
SciPost Physics Submission

Symmetries, Safety, and Self-Supervision

Barry M. Dillon1, Gregor Kasieczka2, Hans Olischläger1,
Tilman Plehn1, Peter Sorrenson1,3 and Lorenz Vogel1

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institut für Experimentalphysik, Universität Hamburg, Germany

3 Heidelberg Collaboratory for Image Processing, Universität Heidelberg, Germany

January 18, 2022

Abstract

Collider searches face the challenge of defining a representation of high-dimensional
data such that physical symmetries are manifest, the discriminating features are re-
tained, and the choice of representation is new-physics agnostic. We introduce JetCLR to
solve the mapping from low-level data to optimized observables through self-supervised
contrastive learning. As an example, we construct a data representation for top and
QCD jets using a permutation-invariant transformer-encoder network and visualize its
symmetry properties. We compare the JetCLR representation with alternative represen-
tations using linear classifier tests and find it to work quite well.
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1 Introduction

Symmetries [1] form the core of the fundamental description, phenomenological techniques,
and experimental analyses in particle physics. LHC physics is defined by the symmetry struc-
ture of LHC data, from the detector geometry to the relativistic space-time symmetries and
local gauge symmetries defining the underlying theory, and to new physics motivations like
supersymmetry. Any new approach to LHC physics, including applications of machine learn-
ing, has to be seen in the context of symmetries eventually [2–5].

Modern machine learning (ML) has spurred the development of techniques which can,
among other benefits, boost the development of high-level observables. We typically train
a neural network to distinguish between different physical processes either based on high-
dimensional, low-level data or on the corresponding Monte Carlo simulations. The resulting
classifier can be viewed as a high-level observable for a given analysis. If the dataset can be
understood through first-principle simulations and is large enough to train the networks, this
observable will be optimized for the respective task, but lack theoretical calculability. As long as
the observable is calibrated and the systematic errors are understood, this lack of calculability
is not a barrier for supervised classification.

This agnostic approach works well for supervised analyses, but it is not clear how it can be
expanded to unsupervised analyses, like an anomaly search [6–10], a generalized side band
analysis [11, 12], or a generalized model hypothesis [13]. For this purpose, we propose to
replace a limited number of high-level observables by a high-dimensional representation, and
replace full control over all possible physics processes with a structure driven by symmetries
and fundamental theory.

The standard application driving ML methods in LHC physics is jets, a fertile ground
for supervised and unsupervised techniques. The most common jet representation is jet im-
ages [14–19], a high-dimensional representation defined in rapidity vs. azimuthal angle, ob-
servables inspired by Lorentz transformations. Jet images typically include a preprocessing
step exploiting their rotation symmetry. Alternative symmetry-inspired jet representations in-
clude permutation-invariant graphs [20–24], trees [25–28], the Lund plane [29,30], Lorentz-
inspired networks [31–35], Deep-Sets networks [36], or energy flow polynomials (EFPs) [37],
a calculable basis with a notion of infrared and collinear safety.

Combining unsupervised learning and symmetries we define jet observables using con-
trastive learning of representations (CLR) [38]. Our key idea is to frame the mapping be-
tween the jet constituents’ phase space and a representation space as an optimization task
with a contrastive loss function, designed such that the representation space will be invariant
to pre-defined symmetries and retains discriminative power. The training is self-supervised in
view of the network’s discriminative power, because the optimization never uses truth labels
for the jets. For the mapping of physics and representation spaces we employ a transformer-
encoder network [39–41]. In addition to its built-in permutation symmetry we implement
rotation and translation symmetries, as well as soft and collinear safety augmentations. To
benchmark JetCLR we use a standard test in the ML community, the so-called linear classifier
test (LCT). For this test a linear network is trained to classify between different processes,
quantifying how well classes can be separated by a linear cut in representation space.

We start by introducing contrastive learning in Section 2. We then construct our JetCLR
tool using a set of symmetries and augmentations in Section 3. In Section 4 we visualize the
invariances of the JetCLR representation and study its performance using a linear classifier.
Different such classifiers are discussed in the Appendix.
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2 Contrastive learning

The goal of our network is to define a mapping between the jet constituents and a represen-
tation space,

f : J →R , (1)

which is, both,

1. invariant to symmetries and theory-driven augmentations, and
2. discriminative within the dataset it is optimized on.

We do this using contrastive learning. Positive and negative pairs of jets are generated using
the training data and theory-driven augmentations of the training data. A neural network is
then used to optimize the mapping f with respect to a loss function taking these positive and
negative pairs as inputs. A detailed description of the procedure is given below.

We work with the top-tagging dataset [6, 31, 42, 43], where the jets are simulated with
PYTHIA 8.2 [44] (default tune) using a center-of-mass energy of 14TeV and ignoring pile-up
and multi-parton interactions (MPI). In a practical experimental setting some procedure to
remove these effects would be required, such as jet grooming [45–47], however to separate
the tasks of jet tagging and pile-up/MPI removal these effects are ignored here. The simu-
lation models the production of the partons and subsequent showering and hadronisation.
DELPHES [48] provides a fast detector simulation with the default ATLAS detector card, such
that the constituents measured in the jet correspond to energy deposits in the calorimeters. The
jets are defined through anti-kT algorithm [49, 50] in FASTJET [51] with a radius of R = 0.8.
For each event we keep the leading jet, provided

pT = 550 . . . 650GeV and |η|< 2 . (2)

This narrow pT-range induces the most distinctive feature in the jets, a finite geometric distance
between the top decay products in the η–φ plane, whereas for QCD jets the average activity
continuously drops away from the hardest constituent. The top jets are required to be matched
to a parton-level top and all parton-level decay products to lay within the jet radius. The
jet constituents are defined using the DELPHES energy-flow algorithm, with the leading 200
constituents from each jet kept for the analysis. Particle-ID and tracking information are not
included.

If we assume all jet constituents to be massless, each jet x i is defined by its constituent
coordinates,

x i = {(pT,η,φ)k} with k = 1, . . . , nC , (3)

so the jet phase space J has dimension 3nC . For the training, we first sample a batch of
jets {x i} from the dataset and apply a set of symmetry-inspired augmentations to each jet to
generate an augmented batch {x ′i}. Pairs of original and augmented jets are defined as

positive pairs: {(x i , x ′i)} (4a)

negative pairs: {(x i , x j)} ∪ {(x i , x ′j)} for i 6= j . (4b)

The goal of the network training is to map positive pairs close together in the representation
space R and negative pairs far apart. This way, positive pairs are used to impose invariances
under symmetry transformations or theory augmentations of the jets in R, while the nega-
tive pairs are used to ensure that the representation retains discriminative power within the
dataset. Truth labels indicating if the jets are QCD or top are never used in the optimization.
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Figure 1: Illustration of the uniformity and alignment concepts behind the contrastive
learning framework.

Loss function

The mapping of Eq. (1) defines the network outputs zi and z′i , each of them vectors de-
scribing jets in Rdim(z). The actual representation, however, is given by f (x i) = zi/|zi| and
f (x ′i) = z′i/|z

′
i |, which means it is defined on a unit hypersphere

R= Sdim(z)−1 . (5)

On this sphere we define the similarity between two jets as [38]

s(zi , z j) =
zi · z j

|zi||z j|
= cosθi j , (6)

with θi j being the angle between the jets in R. The contrastive loss for a positive pair of jets
is defined in terms of this distance as

Li = − log
es(zi ,z

′
i )/τ

∑

j 6=i∈batch

�

es(zi ,z j)/τ + es(zi ,z
′
j)/τ
� , (7)

and the total loss is computed as the mean over all positive pairs in the batch. Because the
positive pairs appear in the numerator, while the negative pairs contribute to the denominator,
the loss decreases when the distance between positive pairs becomes smaller and when the
distance between negative pairs becomes larger. The hyper-parameter τ is referred to as the
temperature and controls the relative influence of positive pairs and negative pairs. The cosine
similarity in Eq. (6) is not a proper distance metric, but we can define an angular distance as
d(zi , z j) = θi j/π= 0 . . . 1, such that it satisfies the triangle inequality.

Uniformity vs. alignment

The contrastive loss can be understood in terms of uniformity versus alignment on the unit
hypersphere defining R, illustrated in Fig. 1. The numerator of Eq. (7), describing the positive
pairs, is minimal when all jets and their augmented counterparts are mapped to the same point,
s(zi , z′i) = 1. On a hypersphere, the negative pairs cannot be pushed infinitely far apart, as
would be possible in Rdim(z), so the corresponding loss is minimal when the jets are uniformly
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distributed on the hypersphere. We can measure uniformity and alignment through [52]

Lalign =
1

Nbatch

∑

i∈batch

s(zi , z′i) (8a)

Luniform =
1

Nbatch

∑

i∈batch

log
∑

j 6=i

�

e−s(zi ,z j) + e−s(zi ,z
′
j)
�

. (8b)

While the alignment function has the trivial solution where all jets and all augmented jets are
mapped to the same point, the uniformity function does not have such a solution. To map the
jets to a uniform distribution in a high-dimensional space, the mapping must learn features
of the jets to discriminate between them and map them to different points. In this respect
the choice of distance in Eq. (6) is crucial to the construction of this method. Alternative
distance measures could in principle be used, however they must lead to the same uniformity
behaviour during optimization. Uniformity alone is a sufficient optimization task to obtain
a representation with discriminative power. The additional alignment condition develops a
mapping to R, which focuses on the invariance with respect to augmentations and symmetries.
The combined contrastive learning will not find representations which are perfectly aligned or
perfectly uniform.

Symmetries and augmentations

The mapping to the representation space R is optimized to be approximately invariant to
pre-defined symmetry transformations and data augmentations. Before applying symmetry
transformations and augmentations in the contrastive learning method we center the jets such
that the pT-weighted centroid is at the origin in the η–φ plane.

Rotations around the jet axes turn out to be a very efficient symmetry we can impose on
our representations. In the jet-image representation this is included through preprocessing,
where each jet is centered and then rotated such that its principal axis points at 12 o’clock.
Energy flow polynomials are rotationally invariant by construction, since they are built from
angular distances between the jet constituents. We apply rotations to a batch of jets by rotating
each jet through angles sampled from 0 . . . 2π. Such rotations in the η–φ plane are not Lorentz
transformations and do not preserve the jet mass, but for narrow jets with R® 1 the corrections
to the jet mass can be neglected.

As a second symmetry we implement translations in the η–φ plane. To do so, all con-
stituents in a jet are shifted by the same random distance, where shifts in each direction are
limited to between −1 . . . 1 and the distance is different for each jet. This performs better
than restricting to smaller shifts. Although we do an initial centring of the jets, we would
like the representations to be invariant to shifts, and so only depend on the distances between
constituents in the jet.

In addition to (approximate) symmetries, we also employ theory-inspired augmentations.
The distinction between the two is much clearer in our physics application than it is in tradi-
tional machine learning. Quantum field theory tells us that soft gluon radiation is universal
and factorizes from the hard physics in the jet splittings [53,54]. To encode this invariance inR
we augment our jets by smearing the positions of the soft constituents, i.e. by re-sampling the
η and φ coordinates of each constituent from a Gaussian distribution centred on the original
coordinates,

η′ ∼N
�

η ,
Λsoft

pT

�

and φ′ ∼N
�

φ ,
Λsoft

pT

�

, (9)

with a pT-suppression in the variance relative to Λsoft = 100 MeV.
Similar to soft splittings, also collinear splitting lead to divergences in perturbative quan-

tum field theory. In practice, they are removed through the finite angular resolution of a
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detector, which will not be able to distinguish two constituents with pT,a and pT,b at vanish-
ing separation ∆Rab � 1. We introduce collinear augmentations to encode this feature by
selecting constituents and splitting them such that the total pT in an infinitesimal region of the
detector is unchanged,

pT,a + pT,b = pT ηa = ηb = η

φa = φb = φ .
(10)

Our soft and collinear augmentations will enforce an approximate IRC-safety in the jet rep-
resentation. Unlike for instance EFPs, we do not explicitly enforce it through a fixed set of
angular correlations or pT-scalings, but let the contrastive optimization determine the map-
ping to the representation space.

3 JetCLR

The symmetries discussed in the last section leave out one of the key symmetries in jet rep-
resentations, namely permutation symmetry. This simply means that the definition of a jet
observable should not rely on any specific ordering of the jet constituents. While it seems
obvious, many machine-learning tools in the literature input the jet constituent data to neu-
ral networks with a fixed ordering, for example ordered by pT. Several other approaches
developed in machine-learning applications to high-energy physics have also addressed the
permutation symmetry of particles [21, 36, 37, 40, 55]. We will include it through the trans-
former architecture, which shares similarities with the Deep-Sets architecture used in Ref. [36],
mapping jet phase space to representation space. The combination of contrastive loss and a
permutation-invariant network architecture defines our JetCLR concept.

Attention mechanism

The key feature of transformer networks is attention [56,57], more specifically self-attention,
which is an operation on a set of elements. Attention allows an element of the set, i.e. a
constituent in a jet, to assign weights to other elements. These weights allow the network to
determine how much “attention” to assign to different pairs of constituents within each jet
during a forward pass. Each constituent in a jet is assigned an attention vector of weights
which specifies how much attention to pay to every other constituent in the jet. We use the
scaled dot-product multi-headed self-attention of Ref. [58].

To give the reader some intuition for this mechanism we will describe the simpler single-
headed attention mechanism, illustrated in Fig. 2. The learnable parameters are contained

Figure 2: Illustration of scaled dot-product single-headed self-attention. All elements
are defined in the text.
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Figure 3: Illustration of the transformer network architecture. MHSA stands for
multi-headed self-attention, and FF for a feed-forward block, as defined in the text.

within just three matrices: the query (WQ), key (W K), and value (W V ) matrices. These are
learned using standard back-propagation methods in neural network optimization. To explain
the mechanism, we start by describing how it is applied it to a single jet constituent described
by the embedded phase space coordinate x i (we slightly abuse our notation such that the index
now refers to constituents rather than jets and in the following we will just consider x1 for one
of the jets). The query matrix WQ transforms a single constituent x1 to the corresponding
query vector q1 =WQ x1. The key matrix W K then transforms each constituent in the jet to a
separate key vector k1,...,C =W K x1,...,C . The query vector q1 is then combined through a scalar
product with each key vector and passed to a softmax function, creating the attention weights
for the first constituent, a1,i = softmax((q1 · ki)/

p
d), where d is the dimension of the query

vector. Finally, the value matrix W V transforms each constituent in the jet to a separate value
vector v1,...,C = W V x1,...,C . The output for the first constituent is then just the sum of these
vectors weighted by the attention weights, z1 =

∑

i=1,...,C a1,i vi . To summarise, the output for
a single constituent is given by

z1 =
∑

i

softmax
�

q1 · kip
d

�

vi =
∑

i

softmax
�

(WQ x1) · (W K x i)p
d

�

W V x i . (11)

This can be thought of as a projection onto the basis vi , where the coefficients are given by the
softmax(q1, ki) between q1 and the ki . The equivalent operation is applied to all x j , leading
to a set of outputs z j . Due to the sum over set elements, each output zi is invariant to the
permutation of the other elements of the set, meaning that the entire self-attention operation
is permutation equivariant.

A problem with the single-headed self-attention mechanism is that each element of the se-
quence tends to attend dominantly to itself [58]. This can be solved by extending the network
to multiple heads, which we do in the work presented here. This involves several self-attention
operations in parallel, each with separate learned weight matrices, then concatenate the out-
puts before applying a final linear layer. In practice, the full calculation for all constituents, all
attention heads, and for an entire batch is carried out in parallel with tensor operations.

Transformer-encoder network

In general, transformer networks include a complete encoder-decoder architecture. In our
application, we are only interested in deriving a representation J → R, so we use only the
encoder part of Ref. [58]. It is a sequence-to-sequence operation, made up of N structurally
identical, successive blocks (see Fig. 3).

The starting point is a set of constituents x i , which we embed into a higher-dimensional
space by a single learned linear layer without activation. This increases the representational
power of the network. A typical dimension of the embedding space is 1000. Working with
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hyper-parameter value

model (embedding) dimension 1000
feed-forward hidden dimension 1000
output dimension 1000
# self-attention heads 4
# transformer layers (N) 4
# layers 2
dropout rate 0.1

hyper-parameter value

optimizer Adam (β1=0.9, β2=0.999)
learning rate 5× 10−5

batch size 128
# epochs 500

Table 1: Default setup of the transformer-encoder network and the JetCLR training,
unless noted explicitly.

the embedded jet constituents, each block contains the following operations: multi-headed
self-attention (MHSA) is applied to the input constituent, and the result is added to the input,
in a residual fashion. This output is normalized using layer normalization [59] and passed
through a residual feed-forward (FF) network, which operates on each constituent individu-
ally. This transformer-encoder block is repeated N times. Finally, the output is normalized
using layer normalization. The encoder outputs are summed over constituents to produce a
fixed-size output h, which is passed through a final feed-forward head network to give the
output z. In practice, our supervised linear classifier test will find that h is a better represen-
tation than z, consistent with typical practice in the self-supervised literature [38]. While the
output of the transformer-encoder is permutation-equivariant, the sum makes the represen-
tation h permutation-invariant, similar to the Deep-Sets approach [36, 60]. Our network is
implemented in PyTorch [61] with the TransformerEncoder module, we also make heavy
use of NumPy [62].

Variable-length inputs

A general feature of jet constituents is that their number per jet is variable. As in all ML tools
for jet analyses, we zero-pad jets with fewer constituents. This makes it easier to convert
a batch to a single tensor input for efficient computation and allows us to concatenate the
batch elements with equal length. To ensure that this padding does not affect the network
output, we implement masking in the transformer. To stop information flow from zero-valued
constituents, we require the attention weights corresponding to those constituents to be zero,
technically by adding negative infinity to the attention weight before the softmax normaliza-
tion. In addition, we remove zero constituents from the sum over constituents to ensure that
the transformer is completely invariant to zero padding.

This masking ensures that constituents with zero pT have no effect on the output, but we
can generalize this by defining the masking to be continuous in pT. Instead of adding negative
infinity to some pre-softmax attention weights, we add β log pT (β = 0.5) to all pre-softmax
attention weights. In addition, instead of setting some transformer outputs before summation
to zero, we multiply all transformer outputs by the input pT. This IR-safe attention mechanism
renders the transformer network IR-safe by construction.

4 Pretty good results

After introducing all JetCLR elements, we have to investigate how its various symmetries and
augmentations contribute to its performance in top-tagging with a Linear Classifier Test (LCT),
and see how our representation compares to alternative approaches. Top-tagging has long
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augmentation ε−1
b (εs=0.5) AUC

none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
all combined (default) 181 0.980

S/B ε−1
b (εs=0.5) AUC

1.00 181 0.980
0.50 160 0.979
0.25 150 0.978
0.10 161 0.978
0.05 146 0.978
0.01 158 0.978

Table 2: Left: classification results for JetCLR trained with different symmetries and
augmentations and S/B = 1. The default setup includes translation and rotation
symmetries, combined with soft and collinear augmentations. Right: classification
results for the combined (default) symmetries and augmentations, trained with dif-
ferent signal-to-background ratios S/B.

been a standard benchmark for testing machine-learning algorithms, building on traditional
approaches which for example search for subjets [63] or mass drops [64,65] in the jet substruc-
ture. As well as serving as a benchmark, machine-learned top-taggers could play an important
role in searches for heavy BSM resonances.

LCTs are widely used in the representation learning literature as a proxy measure for how
expressive a representation is. The whole procedure described so far in getting the new rep-
resentations of the jets using JetCLR is self-supervised, so it does not need to know which jets
are QCD and which are top jets. However for the LCT we use the truth labels to train a simple
linear classifier to distinguish between QCD and top jets using the representations obtained
from the JetCLR method. We then do this for other well-known jet representations, and com-
pare their performance to what we get using JetCLR representations.. The idea is that better
representations perform better in this test.

Our transformer setup is given in Table 1. The temperature hyper-parameter τ determines
the trade-off between the alignment and uniformity. It can strongly affect the performance of
the representations in a LCT. We find that τ = 0.1 . . . 0.2 works best which, despite the very
different applications, is in agreement with the computer vision applications in Refs [38,66].
We also see that more model dimensions result in better performance, although with the trans-
former network this performance gain seems to plateau around 1000 . . . 1500 dimensions. Ear-
lier tests using a fully-connected network instead of a transformer indicated that this plateau
happens at around 200 dimensions. We focus on the 1000-dimensional representations be-
cause this will eventually provide a fair comparison to the EFPs at d ≤ 7, which is also a
1000-dimensional representation of the jets.

Our LCT is a linear neural network with a binary cross-entropy (BCE) loss, optimized
using stochastic gradient descent. The network is trained with 50k top and QCD jets each
for 5000 epochs with a batch size of 2056. The exact setup along with some alternative LCT
setups are discussed in the Appendix, with a focus on their respective strengths and underlying
assumptions.

JetCLR

We present the results in terms of the Receiver Operating Characteristic (ROC) curve, which is a
function of the efficiency (εs) and the mistag rate (εb). The efficiency measures the fraction of
top jets that pass a cut on the output of the classifier, while the mistag rate measures the number
of QCD jets that pass the same cut. The ROC curve we use is simply the function ε−1

b (εs)
where 0≤ εs,b ≤ 1. In an analysis setting one or more working points on this curve would be
chosen, and in the tables below we chose the working point corresponding to εs=0.5. Note
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Figure 4: Contrastive loss value and LCT performance on test data as a function of
the training epochs. The LCT is performed every 10 epochs.

however that in an analysis it would be impossible to know the exact efficiency of the chosen
working point. We also quote the Area Under Curve (AUC) to provide an integrated measure
of performance, this is defined as

∫ 1
0 dεb εs(εb). This can be interpreted as the probability that

a randomly chosen signal jet has a higher output from the classifier than a randomly chosen
background event. An uninformative classifier should give an AUC of 0.5 while a perfect
classifier should give an AUC of 1.0.

From first principles, it is not clear which symmetries and augmentations work best for
learning representations with JetCLR. In the left panel of Table 2 we summarize the results
after applying rotational and translational symmetry transformations and soft+collinear aug-
mentations. To get an idea, we quote the best of a number of runs for each case. Individually,
the soft+collinear augmentation works best. Translations and rotations are less powerful indi-
vidually, but the combination of all three provides by far the best representations. The results
for the individual augmentations in Table 2 were obtained using regular masking in the trans-
former. When combining all symmetries and augmentations the IR-safe masking gives a slight
boost, so our default in Table 2 includes IR-safe attention.

While our initial results are based on a dataset containing equal amounts of QCD and top
jets, any application to anomaly detection requires our approach to work with much fewer top
signal jets. In the right panel of Table 2 we show the performance of our default benchmark
for a decreasing fraction of signal events in the training sample. For each signal model with
S/B < 1 we only train one model, so we expect some noise in the results. The outcome
indicates that the JetCLR performance in the LCT is hardly sensitive to the amount of signal
jets in the training data, and that JetCLR can encode its fundamental structures based on
QCD jets and the symmetries and augmentations alone. Due to the stochastic nature of jet
data, no pattern is exclusive to top jets, so the QCD jet sample should indeed contain all
relevant information. This result is very promising for future anomaly searches using JetCLR
representations.

To test our JetCLR training we analyse the AUC and the mistagging rate of the LCT on
the test data as a function of the training epoch. Given the impressive LCT scores we could
just assume that optimizing the contrastive loss is a good auxiliary task for constructing good
representations for classification. However, for anomaly detection we know that the auxil-
iary optimization task may appear to be converging to a good representation for classification
initially, but then diverge at larger epochs [9, 67]. In Fig. 4 we show that the increasing per-
formance of the JetCLR representations in the LCT is indeed aligned with the optimization of
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Figure 5: Visualization of the rotational invariance in representation space, keeping
in mind that s(z, z′) = 1 indicates identical representations. Top: JetCLR represen-
tation trained without (left) and with (right) rotational transformations. Bottom:
JetCLR representation for two-prong (left) and three-prong (right) toy jets, trained
without (red) and with (green) rotational transformations.

the contrastive loss function.

Encoded symmetries

Of the two basic JetCLR tasks, invariance and discriminative power, we first confirm that the
network indeed encodes symmetries. To illustrate the encoded rotation symmetry we show
how the representation is invariant to actual rotations of jets. We start with a batch of 100 jets,
and produce a set of rotated copies for each jet, with rotation angles evenly spaced in 0 . . . 2π.
We then pass each jet and its rotated copy through the network, and calculate their cosine
similarity, Eq. (6), with the original jet. In the top panels of Fig. 5 we show the mean and
standard deviation of the cosine similarity as a function of the rotation angle. First, from the
scale of the radial axis s(z, z′)we see that the representations obtained by training JetCLR with
rotations are much more similar to the original jets. Second, in the left panel the similarity
varies between 0.5 and 1.0 as a function of the rotation angle, while in the right panel the
JetCLR representation is indeed rotationally invariant.

Next, we create toy jets with pT, jet = 600GeV, one with two constituents and one with
three equally spaced constituents. The jet momentum is shared equally between the subjets.
We then compare how rotationally invariant their JetCLR representations are in the lower
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Figure 6: Comparison of JetCLR with other classification metrics.

panels of Fig. 5. The red lines represent the similarity functions for JetCLR representations of
two-prong (left) and three-prong (right) jets, trained without rotational transformations. The
maximum values of s(z, z′) reflect the degeneracies from the geometric symmetry of the toy
jets. The green line represents the similarity function for the JetCLR representations trained
with rotational transformations.

JetCLR performance

After confirming that the JetCLR indeed encodes symmetries, we turn to the second task,
namely discriminative power. To put the results of Table 2 into context, we show ROC curves
for JetCLR and various other representations in Fig. 6. For the constituents representation we
take the 20 hardest constituents in each jet, flatten their (pT,η,φ) components into a single
vector, and feed them to the linear classifier. For the jet images representation we use the
preprocessing of Refs [6,7], flattening the 40× 40 image to a single 1600-dimensional vector
and giving it to the linear classifier. Finally, the EFP representation is invariant to permutations
and to rotations by construction, and its IR-safety guarantees independence from soft activity.
In many ways, EFPs can be considered a theory-driven counterpart of our JetCLR tool. We use
all coefficients up to degree seven, since it has been shown that adding higher powers does not
improve the top-tagging [37], and choose β=0.5 for the exponent of the pT-weights. The EFPs
we used were calculated using the EnergyFlow python package from [37]. For the JetCLR
representation we used the default setup, restricting the maximum number of constituents per
jet to 50, and masking jets with fewer constituents.

For all representations we train the networks with 100k jets split evenly between top and
QCD. For the alternative representations we run eight linear classifiers and use the mean over
the mistag rates for the ROC curve. For the JetCLR representation an additional source of
uncertainty arises from the training of the transformer-encoder network. We train two linear
classifiers on four different representations from four different JetCLR runs and show the mean
and standard deviation of the mistag rate vs. the efficiency.

As expected, representations using more knowledge of the physical symmetries perform
increasingly well. The top-performing EFP and JetCLR representations use the same latent
dimension, and the self-supervised JetCLR method slightly outperforms the systematic EFP
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representation for a linear network with a binary cross-entropy loss, the LCT with the weak-
est assumptions about the data. As discussed in the Appendix, the EFP results improve for
a linear discriminant analysis, where the underlying assumption on the data is not applica-
ble to JetCLR. The performance of both the EFPs and JetCLR vary depending on the type of
linear classifier used. Among the four linear classifiers used the min/max ε−1

b (εs = 0.5) per-
formance metric found using EFPs was recorded to be 93/165 while for JetCLR it was found
to be 130/181. Of these four linear classifiers the EFPs did outperform JetCLR on one, the
linear discriminant analysis. We stress here that we did not do an exhaustive comparison be-
tween the different representations. Obviously, any LCT can only serve as a proxy to estimate
representation quality, the real test will be performance in an actual analysis.

5 Conclusions

We have introduced contrastive learning (CLR) to design observables which respect symme-
tries and data augmentations while retaining discrimination power within the dataset. We
have applied this new method in jet physics, developing the JetCLR tool. Guided by fundamen-
tal symmetries and principles of quantum field theory, we introduced a transformer-encoder
network to encode rotation, translation, and permutation symmetries, as well as invariance
under soft and collinear constituent augmentations.

After visualizing the symmetry-enhanced representation space, we evaluated the network
performance using a linear classifier test, a simple supervised classifier trained on the rep-
resentations to distinguish top jets from QCD jets. Due to the simplicity of the classifier, its
performance can be interpreted as a quality measure for the representations. We find that
self-supervised JetCLR outperforms simple jet images and is competitive with energy flow
polynomials.

Regardless of our specific JetCLR application, our key point is that it is possible to in-
corporate symmetry principles and physics knowledge in self-supervised ML tools and latent
representations. This opens many avenues for future work with JetCLR and contrastive learn-
ing in general. Because of the way JetCLR incorporates symmetries from a single augmented
data set, it is particularly well suited to enhance and control anomaly searches, one of the
great ML opportunities for future LHC runs.
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EFPs (d ≤ 7) JetCLR
ε−1

b (εs=0.5) AUC ε−1
b (εs=0.5) AUC

binary cross-entropy (BCE, Fig. 6) 93 0.972 181 0.980
SVM (hinge loss) 88 0.971 130 0.977
SVM (squared hinge loss) 100 0.971 169 0.979
linear discriminant analysis (LDA) 165 0.979 133 0.977

Table 3: Comparison of JetCLR representations and energy flow polynomials (EFPs)
as in Fig. 6, including different linear classifier tests.

A Linear classifier tests

Without a direct application to a specific task, comparing data representations is difficult.
Downstream tasks can vary from anomaly detection to classification, or regression. One stan-
dard method for comparing representations is the linear classifier test (LCT), but even this test
can be ambiguous. The idea behind the LCT is that the linearity of the classifier removes much
of the expressive power from the classifier, so a linear classifier measures the expressive power
of the representation. However, we find that in removing expressive power from the classifier,
the results become much more dependent on the inductive biases incurred in the choice of
loss function and optimization. We discuss a few different LCTs and explain the assumptions
they make about the data they are optimized on. We provide a more complete comparison
between the JetCLR and EFP representations using different LCTs in Table 3. All classifiers are
trained using 10-fold cross-validation to identify the best-performing hyper-parameters. The
reported performance is the average over the 10 folds.

Binary cross-entropy loss

A linear classifier trained with binary cross-entropy loss, also known as logistic regression,
makes an assumption about how the probability of each of the two classes changes in different
parts of the space. If x denotes data and y ∈ {0,1} the two classes, the assumption is that

p(y=1 | x) = sigmoid(wT x + c) =
1

1+ e−wT x−c
, (12)

where w is some vector and c is a scalar bias. We find w and c by minimizing the Kullback-
Leibler divergence between this model and the labeled data. In practice, this means minimiz-
ing the binary cross-entropy (BCE)

L=



− log sigmoid(y(wT x + c))
�

x ,y +λ‖w‖
2 , (13)

where λ ≥ 0 is a regularization parameter. Regularization is not strictly necessary but can
improve performance. It can be turned off by setting λ=0. We select the best regularization
parameter λ ∈ {10−6, 10−4, 10−2} by 10-fold cross-validation. This optimization problem is
convex, so it should always give the same optimal w and c when using a standard algorithm
such as gradient descent.

Support vector machine

A (linear) support vector machine (SVM) separates two classes with as wide a margin as pos-
sible, aiming for robustness. When the two classes are not linearly separable, as in our appli-
cation, the SVM minimizes how far on the wrong side of the decision boundary misclassified
points are, but it does not consider points which are safely on the correct side of the boundary.
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This is in contrast to logistic regression, which pushes points to the correct side of the deci-
sion boundary no matter how far over it they already are. SVMs are expressible as a convex
problem and make no assumptions about the distribution of the data. However, they involve
tuning a hyper-parameter which determines how strictly misclassifications are enforced. This
will lead to different results depending on the choice of hyper-parameter, which must be se-
lected based on performance on some other metric, for instance a classification accuracy. We
consider two variants of SVM, starting with the standard hinge loss

L=



max(0,1− y(wT x + c))
�

x ,y +λ‖w‖
2 , (14)

whereλ > 0 is the regularization parameter. The variant with the squared hinge loss minimizes

L=



max(0,1− y(wT x + c))2
�

x ,y +λ‖w‖
2 , (15)

The two differ in how strongly they penalize distance from the decision boundary. The squared
variant enacts a weaker penalty for points which are only just on the correct side of the bound-
ary, but a stronger penalty for points which are on the incorrect side. We select the best
λ ∈ {10−6, 10−4, 10−2} by 10-fold cross-validation.

Linear discriminant analysis

Linear discriminant analysis (LDA) makes a stronger assumption, namely Gaussian distributed
data. The data is modeled as a Gaussian mixture model with two equally likely classes, where
the covariance matrix of the two classes is the same. The means µ0,1 and the covariance Σ
are typically estimated from labeled data. The Bayes-optimal classifier is the log ratio of the
two probabilities. Gaussian log probabilities are quadratic in x , so if the two covariance terms
cancel we obtain a linear equation in x . As with the previous classifiers, the classification
score can be written as wT x + c, where here w= (µ1−µ0)TΣ−1 and c = −wT (µ0+µ1)/2. No
cross-validation is necessary to select hyper-parameters, but the reported results are averages
over 10-fold cross-validation. The basic assumption of Gaussian data is not fulfilled by the
JetCLR representations, which are optimized for uniformity on a unit hypersphere, so the
linear discriminant analysis will not capture the structure of the JetCLR representation.
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