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Abstract

We present a global analysis of the Higgs and electroweak sector, in the
SMEFT framework and matched to a UV-completion. As the UV-model we
use the triplet extension of the electroweak gauge sector. The matching is per-
formed at one loop, employing functional methods. In the SFitter analysis,
we pay particular attention to theory uncertainties arising from the matching.
Our results highlight the complementarity between SMEFT and model-specific
analyses.
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1 Introduction

The Higgs discovery [1, 2] and many measurements of the Higgs Lagrangian [3] indicate
that the Standard Model with its single, weakly interacting Higgs boson might well be
the correct effective theory around the electroweak scale. However, the Standard Model
is extremely unlikely to be the full story. Many theoretical considerations, including elec-
troweak baryogenesis, dark matter, or neutrino mass generation, point to an extended
electroweak or scalar sector. To avoid a bias through a specific, pre-selected signal hy-
pothesis, modern LHC searches for beyond the Standard Model (BSM) physics are often
conducted in the Standard Model effective theory (SMEFT) [4]. Because of its vast oper-
ator landscape, the corresponding experimental searches [5, 6] and global analyses [7–13]
provide a comprehensive probe of rates and kinematic patterns in LHC processes.

One of the complications of SMEFT analyses of LHC data is that the effective theory
truncated at dimension six has a limited validity range, and that LHC measurements span
a large energy range. Moreover, even if we assume the SMEFT to be generally valid, it is
not clear how much information on a full BSM model is lost when we confront it with LHC
data via a truncated SMEFT Lagrangian rather than the original full model. Combining
these questions, it is instructive to consider concrete, albeit simplified, BSM models and
examine the limits extracted through a SMEFT interpretation matched to these models
in comparison with the constraints obtained from direct searches [12,14–17].

The naive expectation behind SMEFT analyses is that we can use the complete, corre-
lated information on the Wilson coefficients from a global analysis and derive limits on any
BSM model through matching. However, if the BSM scale is not sufficiently well-separated
from the electroweak (EW) scale, an interpretation based on the SMEFT Lagrangian trun-
cated at dimension six will likely give inaccurate results [18,19]. The theory uncertainties
related to the matching to full models are usually not accounted for in global analyses,
which instead take their Lagrangian as a fixed interpretation framework. In general, limits
derived on BSM models through a SMEFT framework using the same data and with all
uncertainties accounted for will differ from limits derived on the full model directly, where
the former can be significantly weaker or stronger than the latter.

This work aims at exploring the complementarity of the two analysis strategies and at
highlighting general aspects that emerge when the SMEFT results are related to a concrete
BSM scenario. We address this question for a global analysis of electroweak, di-boson and
Higgs measurements, matching the relevant Wilson coefficients to the UV-model at one
loop, using functional matching methods. We use the SFitter framework and include
a proper estimate of a new and non-negligible theory uncertainty from the variation of
the matching scale. As a UV-model we use a triplet-extended gauge sector [14, 20–23] a
standard scenario when it comes to motivating the SMEFT approach to the Higgs and
electroweak sector. Such a triplet model can be linked for instance to the weakly coupled
gauge group SU(3)× SU(2)× SU(2)× U(1) [24] or deconstructed extra dimensions [25].

The paper is organized as follows: in Sec. 2 we review the basics of functional one-loop
matching, we define the gauge triplet model under study, and we provide details about
the SFitter setup. In Sec. 3 we discuss the decoupling limit of the new heavy states and
the relevance of the matching scale choice. The impact of these two aspects on the global
analysis is illustrated via simplified fits. In Sec. 4 we present the results of a global fit to
the full vector triplet model, based on the dimension-6 SMEFT Lagrangian, and compare
our results with limits obtained from direct searches. We conclude in Sec. 5.
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2 Basics

In this section, we briefly review the one-loop matching procedure, the UV-model, as well
as the SFitter setup. Experienced readers are welcome to skip this section.

2.1 One-loop matching: generic approach

The methods of constructing and matching effective-field theories [26,27] have been in use
for more than four decades [28–31]. Generic expressions for the low-energy effective action
of a gauge theory at the one-loop order were derived in the 80s [32]. More recently, the
approach has been further explored, particularly within the context of SMEFT [33–46].

We consider a UV model which can be defined in terms of light fields ψ and heavy fields
Ψ, and which supports a perturbative expansion based on a local Lagrangian. Heavy fields
are characterized by the condition that the support of their spectral functions vanishes
below a certain threshold. We may identify the threshold with a mass M , typically the
lightest mass that belongs to the heavy spectrum. The remaining fields are understood as
light fields.

The UV model is expressible in terms of an effective action ΓUV[ψ,Ψ], the generating
functional of its one-particle irreducible (1PI) vertex functions. If fields of spin higher
than 1/2 are involved, or if global symmetries are present, it is constrained to be a solu-
tion of a Slavnov-Taylor identity. By assumption, ΓUV is calculable in a loop expansion
from a local Lagrangian LUV(ψ(x),Ψ(x)) with a finite number of fields and parameters.
The parameters depend on the choice of a regularization and renormalization scheme and
are redefined order by order by suitable renormalization conditions. This includes resolv-
ing inherent ambiguities associated with field reparameterizations, such as wave-function
renormalization and terms vanishing by equations of motion.

The EFT is likewise expressible in terms of an effective action ΓEFT[ψ], a functional of
the light fields only. Again, we assume that a perturbative loop expansion is possible, and
that it can be computed from a local Lagrangian LEFT(ψ(x)). The number of parameters
of LEFT is intended to be finite, but it increases without bounds with the accuracy that we
want to implement via matching conditions. To keep the EFT parameter set manageable,
we have to define an organizing principle which amounts to a series of approximations,
and a prescription to truncate this series at a certain order.

To find the EFT Lagrangian iteratively, one introduces the one-light-particle irre-
ducible (1LPI) effective action ΓL,UV[ψ]. Formally, this is a double Legendre transform of
ΓUV[ψ,Ψ]; in practice, it amounts to absorbing a maximal set of independent heavy-field
propagators in the skeleton expansion of S-matrix elements. This results in redefined light-
field effective vertices. By contrast, the light-field propagators are kept explicit. In general
they still carry a mixture of light and residual heavy degrees of freedom, depending on
the precise definition of the original UV model. Like the original effective action, ΓL,UV[ψ]
depends on conventions regarding renormalization and handling the equations of motion.
In terms of this entity, the matching condition reads

ΓL,UV[ψ] = ΓEFT[ψ] + ∆Γ[ψ] . (1)

The matching error ∆Γ[ψ] describes a set of vertex-function corrections ∆Γi(x) that are
not calculable from a local Lagrangian involving light fields only. The matching procedure
succeeds if, in momentum space, all contributions to this error are sufficiently power-
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suppressed at low energy,

∆Γi(p) < c|p|k , (2)

where p is any light-particle mass or momentum component.

At the tree level, the 1LPI effective action Γ
(0)
L,UV[ψ] of the UV model can be derived

by simple variable changes, applying the equations of motion. Unless the ψ multiplets are
incomplete under a symmetry, the result satisfies the tree-level Slavnov-Taylor identity

with only light fields taken into account. The tree-level effective action SEFT[ψ] = Γ
(0)
EFT[ψ]

is evaluated, to arbitrary order, by means of a momentum-space Taylor expansion of the
1LPI effective action on the l.h.s. of Eq.(1). In this expansion, residual heavy degrees
of freedom are naturally removed from the tree-level light-field propagators. The latter
assume their canonical tree-level form while any extra terms are shifted to the interaction
part of SEFT[ψ].

The operator content of the tree-level effective action SEFT[ψ] can be determined inde-
pendently by algebraic methods. Their coefficients are fixed by a term-by-term comparison

with the vertices of Γ
(0)
L,UV. The symmetries are preserved in this expansion if covariant

derivatives are used consistently. At one loop, new contributions to the UV effective action
arise which are generically non-local, and can be formally summarized as

Γ1`
UV[ψ,Ψ] = ics Tr log

(
−δ

2SUV[ψ,Ψ]

δ2(ψ,Ψ)

)
, (3)

where the trace is integrated over all field components at all space-time points and cs
accounts for the statistics of the fields that are integrated over. This evaluates to the sum
of all one-loop Feynman graphs with external fields attached. In expressions of this kind,
the external field insertions act as bookkeeping devices, or background fields [47–55]. This
allows for employing gauges and conventions that distinguish between internal and external
lines, a generic feature of working with 1PI vertex functions. This means in particular that,
with respect to the background fields, a manifestly gauge-invariant effective action can be
computed [56, 57]. The trace is in general UV divergent and requires the application
of a regularization scheme and the addition of local counterterms, such as dimensional
regularization and minimal subtraction.

To match the UV model to the EFT at the one-loop order, we have to evaluate Eq.(1)
again. Initially,

∆Γ1`[ψ] = ics Tr

[
log

(
−δ

2SUV[ψ,Ψ]

δ2(ψ,Ψ)

)
− log

(
−δ

2S
(0)
EFT[ψ]

δ2ψ

)]∣∣∣∣∣
Ψ=0

, (4)

where the formal trace includes the integral over all one-loop diagrams which are 1LPI

and do not contain open external Ψ lines. Because S
(0)
EFT = Γ

(0)
EFT = Γ

(0)
L,UV +O(|p|k), the

difference is well-behaved in the IR. Loops of canonical light propagators only would ex-
actly cancel between the two terms, but since the light-field propagators need not coincide
between the two Lagrangians, we have to be careful to take all terms into account. In any
case, due to the IR cancellation the one-loop functional Eq.(4) again admits a Taylor ex-
pansion up to the order of the previous tree-level truncation. The result can be expressed
as a finite set of local terms that modify the coefficients of terms which are already present
in the generic effective Lagrangian of the tree-level EFT. They are absorbed in SEFT[ψ],

S1`
EFT[ψ] = −∆Γ1`[ψ]

∣∣∣
local, truncated

, (5)
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and disappear from Eq.(4). In effect, the remainder still contains all non-local parts of the
matching error but satisfies Eq.(2), to one-loop order.

By the same reasoning, the difference in Eq.(4) is not well-behaved but divergent in
the UV, and therefore requires regularization and renormalization. The renormalization
conditions are given by the matching conditions themselves and thus indirectly refer to
the renormalization conditions of the UV model. All free parameters of the EFT are fixed,
order by order, in terms of the original parameters of the UV model. Nevertheless, a prac-
tical scheme such as dimensional regularization with minimal subtraction may introduce
an intermediate renormalization which depends on an arbitrary scale µR. The implications
of this additional mass scale will be discussed in detail below.

In analogy with the tree-level matching procedure, in order to manifestly preserve the
symmetries of the theory one should consistently work with covariant derivatives in the
one-loop matching calculation, as discussed in the following subsection. However, due to
the presence of UV divergences in the matching conditions the Slavnov-Taylor identity
need not be compatible with a local Taylor expansion of the one-loop vertex functions,
and the separation of the UV effective action into a gauge-invariant low-energy effective
action and a remainder like in Eq.(1) may fail [32,58,59]. In the current paper, we assume
that such an obstruction does not critically affect our argument.

2.2 One-loop matching: implementation

Instead of constructing the difference in Eq.(4) in terms of Feynman graphs explicitly, the
subtraction may be accounted for in the integrand by employing the method of regions [60–
62]. The matching correction (Eqs.(4) and (5)) is replaced by

S1`
EFT[ψ] = ics Tr log

(
−δ

2SUV[Ψ, ψ]

δ(Ψ, ψ)2

)∣∣∣∣
hard

. (6)

The label ‘hard’ has to be understood in the following way: the functional trace is com-
puted in momentum space. Two different regions are of interest in the matching, the hard
and the soft region. If q denotes the typical size of a loop momentum, the hard region
is defined by q ∼ M � m, whereas the soft region is defined by q ∼ m � M . Here m
stands for the typical mass scale of the light sector. As discussed above, only the hard
region is relevant while in the soft region the matching integral is well behaved. It has
been shown that the tree-level induced EFT contribution to the matching cancels the soft
region contributions from the UV-theory in the difference in Eq.(4) [38, 63]. Therefore,
the integrands of the loop integrals in Eq.(6) are expanded only in the hard region. The
evaluation of the functional trace then reduces to computing integrals of the form

∫
ddq

(2π)d
qµ1 . . . qµ2nc

(q2 −M2
i1

)n1 . . . (q2 −M2
im

)nm(q2)n0
. (7)

Here, all masses Mi1 , . . . ,Mim are of the order of M . This implies that the dependence of
Eq.(6) on any external momentum or mass |p| is analytic, and no logarithms of the form
log(m/|p|) or log(|p|/M) can appear. The only logarithm possible is log(M/µR), and to
avoid large logarithms in the relation between EFT and UV parameters we need to choose
µR ∼M .

Apart from the prescription ‘hard’, the second derivatives of the UV-action evaluated
at the background field configurations appear in the matching. To derive a universal result
these derivatives are split into a part that contains the gauge-kinetic term of the field and
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its mass term, generating the propagator of the field, and a pure interaction contribution
that appears in the final result. For the field ψ this latter piece is given by

Xψψ = −δ
2SUV,int.

δψ2
, (8)

where only the interaction part of the action excluding the interactions with gauge bosons
through the covariant derivative appears. The interactions with the gauge bosons are
included in the propagator part of the functional derivative, which allows for an evaluation
in which only gauge covariant objects appear at every step and the final result is manifestly
gauge invariant. The price to be paid for this manifest gauge covariance is that every
occurrence of a covariant derivative has to be shifted by a loop momentum in the evaluation
of the functional trace in Eq.(6). We therefore have to parameterize Eq.(8) as

Xψψ = Uψψ + iDµZ
µ
ψψ + iZ†µψψDµ + . . . , (9)

where Dµ is the covariant derivative of the UV-model. The quantities Uψψ, Z
µ
ψψ and Z†µψψ

only depend on covariant derivatives through commutators whereas the explicit covariant
derivatives appearing in Eq.(9) are so-called open covariant derivatives that act on every-
thing to their right. The ellipsis denotes terms with further open covariant derivatives.
Importantly, contributions with one open covariant derivative arise at dimension six when-
ever there is a scalar field charged under the gauge group and therefore they contribute
to the matching through the presence of the Higgs field. Consequently, for our matching
computations we use an extension of the results of Ref. [40], adding gauge bosons and the
heavy resonance of our model. Since the gauge boson fluctuations appear in loops they
have to be gauge fixed. This gauge fixing does not disturb the manifest gauge invariance
at the level of the background fields and the gauge-fixing parameter can be chosen at
convenience. Choosing Feynman gauge allows for easy incorporation of these operators
into the results of Ref. [40], since we can treat gauge bosons like scalar fields with an
extra index. Care has to be taken to account for the overall sign in the propagator. For
the resonance this choice is not available since it does not have a gauge-fixing term and
some operators with up to two open covariant derivatives have to be computed for the
matching.

2.3 Triplet model

The UV model we study in this paper is a gauge-triplet extension of the Standard
Model [14,20–23]. In the unbroken electroweak phase, the Lagrangian reads

L = LSM −
1

4
Ṽ µνAṼ A

µν −
g̃M
2

Ṽ µνAW̃A
µν +

m̃2
V

2
Ṽ µAṼ A

µ

+
∑

f

g̃f Ṽ
µAJfAµ + g̃H Ṽ µAJHAµ +

g̃V H
2
|φ|2Ṽ µAṼ A

µ , (10)

where Ṽ A
µ is a new, massive vector field transforming as a triplet of SU(2)L, W̃A

µ are the
SM weak gauge bosons, and φ is the SM Higgs doublet. The kinetic term of the vector
field includes a covariant derivative,

Ṽ A
µν = D̃µṼ

A
ν − D̃ν Ṽ

A
µ with D̃µṼ

A
ν = ∂µṼ

A
ν − g2f

ABCW̃B
µ Ṽ

C
ν . (11)

where A,B,C are SU(2)L indices and the covariant derivative carries a tilde to indicate

that it contains the fields W̃A
µ . The currents coupling the heavy vector to the SM-fields
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are given by

J lAµ = l̄iγµt
Alj δ

ij , JqAµ = q̄iγµt
Aqj δ

ij , JHAµ = φ†i
←→
D A

µφ , (12)

with l, q being the SM lepton and quark doublets, tA = σA/2 the SU(2) generators and
σA the Pauli matrices. i, j are flavor indices and the Lagrangian is defined in a flavor-

symmetric limit. In the Higgs current, (φ†i
←→
D A

µφ) = iφ†tA(Dµφ)−i(Dµφ
†)tAφ. As pointed

out in [63], the theory cannot be quantized in a self-consistent way for g̃V H < 0.

The gauge mixing described by the triplet model is familiar from the general case of
extra-U(1) bosons [64]. A special feature is the explicit Ṽ -mass term, which would have
to be generated by some kind of symmetry breaking and likely involve additional fields;
we ignore these additional fields, for instance in their effect on g̃M . The Higgs doublet φ
is yet to develop a VEV, which means we are working in the unbroken electroweak phase.
Underlying this choice is the assumption that a SMEFT expansion for the EFT exists.
This is the case unless there are additional sources of electroweak symmetry breaking, or
a heavy particle obtains all of its mass from the Higgs VEV [65]. Even in the weakly
coupled UV-completion of the triplet model there are no additional sources of electroweak
symmetry breaking, because the additional scalar breaks SU(2) × SU(2) to SU(2)L and
leaves the electroweak symmetry completely intact.

To remove the kinetic mixing, we can re-define the SM-gauge field as [21,22]

WµνA = W̃µνA + g̃M Ṽ
µνA = ∂µ(W̃ νA + g̃M Ṽ

νA)− ∂ν(W̃µA + g̃M Ṽ
µA) + · · · (13)

For the triplet field we only allow for a re-scaling, Ṽ µA = αV µA, so that the triplet mass
does not get transferred into the SM-gauge sector. The triplet mass also fixes the phase of
the real vector field Ṽ A

µ , such that α has to be real. Requiring a canonical normalization of

the new kinetic term V µνAV A
µν we find α2 = 1/(1− g̃2

M ). This relation requires g̃M 6= ±1,
to ensure a valid model with a propagating heavy vector. Furthermore, as we will see
in Sec. 3, we need to require |g̃M | < 1 for the squared pole mass of the resonance to be
positive. The final form of the gauge field re-definition in Eq.(13) becomes

W̃µA = WµA − g̃M√
1− g̃2

M

V µA and Ṽ µA =
1√

1− g̃2
M

V µA , (14)

and brings the Lagrangian into the form

L = LSM −
1

4
V µνAV A

µν +
m2
V

2
V µAV A

µ

+
∑

f

gf V
µAJfAµ + gHV

µAJHAµ +
gV H

2
|H|2V µAV A

µ

+
g3V

2
fABC V µAV νBV C

µν −
g2VW

2
fABC V µBV νCWA

µν , (15)

which has the same structure as Eq.(10), but additional triple and quartic gauge couplings
between the weak and triplet sectors. The Lagrangian parameters are related through

m2
V =

m̃2
V

1− g̃2
M

, gH =
g̃H + g2g̃M√

1− g̃2
M

, gf =
g̃f + g2g̃M√

1− g̃2
M

,

gV H =
2g̃V H + g2

2 g̃
2
M + 2g2g̃H g̃M

2(1− g̃2
M )

, g3V = − 2g2g̃M
(1− g̃2

M )1/2
, g2VW =

g2g̃
2
M

1− g̃2
M

, (16)
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where g2 denotes the SU(2)L gauge coupling. The heavy vector triplet couples to the weak
gauge bosons not only via the g−couplings in Eq.(15), but also through the non-abelian
component of the covariant derivative Eq.(11), that leads to interaction terms of the form
(∂V )VW and V VWW . These interactions are weighted by the weak gauge coupling, and
therefore are present even if gi (g̃i) ≡ 0.

2.4 SFitter setup

The SFitter framework [66] has been long employed for global analyses of LHC measure-
ments in the context of Higgs couplings and EFTs [7, 67–71], including a comprehensive
study of an analysis in terms of Higgs couplings and its UV-completion [72]. The approach
is unique in that it allows a comprehensive treatment of uncertainties: SFitter uses a
likelihood set up that includes a broad set of statistical, systematic, and theory uncertain-
ties. Statistical and most systematic ones are described by a Poisson- or Gauss-shaped
likelihood. Theoretical uncertainties lack a frequentist interpretation, and are described by
flat likelihoods in SFitter, corresponding to a range of equally likely theory predictions.
An important difference between employing a flat likelihood compared to a Gaussian one
is that the uncorrelated profile likelihood adds the uncertainties from the flat distributions
linearly, while Gaussian error bars are added in quadrature. The profile likelihood com-
bination of a flat and a Gaussian uncertainty gives the well-known RFit prescription [73].
Correlations among certain classes of systematic uncertainties are also included.

From the technical point of view, the new aspect of the SFitter analysis presented
in this paper is the translation of the SMEFT likelihood into the parameter space of the
UV model. In the fit, all observables are parameterized in the SMEFT using the operator
set provided in Tab. 1, that is based on the HISZ basis [74]. All SMEFT predictions are
at LO in QCD and scaled by the same corrections as the SM-rates used for the actual
experimental analysis. Terms obtained from squaring amplitudes with one operator inser-
tion, that are quadratic in the Wilson coefficients, are retained. The Wilson coefficients
are then expressed in terms of g̃i parameters of the UV model, Eq.(10), using the one-loop
matching expressions onto the Warsaw basis provided in Ref. [75] and the Warsaw-to-HISZ
basis translation in Appendix A.1. In this way, the likelihood can be directly sampled in
the parameter space of the UV model.

In addition, we employ a new likelihood sampling method [76] compared to previous
SFitter analyses, that ensures a much more efficient sampling close to the SM point,
where all Wilson coefficients vanish. By contrast, the previous sampling method was
optimized for the detection of potential secondary maxima in the likelihood, by giving
higher weight to the edges of the parameter space.

Dataset

The SMEFT analysis presented in this work builds directly on the dataset employed in
Ref. [7], which includes electroweak precision observables (EWPO) at LEP (14 measure-
ments), Higgs measurements (275) and di-boson measurements at the LHC (43). The
latter contain results from both Run 1 and Run 2 [70]. In addition, we include differential
measurements from three resonance searches by ATLAS, that reach up to invariant masses
in the multi-TeV range and that we re-interpret within the SMEFT framework. One of
these [77] was already included in the analysis of Ref. [7]. The other two [78,79] are more
recent and have been added specifically for this work. These measurements are not usu-
ally included in the SMEFT analyses and are not covered by the simplified template cross
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section framework [80]. Nevertheless, it can be instructive to explore their sensitivity,
particularly to operators that induce momentum-enhanced corrections. Moreover, all the
resonance searches considered here target heavy vector triplets decaying into WH or WW
as a potential signal. Therefore they allow to compare directly the constraining power of
the SMEFT analysis to that of the direct search.

Theory uncertainties

In view of the upcoming LHC runs and their rapidly growing data sets, the treatment of
theory uncertainties in global analyses is becoming critical. In our analysis, we include
theory uncertainties associated to parton distribution functions, to missing higher orders
in the SM or SMEFT predictions, and to the matching scale to the EFT. The latter will
be discussed in more detail in Sec. 3.2.

For the time being, we do not include uncertainties associated to missing SMEFT op-
erators due to the truncation of the SMEFT Lagrangian [81] or to symmetry assumptions,
such as CP-conservation. Nevertheless, the impact of missing higher orders in the EFT
expansion becomes obviously manifest in the comparison between constraints extracted
from the SMEFT analysis and from direct searches.

Concerning higher orders in the loop expansion, Higgs analyses in SFitter currently
adopt the most accurate SM predictions available, which are implemented so as to match
the state-of-the art predictions reported in the experimental analyses. The corresponding
K-factors are then applied onto the tree-level SMEFT predictions as well, which is tanta-
mount to assuming that QCD corrections scale evenly for all SMEFT operators and in the
same way as in the SM. Although this assumption is, strictly speaking, not correct [82], for
the rate measurements considered here we do not expect large variations in the K-factors
between different operators. For some kinematic distributions these effects can be larger.
We therefore assign conservative theory uncertainties in order to reduce the numerical
impact of these effects. A proper SMEFT simulation of Higgs and di-boson production
up to NLO in QCD is postponed to a future work.

3 Toy fits and matching uncertainty

In this section we discuss two aspects of the vector triplet model and of its matching onto
the SMEFT, that are preliminary to a correct SMEFT global analysis. The first is the
decoupling limit of the model, and the second is the numerical impact of varying the scale
at which the 1-loop matching is performed. Both issues are analyzed via simplified toy
fits.

3.1 Decoupling

The decoupling limit of the vector triplet model considered in this work is most easily
identified starting from the Lagrangian of Eq.(15), where, as long as the EW symmetry
is unbroken, the heavy triplet and the SM gauge bosons do not mix. In this case, it is
easy to see that the BSM states decouple for large values of the physical mass, mV →
∞. This is directly reflected in the matching formulas, which give limmV→∞Ci ≡ 0
for all the dimension-6 Wilson coefficients. At the level of a global fit, the decoupling
limit can be visualized by setting the central values of all the measurements included to
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Figure 1: Decoupling pattern for the vector triplet model. Global fit with all measurements
at their SM values and to the 4 free parameters m̃V , g̃M , g̃H , g̃l, and subsequently projected
onto the 7 parameters of the unmixed Lagrangian Eq.(15).

match the corresponding SM predictions. Figure 1 shows the results obtained in this way
from SFitter: the likelihood is first computed as a function of 4 free parameters in the
Lagrangian of Eq.(10)

{m̃V , g̃M , g̃H , g̃l} , (17)

setting other parameters g̃q, g̃V H to zero. We then project them onto the 7 parameters
for the rotated Lagrangian of Eq.(15),

{mV , gH , gl, gq, gV H , g3V , g2VW } . (18)

At this stage, we fix the matching scale to Q = mV = 4 TeV. For each of the couplings we
see that, as expected, the range of allowed values increases as m−1

V → 0. It is worth noting
that the rate at which this happens varies between the g-parameters. This is due to the
fact that the matching expressions do not scale homogeneously with g2

i /m
2
V , but generally

have a more complex polynomial structure. The degeneracy between gi and 1/mV in
these expressions is also broken by the V −W interactions proportional to the weak gauge
coupling. The homogeneity of the yellow regions indicates that there the likelihood is flat
and no point is preferred. Setting all measurements to their actual measured values, which
generally depart from the SM predictions, has the effect of introducing a substructure in
the likelihood, thereby identifying a more restricted preferred region. This is shown, for
a subset of panels, in Fig. 2. Here, for instance, the best fit point moves to finite mV

and prefers non-vanishing values of gH . Note that, to good approximation, the entire
region highlighted in green is allowed at 68%CL. The yellow points simply identify a best-
fit region and should not be interpreted as statistically significant. Finally, the reduced
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Figure 2: Results of the same global analysis as in Fig. 1, but with measurements set to
their actual values.

number of parameters in the Lagrangian Eq.(10) as compared to the setup without kinetic
mixing induces strong correlations through g̃M , as illustrated in the g2VW − g3V plane of
Fig 2.

As the matching procedure highlighted in Sec. 2.1 requires a separation between light
and heavy degrees of freedom, defining the decoupling limit in the notation of Eq.(10)
requires some more care, due to the explicit kinetic mixing between the heavy triplet and
the SM gauge fields.

From Eq.(16), we see that mV → ∞ can be achieved for m̃V → ∞ or for |g̃M | → 1.
However, the condition |g̃M | = 1 does not lead to a well-defined decoupling condition,
because in this limit Ṽ A

µ become auxiliary fields, i.e. the theory loses three dynamical
degrees of freedom. This is not sufficient for a proper decoupling in the EFT sense because
even as an auxiliary field Ṽ A

µ still induces mass-suppressed vertices that enter correlation
functions and we enter a strongly interacting regime where our perturbative approach
fails.

To see the impact of g̃M we resum insertions of gauge mixing into the W̃A
µ and Ṽ A

µ

propagators. The corrected propagators of these fields become

D̂Ṽ
µν = − i

p2 − m̃2
V − g̃2

Mp
2

(
gµν − (1− g̃2

M )
pµpν
m̃2
V

)

D̂W̃
µν = − i

p2

(
gµν − (1− ξ)pµpν

p2

)
− ig̃2

M

p2 − m̃2
V − g̃2

Mp
2

(
gµν −

pµpν
p2

)
. (19)

It is easy to see that for |g̃M | = 1 the resummed Ṽ A
µ propagator loses its momentum

dependence, which is indicative of the field becoming auxiliary. For |g̃M | > 1, Ṽ A
µ becomes

tachyonic while, for |g̃M | < 1, Ṽ A
µ is a dynamical degree of freedom. In this case its

propagator has a physical pole at p2 = m2
V as defined in Eq.(16), and it can be expanded

in p2/m2
V � 1. The resummed W̃A

µ propagator includes a term with a pole at p2 = m2
V ,

contaminating W̃A
µ with a contribution from Ṽ A

µ . Therefore this field cannot be directly
identified with the SM weak bosons. However, in the tree-level matching procedure, once
the 1LPI effective action is expanded in p2/m2

V , the component associated with the Ṽ A
µ pole

is shifted from the propagators to the interaction terms, which are unambiguously fixed at
this order by the matching condition of Eq.(2). At one loop, the fact that the EFT is the
low-energy limit of the UV model is manifest in the fact that only the ‘hard’ region of the
momentum integral contributes to the functional trace in the matching formula of Eq.(6).
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Figure 3: Results of the same global analyses as in Figs. 1 (upper) and 2 (lower), projected

on m̃V , g̃H , g̃l and the combination g̃M/
√

1− g̃2
M .

As a consequence, the first term of the W̃A
µ propagator cancels against the corresponding

EFT contributions, while the second term genuinely contributes to the matching in the
hard region. Equivalently, one can match in the shifted basis directly identifying WA

µ in
the UV model with the corresponding weak bosons in the SMEFT.

In the top (bottom) panels of Fig. 3 we again show the results of a global analysis where
all measurements are set to their SM prediction (to their actual values), this time projected

onto a subset of the g̃-parameters and onto the combination g̃M/
√

1− g̃2
M that drives most

g̃−g relations, see Eq.(16). For reference, the right panels also show lines of constant mV ,
such that the decoupling limit mV →∞ flows orthogonally to the lines. Consistent with
the results in the unmixed basis (Fig. 1), the expected likelihood is mostly flat in the entire
preferred region, while the observed one exhibits a substructure that identifies a best-fit
region where g̃H 6= 0 and both mV and m̃V are finite. The reason can be identified in a
few EWPO measurements that exhibit small (< 1σ) deviations from the SM expectation:
Al(SLD) and mW .

For |g̃M | → 1 the theory becomes strongly interacting and some perturbative unitarity
considerations are therefore pertinent. Requiring the couplings of the unmixed UV theory
to remain perturbative, the most stringent constraints on g̃M stem from g2VW

g2VW ≈
g2g̃

2
M

1− g̃2
M

< 4π ⇔ |g̃M | < 0.975 . (20)

Therefore for all our fits we require |g̃M | < 0.975.
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3.2 Matching scale

In perturbative predictions of LHC observables, at least two unphysical scales are known
to reflect a theory uncertainty, the factorization scale and the renormalization scale. Both
arise from a separation of an observable into different regimes with different perturbative
expansions, and the scale dependence would vanish if we would include all orders in all
predictions. For a calculation at finite perturbative order we instead use the scale variation
as one measure of a theory uncertainty and treat it as an unphysical nuisance parameter
in theory predictions [71,83].

One unphysical scale is the renormalization scale, which in the context of dimensional
regularization appears as a free parameter. In more physical terms, the renormalization
scale is the energy scale associated with those observables that we select for defining the nu-
merical parameters of the theory, the renormalization conditions. Whenever scale choices
are arbitrary, we often identify them with each other and a typical energy scale of the
scattering process to avoid large logarithms. Clearly, this does not work if renormaliza-
tion conditions involve widely distinct energy scales, such as in the relation of UV-model
parameters to the low-energy observables of the SM.

The renormalization group equation apparently solves this problem. It relates observ-
ables at different scales, properly resumming logarithms and absorbing them into running
parameters. However, it works only in the absence of mass thresholds. This strongly
suggests to match a UV model with a heavy mass M to a low-energy EFT even if the
algebraic simplifications of the latter are not essential for a specific calculation.

In a one-loop matching calculation that uses dimensional regularization, the matching
scale enters as an additional parameter. However, in contrast to the original renormaliza-
tion scale this parameter is not entirely arbitrary. If we want to avoid large logarithms,
its reasonable range is bounded from above and below. In line with the generic discussion
of one-loop matching above, we illustrate this property in the following section. We con-
sider examples of increasing complexity, starting from the QCD coupling, turning next to
the SM extended by a scalar singlet and finally returning to the vector triplet model of
Sec. 2.3.

Running strong coupling

We can illustrate the appearance of the matching scale using the simple example of the run-
ning strong coupling. It provides the key ingredients to understanding the EFT matching
scale: the separation of low-energy and UV regimes and contributions beyond tree level.
In general, the relation between the bare coupling and the renormalized coupling in the
MS scheme is

αbare
s = αs(p

2)

[
1− αsb0

(
1

ε̄
+ log

µ2
R

p2

)]
with b

(nf )
0 =

1

4π

(
11

3
Nc −

2

3
nf

)
. (21)

Here, p2 is the energy scale of the scattering, µ2
R is introduced by dimensional regular-

ization, and 1/ε̄ = 1/ε − γE + log 4π. We identify our UV-regime as momenta above the
top mass, with six propagating quark flavors, and the low-energy regime as described by
five propagating quark flavors. The running of αs in the two regimes is described by the
beta function with five or six flavors, respectively. The UV-divergences in the low-energy
and full UV-theories arise from five or six propagating flavors, so the renormalization
prescription Eq.(21) is different in the two regimes.
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The low-energy and UV-regimes are separated by a matching scale Q, which we choose
to be of the order of the top mass to avoid large logarithms or inconsistent symmetry
structures. Matching conditions guarantee that the two predictions for any observable are
the same at least at this scale. Instead of looking at a full set of amplitudes or correlation
functions, we limit ourselves to the quasi-observable αs. Following Eq.(21), the definitions
of αs(p

2) in relation to the bare parameter are different, but they have to agree when
evaluated at the matching scale. This defines a threshold correction

1− αsb
(6)
0

4π

(
1

ε̄
+ log

µ2
R

p2

) ∣∣∣∣∣
Q2

= 1− αsb
(5)
0

4π

(
1

ε̄
+ log

µ2
R

p2

) ∣∣∣∣∣
Q2

+
αs
6π

log
µ2
R

Q2
. (22)

The relation of the threshold correction to loop effects is reflected in the logarithmic form
logµ2

R/Q
2. Together with the five-flavor MS counter term it defines αs in the low-energy

regime as

αbare
s = αs(p

2)

[
1− αsb

(5)
0

4π

(
1

ε̄
+ log

µ2
R

p2

)
+
αs
6π

log
µ2
R

Q2

]
. (23)

This definition includes three scales for a given scattering process, the physical scale p2, the
renormalization scale µ2

R, and the matching scale Q2. In simple problems, the renormal-
ization scale and the physical scale can be identified to avoid potentially large logarithms.
The matching scale is usually set to the mass of the decoupled particle, Q = m2

t , leading
to a threshold correction that is non-zero in general.

From our toy example we can immediately see the role of the threshold correction
at the matching scale and the renormalization group running. If we start from the UV,
all parameters of the theory evolve based on the full particle spectrum. In the low-
energy theory part of the spectrum decouples also from the running, which can even break
the underlying symmetries [84], and we will follow a completely different renormalization
group flow. The matching corrections adjust for this effect. They move us to the same
flow line in the EFT, independent of the choice of matching scale and with all the caveats
of maintaining perturbative control, accounting for changes of the spectrum, changing
symmetries, etc.

Singlet extension

When we interpret a SMEFT calculation for an LHC process as a low-energy approxima-
tion to a UV-prediction, we again break the phase space of the scattering process into two
parts. We first illustrate SMEFT matching using the singlet-extended SM [85,86],

L ⊃ 1

2
(∂µS) (∂µS)− 1

2
M2S2 −A|φ|2S − κ

2
|φ|2S2 − µ

3!
S3 − λS

4!
S4 . (24)

The singlet mass is given by M2
S = M2 + O(v2); we integrate it out under the condition

MS ∼ M � v, ensuring a consistent expansion in v/M [65]. As a simplification, we also
assume A to be of the order of M . The leading term in v/M is defined by v = 0 and
can be obtained by matching in the unbroken phase. In the broken phase the Higgs VEV
enters via the masses of the SM-particles which properly belong to the EFT Lagrangian,
below the matching scale. Matching in the broken phase would allow us to include partial
higher-order corrections in the EFT expansion [19]. Since the mass scales in question
are not widely separated, it depends on the detailed numerics which setup yields a more
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S

S

S

S

Figure 4: Feynman diagrams contributing to f
(1)
φ,2. Left: Diagram yielding a κ2-

contribution. Right: Diagram yielding a A2λS/M
2-contribution. The dashed line cor-

responds to the Higgs field, whereas the solid line corresponds to the singlet.

reliable approximation. The SMEFT Lagrangian reads

LSMEFT = LSM +
∑

i

fi(p/µR)Oi , (25)

where the Wilson coefficients are scale dependent. Specifically, we want to define these
coefficients such that the SMEFT reproduces all low-energy observables of the UV-theory
up to O(v3/M3

S). As matching condition we use Eq.(1). In the functional approach we
compute this once and for all using functional traces. To illustrate some features related
to the matching scale, we compute some contributions to the Wilson coefficient fφ,2 of the
operator Oφ,2 = ∂µ(φ†φ)∂µ(φ†φ)/2 diagrammatically. As discussed in Appendix A.1, it is
related to Qφ� = |φ|2�|φ|2 as cφ� ≈ −fφ,2/2, modulo fermionic operators. The operator
contributes to the correlation function with two external fields φ and two external fields
φ† and depends on p2, so we fix it by requiring

∂p2ΓSMEFT(φ†, φ†, φ, φ)

∣∣∣∣∣
p2=0

= ∂p2ΓL,UV(φ†, φ†, φ, φ)

∣∣∣∣∣
p2=0

, (26)

order by order in the coupling. With some abuse of notation we also denote specific
correlation functions by Γ, arguments indicating the external fields. Since both sides of
the equation involve running parameters, the matching has to be imposed at a given scale,

S
∂p2( + t-channel + SM)=∂p2( + SM) at p2 = 0 .

The SM-contributions contain the same diagrams on both sides, with appropriately ad-
justed parameters through the matching conditions, so their contributions cancel. Only
diagrams with at least one heavy propagator actually contribute to the matching, so
Eq.(26) becomes

∂p2
(

8p2f
(0)
φ,2

) ∣∣∣∣∣
p2=0

= ∂p2
2A2

4p2 −M2

∣∣∣∣∣
p2=0

⇒ f
(0)
φ,2 =

A2

M4
. (27)

At tree level, the scale dependence only appears implicitly for A and for f
(0)
φ,2.

Next, we compute the κ2-contribution to f
(1)
φ,2 at one loop. This contribution is induced

by the diagram on the left in Figure 4, where the external particles are as specified in
Eq.(26). We again set all external scales to p2 and find for the diagram

κ2µ4−d
R

∫
ddq

(2π)d
1

((2p+ q)2 −M2)(q2 −M2)
= κ2 i

16π2
B0(4p2,M,M)

with B0(4p2,M,M) =
1

ε̄
− log

M2

µ2
R

+
2p2

3M2
+O

(
p4

M4

)
. (28)
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Figure 5: Wilson coefficient fφ2 as a function of g̃H at different values of the matching
scale Q for fixed mV = 4 TeV and all other UV couplings set to zero. The dashed lines
include approximate RG running.

In the full expression the renormalization scale appears, but taking the derivative in the
matching condition for this contribution to fφ,2 removes it,

∂p2B0(4p2,M,M)

∣∣∣∣∣
p2=0

=
2

3M2
⇒ f

(1)
φ,2 ⊃

1

16π2

κ2

12M2
. (29)

Just as at tree level, the matching scale does not appear explicitly.

Finally, we compute the A2λS/M
2-contribution to f

(1)
φ,2 to illustrate the appearance

of matching scale logarithms. This contribution arises from the diagram on the right in
Figure 4. The diagram is not 1PI, but is 1LPI and therefore has to be included in the
matching. With all external scales again set to p2 this diagram gives

− λSA
2

(4p2 −M2)2
µ4−d
R

∫
ddq

(2π)d
1

q2 −M2
= −λSA

2

16π2

M2

(4p2 −M2)2

(
1

ε̄
+ 1− log

M2

µ2
R

)
. (30)

Taking the derivative with respect to p2 and evaluating it at p2 = 0 we find the one-loop
matching condition

f
(1)
φ,2 ⊃ −

1

16π2

λSA
2

M4

(
−1 + log

M2

Q2

)
, (31)

where the Wilson coefficient explicitly depends on the matching scale. This scale depen-
dence is expected since the corresponding correlation function is divergent. As mentioned
before, in models with one new mass scale, we can of course avoid these logarithms by
identifying Q = M .

Vector triplet

Moving to the triplet model defined by the Lagrangian of Eq.(10), we will not attempt to
show analytic results and instead illustrate the matching scale dependence for one finite
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Figure 6: The impact of the variation of the matching scale Q at a mass of mV = 4 TeV
for a reduced model with free g̃M , g̃H , g̃l, expressed in the unmixed Lagrangian Eq.(15)
with actual measurements.

coupling g̃H and a mass term m̃V numerically. In this simplified setup, mV = m̃V . Among
the various Wilson coefficients, it is instructive to consider fφ,2, as its dependence on the
matching scale exhibits interesting features. Including both tree and loop contributions,
the matching expression has the form

fφ,2
Λ2
' 1

m2
V

[
g4

2

(
c0 + c1 log

mV

Q

)
+ g̃2

H

(
c2 + c3 log

mV

Q

)
+ g̃4

H

(
c4 + c5 log

mV

Q

)]
, (32)

where c0 = c1/2 emerges from 1-loop diagrams inducing the operator structure (DµW
µν)2,

which maps to Oφ,2 via the equations of motion. Of the additional constants, the g̃2
H -

coefficient is dominated by the tree-level contribution to c2, while the g̃4
H -coefficient is

completely determined by the one-loop matching. Numerically, we find

c0 =
c1

2
=

3

128π2
= 0.0024 ,

c2 = 0.75 , c3 = 0.0069 , c4 = 0.019 , c5 = −0.045 . (33)

In Fig. 5 we show the numerical dependence of fφ,2 on g̃H for different choices of Q. For
Q = mV = 4 TeV the Wilson coefficient has a simple power dependence on g̃H driven by
c4. For Q ≈ 0.66mV = 2.6 TeV the g̃4

H -term cancels exactly. For Q below this threshold,
the coefficient in front of g̃4

H becomes negative, which flips the sign of fφ,2 at g̃H � 1 and
allows a solution of fφ,2 = 0 for g̃H 6= 0. For Q . 2.4 TeV the solution is within the range
|g̃H | < 4π and leads to visible effects in our global analysis.

Figure 6 shows the results of the same global analysis as in Sec. 3.1, where now we fix
mV = 4 TeV. The free parameters are

{g̃H , g̃l, g̃M , Q} , (34)

where the matching scale is varied in the rangeQ = 500 GeV ... 4 TeV. The left panel shows
a central allowed region for |g̃H | . 4 that is independent of Q. In addition, a beautiful
fleur-de-lis shape arises in g̃H vs Q for Q < 2.4 TeV. It roughly follows the curves along
which fφ,2 = 0 marked in red. The Wilson coefficients ft, fb, fτ have a similar behavior
and vanish approximately in the same region, because they are induced by the same or
similar loop contributions. As these are the operators that dominate the constraint on
g̃H , the fleur-de-lis feature persists in the full global fit, see Sec. 4. When we profile over
Q as a nuisance parameter, this correlation broadens the 1-dimensional and 2-dimensional
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profile likelihood in g̃H by roughly a factor 2. As shown in the second and third panels of
Fig. 6, the broadening affects significantly only the constraints in the g̃H direction, while
those on g̃l are essentially unchanged compared to when Q = mV . Although not shown,
this is also verified for g̃M .

We emphasize that the tree-loop cancellations that drive this effect are only very
slightly affected by the renormalization group evolution of fφ,2, as illustrated by the dashed
lines including approximate RGE contributions in Fig. 5. They really correspond to a
choice of the unphysical matching scale, which cannot be compensated by the well-defined
change of renormalization scale of the low-energy SMEFT description. Adding higher
orders in the loop expansion to the matching decreases the sensitivity to the matching
scale. Similar effects, but with a much smaller numerical impact have been observed in
Ref. [85].

4 SMEFT global analysis

In this section we discuss the results of the SMEFT global analysis, mapped to the param-
eter space of the heavy vector triplet model defined in Section 2.3 using 1-loop matching
relations. We derive constraints on the UV-parameters {g̃H , g̃q, g̃l, g̃M , g̃V H} defined by
the Lagrangian in Eq.(10) for fixed values of the heavy vector triplet mass. We consider
two benchmark values: mV = 4 TeV, to be compared with direct resonance searches by
the ATLAS Collaboration, and mV = 8 TeV for a consistent SMEFT analysis safely below
any on-shell pole.

4.1 Resonance searches at high invariant masses

As mentioned in Sec. 2.4, in addition to more standard Higgs measurements, the global
analysis includes constraints from searches for exotic particles in the WH and WW chan-
nels by the ATLAS Collaboration. In particular, two of these analyses [78, 79] have been
newly implemented in SFitter.

WH search

We consider the mWH invariant mass distribution measured in Ref. [78] in the WH 1-
tag category, and we compare it to a WH signal including dimension-6 corrections. This
kinematic distribution extends up to mWH = 5 TeV and the strongest constraints on BSM
effects stem from the region around mWH = 2− 2.5 TeV, where the measurement exhibits
large under-fluctuations. A detailed description of the implementation of this analysis will
be provided in a future work [76].

For equal values of the Wilson coefficients, the largest correction to the mWH spectrum

is induced by the operator O(3)
φQ [80, 87–92], that contributes via corrections to the qqV

vertex and via a 4-point qqV H interaction. The latter exhibits an enhancement at large
partonic energies due to the missing s-channel propagator and is therefore dominant in
the high-invariant-mass regime. Further significant corrections, albeit less momentum-
enhanced, are induced by OW . All other SMEFT operators in the HISZ basis do not
contribute significantly to WH production in the high-energy regime.

Figure 7 shows the results from a 2D-analysis of the mWH distribution alone, fixing
the matching scale Q = mV = 4 TeV and considering only two g̃-couplings at a time. The
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Figure 7: 2D fits of the WH resonance search of Ref. [78] only. We fix mV = 4 TeV
and g̃M = g̃V H = 0. Left: tree-level matching. Right: Loop-level matching. Top: with
g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top (bottom) row, red contours indicate

fW = ±4 (f
(3)
φQ = ±0.8) with Λ = 1 TeV and white contours indicate ∆χ2 = 5.991.

top row in Fig. 7 shows g̃f ≡ g̃q = g̃l vs g̃H , which matches the benchmark considered in

the ATLAS analysis [78]. In this limit, the matching contribution to f
(3)
φQ cancels exactly,

both at tree and loop levels. As a consequence, the constraints are driven by fW , whose
matching expressions reduce to

fW
Λ2

= 4.76
g̃H g̃l
m2
V

(tree)

fW
Λ2
' g̃lg̃H

4.71 + 0.019 g̃lg̃H − 0.023 g̃2
l − 0.057 g̃2

H

m2
V

(tree+loop). (35)

The red contours in the plots indicate fW /Λ
2 = ±4 TeV−2, which is representative of the

2σ boundariesfW /Λ
2 ∈ [−3.6, 4.4] TeV−2 found in a 1D fit to the SMEFT parameters.

In a slight abuse of language, here and in the following the ∆χ2 ≤ 1 (2.3) and ∆χ2 ≤
3.841 (5.991) regions in 1D (2D) fits are sometimes referred to as 1σ and 2σ intervals,
respectively. The fact that these lines coincide to a very good approximation with the
2σ contours (indicated in white) in Fig. 7 shows that the constraint on fW is indeed the
leading one. The bottom row shows g̃q vs g̃H for g̃l = 0. In this case the cancellation in

f
(3)
φQ is spoiled and the constraints are dominated by this Wilson coefficient. Numerically,
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the matching expression is

f
(3)
φQ

Λ2
=
g̃H(g̃l − g̃q)

m2
V

(tree)

f
(3)
φQ

Λ2
' 0.99

g̃H(g̃l − g̃q)
m2
V

(tree+loop), (36)

and the bottom panels in Fig 7 show contours for f
(3)
φQ/Λ

2 = ±0.8 TeV−2, which is repre-

sentative of the 2σ interval f
(3)
φQ/Λ

2 ∈ [−0.90, 0.76] TeV−2 obtained in a 1D fit.

Finally, comparing the left and right panels in Fig. 7, it is worth noting that the impact
of loop contributions to the matching is negligible in the case g̃l = 0, but significant for
g̃l = g̃q. This is a direct consequence of the form of the matching expression in the
particular model considered. Loop terms only induce a very minor overall rescaling in the

expression of f
(3)
φQ, Eq.(36), but they introduce a series of new terms in the expression of

fW , Eq.(35). Although numerically subdominant, the latter have a strong impact on the
likelihood structure.

WW search

We consider the mWW distribution measured in Ref. [79] in the WW 1-lepton category
and ggF/DY merged, high-purity signal region, that targets neutral resonances decaying to
W±W∓ pairs and covers invariant masses up to mWW = 4 TeV. We compare the measured
distribution to a W±W∓ production signal including SMEFT corrections. Again, we
postpone a detailed discussion of the implementation to a later paper.

The W±W∓ production process exhibits a greater complexity in the SMEFT compared
to W±H in the high-energy limit. We find that, fixing all Wilson coefficients to the same

numerical value, the largest corrections are induced by the operators Oφu,Oφd,O(1)
φQ,O

(3)
φQ

at quadratic level, that exhibit a large enhancement ∝ m2
WW . The origin of this behavior

can be identified as a qqφφ contact interaction between two quarks and two Goldstone
bosons induced by these operators, that dominates at high energies due to the equiva-
lence theorem [93]. Effects induced by OW ,OB, and OWWW have a weaker momentum-
enhancement and are roughly two orders of magnitude smaller. Nevertheless, they were
retained in the fit, as they are relevant for the global analysis in terms of both SMEFT
and UV model parameters. In the former case, this measurement contributes significantly
to improving the constraints on fW , by roughly a factor two [76]. In the latter, it is
important to stress that the matching expressions for a given UV model generally do not
give homogeneous values for the Wilson coefficients. Therefore a suppression of two orders
of magnitude in the SMEFT predictions can be easily compensated in the matching, and
the corresponding contributions to the signal may lead to significant constraints on the
UV model parameters. In fact, for the WW analysis implemented here we find that the
constraints projected on the g̃q − g̃H and g̃f − g̃H planes are entirely dominated by the

contributions of fW and f
(3)
φQ, the same two operators that lead in the WH case.

Figure 8 shows the results from a 2D-analysis of the mWW distribution alone, fixing
Q = mV = 4 TeV and considering the same benchmarks as in Fig. 7. The red curves in

Fig. 8 are again given by Eq.(35) and (36), but for different values of fW and f
(3)
φQ, namely

fW /Λ
2 = ±0.7 TeV−2 and f

(3)
φQ/Λ

2 = −0.27,+0.23 TeV−2. Again, these values correspond
to the 2σ-boundaries identified in 1D fits.
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Figure 8: 2D fits of the WW resonance search of Ref. [79] only. We fix mV = 4 TeV
and g̃M = g̃V H = 0. Left: tree-level matching. Right: Loop-level matching. Top: with
g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top (bottom) row, red contours indicate

fW = ±0.7 (f
(3)
φQ = 0.2 or f

(3)
φQ = −0.3) with Λ = 1 TeV and white contours indicate

∆χ2 = 5.991.

This analysis yields stronger bounds compared to WH because in this particular case
the constraints are dominated by the tail of the distribution, in the region around mWW =
2.5 − 4 TeV, which exhibits under-fluctuations. Again, the effect of introducing loop
contributions to the matching expressions is only visible in the scenario dominated by fW ,
for the same reasons as described above.

4.2 Global analysis results

Figure 9 shows the results of our global analysis, including the full data set described in
Sec. 2.4 as well as the resonance searches discussed in Sec. 4.1, for a fixed value of the
heavy vector triplet mass mV = 4 TeV. The analysis is performed varying g̃M and g̃V H
within the physical region g̃M = −1 ... 1, g̃V H > 0 and all other coupling parameters in
the perturbative range g̃ = −4π ... 4π.

Fixed matching scale

For a fixed matching scale Q = mV (red and orange lines in Fig. 9), we find that the
SMEFT fit constrains significantly g̃l and g̃H , while g̃M , g̃q, and g̃V H are essentially un-
constrained. The striking difference between the constraints on the vector triplet couplings
to leptons and to quarks is largely due to the fact that the SMEFT fit is dominated by
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Figure 9: 5-parameter global fit of the full data set to the model parameters from Eq.(10).
Profiled ∆χ2 = 2.3 (∆χ2 = 5.991) contours are shown as solid (dashed) lines. Red
(orange) curves indicate the results obtained with tree (1-loop) matching onto the SMEFT
and a fixed matching scale Q = mV . The light blue region shows the results from 1-loop
matching, profiled over Q = 500 GeV ... mV .

EWPO constraints extracted at LEP, on which the leptonic interactions have a much
stronger impact. We have verified that, indeed, removing EWPO constraints from the fit
relaxes significantly the constraint on g̃l.

The 2D projections show that g̃l is also anti-correlated to g̃M . The reason is that, at
tree-level, g̃l enters the matching expressions only in the combination g̃l + g2g̃M , where g2

is the SU(2) coupling constant. Specifically, we find that the constraints in the g̃M − g̃l
plane are dominated by the constraint on fLLLL, whose tree-level matching expression is
quadratic in the relevant combination

fLLLL
Λ2

= −(g̃l + g2g̃M )2

4m̃2
V

. (37)

Therefore, for most values of g̃M and g̃l, the constraints are driven by the limit for negative
values of this Wilson coefficient. At 1-loop, the matching expression is more complex and
allows for positive values of fLLLL in a region close to |g̃M | ' 1 and |g̃l| ' 1. The right
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Figure 10: Heat map of the profiled ∆χ2 distribution from the same fit as in Fig. 9,
with 1-loop matching and profiling over the matching scale. The red contours indicate
fLLLL/Λ

2 = −0.014,+0.017 TeV−2 and the white contours indicate ∆χ2 = 5.991.

panel in Fig. 10 shows that the 2σ boundary from the 5D likelihood (in white) matches
very well the contours for fLLLL/Λ

2 = −0.014,+0.017 TeV−2 (in red), corresponding to
the 2σ interval derived from a 2D fit of fLLLL and fBW . Here a 2D fit is necessary owing to
the strong correlation between fLLLL and fBW . A 1D fit would lead to an over-estimation
of the constraints.

There are no major differences between tree and loop level matching when keeping
the matching scale fixed Q = mV . Only slight differences can be observed in the limits
on g̃M and g̃H . The effect on g̃H is completely washed out once the matching scale is
allowed to vary, as we discuss below. Although less visible due to the different scales, an
analogous anti-correlation is present in the g̃M − g̃H plane, as g̃H also enters tree-level
matching expressions exclusively in the combination g̃H + g2g̃M . Because g̃H enters many
Wilson coefficients, both at tree and loop level, in this case it is not possible to identify
one particular SMEFT parameter, or combination thereof, that drives the global bounds.

The constraint on g̃q, on the other hand, is driven by that on f
(3)
φQ, whose matching

expression is given in Eq.(36). This is consistent with the fact that g̃q only shows a non-
trivial interplay with g̃H . The cross-like shape emerging in the (g̃q, g̃H) panel results from
the superposition of the hyperbola-like shape expected from the f3

φQ matching expression,
and of additional constraints on g̃H that introduce extra suppressions away from the two
axes. Finally, g̃V H does not contribute to any dimension-6 operator at tree-level, so,
in this limit, the likelihood is exactly flat in the corresponding direction. At 1-loop g̃V H
gives contributions to fW , fWW , fφ2, ft,b,τ and f

(3)
φQ. Among these, the dominant constraint

stems from fφ2, leading to the orange contours in the g̃V H − g̃M and g̃V H − g̃H planes.

Variable matching scale

Varying the matching scale as Q = 500 GeV ... mV = 4 TeV, as shown as light blue region
in Fig. 9, affects the constraints on g̃H , while for the other parameters the dependence
is negligible. This is what we expect from the toy results in Sec. 3.2 and Fig. 6, and we
have verified that extending the range to Q & mV does not add any significant feature
to the results. As for the 5-parameter fit, the main consequence of variable Q is that, for
Q . 2.4 TeV, the matching expressions of fφ2 and ft,b,τ acquire a new zero. Because these
operators are the dominant source of constraints on g̃H , this results in a broader allowed
region for this parameter, which is largest close to the Q ' 2.4 TeV threshold. This effect
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Figure 11: Impact of the high-energy kinematic distributions [77–79] on the global 5-
parameter SMEFT fit. The solid regions include the full data set (same as Fig. 9), while
the dark blue lines exclude the high-energy kinematic distributions. Solid (dashed) lines
mark the ∆χ2 = 2.3 (∆χ2 = 5.991) contours.

washes out the correlation between g̃H and g̃M mentioned above.

At Q ' 2.4 TeV, the most constraining Wilson coefficient is fφ2, which is responsible
for the outermost region of the 2σ contours for g̃H in Fig. 9. The inner structure of
the likelihood, including the 1σ contour, cannot be explained in terms of a single Wilson
coefficient. It is the result of a non-trivial interplay between several effects, including g̃H
entering a large number of Wilson coefficients and profiling over the matching scale.

It is also interesting to look at the finer structure of the profiled likelihood. In Fig. 10
we show ∆χ2 for the same 2D projections as before. We can see that the best-fit points
are focused in regions where |g̃M | > 0.5. This effect emerges in the 5-parameter fit with
1-loop matching, irrespective of whether the matching scale is fixed or varied. It is the
same effect as observed for the 3-parameter fit varying the heavy vector mass in Fig. 3,
and it is due to the EWPO preferring a best-fit point away from the SM. In particular, we
have checked that the observed substructures are entirely dominated by less than 1σ devi-
ations in Al(SLD) and mW . In addition, the measurements of σ0

h, R
0
l , A

0,l
FB, Ac reinforce

the deviation through correlations. If future measurements with reduced uncertainties
confirmed the present deviations from the SM, this would lead to exclusion limits with
intricate patterns.

Impact of high energy measurements

It is well known [7] that kinematic distributions probing high invariant masses have sig-
nificant impact on global fits to the SMEFT parameters. In our analysis, we confirm this
behavior for the two analyses described in Sec. 4.1, which are found to constrain signifi-
cantly fW , fφd and fWWW . Unfortunately, once the SMEFT is mapped onto the heavy
vector triplet model, the constraining power of these measurements is diminished. This is
shown in Fig. 11, where the results of Fig. 9 are compared to those from a 5-parameter fit
where the three analyses of Refs. [77–79] are removed (dark blue line). The lack of visible
impact of the high-energy kinematic distributions is very much due to the specific model
and the corresponding numerical behaviour of the matching formulae. As discussed above,
the main constraints on the vector triplet parameter space are dominantly associated to
those on fLLLL, fφ2 and f3

φQ, which are only marginally improved by these searches.
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Figure 12: Left: Z ′ prediction for mV = 4 TeV, g̃H = 2, g̃f = 0.5 (shown by a star in the
right panel) for the WW search [79], compared to the SMEFT prediction. Right: SMEFT
limits (∆χ2 = 5.991) for mV = 4 TeV and profiled over the matching scale, for the WW
and WH distributions alone and the full dataset. We also show the 95%CL exclusion
from the WH resonance search [78]. The gray box marks the ATLAS search region, the
narrow-width is shaded in pink.

SMEFT vs direct searches

A key question we would like to address in this work is whether a global SMEFT analysis
can be competitive with direct searches in constraining a given UV model. Figure 12
compares the constraints in the (g̃f , g̃H) plane obtained in the direct search of WH reso-
nances by ATLAS, Ref. [78], and from 2D SMEFT fits to different sets of observables. In
particular, the light green line indicates the SMEFT constraints obtained from the same
distribution as in the direct search. For all lines in this plot, the heavy triplet mass is fixed
to mV = 4 TeV, the maximum value accessible by the resonance search. Strictly speaking,
the direct and indirect constraints extracted from the same measurement apply to com-
plementary regions of the parameter space: the former are valid for masses mV . 4 TeV
and for narrow vector triplets within the pink-shaded region of Fig 12, while the latter
hold for mV � 4 TeV irrespective of the resonance width. Obviously, a comparison should
be taken with a grain of salt.

Nevertheless, it can be instructive to examine the interplay between the signals pro-
duced by a heavy resonance and by its corresponding SMEFT approximation. The left
panel of Fig. 12 shows the mWW resonant distribution obtained for a benchmark point
at mV = 4 TeV, g̃H = 2, g̃f ≡ g̃l = g̃q = 0.5, compared to the ATLAS measurement [78]
(black data points) and the SMEFT signal matched to this benchmark model at dimen-
sion six. This point is indicated by a cross in Fig. 12 (right), and it is excluded at 95%CL
by both the ATLAS WH and WW searches, but falls within the 2σ-allowed region of
our SMEFT global analysis. This discrepancy is obvious from the high-energy mWW tail,
where aside from the mass peak the dimension-6 SMEFT also misses the initial rise of
the distribution. Among the Wilson coefficients that contribute to WW production, only

fW /Λ
2 = 0.28 TeV−2 takes a value above the permille level, while f

(3)
φQ = 0 because g̃q = g̃l.

This results in SMEFT signals of only a few percent across the entire mWW distribution,
which are always well within the uncertainties. It is worth pointing out that in such a
situation the best place to look for the SMEFT signal might not just be the bins where
the energy enhancement is largest, but rather those where the uncertainties are smallest.

While not surprising, these conclusions do not extend to arbitrary BSM scenarios. One
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Figure 13: 5-parameter fit to the full data set for the model parameters in Eq.(10). Each
panel shows profiled ∆χ2 = 2.3 (solid) and ∆χ2 = 5.991 (dashed) contours. Red curves
correspond to tree-level matching, the light blue region to 1-loop matching, profiled over
three g̃ parameters plus the matching scale Q = 500 GeV ... mV . The panels for g̃M − g̃q
g̃V H − g̃q and g̃V H − g̃M are not shown as they are unconstrained in the explored ranges.

characteristic of the case examined here is that the resonance is narrow. As a consequence,
the effect in mWW is only visible close to mV , where the SMEFT expansion immediately
breaks down. The situation improves when we include higher-dimensional operators [18,
94]. At dimension six, the matching to our specific model suppresses all energy-enhanced
SMEFT contributions to WW production, so the signal is under-estimated across the
emWW distribution. This does not have to be the case in other BSM models. For instance,
it is possible that the dimension-6 approximation over-estimates the model predictions, in
which case the dimension-8 contributions need to be large and negative, and the truncated
SMEFT constraints appear more stringent than those from direct searches.

Going beyond the comparison of resonance searches and SMEFT analyses for one
measurement, the true power of the SMEFT approach is that it allows to combine a
large number of different measurements. This will always improve the sensitivity of the
SMEFT analyses and, on the other hand, it allows to derive more general conclusions,
by constraining all model parameters simultaneously, as shown in Fig. 9. The light blue
lines in Fig. 12 show the constraints from a 2-parameter SMEFT fit to the entire dataset
employed in this work. Consistent with the discussions above, these limits are dominated
by EWPO, for which the SMEFT expansion is valid. In particular, the constraint on g̃f is
dominated by the leptonic component g̃l, which in turn is mostly associated to the fLLLL
Wilson coefficient. Comparing these limits to those from the ATLAS WH-search, we find
that the latter are slightly stronger for |g̃H | & 1 (with the caveat that they are only valid
in the narrow width regime), while the former dominate for |g̃H | . 1. Here, the WH
search has an unconstrained direction along the g̃H = 0 axis, that is broken by the EWPO
in the SMEFT fit [21].
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Heavy vector results

One of the main motivations for the SMEFT formalism is that it allows us to derive
constraints on new particles with masses beyond the reach of direct searches. In this
spirit, we can extend our SMEFT constraints on the g̃ parameters for a heavy triplet
mass to mV = 8 TeV. Now, the dimension-6 SMEFT approximation is valid all over the
kinematic measurements discussed above. The corresponding results in Fig. 13 can be
directly compared to those in Fig. 9 for mV = 4 TeV. As expected, all the bounds on
the model parameters are weaker for heavier values of mV (see also Fig. 3). However, a
notable feature is that the limits do not simply scale with a factor proportional to mV ,
as one would naively expect from the SMEFT analysis at dimension six. The reason is
that the matching expressions that relate the Wilson coefficients to the model parameters
are generally non-trivial and do not scale universally with (g̃i/mV ), as can be seen for
instance in Eq.(32). Moreover, as we are considering a BSM state that is not a singlet
under SU(2), the EW gauge coupling g2 contributes to the matching independently of the
g̃ parameters. The result is that the degeneracy between g̃i and mV is largely broken in
the matching, leading to a complex likelihood structure that changes significantly with
mV .

5 Conclusions

We have presented a global analysis of a Standard Model extension with a gauge-triplet
vector resonance in terms of the dimension-6 SMEFT Lagrangian. We have performed a
global SFitter analysis including electroweak precision observables, Higgs and di-boson
measurements as well as resonance searches at the LHC, and have compared our results
with limits obtained from direct searches. To relate the full model and the SMEFT we
have employed one-loop matching with a focus on the theory uncertainties from the choice
of the matching scale.

First, we have shown that the theory uncertainty due to the choice of the matching
scale can have a large effect on the global analysis. In particular, the bounds on the
coupling of the new vector to the SM-Higgs are significantly weakened once we profile over
a variable matching scale, illustrating how all theory uncertainties need to be taken into
account at least once we translate SMEFT results back into models.

Comparing the SMEFT results with direct searches reveals an intriguing complemen-
tarity. Direct and SMEFT searches are reliable in different parameter regions; while direct
searches are sensitive to narrow resonances with kinematically accessible masses, SMEFT
searches apply to energies sufficiently below the resonance mass. The SMEFT analysis
can be sensitive to the onset of the resonance, but a reliable description of this region
requires a tower of higher-dimensional operators. Specifically for the vector-triplet model,
the SMEFT model for the high-energy tail of kinematic distributions turned out less sen-
sitive than the resonance search, and therefore provided conservative constraints. On the
other hand, the SMEFT analysis can probe vector masses beyond the reach of resonance
searches. Here, we found that the one-loop matching dampens the sensitivity decrease of
the SMEFT analysis compared to the naively expected scaling.

While SMEFT analyses cannot replace model-specific searches for new physics, they
add valuable constraints from a large variety of measurements and are sensitive to new
physics scales beyond the reach of resonance searches. Only this complementarity of direct
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and indirect searches allows us to make best use of current and future LHC data.
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A Appendix

A.1 Operator basis

We consider the dimension-6 SMEFT Lagrangian

LSMEFT ⊃−
αs
8π

fGG
Λ2
OGG +

fWW

Λ2
OWW +

fBB
Λ2
OBB +

fBW
Λ2
OBW +

fW
Λ2
OW +

fB
Λ2
OB

+
fWWW

Λ2
OWWW +

fφ1

Λ2
Oφ1 +

fφ2

Λ2
Oφ2 +

fτmτ

vΛ2
Oτ +

fbmb

vΛ2
Ob +

ftmt

vΛ2
Ot+

+
fLLLL

Λ2
OLLLL +

fφe
Λ2
Oφe +

fφd
Λ2
Oφd +

fφu
Λ2
Oφu +

f
(1)
φQ

Λ2
O(1)
φQ +

f
(3)
φQ

Λ2
O(3)
φQ , (38)

where the Wilson coefficients are denoted by fi. We use the dimension-6 operator basis
of Ref. [7], which is based on the HISZ set [74] and defined in Tab. 1. We adopt the

OGG = φ†φGaµνG
aµν OBW = φ†B̂µνŴ

µνφ

OBB = φ†B̂µνB̂
µνφ OWW = φ†ŴµνŴ

µνφ

OB = (Dµφ)† B̂µν (Dνφ) OW = (Dµφ)† Ŵµν (Dνφ)

OWWW = Tr
(
ŴµνŴ

νρŴ µ
ρ

)

Oφ1 = (Dµφ)† φφ† (Dµφ) Oφ2 = 1
2∂

µ
(
φ†φ
)
∂µ
(
φ†φ
)

Ob = (φ†φ) q̄3φd3 Oτ = (φ†φ) l̄3φe3

Ot = (φ†φ) q̄3φ̃u3

OLLLL =
(
l̄1γµl2

) (
l̄2γ

µl1
)

Oφe = (φ†i
←→
D µφ) (ēiγ

µej) δ
ij

Oφd = (φ†i
←→
D µφ)

(
d̄iγ

µdj
)
δij Oφu = (φ†i

←→
D µφ) (ūiγ

µuj) δ
ij

O(1)
φQ = (φ†i

←→
D µφ) (q̄iγ

µqj) δ
ij O(3)

φQ = (φ†i
←→
DA
µ φ)

(
q̄iγ

µtAqj
)
δij

Table 1: Basis of dimension-6 SMEFT operators adopted in our global analysis. Flavor
indices are denoted by i, j and are implicitly contracted when repeated.
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‘+’ convention for the covariant derivatives, e.g. Dµφ = (∂µ + ig′Bµ/2 + igtAWA
µ )φ,

where tA = σA/2 are the SU(2) generators and σA the Pauli matrices. We have also

defined (φ†i
←→
D µφ) = iφ†(Dµφ) − i(Dµφ

†)φ , (φ†i
←→
D I

µφ) = iφ†tA(Dµφ) − i(Dµφ
†)tAφ and

the dual Higgs field φ̃ = iσ2φ?. The field strengths are normalized as B̂µν = ig′Bµν/2

and Ŵµν = igtAWA
µν . Finally, the operators O(1),(3)

φQ ,Oφu,Oφd,Oφe are defined in a U(3)5-
invariant flavor structure, while for OLLLL we only retain the (1221) contraction, that
is relevant for the definition of the Fermi constant, and for Ob,Ot,Oτ we only consider
the 3rd fermion generation. The latter choice is justified considering that, in a U(3)5-
symmetric scenario, these operators are weighted by a Yukawa coupling insertion, that
acts as a suppression for the first two families.

The matching to the UV models described in Sec. 2.1 is automated for the Warsaw basis
of SMEFT operators [95], in the general flavor case. The results obtained are provided on
github at [75] and we give explicit expressions for the tree-level matching in Appendix A.2.
In order to interface them to SFitter, the matching results are mapped onto the basis
of Tab. 1. In the following we denote the operators in the Warsaw basis, defined as in
Ref. [95], by Qk and the associated Wilson coefficients by Ck, such that the SMEFT
Lagrangian in this basis has the form

LWarsaw ⊃
1

Λ2

∑

k

∑

ij

Ck,ij Qk,ij , (39)

where k runs over the operators labels and i, j are flavor indices, that are present for
fermionic operators. The relations between the two operator bases are

OGG = QφG , OWWW =
g3

4
QW ,

OBB = −g
′2

4
QφB , OWW = −g

2

4
QφW , OBW = −gg

′

4
QφWB ,

Oφ1 = QφD , Oφ2 = −1

2
Qφ� , Oφ = Qφ ,

Oτ = Qeφ,33 , Ot = Quφ,33 , Ob = Qdφ,33 ,

Oφe = Qφe,ij δ
ij , Oφu = Qφu,ij δ

ij , Oφd = Qφd,ij δ
ij ,

O(1)
φQ = Q

(1)
φq,ij δ

ij , O(3)
φQ =

1

4
Q

(3)
φq,ij δ

ij , OLLLL = Qll,1221 , (40)

and

OW =
g2

8
QφW +

g′g

8
QφWB −

3g2

8
Qφ� +

g2m2
h

4
(φ†φ)2 − g2λ

2
Qφ

− g2

4
[(Ye)ijQeφ,ij + (Yu)ijQuφ,ij + (Yd)ijQdφ,ij + h.c.]− g2

8

(
Q

(3)
φq,ij +Q

(3)
φl,ij

)
δij

OB =
g′2

8
QφB +

gg′

8
QφWB −

g′2

2
QφD −

g′2

8
Qφ�

− g′2

4

(
1

6
Q

(1)
φq,ij −

1

2
Q

(1)
φl,ij +

2

3
Qφu,ij −

1

3
Qφd,ij −Qφe,ij

)
δij , (41)

where all repeated flavor indices are implicitly summed over, and λ is the quartic coupling
in the Higgs potential, normalised such that

V (φ) = −m
2
h

2
φ†φ+

λ

2
(φ†φ)2 . (42)
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As the vector triplet model we are interested in is defined in a flavor-symmetric limit, after
the matching procedure the Wilson coefficients of the Warsaw basis operators Qφe,φu,φd

and Q
(1),(3)
φl,φq will have the form

Cφψ,ij = C̄φψ δij , (43)

while

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj . (44)

Using this notation, the mapping in terms of Wilson coefficients is

fB =
8

g′2
C̄

(1)
φl −αs

8π
fGG = CφG

fW = − 8

g2
C̄

(3)
φl fWWW =

4

g3
CW

fBB = − 4

g′2

[
CφB − C̄(1)

φl

]
fφ1 = CφD + 4C̄

(1)
φl

fWW = − 4

g2

[
CφW + C̄

(3)
φl

]
fφ2 = −2Cφ� − 2C̄

(1)
φl + 6C̄

(3)
φl

fBW = 4


−CφWB

gg′
−
C̄

(3)
φl

g2
+
C̄

(1)
φl

g′2


 fφ = Cφ − 4λC̄

(3)
φl (45)

and for the fermionic ones

mτ

v
fτ = Ceφ,33 − 2(Ye)33C̄

(3)
φl fφe = C̄φe − 2C̄

(1)
φl

mt

v
ft = Cuφ,33 − 2(Yu)33C̄

(3)
φl fφu = C̄φu +

4

3
C̄

(1)
φl

mb

v
fb = Cdφ,33 − 2(Yd)33C̄

(3)
φl fφd = C̄φd −

2

3
C̄

(1)
φl

f
(1)
φQ = C̄

(1)
φq +

1

3
C̄

(1)
φl f

(3)
φQ = 4

[
C̄

(3)
φq − C̄

(3)
φl

]

fLLLL = C̄ ′ll . (46)

In addition, the Higgs quartic coupling gets redefined as

λHISZ = λWarsaw +
4m2

h

Λ2
C̄

(3)
φl . (47)

This translates into corrections to the cubic and quartic Higgs self-couplings, which do
not contribute to any of the observables in our fit.
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A.2 Matching expressions at tree-level

Matching the heavy vector triplet model defined in Section 2.3 at tree level onto the
Warsaw basis, we obtain

Cφ� = −3

8

(g̃H + g2g̃M )2

m̃2
V

C
(3)
φl,ij = C̄

(3)
φl δij = −1

4

(g̃l + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

C
(3)
φQ,ij = C̄

(3)
φq δij = −1

4

(g̃q + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj =
1

8

(g̃l + g2g̃M )2

m̃2
V

(δijδkl − 2δilδkj)

Cfφ,ij = −(Yf )ij
4

(g̃H + g2g̃M )2

m̃2
V

(f = e, u, d). (48)

These results were also derived e.g. in Refs. [14, 20, 23, 96]. The full expressions for the
1-loop matching are derived here for the first time and are provided at Ref. [75].
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[19] A. Freitas, D. López-Val, and T. Plehn, When matching matters: Loop effects in
Higgs effective theory, Phys. Rev. D 94 (2016) 9, 095007, arXiv:1607.08251 [hep-ph].

[20] I. Low, R. Rattazzi, and A. Vichi, Theoretical Constraints on the Higgs Effective
Couplings, JHEP 04 (2010) 126, arXiv:0907.5413 [hep-ph].

[21] F. del Aguila, J. de Blas, and M. Perez-Victoria, Electroweak Limits on General
New Vector Bosons, JHEP 09 (2010) 033, arXiv:1005.3998 [hep-ph].

[22] D. Pappadopulo, A. Thamm, R. Torre, and A. Wulzer, Heavy Vector Triplets:
Bridging Theory and Data, JHEP 09 (2014) 060, arXiv:1402.4431 [hep-ph].
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