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Mobility edges, separating localized from extended states, are known to arise in the single-particle
energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperi-
odic models in one dimension. Here we unveil a different class of mobility edges, dubbed anomalous
mobility edges, that separate energy intervals where all states are localized from energy intervals
where all states are critical in diagonal and off-diagonal quasiperiodic models. We first introduce an
exactly solvable quasi-periodic diagonal model and analytically demonstrate the existence of anoma-
lous mobility edges. Moreover, numerical multifractal analysis of the corresponding wave functions
confirms the emergence of a finite energy interval where all states are critical. We then extend
the sudy to a quasiperiodic off-diagonal Su-Schrieffer-Heeger model and show numerical evidence
of anomalous mobility edges. We finally discuss possible experimental realizations of quasi-periodic
models hosting anomalous mobility edges. These results shed new light on the localization and
critical properties of low-dimensional systems with aperiodic order.

I. INTRODUCTION

The concept of mobility edge (ME), separating local-
ized from nonlocalized phases, is central to the Anderson
localization realm1,2. While arbitrarily weak disorder is
sufficient to localize all the wavefunctions in dimension
one (1D) or two, an energy threshold to localization (ME)
appears in the spectrum of systems in dimension strictly
higher than two3. The ME is characterized by multi-
fractal wavefunctions, which are neither exponentially
localized nor fully extended4–6. Anderson localization7

has now been demonstrated in a variety of experiments,
using photonic systems8–10, acoustic waves11, ultracold
atoms12–16, and quantum wires17. However, a direct ex-
perimental observation of MEs remains a challenge18–22.

Quasiperiodic systems offer an appealing intermediate
between periodically ordered and fully disordered sys-
tems, and various models have already been realized in
experiments with ultracold atoms23–27, photonic crys-
tals28, and polariton condensates29,30. While some engi-
neered disorder correlations feature effective MEs in low
dimensions31–36, quasiperiodic systems allow for true lo-
calization transitions in 1D. The most considered case is
the paradigmatic 1D Aubry-André (AA) model, which
displays a localization transition at a critical amplitude
of the quasiperiodic potential37,38. The AA model is,
however, characterized by a special self-dual symmetry,
which prevents the existence of a ME, and all the states
in the spectrum suddenly change from extended to local-
ized at the critical point39–43. Such features persist even
when considering some non-Hermitian extensions44–47.
Another widely studied case is the Maryland model, in
which the quasiperiodic potential is unbounded48–50. In
this case, however, (almost all) the eigenstates are ex-
ponentially localized and the Maryland model does not
display a localization transition nor a ME. In other mod-

els, such as the Fibonacci chain, all the eigenstates are
critical and there is no ME either40,51.

Great interest has been devoted to find low-
dimensional quasicrystals with MEs, including spe-
cial incommensurate potentials with generalized AA
self-duality47,52,53, shallow multichromatic poten-
tials25,47,54–58, flat-band lattices59, quasiperiodic mosaic
lattices60, and quasiperiodic pseudo-particle models61.
Recently, it has been shown that long-range hopping
can induce an energy threshold between extended and
multifractal states62. In this case, however, localization
is destroyed.

Here we show that (short-range) quasiperiodic models
can give rise to an energy interval of critical states while
stabilizing localization in other energy intervals, hence
inducing unconventional MEs, here dubbed anomalous
mobility edges (AMEs). We first demonstrate mathe-
matically the existence of such AMEs for an exactly-
solvable diagonal model and corroborate this prediction
using multifractal analysis within numerical calculations.
We then show that AMEs can also appear in a nondiag-
onal but local quasiperiodic model. In the absence of
an exact mathematical solution, we rely exclusively on
numerical simulations and show evidence of the onset of
AMEs separating critical energy intervals from localized
energy intervals. Our results shed new light on localiza-
tion and critical properties of aperiodic media, showing
the existence of new classes of MEs in systems with prop-
erly designed quasiperiodic correlations. Possible imple-
mentations of the models considered here are discussed,
including Floquet-engineered classical and quantum sys-
tems to emulate unbounded incommensurate potentials.
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II. AME IN AN UNBOUNDED
QUASIPERIODIC POTENTIAL:

MATHEMATICAL PROOF

To prove the existence of AMEs, consider first a
tight-binding model with nearest-neighbor hopping and
quasiperiodic on-site potential, defined by the eigenvalue
equation

Eψn = ψn+1 + ψn−1 + v(2παn+ θ)ψn, (1)

where ψn is the wavefunction amplitude at the lattice site
n, E its energy, and the hopping amplitude is set to unity.
The function v is periodic, v(x+2π) = v(x), θ is a phase,
and α is an irrational Diophantine number. A typical
choice is the inverse golden number, α = (

√
5 − 1)/2,

which we adopt here. The AA model corresponds to
the choice v(x) = V cos(x), with V the quasiperiodic
amplitude37,38. It displays a localization transition at
V = 2 but no ME: For |V | < 2, all the wave functions
are extended while for |V | > 2 they are all exponentially
localized. This is a well known consequence of the self-
dual symmetry38. In contrast, almost any self-duality-
breaking potential v induces a standard ME, separating a
localized energy interval from an extended energy interval
at some critical energy25,47,52–58.

Consider now an unbounded potential Vn = v(2παn+
θ), which, however, does not diverge at any lattice site
n ∈ Z. Any classical particle would be trivially localized
in between two sites where the potential Vn exceeding
the particle energy. In contrast, for a quantum particle,
tunneling allows for leaks. The Simon-Spencer theorem,
however, states that, absolutely continuous spectra – and
thus extended states – are forbidden63. It suggests that
the wavefunctions may be localized. It is indeed so in the
Maryland model, corresponding to the potential v(x) =
V tan(x), which dislays a pure point spectrum with only
exponentially localized states for any V 6= 0, see refs. 48,
50. Below, we however show that this is not always the
case and that an appropriate choice of the potential v(x)
allows for a critical energy interval.

Consider for instance the potential

v(x) =
V

1− a cos(x)
, (2)

where V is the potential strength and a a tuning pa-
rameter. This model has been studied in the bounded
case, 0 < a < 1, in ref. 53 and recently emulated with
ultracold atoms64. In this case, the model displays a
generalized AA self-dual symmetry and standard MEs
appear. Here we focus on the unbounded case, a > 1,
where the self-duality argument breaks down. Setting
θ /∈ ±[arccos(1/a) + 2kπ − 2παZ] ensures that the po-
tential is unbounded but finite at any lattice site n. We
compute the Lyapunov exponent (LE, inverse localiza-
tion length), γ = 1/ξ, using Avila’s global theory for
unbounded quasiperiodic operators65–67. It reads as

γε(E) = lim
n→∞

1

2πn

∫ 2π

0

ln ‖Tn(θ + iε)‖dθ, (3)
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FIG. 1: Anomalous mobility edge in an unbounded
quasiperiodic potential. (a) Lyapunov exponent versus en-
ergy for the model of Eqs. (1) and (2), as found analytically
[Eq. (E3)]. The Insets show cartoons of localized and critical
states in the corresponding phases. (b) Inverse participation
ratio IPR versus potential amplitude and energy for the same
model, as found using numerical calculations. The solid blue
lines show the AMEs at Em = ±2.

where ‖Tn(θ + iε)‖ is the norm of the transfer matrix,
given by the ordered product

Tn(θ) =

n−1∏
l=0

(
E − v(2παl + θ) −1

1 0

)
. (4)

Note that the complexification of the phase (θ → θ +
iε) plays a crucial role. The calculation may then be
performed analytically by factorizing out the unbounded
term and taking the limit ε → 0 (see Appendix A). It
yields

γ(E) = max
±

(
ln

∣∣∣∣∣E ±
√
E2 − 4

2

∣∣∣∣∣
)
. (5)

A plot of the LE versus energy is shown in Fig. 1(a). Re-
markably, γ(E) is independent of the potential param-
eters V and a, provided a > 1. For |E| > 2, we find
γ(E) > 0 and for α a Diophantine number, we conjec-
ture that, like for other quasiperiodic models, the LE pro-
vides the asymptotic (n → ±∞) exponential decay rate
of the wave function. Hence, for |E| > 2, the spectrum
is pure point and the eigenfunctions are exponentially lo-
calized with the localization length ξ(E) = 1/γ(E). In
contrast, for |E| < 2, we find γ(E) = 0. While the
vanishing of the LE is generally associated to extended
states and absolutely continuous spectrum, this is forbid-
den for the unbounded potential we consider63. Hence we
have to conclude that the energy spectrum in the inter-
val [−2, 2] is singular continuous and the wave functions
are all critical, i.e. they are neither exponentially local-
ized nor extended, but multifractal. This mathematically
proves the onset of AMEs at the energies Em = ±2 for
the quasiperiodic potential of equation (2).
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III. MULTIFRACTALITY IN THE
UNBOUNDED QUASIPERIODIC POTENTIAL

These analytic predictions are supported by numeri-
cal calculations, based on exact diagonalization of the
Hamiltonian of the model (1) with the potential (2). The
localization properties of a wavefunction ψ, normalized
as
∑
n |ψn|

2
= 1, are characterized by the generalized

inverse participation ratio,

IPRq =
∑
n

|ψn|2q , (6)

with q > 1. Since localized states are unaffected by the
boundaries, they are characterized by an IPR indepen-
dent of the system size L (in units of the lattice spac-
ing), i.e. IPRq ∼ 1/Lτq with τq = 0. In contrast, an ex-
tended state in dimension d scales as the system size, i.e.
τq = d(q − 1), while critical states are multifractal and
characterized by the scaling exponent τq = Dq(q − 1),
where 0 < Dq < 1 is a noninteger fractal dimension. In
the latter two cases, the IPRq vanishes in the thermo-
dynamic limit, for q > 1. Without loss of generality,
in practical numerical calculation, we focus on the q = 2
case and ignore the subscript q. Numerical results for the
IPR versus the potential amplitude V and the eigenen-
ergy Ej of the jth eigenstate, run for a large system of
L = 1000 sites, are shown in Fig. 1(b). Consistently with
the analytical predictions, they show clear transitions be-
tween localized states (characterized by a finite IPR) for
|E| > 2 and nonlocalized states (characterized by a van-
ishingly small IPR) for |E| < 2. Note that the phase θ
in Eq. (1) is essentially irrelevant (see Appendix B).

To further characterize the wave functions, we use
multifractal analysis. The size of the system L is cho-
sen as the mth Fibonacci number Fm. The advantage
of this arrangement is that the inverse golden number
can be approximately replaced by the ratio of two suc-
cessive Fibonacci numbers, i.e., α = (

√
5 − 1)/2 =

limm→∞ Fm−1/Fm, see for instance ref. 40. Then, for
each wave function ψjn, a scaling exponent βjn can be ex-
tracted from the nth on-site probability P jn = |ψjn|2 ∼
(1/Fm)β

j
n . According to the multifractal theorem, when

the wave functions are extended, the maximum of P jn over

n scales as maxn(P jn) ∼ 1/Fm, i.e., βjmin ≡ minn(βjn) =
1. On the other hand, when the wave functions are local-
ized, P jn peaks at very few sites and is nearly zero at the

other sites, yielding maxn(P jn) ∼ const. and βjmin = 0.
As for the critical wave functions, the corresponding
βjmin is located within the interval (0, 1), and can be
used to discriminate extended and critical states. The
multifractality analysis of the parameter βjmin applied to
standard quasiperiodic models, namely the Aubry-André
model and that of Eq. (2) but with 0 < a < 1, confirms
this intuitive picture (see Appendix C). As usual, signif-
icant fluctuations are oberved at criticality. To reduce
these fluctuations, we use the average scaling exponent,
βmin = 1

L′
∑
βjmin, over the L′ wave functions either in
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FIG. 2: (a) Minimal scaling exponent βmin as a function
of the inverse Fibonacci index 1/m for the various potential
strengths V and a = 2. The brown markers correspond to the
eigenenergies in the interval (−2, 2), and the red markers cor-
respond to the other energies, i.e., outside (−2, 2). (b) Mean
IPR (MIPR) versus the inverse system size 1/L for states in
the critical phase for V = 1 (brown markers). It shows the
power law behaviour MIPR ∼ 1/L0.56, clearly different from
extended states (1/L, shown as the dashed black line for ref-
erence).

the energy interval (−2, 2) or outside it.

Figure 2(a) shows the scaling exponent βmin as a func-
tion of the inverse Fibonacci index 1/m for various am-
plitudes V of the quasiperiodic potential. For states with
an eigenenergy within the interval (−2, 2) (brown mark-
ers), we find that βmin has finite values between and
strictly different from 0 and 1. Extrapolating linearly
to the thermodynamic limit, 1/m→ 0, we find that βmin

asymptotically tends to about 0.4, nearly independently
of the potential amplitude V , clearly indicating the crit-
icality of corresponding wave functions. In contrast, for
states with an eigenenergy outside the interval (2, 2) (red
markers), βmin asymptotically tends to zero in the ther-
modynamic limit, indicating that the corresponding wave
functions are localized. This clearly confirms the onset of
AMEs, separating an energy interval of critical states in
the energy interval (−2, 2) from localized states outside
it.

Critical states appearing in the energy interval (−2, 2)
can also be distinguished from extended states using the
scaling of the IPR. Figure 2(b) shows the mean value of
the IPR, MIPR = 1

L′
∑
IPRn over the corresponding

wave functions. For wave functions with an energy in
the interval (−2, 2), we find the scaling MIPR ∼ 1/L0.56

(brown markers), clearly different from the scaling 1/L
expected for extended sates (dashed black line). This
further proves that the wave functions within the interval
(−2, 2) are indeed critical, rather than extended.



4

IV. QUASIPERIODIC
SU-SCHRIEFFER-HEEGER MODEL

Having demonstrated the existence of AMEs in an
exactly-solvable model, it is tempting to ask whether
other models can support such AMEs. The mathemat-
ical treatment above suggests that diagonal, unbounded
quasiperiodic models such that γ vanishes on a certain
energy interval are good candidates. Here, we rather
consider another class of models, namely bounded mod-
els with off-diagonal quasi-periodicity. The simplest one
consists in considering a tight-binding model with a hop-
ping modulated by a quasiperiodic term, tn = 1 + Vn,
with Vn = V cos(2παn + θ). This model, however, dis-
plays a critical ampitude at V = 1 but no ME68. To rem-
edy this issue, consider the quasiperiodic Su-Schrieffer-
Heeger (SSH) chain governed by the eigenvalue problem

Ean = (1 + λ)bn−1 + (1− λ+ Vn)bn,

Ebn = (1− λ+ Vn)an + (1 + λ)an+1,
(7)

where an and bn are the wave function amplitudes on
the sublattices A (blue spheres) and B (red spheres) of
the n-th unit cell, respectively, see Fig. 3(a). The bn−1-
an bond (double red bond) is the usual strong bond of
hopping amplitude tn = 1 + λ, with λ the dimerization
strength, while the weak bond an-bn (single blue bond)
is modulated quasi-periodically, t′n = 1− λ+ Vn. In the
absence of an analytical solution for this model, we exclu-
sively rely on numerics. To emphasize the difference be-
tween extended, critical, and localized states, we consider
the IPR scaling exponent, τ = −d log(IPR)/d log(L),
rather than the bare value of the IPR. A typical result of
−τ versus the quasiperiodic amplitude V and the eigen-
state energy E is shown in Fig. 3(b) for the dimerization
strength λ = 0.3. It yields a rich phase diagram com-
prising extended (τ ' 1, black points), localized (τ ' 0,
bright yellow points), and critical (0 < τ < 1, orange-
red points) states90. Similar results are found for other
values of λ (see Appendix D). The spectrum splits into
three main branches. For weak quasi-periodic modula-
tion V , all states are extended up to a branch-dependent
critical value. For the upper two branches, the states are
localized for V above the critical value. On the lower
main branch, however, narrow energy intervals of criti-
cal states, characterized by 0 < τ < 1, appear on the
lower and upper parts of the main branch, for V & 0.7.
Moreover, for 0.7 . V . 1.2, the intermediate states also
appear critical. This points towards the existence of one
or several AMEs, depending on the value of V . These re-
sults are further supported by the finite-size scaling anal-
ysis of the βmin exponent of individual states picked up in
the various phases, see Fig. 3(c). For extended and local-
ized states, βmin tends towards 1 and 0, respectively, in
the thermodynamic limit. In contrast, for critical states,
the asymptotic limit yields 0 < βmin < 1.

While the exact determination of the AME in this
model is still an open question, it is tempting to inter-
prete it by analogy with the diagonal model discussed
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FIG. 3: (a) Cartoon picture of the quasiperiodic Su-
Schrieffer-Heeger chain. The blue and red spheres represent
the sublattices A and B, respectively. The bn−1-an bond has
a uniform hopping amplitude tn = 1+λ, with λ the dimeriza-
tion strength, the an-bn bondis modulated quasi-periodically,
t′n = 1 − λ + Vn. (b) Opposite of the IPR scaling expo-
nent, −τ , versus potential amplitude V and eigen energy E.
(c) Minimal exponent βmin of individual eigenstates in the
three phases (localized, extended, and critical) as a function
of the inverse Fibonacci index 1/m for the various potential
strengths V and energies E.

above. The results of Fig. 3(b) for λ = 0.3, as well as
those obtained for other values of λ (see Appendix D),
suggest that AMEs are found for V & 1− λ, that is the
point where some bounds have arbitrary small (although
non zero) hopping terms. Hence vanishingly small but
finite values of hopping amplitudes in the off-diagonal
quasiperiodic SSH model play a similar role as arbitrary
large but finite values of the on-site potential in the di-
agonal model.

V. PHYSICAL IMPLEMENTATIONS

We now briefly discuss physical realizations of the mod-
els considered in this work, considering first the diago-
nal unbounded model of Eqs. (1) and (2). The physical
realization of an unbounded potential may be difficult
for it involves arbitrary large energies. To avoid this is-
sue, we may instead use Floquet engineered Hamiltoni-
ans. A periodically-kicked quantum or classical system is
described rather generally by the Schrödinger equation

i
∂Ψ

∂t
= K(p)Ψ + V (x)

∑
n

δ(t− n)Ψ, (8)

for the wave function Ψ = Ψ(x, t), where x and p are con-
jugate variables. Working along the lines of refs. 69,70,
the Floquet eigenvalue problem associated to Eq. (E6)
is mapped onto the spectral problem of Eqs. (1) and (2)
provided the permanent and kicked components are en-
gineered such that

K(p) = −2atan[aE cos(p)]
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and

V (x) = −2atan[2 cos(2παx)].

Such terms in the Hamiltonian can be emulated in vari-
ous systems (see details in Appendix E). For instance, one
may use propagation of light waves in lens guides or opti-
cal resonator systems71. Such optical systems have been
exploited to observe phenomena like dynamical localiza-
tion and quantum chaos (see e.g. refs.72–76 and references
therein). In order to realize the model considered here,
one may use a Fabry-Perot optical cavity in a self-imaging
configuration77–80, formed by two flat end mirrors with
two intracavity focusing lenses of focal length f and ap-
propriately tailored phase gratings placed at near- and
far-field planes of the cavity. The eigenvalue equation
that defines the optical modes of the cavity is precisely
Eq. (1) with the irrational α = λf/(A1A2), where λ is
the light wavelength and A1,2 are the spatial periods of
the two gratings.

In a different physical context, one may use ultracold
atoms in a bichromatic optical lattice made of a strong
primary lattice and a second shallow lattice, similarly
as in ref. 23. Here we propose to periodically kick the
primary lattice from a large to a weak value, hence kick-
ing the hoping term. In contrast to previous realiza-
tions of kicked quantum rotators81,82, here we kick the
kinetic term instead of the potential term, and localiza-
tion should, correspondingly, be observed in real space
instead of momentum space. Crucially, it permits to en-
gineer the unbounded potential v(x) using bounded lat-
tices. The system is then governed by Eq. (E6) with
exchanged position and momentum, x→ p and p→ −x.
The periodicity of V (p) is realized from the dispersion
relation of the Bloch waves in the tight-binding regime.
The bounded potential K(x) can finally be appropriately
designed within the secondary lattice using standard dig-
ital micromirror device (DMD) methods.

The quasiperiodic SSH model may be realized in dif-
ferent quantum or classical settings using matter, elec-
tromagnetic or acoustic waves, such as in dimerized lat-
tices of Rydberg atoms83, atomic wires with modulated
hopping energies84, arrays of optical waveguides or cou-
pled resonators with engineered evanescent mode cou-
pling85,86, and acoustic waveguide structures87. For ex-
ample, in ref. 83 atoms in Rydberg states trapped in a
controlled array of optical tweezers were used to emulate
the standard SSH model. In this experiment, the alter-
nating hopping energies were controlled by alternating
the distance between the trapping sites between a large
and a smaller value. Such an approach may be extended
to eumulate the model of Eq. (7) by further modulating
quasiperiodically the shortest distance.

VI. DISCUSSION

In summary, we have shown the emergence of AMEs,
separating energy intervals of localized states from energy

intervals of critical states, in various quasi-periodic mod-
els. On the one hand, we have rigorously demonstrated
the existence of AMEs in an exactly solvable diagonal
model and validated in numerical calculations using mul-
tifractal analysis. On the other hand, we have extended
the concept to a quasi-periodic off-diagonal SSH model
and obtained clear evidence of AMEs in numerical calcu-
lations.

These results pave the way to both experimental and
theoretical developments. On the one hand, we have
shown that the models proposed here can be emulated
in photonic systems and ultracold atomic gases. Other
platforms allowing a controlled design of various quasi-
periodic structures, such as polariton condensates, could
also be considered. On the other hand, while our math-
ematical proof suggests an approach to build unbounded
quasi-periodic models hosting AMEs, our results leave
open the fundamental question of understanding the nec-
essary and sufficient conditions for a quasi-periodic model
to host such AMEs. In this respect, it would be interest-
ing to extend our results to other classes of quasi-periodic
systems displaying AMEs, including either bounded or
unbounded models, as well as to non-Hermitian quasi-
crystals.
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Appendix A: Lyapunov exponent analysis and
anomalous mobility edges

Here we detail the analytical derivation of the Lya-
punov exponent using ideas of Avila’s global theory65,
suitably extended to the case of unbounded potentials67.
The Lyapunov exponent (LE) γ0(E) for the spectral
problem with incommensurate potential vn

ψn+1 + ψn−1 + vnψn = Eψn, (A1)

with vn = v(x = 2παn + θ), v(x) = V/[1 − a cos(x)]
(a > 1), α irrational, is defined as65–67

γ0(E) = lim
n→∞

1

2πn

∫ 2π

0

dθ log ||Tn(θ)|| (A2)
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where ‖Tn(θ)‖ is the norm of the 2 × 2 transfer matrix
Tn(θ), given by the ordered product

Tn(θ) =

n−1∏
l=0

(
E − v(2παl + θ) −1

1 0

)
=

n−1∏
l=0

T (2παl+θ)

(A3)
with

T (θ) =

(
E − v(θ) −1

1 0

)
=

(
E − V

1−a cos θ −1
1 0

)
.

(A4)
Let us consider a complex extension of the LE, denoted
by γε(E), which is obtained from Eq. (A2) by letting
θ → θ + iε, with θ and ε real, i.e.

γε(E) = lim
n→∞

1

2πn

∫ 2π

0

dθ log ||Tn(θ + iε)||. (A5)

To apply Avila’s global theory65, we remove the singu-
larity of T (θ) by letting67

T (θ) =
1

1− a cos θ
B(θ) (A6)

with matrix elements B(θ) analytic functions of θ. One
then readily obtains

γε(E) =
1

2π

∫ 2π

0

dθ log
1

|1− a cos(θ + iε)|
+ γ1ε (E) (A7)

i.e.

γε(E) = −|ε| − log
(a

2

)
+ γ1ε (E) (A8)

where we have set

γ1ε (E) = lim
n→∞

1

2πn

∫ 2π

0

dθ log ||Bn(θ + iε)||. (A9)

Since B is analytic function of θ, it follows that γ1ε (E) is
a continuous function of ε. Hence γε(E) is a continuous
function of ε as well because of Eq. (A8). To calculate
γε(E) at ε = 0, we can thus compute the limit of γε(E) as
|ε| → 0. To compute γε(E) for ε > 0, let us first consider
the limit ε→∞. Uniformly in θ, one has

T (θ + iε) = T∞ (1 +O(exp(−ε))) (A10)

where

T∞ =

(
E −1
1 0

)
(A11)

so that one readily obtains

γε(E) = lim
n→∞

1

n
log

∥∥∥∥( E −1
1 0

)n∥∥∥∥+ o(1)

= log

∣∣∣∣∣E ±
√
E2 − 4

2

∣∣∣∣∣+ o(1) (A12)

as ε → ∞. In Eq. (A12), the ± sign on the right hand
side should be chosen so that to get the largest value of
γε. Since for ε 6= 0 (A,α) is an analytic cocycle , we can
apply the quantization theorem of acceleration65, so that

γε(E) = log

∣∣∣∣∣E ±
√
E2 − 4

2

∣∣∣∣∣ (A13)

for all ε sufficiently large. In addition, due to the con-
vexity, continuity and symmetry of γε(E) (i.e. γ−ε(E) =
γε(E)), one necessarily should have

γε(E) = log

∣∣∣∣∣E ±
√
E2 − 4

2

∣∣∣∣∣ . (A14)

for any ε (including ε = 0 for continuity), i.e. the Lya-
punov exponent γε(E) is independent of ε. Such a prop-
erty is analogous to the behavior found in the Mary-
land model67 and closely related to the unbounded na-
ture of v(x). However, as compared to the Maryland
model, in our model the Lyapunov exponent γ0(E) is
not always strictly positive. In fact, we have γ0(E) > 0
only for |E| > 2. In this region, we conjecture that,
like for the Maryland model50,67, for α irrational Dio-
phantine the spectrum is pure point with exponentially-
localized eigenfunctions and localization length given by

ξ(E) = 1/γ0(E) = 1/ ln |E±
√
E2−4
2 |. This result is con-

firmed by the numerical analysis given in the main text
and in Appendix C. In contrast, for |E| < 2 one has
γ0(E) = 0. Since for unbounded potentials the absolutely
continuous spectrum is empty63, we conclude that the
energy spectrum in the interval (−2, 2) is singular con-
tinuous, and corresponding wave functions are critical,
i.e. they are not exponentially localized neither extended
in the Bloch’s sense (see Appendix C). Remarkably, the
mobility edges are independent of potential parameters
V and a (with |a| > 1).

Appendix B: Influence of the phase θ

Figure 4 shows that the phase θ in Eq. (1) does not
affect the spectrum nor the localization properties of the
model (2).

Appendix C: Multifractal analysis of quasiperiodic
models and spatial distributions of wave functions

Here we provide numerical results for the multifractal
analysis of various quasiperiodic models.

Let us start with the same model as considered in the
main paper but in the bounded case53, 0 < a < 1, see
Fig. 5(a). In this case, there exists a standard mobility
edge Em separating localized from extended states. Cor-
respondingly, we find that, for extended states (E < Em,
black markers), βmin tends to 1 in the thermodynamic
limit. In contrast, for localized states (E > Em, red
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FIG. 4: Inverse participation ratio IPR versus potential am-
plitude and energy for the same model of Eqs. (1) and (2),
and various values of the phase θ.

markers), βmin tends 0. In both cases, a clear linear be-
haviour of βmin versus the inverse Fibonacci index 1/m
is found.

In contrast, the Aubry-André model does not display
any mobility edge but a criticall potential amplitude at
V = 2. In the extended pahse, V < 2, we find that
βmin tends to 1 in the thermodynamic limit, see Fig. 5(b)
(black makers). When, instead, V > 2, the system is in
the localized phase and the corresponding βmin tends to
0 (red markers). At the phase transition, V = 2, the sys-
tem is in the critical phase and the corresponding βmin is
clearly within the interval (0, 1) (brown markers). Sig-
nificant fluctuations are observed as a function of the
Fibonacci index m. However, these states are clearly be
distinguished from extended and localized states. This
proves that the multifractal analysis can be used to dis-
tinguish extended, critical, and localized states in a wide
variety of quasiperiodic systems.

We have also implemented the numerical calculation
for the unbounded model discussed in the main paper.
The corresponding results are shown in the main text for
the tuning parameter a = 2 and in Fig. 5(c) and (d) for
a = 6 and a = 11. They confirm the existence of AMEs
with all states critical in the energy range (−2, 2) and all
states localized otherwise.

The onset of AMEs can be also explicitly confirmed by
an inspection of the spatial distributions of wave func-
tions. Figure 6 plots the wave functions of six eigenener-
gies separated by the AME Em = 2 when V = 2. An in-
spection of the figure clearly indicates that the wave func-
tions with eigenenergies above Em [panels (b), (d), and
(f)] are maximally localized at one site of the chain. In
contrast, the wave functions with corresponding eigenen-
ergies below Em [panels (a), (c), and (e)] are neither lo-
calized nor extended over the whole space. Instead, they
display clear self-similarities, which is the characteristic

of critical states. This confirms that the AME Em = 2
distinctly separates localized from critical states.

Appendix D: Additional results for the SSH model

Here we give additional results for the inverse partici-
pation ratio of the SSH model. Figure 7 shows the coun-
terpart of Fig. 3(b) of the main paper for two other values
of the dimerization parameter, λ = 0 [Figure 7(a)] and
λ = 0.5 [Figure 7(b)].

The spectrum splits into three main branches, clearly
identifiable at V ' 0. For low values of V , all states are
extended (black points). For the two upper branches, we
find a transition to localized states (yellow dots). For
the lower branch, however, we obtain energy intervals
of critical states (red-orange dots). The critical value
of the potential is compatible with the simple estimate
V ' 1−λ [see also Fig. 3(b) of the main paper]. Beyond
the critical point, we obtain AMEs separating critical
energy intervals from localized energy intervals.

Appendix E: physical implementations of the
unbounded potential model

Spectral problem of a periodically-kicked system

Spectral problems involving diverging potentials v(x)
on a lattice are known to arise in periodically-kicked clas-
sical or quantum systems, such as in the periodically-
kicked quantum rotator model69,70 or in its linear ver-
sion, known as the Maryland model48–50,88,89, and they
are related to major physical effects such as dynamical
and Anderson localization. In the kicked rotator model,
the kinetic energy K(p) is a quadratic function of the
momentum p, while in the Maryland model K(p) is as-
sumed to be linear in p. In the latter case, the unbounded
potentials v(x) is described by the trigonometric tangent
function. The ability to engineer the kinetic energy K
and the potential term V in the Schrödinger equation
can give rise to spectral problems on the lattice with dif-
ferent and tailored unbounded potentials v(x).

Let us consider rather generally the dynamics of a one-
dimensional periodically-kicked quantum particle, de-
scribed by the dimensionless Schrödinger equation

i
∂Ψ

∂t
= K(p̂)Ψ + V (x)

∑
n

δ(t− n)Ψ (E1)

for the wave function Ψ = Ψ(x, t), where p̂ = −i∂x, K(p)
is the dispersion relation of the kinetic energy term, and
V (x) is the external potential. The evolution of the wave
function before each kick, Ψ(m)(x) = Ψ(x, t = m−), is
governed by the following map

Ψ(m+1)(x) = exp[−iK(p̂x)] exp[−iV (x)]Ψ(m)(x). (E2)
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FIG. 5: (a) βmin as a function of the inverse Fibonacci index 1/m for the model [23] (0 < a < 1). (b) βmin as a function of
the inverse Fibonacci index 1/m for the Aubry-André model. (c) βmin as a function of the inverse Fibonacci index 1/m for
the model in this paper with the tuning parameter a = 6. (d) βmin as a function of the inverse Fibonacci index 1/m for the
model in this paper with the tuning parameter a = 11.

After setting Ψ(m)(x) = Ψ(x) exp(−iµm), where µ is the
Floquet quasi-energy which varies in the range (−π, π),
the following spectral problem is obtained

exp(−iµ)Ψ(x) = exp[−iK(p̂)] exp[−iV (x)]Ψ(x). (E3)

Following the method outlined in Refs. 69,70, let us in-
troduce the auxiliary potential W (x) = tan[V (x)/2] so
that

exp[−iV (x)] =
1− iW (x)

1 + iW (x)
. (E4)

After setting

ψ(x) =
Ψ(x)

1 + iW (x)
(E5)

from Eqs. (E3), (E4), and (E5), one obtains

[1+iW (x)]ψ(x) = exp[iµ−iK(−i∂x)] {[1− iW (x)]ψ(x)} .
(E6)

Let us now assume that the potential V (x), and thus the
function W (x), is a periodic function of x with period
1/α, so that W (x) =

∑
nWn exp(2πiαnx), where α is ir-

rational. We can thus search for a solution to Eq. (E6) of
the Bloch form, ψ(x) =

∑
n ψn exp(2πiαxn + iθx), with

θ constant. From Eq. (E6), it follows that the Fourier
coefficients ψn satisfy the equation

ψn + i
∑
l

Wn−lψl =

{exp[iµ− iK(2παn+ θ)]}

(
ψn − i

∑
l

Wn−lψl

)
. (E7)

Equation (E7) is solved by letting∑
l

Wn−lψl = Snψn (E8)

with

1 + iSn
1− iSn

= exp[iµ− iK(2παn+ θ)]. (E9)

To obtain a tight-binding model with nearest-neighbor
hopping, let us assume a potential V (x) such that
W (x) = −2 cos(2παx), i.e.

V (x) = −2 atan
[
2 cos(2παx)

]
. (E10)

In this case, from Eqs. (E8), (E9), and (E10), one finally
obtains

ψn+1 + ψn−1 + v(2παn+ θ)ψn = Eψn, (E11)

where we have set

E ≡ 1

tan(µ/2)
(E12)

and

v(x) =
1 + E2

E

1

1 + 1
E tan

(
K(x)

2

) . (E13)

Clearly, Eq. (E11) describes the spectral problem of a
tight-binding lattice with a potential v(x), which depends
on the energy E. However, such a dependence of the po-
tential on the energy is not a major issue for the model
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FIG. 6: Spatial distributions of ψn for a few eigenfunctions with eigenenergies either below or above the AME Em = 2. A
lattice with L = 4181 sites has been used in numerical simulations. Here we choose six eigenenergies (with four significant
digits): critical states below Em [(a), (c) and (e)], and localized states above Em [(b), (d) and (f)].

(a) (b)

FIG. 7: Opposite of the IPR scaling exponent, −τ = log(IPR)/ log(L), versus potential amplitude V and eigen energy E for
the quasiperiodic SSH model of Eq. (7) in the main paper, with (a) λ = 0 and (b) λ = 0.5.

discussed in our work and for the appearance of anoma-
lous mobility edges. In fact, let us assume a periodic
kinetic energy K(p) of the form

K(p) = −2atan
[
D cos(px)

]
. (E14)

The corresponding potential reads as

v(x) =
V

1− a cos(x)
(E15)

with V = (1 + E2)/E and a = D/E, i.e. the model
considered in the main text. Since the spectral prop-

erties and mobility edges for the potential given by
Eq. (E15) are independent of the potential amplitude
V and the only condition for an unbounded potential
is |a| > 1, we can conclude that critical mobility edges,
separating exponentially localized states and critical
states for irrational α with Diophantine properties, arise
at the energy E = Em = 2, i.e. at the quasi-energy
µm = 2 atan(1/2), whenever the condition D > 2 is
satisfied.
In the previous analysis we assumed that the quantum
particle is periodically kicked by an external potential,
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however likewise one could kick the kinetic energy
term instead of the potential term. In the latter case
localization should be observed in real space instead of
momentum space.
We now suggest two possible physical implementations
of periodically-kicked systems, a classical system (the
optical resonator mode) and a quantum system (ultra-
cold atoms in a kicked bichromatic optical lattice).

The optical resonator model

Here, we show that the map (E2) and the associ-
ated spectral problem (E3) naturally arise in the calcu-
lation of cavity modes of light waves in an optical res-
onator71. We note that wave and ray propagation of
light in lens guides and optical resonator systems have
been often employed to study and observe phenomena
like dynamical localization and quantum chaos (see e.g.
refs. 72–76 and references therein). Specifically, let us
consider a Fabry-Perot optical cavity in so-called self-
imaging (or 4-f) configuration77–80, formed by two flat
end mirrors with two focusing lenses of focal length f ,
as schematically shown in Fig. 8. For the sake of sim-
plicity, we assume a one-transverse spatial dimension X.
Two phase gratings, with transmission field amplitudes
t2(X) = exp[−ig2(X)/2] and t1(X) = exp[−ig1(X)/2],
are placed at the near-field and far-field planes (γ and
q) of the resonator, as shown in Fig. 8. The spatial pe-
riod of the two gratings are A1 and A2, respectively, i.e.
g1(X + A1) = g1(X) and g2(X + A2) = g2(X). In the
scalar and paraxial approximations, wave propagation at
successive transits inside the optical cavity can be readily
obtained from the generalized Huygens integral by stan-
dard methods71. Neglecting finite aperture effects, the
field envelope Ψ(m)(X) of the progressive wave at the
reference plane γ in the cavity and at the m-th round-
trip evolves according to the map

Ψ(m+1)(X) = exp[−ig2(X)]

∫ ∞
−∞

dθ Q(X, θ)Ψ(m)(θ),

(E16)
where the kernel Q of the integral transformation is given
by79,80

Q(X, θ) =

(
1

λf

)
× (E17)∫

dξ exp

[
−ig1(ξ) +

2πiξ(X − θ)
λf

]
and λ = 2π/k is the optical wavelength. In writing
Eq. (E17), we assumed g1(−X) = g1(X). Taking into
account that the integral transformation Q can be writ-
ten as the exponential of a differential operator, namely∫ ∞
−∞

dθ Q(X, θ)Ψ(θ) = exp

[
−ig1

(
−iλf

2π

∂

∂X

)]
Ψ(X),

(E18)

after introduction of the dimensionless spatial variable
x ≡ A1X/(λf), the map Eq. (E16) can be written in the
form of Eq. (E2) with kinetic energy and potential terms
given by

K(p) = g1

(
A1

2π
p

)
, V (x) = g2

(
λf

A1
x

)
. (E19)

Note that the arithmetic number α, i.e. the frequency
of V (x), is defined in terms of the physical parameters
A1, A2, λ and f (grating periods, light wavelength, and
focal length) by the relation

α =
λf

A1A2
. (E20)

Therefore, the profiles of K(p) and V (x) required to sim-
ulate the unbounded potential v(x) = V/[1 − a cos(x)]
and given by Eqs. (E10) and (E14), are basically obtained
by suitably tailoring the phase grating profiles g1,2(X)
according to Eq. (E19).

Ultracold atoms in a kicked bichromatic optical lattice

The proposed model may alternatively be realized in
ultracold-atom systems. Consider atoms subjected to
a kicked (primary) optical lattice in the tight-binding
regime plus a weak (secondary) potential, see Fig. 9. The
Hamiltonian of the system reads as

Ĥ = Ĥ1

∑
i

δ(t− iT ) + Ĥ2, (E21)

where Ĥ1 = −Jτ
∑
n

(
â†n+1ân + â†n−1ân

)
is the primary

lattice Hamiltonian mutiplied by the duration of a kick,
assumed to be much shorter than the inter-kick time
τ � T . It describes atoms tunneling from site n to the
nearest-neighbor sites n ± 1 with the hopping energy J ,
where ân and â†n are, respectively, the annihilation and
creation operators of an atom at site n. The second term,
Ĥ2 =

∑
n Vnâ†nân, accounts for the light-shift potential

induced by the secondary lattice, which modulates the
energy Vn of an atom at site n. In practice, one realizes
a primary optical lattice with a large amplitude, so that
the tunneling is negligible, and periodically quenches this
amplitude to a weaker value so that the tunneling energy
acquires a finite value J for a short time τ . The model is
realized provided the latter is much shorter than the rele-
vant time scales, τ � T, ~/J . A secondary lattice, with a
much weaker amplitude, realizes the on-site energy mod-
ulation Vn of an atom at the site n of the primary lattice.
Note that the effective on-site energy changes during the
kicks but this is irrelevant since the effect of Ĥ2 is negli-
gible for vanishingly short kicks.

Let us indicate by |n〉 the Wannier state at site n
in the lowest-energy band of the primary lattice, and
|q〉 the corresponding Bloch states. The primary lattice
Hamiltonian is diagonal in the Bloch basis with energies
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FIG. 9: Ultracold-atom scheme to realize the proposed model. Lower panel: The atoms are trapped in a deep optical lattice
(red line) with lattice sites labelled by n ∈ N and vanishingly small hopping amplitude. The atoms occupy the corresponding
Wannier fuctions, with a uniform on-site energy (lower dotted red bars) An additional weak optical potential (orange line)
modulates on on-site energies (solid red bars) according to Eq. (E26). The primary lattice is periodically kicked every time
T to a smaller amplitude (solid blue line) for a short time τ , hence setting up a finite hopping energy J . Upper panel: Time
sequence of the lattice amplitude with color scheme consistent with the lower panel

Eq = −2J cos(q). The single-kick evolution operator then
reads as

Û1 =
∑
q

e−iEqτ/~|q〉〈q| = 1− iW (q)

1 + iW (q)
|q〉〈q| (E22)

with

W (q) ' Eqτ
2~

= −Jτ
~

cos(q), (E23)

since Jτ/~ � 1. It generates the cosine modulation of
the function W discussed above and the effective nearest-
neighbour tight-binding hopping term Jτ

2~ (ψn+1 + ψn−1),

similar to that of Eq. (E11) up to trivial rescalings of the
length, 2παx→ q, and energy 1→ Jτ/2~.

The secondary lattice Hamiltonian generates the on-
site term

Sn =
Jτ

2~

[
1 + E2

E

1

1 + tan(VnT/2~)
E

− E

]
, (E24)

with

E =
1

tan(µT/2~)
(E25)
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and µ the Floquet quasienergy. The model (E11) is thus
realized by setting

Vn = −2~
T

atan [aE cos(2παn+ θ)] , (E26)

see Eq. (E14). Such a potential varies smoothly on the
primary lattice length scale, which is nothing but the
optical wavelength. It can be engineered using standard
digital micromirror device (DMD) techniques, which are
now routinely used in ultracold-atom experiments.

It is finally worth commenting our scheme. The tight-
binding model of Eq. (E11) may in principle be real-
ized directly in a static (nonkicked) primary optical lat-
tice modulated by a secondary lattice such that Vn =

V
1−a cos(2παn+θ) . This potential is, however, unbounded

and cannot be striclty engineered with DMD techniques.
In contrast, Floquet engineering allows one to emulate
the effective unbounded potential Vn using a bounded
secondary optical field Vn, which, in turn, can be real-
ized by DMD techniques.

Kicked quantum rotator models have been previously
realized with ultracold-atom systems to study dynamical
localization in one and higher dimensions81,82. In these
works, the kicked term was a cosine potential as realized
by an optical lattice periodically switched on for a short
time τ , and the static term was the free-particle kinetic
energy. The former generated the nearest-neighbour
tight-binding term of the effective model while the latter
generated a quasi-disordered potential term. The lat-
ter is, however, hard to engineer beyond the quadratic
(free-particle) or cosine-like (lattice-particle) dispersion
relation. Our proposed implementation overcomes this
issue by, instead, using the cosine dispersion relation of
tightly-bound particles to generate the effective tight-
binding term and the easily-engineered potential term to
generate the unbounded potential of the effective model.
As a result, localization is to be observed directly in real
space while it was observed in momentum space in kicked
rotators realized so far.
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Hermitian Aubry-André-Harper model, Phys. Rev. B 100,
125157 (2019).

46 Q.-B. Zeng, Y.-B. Yang, and Y. Xu, Topological phases in
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