

ψ W/Z uW /uZ φ±/φ0/h

Figure 1: One loop diagrams contributing to the Tadpole. The photon and gluons and
their corresponding ghosts do not contribute as they are massless the loop integrals are
identically zero.

11



SciPost Physics Submission

The ghost terms give (again, as the photon ghost term is scaleless the contribution is277

identically zero):278

T u
±

H =
M̄2
W

8π2

[〈
δg11

δĥ

〉
(
√
g11)2 − 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

]
ξWA0(

√
ξW M̄W ) ,

(69)

T u
Z

H =
M̄2
Z

16π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

]
ξWA0(

√
ξW M̄Z) , (70)

and for the goldstone bosons we find:279

TΦ±

H =
M̄2
W

16π2

[
2

v

√
h

44
+

〈
δh11

δĥ

〉
(
√
h

11
)2 +

〈
δg11

δĥ

〉
(
√
g

11
)2

]
ξWA0(

√
ξW M̄W ) (71)

+
v

32π2
(
√
h

11
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(

√
ξW M̄W ) ,

TΦ0

H =
M̄2
Z

32π2

[
2

v

√
h

44
+

〈
δh33

δĥ

〉
(
√
h

33
)2 − ΣZZ

]
ξWA0(

√
ξW M̄Z) (72)

+
v

64π2
(
√
h

33
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(

√
ξM̄Z) .

280

Noting the raised indices in δg11 for the Φ± contribution, we see that the ξW dependent281

parts of the W and Z loops are cancelled exactly by the ghost and goldstone terms,282

and only the λ and c
(n)
H gauge-parameter dependent terms remain for the scalars. This283

is exactly as was found for the SM Tadpole in the background field methodology [7].284

Interestingly, the behavior goes beyond the SM-like interactions and also holds for the285

interactions which only occur in the SMEFT, i.e. those proportional to δg and δh, as286

well. This also means that the λ and c
(n)
H terms are gauge dependent and therefore so is287

the tadpole. This is also consistent with [7], where they found this dependence exactly288

cancels against that of the Higgs two-point function and the loop contributions in the289

process H → γγ at order 1
Λ2 in the SMEFT, leaving the observable process H → γγ gauge290

invariant as it must be.291

The sum of the vectors, ghosts, and goldstone bosons, neglecting λ and c
(n)
H depedence292

is given by:293

T V,u,ΦH =
M̄2
W

16π2

[
(
√
g11)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )
]

+
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)
]
. (73)

In order to demonstrate the compactness of this expression we expand the quantity in294

brackets for the W contribution to O(1/Λ4) in terms of the Wilson coefficients:295 [
(
√
g11)2

〈
δg11
δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2
]

= − 1
v

[
2 + v2

2

(
c
(6)
H� − c

(6)
HD + 8c

(6)
HW

)
+v4

16

(
12c

(8)
HD − 20c

(8)
HD,2 + 64c

(8)
HW + 3(c

(6)
HD − 4c

(6)
H�)2 + 16(4c

(6)
H� − c

(6)
HD)c

(6)
HW + 128c

(6)
HW

)]
.

(74)

296

In the case of the Z contribution the result depends on many more operator coefficients,297

as well as the the barred mixing angles due to the dependence in ΣZZ .298
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The last remaining contribution is from the quantum Higgs boson, which gives:299

ThH =
1

32π2
(
√
h

44
)2

[
M̄2
H

〈
δh44

δĥ

〉
+ v
√
h

44

(
6λ−

∞∑
n=3

1

2n−1

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

)]
A0(M̄H) .

(75)

The sum off all of the above contributions to TH in the SM limit agrees with [7], providing300

a useful cross check of the result. To the extent of the authors knowledge the 1/Λ2 result301

does not exist in the literature in the background formalism.302

With all of the contributions included we can then choose a renormalization condition303

related to the tadpole. Returning to Eq. 11 we obtain the coefficient of the tadpole term:304

t ≡
√
h

44
v

16

[
16λ(v2

0 − v2) +

∞∑
n=1

(4 + 2n)v4+2n−1

22+n
c

(4+2n)
H

]
. (76)

Choosing t = 0 corresponds to the proper ground state [13, 14] and is the scheme we305

choose here. At tree level this simply reproduces the condition in Eq. 12. At one loop306

this corresponds to cancelling the entire tadpole contribution. Introducing δt as a counter307

term, we have the renormalization condition,308

t = t0 − δt = 0 , (77)

where t0 corresponds to the tree level contribution. Choosing t = 0 corresponds to:309

δt = −TH

= +
∑
ψ

NcM̄ψ

4π2

〈
δYψ

δĥ

〉
A0(M̄ψ)

−
M̄2
W

16π2

[
(
√
g11)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )
]

−
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)
]

(78)

− v

32π2
(
√
h

11
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(
√
ξW M̄W )

− v

64π2
(
√
h

33
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(
√
ξM̄Z)

− 1

32π2
(
√
h

44
)2

[
M̄2
H

〈
δh44

δĥ

〉
+ v
√
h

44

(
6λ−

∞∑
n=3

1

2n−1

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

)]
A0(M̄H) .

which depends on four barred masses (counting the barred fermion mass only once), four310

field-space connections plus ΣZZ , λ, and the sum over c
(n)
H . Treating the sums as a311

single entity gives a total dependence on eleven quantities. Conversely, the standard312

model result depends on four masses and λ. Expanding the tadpole result in terms of313

the Wilson coefficients of the SMEFT and maintaining barred mass dependence instead314

gives 12 parameters at dimension six and 21 at O(1/Λ4) with 9 additional parameters at315

each subsequent order4. In this context the geoSMEFT represents a clear calculational316

advantage over the traditional approach to the SMEFT.317

4The number of new parameters in hIJ , gAB , and Y at a given dimension above six stays constant, see
Table 1 of [10].
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Further, as we saw in the discussion about the gauge, goldstone, and ghost terms, the318

compactness of the geoSMEFT expressions allows for a straightforward cancellation of319

terms which would be unclear when expanded in terms of the many Wilson coefficients320

contributing to each process. Similar simplifications of expressions can be expected for321

higher n-point functions, and as these expressions will generally be more complicated322

than those of the tadpole this simplification is crucial to an analytic understanding of the323

SMEFT expansion at one loop.324

6 Conclusions325

We have constructed the Feynman rules necessary for the calculation of the tadpole di-326

agram within the framework of the geoSMEFT. In doing so we have included, for the327

first time, the gauge fixing of the geoSMEFT and the all-orders Feynman rules related to328

gauge fixing which include a single background Higgs boson and two other particles. We329

proceeded to calculate all diagrams contributing to the process. The results allowed us330

to fix the minimum of the Higgs potential at one loop and to all orders in the SMEFT331

power counting. In doing so we demonstrated the simplicity of expressions obtained in the332

geoSMEFT as compared with those expanded in terms of the Wilson coefficients which is333

necessary in standard approaches to the SMEFT. Further we obtained not only the first334

one-loop calculation including full next to leading order results in the SMEFT, but the335

first one-loop calculation including all orders contributions in 1/Λn. As discussed in the336

introduction and Appendix B, the tadpole diagram is not only essential to fully defining337

one-loop results, such as the masses of the gauge bosons, but is also essential for the gauge338

invariance of the theory at one loop. This demonstrates the foundational nature of this339

work toward future precision calculations in the geoSMEFT.340

Beyond the scope of the calculations contained in this article, we note that the geoSMEFT341

is currently defined to include vertices of up to any three particles accompanied by arbi-342

trarily many scalar field insertions. This has presented the opportunity for many all-orders343

results at tree level [6,11] and their projection to order 1/Λ4 in phenomenological studies.344

This allows for the possibility to perform a truncation error analysis more consistent with345

the SMEFT than those commonly used where partial dimension-six squared results are346

used to estimate the truncation error. While few additional one-loop calculations are cur-347

rently possible in the framework of the geoSMEFT, it is possible to systematically extend348

the geoSMEFT to include any N particles plus arbitrarily many scalar field insertions.349

This will allow for the all orders in 1/Λn calculation of all two-point functions in the near350

future and subsequently higher n–point functions. With all orders results at tree- and351

one-loop level we can then define a fully consistent truncation error associated with the352

SMEFT. This is an important step toward a precision program for the studies at the High353

Luminosity LHC as well as for supporting and informing the case for next generation354

colliders.355

356

Acknowledgements357

TC thanks M. Trott, A. Martin, and J. Talbert for useful discussions and their reading of358

the manuscript.359

Funding information TC acknowledges funding from European Union’s Horizon 2020360

research and innovation program under the Marie Sklodowska-Curie grant agreement No.361

890787.362

14



SciPost Physics Submission

A Useful geoSMEFT definitions and relations363

The following definitions and geometric relations are used extensively throughout this364

work in order to simplify expressions and retain them in the geometric formulation. These365

relations can be found in [10]. The following matrices are used to define the covariant366

derivatives, field strength tensors, and field-space connections:367

γI1,J =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γI2,J =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , (79)

368

γI3,J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , γI4,J =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , (80)

as well as:369

ΓI1,J =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , ΓI2,J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , (81)

370

ΓI3,J =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , ΓI4,J =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (82)

The quantities with tildes are defined as:371

ε̃ABC = g2ε
A
BC with ε̃123 = g2 and ε̃4BC = 0 ,

γ̃IA,J =

{
g2γ

I
A,J ,

g1γ
I
A,J ,

for A = 1, 2, 3 ,
for A = 4 .

(83)

The relation between barred and unbarred couplings is:372

ḡ2 = g2
√
g11 = g2

√
g22 , (84)

ḡZ =
g2

c2
θZ

(
c̄W
√
g33 − s̄W

√
g34
)

=
g1

s2
θZ

(
s̄W
√
g44 − c̄W

√
g34
)
, (85)

ē = g1

(
s̄W
√
g33 + c̄W

√
g34
)

= g1

(
c̄W
√
g44 + s̄W

√
g34
)
. (86)

The above expressions make use of the barred mixing angles:373

s2
θZ

=
g1(
√
g44s̄W −

√
g34c̄W )

g2(
√
g33c̄W −

√
g34s̄W ) + g1(

√
g44s̄W −

√
g34c̄W )

, (87)

s̄2
W =

(g1
√
g44 − g2

√
g34)2

g2
1[(
√
g34)2 + (

√
g44)2] + g2

2[(
√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

.(88)

The barred masses are given by:374

M̄2
W =

ḡ2
2

4

√
h11

2
v2 , (89)

M̄2
Z =

ḡ2
Z

4

√
h33

2
v2 , (90)

M̄2
A = 0 . (91)
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Expanding the elements of the field-space connections of Eqs. 13–17 become complicated375

very quickly, supporting the use of the geometric approach. Some examples of elements376

of the matrices include:377

√
g11 = 1 + c

(6)
HW v

2 +
1

2

[
c

(8)
HW + 3(c

(6)
HW )2

]
v4 (92)

√
h

44
= 1 +

1

4

[
4c

(6)
H� − c

(6)
HD

]
v2 +

1

32

[
3(c

(6)
HD − c

(6)
H�)2 − 4c

(8)
HD − 4c

(8)
HD,2

]
v4 +O

(
1

Λ6

)
(93)

378

B Relevance of the tadpole to renormalization379

Here we outline the importance of the tadpole to renormalization. We proceed by outline380

the renormalization procedure to arrive at the implications of the tadpole diagram in the381

FJ tadpole scheme, we do not employ the BFM here for simplicity. We loosely follow the382

notation of [15]. The fields are renormalized as follows:383

h0 =
√
ZĥhR (94)

W±0 =
√
ZWW

±
R (95)

(96)

The fourth component of the real scalar field is renormalized as:384

φ4 = v0 + ĥ0 → ZvvR + δv +
√
ZhhR (97)

Expanding the scalar potential of Eq. 11 about the tree level vacuum expectation value385

and adding the one-loop tadpole contribution we find:386

t = −2λRvRδv + TH ≡ δt+ TH (98)

This defines the relationship between δt and δv, in the main text δt is chosen such that387

t = 0. This is equivalent to the choice:388

δv =
1

2λRv2
R

TH =
1

M2
H,R

TH (99)

Employing an on-shell renormalization scheme as in [15] the one loop shifts in masses389

of the vector bosons (V = W,Z) are given by:390

m̄2
V,R

m̄2
V

= 1 + 2
δv

v
−
δm2

V

m2
V

, (100)

where δv corresponds to the correction outlined above, and δm2
V corresponds to the explicit391

contribution from the transverse part of the one-loop two-point functions:392

δm2
V = Re[ΣV V

T (M2
p )] . (101)

In this way we can see from Eq. 100 that even in the FJ tadpole scheme employed in393

this article, the one-loop tadpole is still phenomenologically relevant as it shifts the masses394

of the gauge bosons. Further, as the tadpole was found to be gauge-parameter dependent395

in Sec 5, we see that the gauge-independence of results such as the shifted masses depend396

on the tadpole diagram. In this way we have demonstrated the importance of the tadpole397

diagram to the future one-loop geoSMEFT program both phenomenologically and in terms398

of gauge invariance of the theory, which is necessary for the consistency of the QFT.399
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