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Abstract1

Making use of the geometric formulation of the Standard Model Effective Field2

Theory we calculate the one-loop tadpole diagrams to all orders in the Stan-3

dard Model Effective Field Theory power counting. This work represents the4

first calculation of a one-loop amplitude beyond leading order in the Stan-5

dard Model Effective Field Theory, and discusses the potential to extend this6

methodology to perform similar calculations of observables in the near future.7
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1 Introduction21

The Standard Model Effective Field Theory (SMEFT) has become a cornerstone of LHC22

searches for physics beyond the Standard Model (SM). The approach of the SMEFT is to23

search for the effects of non-resonant heavy new physics, which decouples as 1/Λ, on mea-24

surable processes of the known particles. This approach makes two primary assumptions,25
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that the new physics is too heavy to directly produce at a collider and that the Higgs26

boson belongs to an SU(2)L doublet, as in the SM. With these assumptions the SMEFT27

is formulated as a tower of higher-dimensional operators suppressed by the new physics28

scale Λ and added to the SM Lagrangian:29

LSMEFT = LSM +
∞∑
n=5

∑
i

ci
Λn−4

Oi . (1)

Each subsequent power of 1/Λ should therefore be suppressed relative to the last, as Λ is30

a large mass scale well above that of a given scattering process.31

For most LHC relevant processes the leading terms come from dimension-six operators32

suppressed by Λ2. There is ongoing discussion on how to handle the truncation of this33

series in the literature, i.e. to understand the error associated with truncating the series34

at a given order. Many groups have included squares of dimension-six operator contribu-35

tions to amplitudes in their work, this allows for an inferred error by comparing results36

with and without the dimension-six squared term. This presents a theoretical concern –37

formally this is not the full contribution at order 1/Λ4 as it neglects dimension-six squared38

contributions to the amplitude as well as dimension-eight operator effects. There is also39

the more practical issue, that in many instances the squared term results in more stringent40

constraints, a result of, for example, chiral suppression of the interference of the 1/Λ2 term41

with the SM. This makes a definition of truncation error in this way less than satisfactory.42

An alternative approach is to compute the full contribution up to and including 1
Λ443

effects. This suffers from the seemingly insurmountable number of parameters in the44

SMEFT beyond leading order. This is to a great degree controlled by only considering45

resonant processes where four-fermion operators can be neglected as well as making sim-46

plifying assumptions on the flavor structure of the SMEFT. To date three works have47

considered the full 1
Λ4 dependence in phenomenological studies. In [1], the authors study48

associated production of a Higgs boson with a W by meticulously elaborating all operators49

contributing via the Hilbert series method [2–4], and then performing a phenomenological50

study. Using a similar procedure the authors of [5] study the Drell Yan process at the51

LHC. In [6], the authors studied Z-pole observables and instead used the geometric for-52

mulation of the SMEFT which allows for, currently in limited cases, all orders calculations53

in the SMEFT power counting (i.e. the 1/Λ power counting).54

The geometric SMEFT, or geoSMEFT, was born of an attempt to simplify the one loop55

calculation of H → γγ [7,8] and the resulting background gauge fixing of the SMEFT [9].56

Within this context it was realized that the SMEFT could be formulated in terms of57

field-space connection matrices of the form:58

MI1···In ∼
δnLSMEFT

δφI1 · · · δφIn

∣∣∣∣
L(α,β,··· )→0

. (2)

These field-space connections are then matrices of products of the Higgs doublet with59

generators of SU(2)L, and the evaluation at L(α, β, · · · ) → 0 represents setting various60

products of fields and their derivatives to zero. By constructing all gauge-variant, but61

Lorentz invariant, products of up to any three of the field strengths, covariant derivatives62

of the scalar field, and products of fermions, the geoSMEFT was formulated to include all63

three-point functions of SM fields plus arbitrarily many products of scalar fields [10]. This64

allowed for all-orders (in the SMEFT power counting) tree-level studies of the SMEFT65

in [11]. With all three-point functions defined to all orders in the geoSMEFT we can now66

use an alternative approach to studying the truncation error in the SMEFT. In [6] the67

full set of Z-pole observables at LEP were studied, and an alternative truncation error68
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estimate was proposed - varying the dependence on Wilson coefficients of the 1/Λ4 result69

in order to infer the error in the strictly 1/Λ2 terms.70

With an enormous interest being generated around loop calculations in the SMEFT71

an important next obstacle for the geoSMEFT is to define a similar system for estimating72

truncation error at one loop. As mentioned above the geoSMEFT only includes vertices of73

three fields with an arbitrary number of scalar insertions. As such, the geoSMEFT is cur-74

rently only suitable for the calculation of the tadpole diagram. This article demonstrates75

the ability to calculate the tadpole at one-loop and all orders in the SMEFT power count-76

ing and motivates further development of the geoSMEFT in order to allow consistently77

defined truncation errors at both tree- and one-loop level.78

The article is organized as follows: In Section 2 we define the conventions used in79

the paper as well as introduce the set of relevant operator forms which contribute to80

the one-loop tadpole diagram, while in Section 3 we outline the Feynman rules derived81

from the classical Lagrangian. In Section 4 we gauge fix the geoSMEFT and derive the82

Feynman rules related to gauge fixing as well as the Feynman rules for ghosts. Then83

in Section 5 we give the main result of this article, the all orders tadpole, and Sec. 6 is84

dedicated to discussion of the outlook for the one-loop geoSMEFT and conclusions. The85

Appendix A includes relevant definitions and relations from the geoSMEFT which are86

used throughout this article, while App. B demonstrates the importance of the Tadpole87

diagram both phenomenologically and in preserving the gauge symmetry of the theory88

beyond tree level.89

2 Conventions90

In order to define the relevant terms of the Lagrangian for the calculation of the tadpole91

diagram, we follow the formulation of the geoSMEFT given in [10], as well as the gauge92

fixing of [9] and [12]. We begin by defining the field content of the geoSMEFT, the Higgs93

doublet of the SM is rewritten in terms of a four-component real scalar field, φI , by the94

following association:95

H(φI) =
1√
2

[
φ2 + iφ1

φ4 − iφ3

]
. (3)

The SU(2)L and U(1)Y gauge bosons, B and W I , are replaced with four component vector96

field WA = {W 1,W 2,W 3, B}. These weak-eigenstate fields are transformed to the mass97

basis by the matrices:98

UAC ≡
√
gABUBC , VIK ≡

√
h
IJ
VJK . (4)

Above and in what follows latin indices are four-component unless otherwise specified.99

The matrices
√
g and

√
h are the inverse-square root expectation value of the field-space100
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connections1:101

hIJ =

[
1 + φ2c

(6)
H� +

∞∑
n=0

(
φ2

2

)n+2

(c
(8+2n)
HD − c(8+2n)

H,D2 )

]
δIJ

+
ΓIA,JφKΓKA,Lφ

L

2

(
c
(6)
HD

2
+

∞∑
n=0

(
φ2

2

)n+1

c
(8+2n)
HD,2

)
, (5)

gAB =

[
1− 4

∞∑
n=0

(c
(6+2n)
HW (1− δA4) + c

(6+2n)
HB δA4)

(
φ2

2

)n+1
]
δAB

−
∞∑
n=0

(
φ2

2

)n
(φIΓ

I
A,Jφ

J)(φLΓLB,Kφ
K)(1− δA4)(1− δB4) (6)

+

[ ∞∑
n=0

c
(6+2n)
HWB

(
φ2

2

)n]
[(φIΓ

I
A,Jφ

J)(1− δA4)δB4 + (A↔ B)] .

These field space connections correspond to the products of fields: WA
µνW

B,µν and102

(Dµφ)I(Dµφ)J respectively. As the scalar field φ is related to its mass eigenstate field103

Φ by the inverse square roots of the expectations of these matrices, they are (in the104

mass eigenstate basis) implicitly dependent on
√
h. The matrices U and V take the weak105

eigenstate fields and rotate them to the physical basis of the SM, they are given by:106

UBC =


1√
2

1√
2

0 0
i√
2

−i√
2

0 0

0 0 c̄W s̄W
0 0 −s̄W c̄W

 , VJK =


−i√

2
i√
2

0 0
1√
2

1√
2

0 0

0 0 −1 0
0 0 0 1

 . (7)

U and V transform the weak eigenstate basis fields, W and φ, to the physical basis fields107

AB = {W+,W−, Z,A} and ΦI = {Φ−,Φ+, χ, h}. Note, h is used to denote the Higgs108

boson as well as the field-space connection of Eq. 5. When the h field-space connection is109

used it has either indices or appears as
√
h. According to the above, the bosonic fields are110

rotated to the mass basis as:111

AB = UBCWC , ΦI = VIKφK . (8)

The barred Weinberg angles, s̄W and c̄W are defined in the Appendix. In addition to the112

above we also have the ghosts for the electroweak gauge bosons, uA = UAC uC , the gluon113

field GA and the corresponding ghost uAG. The gluons and their corresponding ghosts are114

transformed to canonically normalized fields by:115

GA =
√
κ−1GA , uAG =

√
κ−1uAG . (9)

κ is defined below, and is the field space connection of the combination GAµνGA,µν . Script116

latin indices are SU(3)c gluon indices. G corresponds to the canonically normalized gluonic117

field, while G corresponds to the gluonic field before the kinetic term is transformed. In118

this article, fermionic fields only occur in loops and are therefore always summed over, as119

such we use the short hand ψ for all fermionic fields.120

The full set of operator forms contributing to two- and three-point functions of the121

1Raised indices on field-space connections correspond to inverses of the field-space connection.
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SMEFT was derived in [10]. They include:122

hIJ(Dµφ)I(Dµφ)J , gABW
A
µνW

Bµν , κAIJ(Dµφ)I(Dνφ)JWµν
A ,

Yψψ̄1ψ2 , κGAµνGAµν ,

fABCW
A
µνW

B,νρWC,µ
ρ , dAψ̄1σ

µνψ2WA
µν , κABCGAµνGB,νρG

C,µ
ρ ,

cψ̄1σ
µνTAψ2GAµν , LIAψ̄1γ

µσAψ2(Dµφ)I .

(10)

The covariant derivative of the four component scalar and the field strength tensors of the123

vectors are then defined as:124

(Dµφ)I =

(
∂µδIJ −

1

2
WA,µγ̃IA,J

)
φJ , (11)

WA
µν = ∂µW

A
ν − ∂νWA

µ − ε̃ABCWB
µ W

C
ν , (12)

GAµν = ∂µGAν − ∂νGAµ − fABCGBµGCν . (13)

The matrices γ̃IA,J and ε̃ABC are defined in the Appendix. The fABC are the usual structure125

constants of SU(3)c.126

In addition to the operators defined in Eq. 10 we also define the all-orders Higgs127

potential,128

V (φI) =
λ

4

(
φ2 − v2

0

)2 − ∞∑
n=1

c
(4+2n)
H

(
φ2

2

)2+n

. (14)

In the above, v0 is the vacuum expectation value that minimizes the tree-level Higgs129

potential for the SM. Spontaneous symmetry breaking occurs in the geoSMEFT for φI →130

vδI4 +
√
h
IJ
VJKΦK2, where v is the vacuum expectation value which minimizes the tree131

level potential of the geoSMEFT. c
(4+2n)
H is the Wilson coefficient of the dimension 4 + 2n132

pure Higgs operator suppressed by the heavy mass scale Λ2n, this Λ dependence is absorbed133

into the Wilson coefficient here and for the operators below for convenience. At tree level,134

requiring the coefficient of the tadpole term in the potential be zero gives the relation135

between v0 and v:136

t = 0 ∝ v2 − 1

λ

∞∑
n=1

(4 + 2n)v2+2n

22+n
c

(2n+4)
H − v2

0 . (15)

We note that solving this equation for v2 requires numerical methods for n ≥ 4 as it is a137

polynomial of order n+ 1 in v2.138

In what follows we will derive the one-loop correction to this result to all orders in the139

SMEFT power counting. The choice of t = 0 at one loop corresponds to the FJ tadpole140

scheme [13], with this choice we choose to expand about the true (one-loop) vacuum. This141

simplifying choice means tadpole diagrams need not be included in one-loop calculations142

(the tadpole and its counter term exactly cancel), however the loop improved vacuum143

expectation value needs to be used in tree level calculations. Further, this one-loop result144

is required to demonstrate the gauge invariance of observables, such as the masses of145

the gauge bosons in the on-shell renormalization scheme [14, 15]. This is discussed in146

Appendix B as well as in the conclusions.147

The terms from Eq. 10 which contribute to the one-loop tadpole diagram are those148

which involve a single Higgs boson coupling to two fermions, gauge bosons, or additional149

2This is a convenient choice of how to realize spontaneous symmetry breaking in the geoSMEFT which
is consistent with 〈H†H〉 = v2/2 [12].
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scalars. As such the last two lines do not contribute as they include three or more particles150

other than the Higgs boson and therefore only contribute at higher loop order. In the151

case of the connection LIA there is no contribution as these operators correspond to the152

Hermitian derivative form, (H†
←→
D µH)(ψ̄γµψ), which causes the Higgs-fermion couplings153

to vanish identically. While the operators coupling the Higgs boson to gluons will result in154

scale-less loop integrals which vanish identically, we retain them as the all-orders Feynman155

rules derived from the κAB operator form are the simplest and serve as intuitive examples156

of how the rules are derived. Reproducing the all-orders form of the relevant connections157

from [10] we have (in addition to Eqs. 5 and 6 above):158

κAIJ = −1

2
γI4,JδA4

∞∑
n=0

c
(8+2n)
HDHB

(
φ2

2

)n+1

− 1

2
γIA,J(1− δA4)

∞∑
n=0

c
(8+2n)
HDHW

(
φ2

2

)n+1

−1

8
(1− δA4)[φKΓKA,Lφ

L][φMΓMB,Lφ
N ]γIB,J

∞∑
n=0

c
(10+2n)
HDHW,3

(
φ2

2

)n
(16)

+
1

4
εABC [φKΓKB,Lφ

L]γIC,J

∞∑
n=0

c
(8+2n)
HDHW,2

(
φ2

2

)n
,

Yψpr = −
(∼)

H (φI)[Yψ]†+
(∼)

H (φI)
∞∑
n=0

c
(6+2n)
ψH,pr

(
φ2

2

)n+1

, (17)

κ =

[
1− 4

∞∑
n=0

c
(6+2n)
HG

(
φ2

2

)n+1
]
. (18)

159

Where
(∼)

H is the Higgs doublet for leptons and down quarks, and εijH
j for up quarks.160

The matrices ΓIA,J and γIA,J are given in the Appendix for brevity. We have also used161

φ2 = φIφI = φIδ
IJφJ . The c

(n)
i are the Wilson coefficients of operators of dimension n162

and are suppressed by a factor of Λn−4 which has been absorbed into their definition for163

the sake of compactness of these and the following expressions. The inverse-square root164

of gIJ and hIJ are the matrices of Eq. 4 which, with the matrices U and V , take the165

weak eigenstate fields to the mass eigenstate fields of the SMEFT. Latin indices A, B, · · ·166

are those associated with the four-component representation of the gauge boson indices167

for SU(2)L × U(1)Y , I, J · · · are are the four-component indices associated with the168

four-component real scalar field, and A,B are associated with color indices of the gluons.169

Fermonic indices are generally suppressed.170

The above is all that is needed to define the relevant all-orders three-point functions171

for the classical Lagrangian in the geoSMEFT:172

Lcl(φ
I ,WA,GA, ψ) = hIJ(Dµφ)I(Dµφ)J − V (φ) + gABW

A
µνW

B,µν + κGAµνGA,µν

+κAIJ(Dµφ)I(Dνφ)JWµν
A +

∑
ψ

Yψ̄1ψ2 . (19)

In Section 4 we will choose to adopt the background field method of gauge fixing. Therefore173

in the discussion of the classical Lagrangian that follows we will double the bosonic field174

content of the above Lagrangian as:175

Lcl(φ
I ,WA

µ ,GAµ , ψ)→ Lcl(φ
I + φ̂I ,WA + ŴA,GA + ĜA, ψ) . (20)

Where the hatted fields are referred to as the background fields and the unhatted as the176

quantum fields. The choice of the background field method has various advantages, one177

of which is the preservation of the naive Ward Identities as discussed in [12, 16, 17]. This178

methodology has been adopted in many SMEFT related publications because of its nice179
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properties, see for example [7, 18, 19]. In this methodology the quantum fields are gauge180

fixed, while the background fields are not. As fermionic fields are not involved in the181

gauge fixing they are not split into background and quantum fields. As such all external182

particles for a given amplitude correspond to background field while internal lines are183

quantum fields. Therefore in what follows we derive the couplings of the background184

Higgs boson field, ĥ, to two quantum fields.185

3 The all-orders vertices186

In order to define the relevant three-point functions for the one-loop tadpole diagrams we187

must obtain the relevant Feynman rules from Eq. 10. We will do this while preserving188

the form of the field-space connections when possible in order to maintain results that189

are manifestly all orders in the 1
Λn power counting. The Feynman rules that follow were190

checked using FeynRules. They can be understood as follows: the subscript of a field in {}191

corresponds to the momenta, Lorentz indices, and color indices with the same subscript192

on the right side of the equations below. In the case of a field with no subscript, the193

Feynman rule does not depend explicitly on that field’s properties.194

The simplest Feynman rules to derive are from the field space connections gAB, κAB,195

and Y ψ
pr as the Higgs dependence is purely in the connection matrix. Varying Eq. 18 with196

respect to the background field ĥ gives the coupling of a Higgs boson to two gluons:197

{ĥ, G1, G2} = i

〈
δκ

δĥ

〉(√
κ−1

)2
Π1,2δ

A1A2 . (21)

Where, for convenience, we have defined,198

Π1,2 ≡ (pµ21 pµ12 − p1 · p2η
µ1µ2) . (22)

It should be noted there are implied rotations of the quantity φI within the field-space199

connections such as κ: beyond leading order
√
κ is a function of φI =

√
h
IJ
VJKΦK .200

Explicitly taking the variations gives instead:201

{ĥ, G1, G2} → i
√
h

44
(√

κ−1
)2
vT

∞∑
i=0

v2n
T (n+ 1)

2n−2
c

(6+2n)
HG Π1,2δ

A1A2 . (23)

Similarly for the yukawa-like couplings:202

{ĥ, ψ̄r, ψr} = −i

〈
δYψrr
δĥ

〉
(24)

= i

√
h

44

v
M̄ψ,rr − i

√
h

44

√
2

∞∑
n=0

c
(6+2n)
ψH,rr

v2n+2

2n+1
(2n+ 2) . (25)

As only like-flavors will contribute to the Tadpole diagram we have only considered diago-203

nal entries of Yψ and substituted in terms of the barred tree-level masses of the fermions.204

The tree-level fermion mass to all orders is simply the expectation of the field connection205

Y of Eq. 17:206

M̄ψ = 〈(Yψ)†〉 . (26)

The remaining terms are more complicated than the above, as such we only write the207

vertex functions in terms of variations on the field-space connections. Some examples of208
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the field-space connections expanded in terms of Wilson coefficients can be found in the209

Appendix. The coupling to two gauge bosons coming from gAB is given by:210

{ĥ,W+
1 ,W

−
2 } = −i

〈
δg11

δĥ

〉
(
√
g

11
)2 Π1,2 , (27)

{ĥ, A1, A2} = −iΣAAΠ1,2 , (28)

{ĥ, Z1, Z2} = −iΣZZΠ1,2 , (29)

ΣAA ≡
4∑

A,B=3

(
c̄2W

〈
δgAB

δĥ

〉
√
g
A4√

g
B4

+ 2c̄W s̄W

〈
δgAB

δĥ

〉
√
g

3A√
g
B4

+ s̄2
W

〈
δgAB

δĥ

〉
√
g

3A√
g

3B

)
,

(30)

ΣZZ ≡
4∑

A,B=3

(
c̄2W

〈
δgAB

δĥ

〉
√
g

3A√
g

3B − 2c̄W s̄W

〈
δgAB

δĥ

〉
√
g

3A√
g
B4

+ s̄2
W

〈
δgAB

δĥ

〉
√
g
A4√

g
B4

)

= ΣAA(s̄W → −c̄W , c̄W → s̄W ) . (31)

211

In order to form a tadpole diagram from the connection κAIJ one of the covariant deriva-212

tives must generate a vector boson while the other must correspond to the background213

Higgs boson, as such the rules are straightforward to derive as well:214

{ĥ1,W
+
2 ,W

−
3 } = ḡ2

√
g11
√
h

44
v
[
(〈κ1

13〉 − i〈κ1
14〉)p

µ2
1 pµ32 − (〈κ1

13〉+ i〈κ1
14〉)p

µ3
1 pµ23

+
(
〈κ1

13〉[p1 · p3 − p1 · p2] + i〈κ1
14〉[p1 · p2 + p1 · p3]

)
ηµ2µ3

]
, (32)

{ĥ1, Z2, Z3} = −i
√
h

44
ḡZv

[(
c̄W
√
g33 − s̄W

√
g34
)
〈κ3

34〉+
(
s̄W
√
g44 − c̄W

√
g34
)
〈κ4

12〉
]

× [pµ21 pµ32 + pµ31 pµ23 − p1 · (p2 + p3)ηµ2µ3 ] . (33)

No coupling to the photon is generated as one of the vector bosons must come from the215

covariant derivative which has no A dependence for the Higgs boson. In simplifying these216

expressions we have used:217

〈κ1
13〉 = −〈κ1

24〉 = −〈κ1
31〉 = 〈κ1

42〉 = 〈κ2
14〉 = 〈κ2

23〉 = −〈κ2
32〉 = −〈κ2

41〉 , (34)

〈κ1
14〉 = 〈κ1

23〉 = −〈κ1
32〉 = −〈κ1

41〉 = −〈κ2
13〉 = 〈κ2

24〉 = 〈κ2
31〉 = −〈κ2

42〉 , (35)

〈κ4
12〉 = −〈κ4

34〉 . (36)

In addition to the fact κAIJ is antisymmetric. As the rules for interactions derived from218

κAIJ necessarily depend on the momentum of the background Higgs boson (i.e. one of219

the derivatives must be acting on the Higgs boson) these rules will not contribute to the220

tadpole diagram.221

Finally, the Feynman rules arising from the field-space connection hIJ are slightly more222

complicated as the background Higgs boson can come from either the metric or the (Dµφ)223

terms. These operator forms also contribute not only to Higgs-gauge couplings, but also224

to Higgs-goldstone couplings. For ĥ sourced from the field space connection we have the225

8
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following rules:226

{ĥ,Φ0
1,Φ

0
1} = −i

〈
δh33

δĥ

〉
(
√
h

33
)2 p1 · p2 , (37)

{ĥ,Φ+
1 ,Φ

−
2 } = −i

〈
δh11

δĥ

〉
(
√
h

11
)2 p1 · p2 , (38)

{ĥ, h1, h2} = −i
〈
δh44

δĥ

〉
(
√
h

44
)2 p1 · p2 , (39)

{ĥ,W+
1 ,W

−
2 } = i

〈
δh11

δĥ

〉
M̄2
W (
√
h

11
)2ηµ1µ2 , (40)

{ĥ, Z1, Z2} = i

〈
δh33

δĥ

〉
M̄2
Z(
√
h

33
)2ηµ1µ2 . (41)

The coupling ĥγγ vanishes identically, which follows from the fact the operator forms227

of the field-space connection hIJ correspond to rescalings of the SM Higgs couplings to228

vector bosons. In the case that ĥ is sourced from the covariant derivative terms we have229

two contributions. The first is from the 〈h〉 which can only generate ĥ-vector three point230

functions3:231

{ĥ,W+
1 ,W

−
2 } = 2i

√
h

44 M̄2
W

v
ηµ1µ2 , (42)

{ĥ, Z1, Z2} = 2i
√
h

44 M̄2
Z

v
ηµ1µ2 . (43)

As above, the ĥγγ coupling vanishes identically. Secondly, ĥ couplings to goldstone bosons232

from variations of the metric with respect to the goldstone bosons could be present, how-233

ever they vanish identically.234

In addition to the above we need to include terms like c
(2n−4)
H (H†H)2n. The Feynman235

rules for ĥ coupling to two quantum fields can be generalized from Eq. 4.2 of [10] by using236

the multinomial coefficient:237

{ĥ, h, h} = −2i(
√
h

44
)3v

[
3λ−

∞∑
n=3

1

2n

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

]
, (44)

{ĥ,Φ0,Φ0} = −2i(
√
h

33
)2
√
h

44
v

[
λ−

∞∑
n=3

1

2n−1

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

]
, (45)

{ĥ,Φ+,Φ−} = −i(
√
h

11
)2
√
h

44
v

[
2λ−

∞∑
n=3

1

2n−2

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

]
. (46)

In the above the multinomial for ĥh2 can be understood to come from (v+ ĥ+h)2n terms,238

the Φ0 rule from [(Φ0)2 + 2ĥv+ v2]n, and the rule for Φ± from [2|Φ+|2 + 2ĥv+ v2]n. This239

explains the minor differences between the Feynman rules above.240

The above constitute all the rules from the classical Lagrangian necessary to perform241

the calculation of the tadpole diagrams to all orders in the SMEFT power counting, what242

remains are the gauge-fixing and ghost contributions.243

4 Gauge fixing the geoSMEFT244

Background gauge fixing for the SMEFT was performed first in [9]. This was first done for245

the gluons in [18], then later repeated in [16] in a manner more consistent with the gauge246

3Also ĥΦ0,±-vector couplings which do not contribute to the Tadpole diagram.
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fixing of the weak gauge bosons of [9] which is adopted here. The gauge fixing terms are247

given by:248

LGF = − ĝAB
2ξW
GAGB − κ

2ξG
GAcolorGAcolor , (47)

GA = ∂µW
A,µ − ε̃ABCŴB

µ W
Cµ +

ξ

2
ĝABφI ĥIK γ̃

K
B,J φ̂

J , (48)

GAcolor = ∂µG
µ,A − g3f

ABCĜµ,BG
µ
C . (49)

Where in the above, unhatted fields are understood to be quantum fields and the hatted249

field-space connections are the normal field space connections (i.e. ĝ and ĥ) with all250

quantum fields set to zero. This notational choice is also the case below in the ghost251

Lagrangian. Starting with the gluonic gauge fixing as it is the simplest we obtain the252

Feynman rule:253

{ĥ, G1, G2} =
i

ξG

〈
δκ

δĥ

〉
(
√
κ−1)2pµ11 pµ22 δA1A2 . (50)

In the case of the electroweak gauge fixing a coupling of the background Higgs field to gauge254

bosons can be obtained from the variation with respect to the field-space connection of255

Eq. 47 and the square of the derivative term of Eq. 48. The second terms of Eqs. 48 and 49256

cannot contribute as they include a background gauge field, while the final term allows257

for a ĥ coupling to goldstone bosons when all but one of the ĝ, ĥ, and φ̂ are set to their258

expectation values. This results in the following Feynman Rules:259

{ĥ,W+
1 ,W

−
2 } =

i

ξW

〈
δg11

δĥ

〉
(
√
g11)2pµ11 pµ22 , (51)

{ĥ, A1, A2} =
i

ξW
ΣAAp

µ1
1 pµ22 , (52)

{ĥ, Z1, Z2} =
i

ξW
ΣZZp

µ1
1 pµ22 , (53)

{ĥ,Φ+,Φ−} = −i
M̄2
W

v

[
2

〈
δh11

δĥ

〉
(
√
h

11
)2v + 2

√
h

44
+

〈
δg11

δĥ

〉
(
√
g11)2v

]
ξW ,(54)

{ĥ,Φ0,Φ0} = −i
M̄2
Z

v

[
2

〈
δh33

δĥ

〉
(
√
h

33
)2v + 2

√
h

44
− ΣZZv

]
ξW . (55)

(56)

Note no ĥ coupling to two quantum Higgs bosons is generated.260

The ghost Lagrangian was also derived in [9]4, it is reproduced here excluding any261

terms with gauge fields as they cannot contribute to the one-loop Tadpole diagram (the262

ghost Lagrangian is by definition quadratic in the ghost fields):263

Lghost = −ĝABūB
[
∂2 +

ξW
4
ĝAD(φJ + φ̂J)γ̃ICJ ĥIK γ̃

K
DLφ̂

L

]
uC − κ̂ ūGA∂2uGA . (57)

As was the case for the gauge fixing terms, ĥūu couplings can be obtained either from a264

4Here we have adopted the sign choice of [18].
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variation with respect to one of the field-space connections or explicitly from φ̂, ĥ, or ĝ:265

{ĥ, ūG1 , uG2 } = i

〈
δκ

δĥ

〉
(
√
κ−1)2p2

2δA1A2 , (58)

{ĥ, ūW+

1 , uW
+

2 } = −i
[〈

δh11

δĥ

〉
M̄2
W (
√
h

11
)2ξ + 2M̄2

W

√
h

44
ξ − (

√
g11)2

〈
δg11

δĥ

〉
p2

2

]
(59)

= {ĥ, ūW−1 , uW
−

2 } , (60)

{ĥ, ūγ1 , u
γ
2} = iΣAA p

2
2 ,

{ĥ, ūZ1 , uZ2 } = iΣZZ p
2
2 − iM̄2

Z

(
2
√
h

44
+ (
√
h

33
)2

〈
δh33

δĥ

〉)
ξ . (61)

In the case of the ghosts associated with the photon, the ξ dependent term vanishes266

identically. This is analogous to the case of the classical contribution from the field space267

metric hIJ , see the discussions around Eqs. 41 and 43. Note that in the case of the ghost268

for the photon field we have used the notation uγ to distinguish the field from the four-269

component ghost field uA. With the above, all Feynman rules necessary to calculate the270

tadpole diagram at one loop and to all orders in the SMEFT expansion are now defined.271

5 The all-orders SMEFT tadpole272

The one loop diagrams that contribute are shown in Figure 1, as was noted in Section 2273

the Feynman rules coupling the Higgs boson to gluons as well as those coupling the Higgs274

boson to colored ghosts do not contribute to the tadpole diagram as the loop integral is275

scaleless. Making use of dimensional regularization in d = 4−2ε dimensions, the fermionic276

couplings result in the following contribution at one loop:277

TψH = −NcM̄ψ

4π2

〈
δYψ

δĥ

〉
A0(M̄ψ) (62)

=
NcM̄ψ

4π2

√
h

44

(
M̄ψ

v
− 1√

2

∞∑
n=0

v2n+2

2n+1
(2n+ 2)c

(n)
ψH

)
A0(M̄ψ) (63)

=
NcM̄ψ

4π2

[
M̄ψ

v
− v

4

(
2
√

2vc
(6)
ψH + M̄ψ[c

(6)
HD − 4cH�]

)
− v4

8

√
2
(
c
(8)
ψH + [4c

(6)
H� − c

(6)
HD]c

(6)
ψH

)
+
M̄ψ

32

(
4c

(8)
HD + 4c

(8)
HD,2 − 3[c

(6)
HD − 4c

(6)
H�]2

)]
A0(M̄ψ) +O

(
1

Λ6

)
. (64)

Where we have used the Passarino-Veltman scalar A function,278

A0(M) = M2

[
1 +

1

ε
− γE + log

(
4πµ2

M2

)]
. (65)

The three equivalences of Eq. 64 show first the geoSMEFT result, the result with the279

variation of the field-space connection written explicitly in terms of the relevant Wilson280

ψ W/Z uW /uZ φ±/φ0/h

Figure 1: One loop diagrams contributing to the Tadpole. The photon and gluons and
their corresponding ghosts do not contribute as they are massless the loop integrals are
identically zero.
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coefficients while keeping the compact form for the transformations that canonically nor-281

malizes the Higgs background field, and finally the full expansion in terms of the Wilson282

coefficients to order 1
Λ4 . The barred quantities are not expanded as they are more closely283

related to input parameters that would be chosen in a phenomenological study, this also284

serves to simplify the expressions so they fit in paper format. This demonstrates that the285

geoSMEFT trivially sums the Wilson coefficient dependence of the SMEFT. In a tradi-286

tional SMEFT approach one would enumerate all the contributing operators to a given287

order in the SMEFT power counting and the corresponding Feynman rules, perform the288

calculations, and again expand to a given order. Here we perform the all orders calculation289

and can expand to a given order after the full calculation is performed.290

The compactness of the expressions also allows for a cleaner understanding of cancel-291

lations in the theory such as in the case of cancellations between gauge-boson, ghost, and292

goldstone boson contributions as we see next. Below we neglect to expand in terms of293

individual Wilson coefficients until the terms are added together as many simplifications294

occur after summing the diagrams. In the case of the W and Z bosons we have:295

TWH =
M̄2
W

16π2

[
(
√
g

11
)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )− ξWA0(
√
ξW M̄W )

]
,

(66)

TZH =
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)− ξA0(
√
ξW M̄Z)

]
.

(67)

296

The ghost terms give (again, as the photon ghost term is scaleless the contribution is297

identically zero):298

T u
±

H =
M̄2
W

8π2

[〈
δg11

δĥ

〉
(
√
g11)2 − 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

]
ξWA0(

√
ξW M̄W ) ,

(68)

T u
Z

H =
M̄2
Z

16π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

]
ξWA0(

√
ξW M̄Z) , (69)

and for the goldstone bosons we find:299

TΦ±

H =
M̄2
W

16π2

[
2

v

√
h

44
+

〈
δh11

δĥ

〉
(
√
h

11
)2 +

〈
δg11

δĥ

〉
(
√
g

11
)2

]
ξWA0(

√
ξW M̄W ) (70)

+
v

32π2
(
√
h

11
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(

√
ξW M̄W ) ,

TΦ0

H =
M̄2
Z

32π2

[
2

v

√
h

44
+

〈
δh33

δĥ

〉
(
√
h

33
)2 − ΣZZ

]
ξWA0(

√
ξW M̄Z) (71)

+
v

64π2
(
√
h

33
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(

√
ξM̄Z) .

300

Noting the raised indices in δg11 for the Φ± contribution, we see that the ξW dependent301

parts of the W and Z loops are cancelled exactly by the ghost and goldstone terms,302

and only the λ and c
(n)
H gauge-parameter dependent terms remain for the scalars. This303

is exactly as was found for the SM Tadpole in the background field methodology [7].304

Interestingly, the behavior goes beyond the SM-like interactions and also holds for the305

interactions which only occur in the SMEFT, i.e. those proportional to δg and δh, as306

well. This also means that the λ and c
(n)
H terms are gauge dependent and therefore so is307
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the tadpole. This is also consistent with [7], where they found this dependence exactly308

cancels against that of the Higgs two-point function and the loop contributions in the309

process H → γγ at order 1
Λ2 in the SMEFT, leaving the observable process H → γγ gauge310

invariant as it must be.311

The sum of the vectors, ghosts, and goldstone bosons, neglecting λ and c
(n)
H dependence312

is given by:313

T V,u,ΦH =
M̄2
W

16π2

[
(
√
g11)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )
]

+
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)
]
. (72)

In order to demonstrate the compactness of this expression we expand the quantity in314

brackets for the W contribution to O(1/Λ4) in terms of the Wilson coefficients:315 [
(
√
g11)2

〈
δg11
δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2
]

= − 1
v

[
2 + v2

2

(
c
(6)
H� − c

(6)
HD + 8c

(6)
HW

)
+v4

16

(
12c

(8)
HD − 20c

(8)
HD,2 + 64c

(8)
HW + 3(c

(6)
HD − 4c

(6)
H�)2 + 16(4c

(6)
H� − c

(6)
HD)c

(6)
HW + 128c

(6)
HW

)]
+O

(
1

Λ6

)
.

(73)

316

In the case of the Z contribution the result depends on many more operator coefficients,317

as well as the barred mixing angles due to the dependence in ΣZZ .318

The last remaining contribution is from the quantum Higgs boson, which gives:319

ThH =
1

32π2
(
√
h

44
)2

[
M̄2
H

〈
δh44

δĥ

〉
+ v
√
h

44

(
6λ−

∞∑
n=3

1

2n−1

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

)]
A0(M̄H) .

(74)

The sum of all the above contributions to TH in the SM limit agrees with [7], providing320

a useful cross check of the result. To the extent of the authors knowledge the 1/Λ2 result321

does not exist in the literature in the background formalism.322

With all of the contributions included we can then choose a renormalization condition323

related to the tadpole. Returning to Eq. 14 we obtain the coefficient of the tadpole term:324

t ≡
√
h

44
v

16

[
16λ(v2

0 − v2) +
∞∑
n=1

(4 + 2n)v4+2n−1

22+n
c

(4+2n)
H

]
. (75)

Choosing t = 0 corresponds to the proper ground state [13, 14] and is the scheme we325

choose here. At tree level this simply reproduces the condition in Eq. 15. At one loop326

this corresponds to cancelling the entire tadpole contribution. Introducing δt as a counter327

term, we have the renormalization condition,328

t = t0 − δt = 0 , (76)

13



SciPost Physics Submission

where t0 corresponds to the tree level contribution. Choosing t = 0 corresponds to:329

δt = −TH

= +
∑
ψ

NcM̄ψ

4π2

〈
δYψ

δĥ

〉
A0(M̄ψ)

−
M̄2
W

16π2

[
(
√
g11)2

〈
δg11

δĥ

〉
− 2

v

√
h

44
−
〈
δh11

δĥ

〉
(
√
h

11
)2

] [
2M̄2

W − 3A0(M̄W )
]

−
M̄2
Z

32π2

[
ΣZZ −

2

v

√
h

44
−
〈
δh33

δĥ

〉
(
√
h

33
)2

] [
2M̄2

Z − 3A0(M̄Z)
]

(77)

− v

32π2
(
√
h

11
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(
√
ξW M̄W )

− v

64π2
(
√
h

33
)2
√
h

44

(
4λ−

∞∑
n=3

1

2n−3

(
n

1, 1, n− 2

)
v2n−4c

(2n)
H

)
A0(
√
ξM̄Z)

− 1

32π2
(
√
h

44
)2

[
M̄2
H

〈
δh44

δĥ

〉
+ v
√
h

44

(
6λ−

∞∑
n=3

1

2n−1

(
2n

1, 2, 2n− 3

)
v2n−4c

(2n)
H

)]
A0(M̄H) .

which depends on four barred masses (counting the barred fermion mass only once), four330

field-space connections plus ΣZZ , λ, and the sum over c
(n)
H . Treating the sums as a331

single entity gives a total dependence on eleven quantities. Conversely, the standard332

model result depends on four masses and λ. Expanding the tadpole result in terms of333

the Wilson coefficients of the SMEFT and maintaining barred mass dependence instead334

gives 12 parameters at dimension six and 21 at O(1/Λ4) with 9 additional parameters at335

each subsequent order5. In this context the geoSMEFT represents a clear calculational336

advantage over the traditional approach to the SMEFT.337

Further, as we saw in the discussion about the gauge, goldstone, and ghost terms, the338

compactness of the geoSMEFT expressions allows for a straightforward cancellation of339

terms which would be unclear when expanded in terms of the many Wilson coefficients340

contributing to each process. Similar simplifications of expressions can be expected for341

higher n-point functions, and as these expressions will generally be more complicated342

than those of the tadpole this simplification is crucial to an analytic understanding of the343

SMEFT expansion at one loop.344

6 Conclusions345

We have constructed the Feynman rules necessary for the calculation of the tadpole di-346

agram within the framework of the geoSMEFT. In doing so we have included, for the347

first time, the gauge fixing of the geoSMEFT and the all-orders Feynman rules related to348

gauge fixing which include a single background Higgs boson and two other particles. We349

proceeded to calculate all diagrams contributing to the process. The results allowed us350

to fix the minimum of the Higgs potential at one loop and to all orders in the SMEFT351

power counting. In doing so we demonstrated the simplicity of expressions obtained in the352

geoSMEFT as compared with those expanded in terms of the Wilson coefficients which is353

necessary in standard approaches to the SMEFT. Further we obtained not only the first354

one-loop calculation including full next to leading order results in the SMEFT, but the355

5The number of new parameters in hIJ , gAB , and Y at a given dimension above six stays constant, see
Table 1 of [10].
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first one-loop calculation including all orders contributions in 1/Λn. As discussed in the356

introduction and Appendix B, the tadpole diagram is not only essential to fully defining357

one-loop results, such as the masses of the gauge bosons, but is also essential for the gauge358

invariance of the theory at one loop. This demonstrates the foundational nature of this359

work toward future precision calculations in the geoSMEFT.360

Beyond the scope of the calculations contained in this article, we note that the geo-361

SMEFT is currently defined to include vertices of up to any three particles accompanied362

by arbitrarily many scalar field insertions. This has presented the opportunity for many363

all-orders results at tree level [6, 11] and their projection to order 1/Λ4 in phenomeno-364

logical studies. This allows for the possibility to perform a truncation error analysis365

more consistent with the SMEFT than those commonly used where partial dimension-six366

squared results are used to estimate the truncation error. While few additional one-loop367

calculations are currently possible in the framework of the geoSMEFT, it is possible to368

systematically extend the geoSMEFT to include any N particles plus arbitrarily many369

scalar field insertions. In particular, the expansion in the vacuum expectation value can370

be defined for arbitrary n–point functions by simply defining the field-space connections371

for ever increasing numbers of fields, i.e. for increased numbers of variations in Eq. 2. The372

derivative expansion is more difficult as, beyond three points functions, arbitrary powers373

of the momenta can be included leading to an infinite number of operators contributing374

to any given n–point function [10]. Nonetheless, the derivative expansion can separately375

be truncated at a given order. This will allow for the all orders in (v/Λ)n, as well as376

(p/Λ)n to a truncated order, calculation of all two-point functions in the near future and377

subsequently higher n–point functions. With all orders results at tree- and one-loop level378

we can then define a fully consistent truncation error associated with the SMEFT. This379

is an important step toward a precision program for the studies at the High Luminosity380

LHC as well as for supporting and informing the case for next generation colliders.381
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A Useful geoSMEFT definitions and relations389

The following definitions and geometric relations are used extensively throughout this390

work in order to simplify expressions and retain them in the geometric formulation. These391

relations can be found in [10]. The following matrices are used to define the covariant392

derivatives, field strength tensors, and field-space connections:393

γI1,J =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γI2,J =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , (78)

394

γI3,J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , γI4,J =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , (79)

as well as:395

ΓI1,J =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , ΓI2,J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , (80)

396

ΓI3,J =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , ΓI4,J =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (81)

The quantities with tildes are defined as:397

ε̃ABC = g2ε
A
BC with ε̃123 = g2 and ε̃4BC = 0 ,

γ̃IA,J =

{
g2γ

I
A,J ,

g1γ
I
A,J ,

for A = 1, 2, 3 ,
for A = 4 .

(82)

The relation between barred and unbarred couplings is:398

ḡ2 = g2
√
g11 = g2

√
g22 , (83)

ḡZ =
g2

c2
θZ

(
c̄W
√
g33 − s̄W

√
g34
)

=
g1

s2
θZ

(
s̄W
√
g44 − c̄W

√
g34
)
, (84)

ē = g1

(
s̄W
√
g33 + c̄W

√
g34
)

= g1

(
c̄W
√
g44 + s̄W

√
g34
)
. (85)

The above expressions make use of the barred mixing angles:399

s2
θZ

=
g1(
√
g44s̄W −

√
g34c̄W )

g2(
√
g33c̄W −

√
g34s̄W ) + g1(

√
g44s̄W −

√
g34c̄W )

, (86)

s̄2
W =

(g1
√
g44 − g2

√
g34)2

g2
1[(
√
g34)2 + (

√
g44)2] + g2

2[(
√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

.(87)

The barred masses are given by:400

M̄2
W =

ḡ2
2

4

√
h11

2
v2 , (88)

M̄2
Z =

ḡ2
Z

4

√
h33

2
v2 , (89)

M̄2
A = 0 . (90)
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Expanding the elements of the field-space connections of Eqs. 5, 6, and 16–18 become401

complicated very quickly, supporting the use of the geometric approach. Some examples402

of elements of the matrices include:403

√
g11 = 1 + c

(6)
HW v

2 +
1

2

[
c

(8)
HW + 3(c

(6)
HW )2

]
v4 (91)

√
h

44
= 1 +

1

4

[
4c

(6)
H� − c

(6)
HD

]
v2 +

1

32

[
3(c

(6)
HD − c

(6)
H�)2 − 4c

(8)
HD − 4c

(8)
HD,2

]
v4 +O

(
1

Λ6

)
(92)

404

B Relevance of the tadpole to renormalization405

Here we outline the importance of the tadpole to renormalization. We proceed by outline406

the renormalization procedure to arrive at the implications of the tadpole diagram in the407

FJ tadpole scheme, we do not employ the BFM here for simplicity. We loosely follow the408

notation of [15]. The fields are renormalized as follows:409

h0 =
√
ZĥhR (93)

W±0 =
√
ZWW

±
R (94)

(95)

The fourth component of the real scalar field is renormalized as:410

φ4 = v0 + ĥ0 → ZvvR + δv +
√
ZhhR (96)

Expanding the scalar potential of Eq. 14 about the tree level vacuum expectation value411

and adding the one-loop tadpole contribution we find:412

t = −2λRvRδv + TH ≡ δt+ TH (97)

This defines the relationship between δt and δv, in the main text δt is chosen such that413

t = 0. This is equivalent to the choice:414

δv =
1

2λRv2
R

TH =
1

M2
H,R

TH (98)

Employing an on-shell renormalization scheme as in [15] the one loop shifts in masses415

of the vector bosons (V = W,Z) are given by:416

m̄2
V,R

m̄2
V

= 1 + 2
δv

v
−
δm2

V

m2
V

, (99)

where δv corresponds to the correction outlined above, and δm2
V corresponds to the explicit417

contribution from the transverse part of the one-loop two-point functions:418

δm2
V = Re[ΣV V

T (M2
p )] . (100)

In this way we can see from Eq. 99 that even in the FJ tadpole scheme employed in419

this article, the one-loop tadpole is still phenomenologically relevant as it shifts the masses420

of the gauge bosons. Further, as the tadpole was found to be gauge-parameter dependent421

in Sec 5, we see that the gauge-independence of results such as the shifted masses depend422

on the tadpole diagram. In this way we have demonstrated the importance of the tadpole423

diagram to the future one-loop geoSMEFT program both phenomenologically and in terms424

of gauge invariance of the theory, which is necessary for the consistency of the QFT.425
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