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Abstract

This work is motivated by an article by Wang, Casati, and Prosen [Phys. Rev. E
vol. 89, 042918 (2014)] devoted to a study of ergodicity in two-dimensional
irrational right-triangular billiards. Numerical results presented there suggest
that these billiards are generally not ergodic. However, they become ergodic
when the billiard angle is equal to π/2 times a Liouvillian irrational, a class
of numbers with properties lying in between irrational and rational. In par-
ticular, Wang et al. study a special integer counter that reflects the irrational
contribution to the velocity orientation; they conjecture that this counter is
localized in the generic case, but grows in the Liouvillian case.

We propose a generalization of the Wang-Casati-Prosen counter: this
generalization allows to include rational billiards into consideration. We
show that in the case of a 45◦ : 45◦ : 90◦ billiard, the counter grows indef-
initely, consistent with the Liouvillian scenario suggested by Wang et al.
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1 Introduction

In Ref. [1] Wang, Casati, and Prosen studied ergodicity in two-dimensional irrational
right-triangular billiards. The numerical results presented there suggest that while these
billiards are not ergodic in general, they become ergodic when the billiard angle is equal to
π/2 times a Liouvillian irrational. The latter is a class of numbers with properties lying in
between irrational and rational.

Authors present an elegant semi-empirical construction that sheds light to the mech-
anisms behind the ergodicity breaking. Using numerical evidence, they conjecture that
for a given rational approximant of the billiard angle (in units of π/2) ergodicity requires
an exponentially long time to establish, while the validity of the approximant expires in
a linear time, both in terms of approximant’s denominator. They state a very modest
necessary condition for the ergodicity of the original, irrational billiard: for each rational
approximant, ergodicity must be reached before approxomant’s successor becomes invalid.
A generic irrational number for the billiard angle won’t pass this test. However, Liouville
numbers—numbers for which the error of a rational approximation decreases faster than
any negative power of its denominator—produce billiards that satisfy the above necessary
condition. If the propagation time is bounded from above, Liouville builliards are indistinct
from the rational ones: expectedly, the rational billiards themselves also pass the test.

As a quantitative measure of ergodicity, Wang et al. introduce a special integer counter
(that we will call, in this text, a Wang-Casati-Prosen counter) that reflects the irrational
contribution to the velocity orientation. Ergodicity requires that this counter grows
indefinitely with time. Authors provide a numerical evidence that the counter is localized
in the generic irrational billiards. They further conjecture that the counter grows in the
Liouvillian case. They base this conjecture on the fact that Liouville billiards satisfy the
thecessary condition for the ergodicity described in the previous paragraph. This former
conjecture is also consistent with the rigorous results presented in [2], for a subset of
Liouville numbers.

Motivated by Wang et al., here we study an extencion of the Wang-Casati-Prosen
counter for a 45◦ : 45◦ : 90◦ billiards—a rational billiard featuring only eight velocity
orientations for any generic trajectory—and find, in accordance with the scenario suggested
in [1] for the Liouville numbers, that this counter grows indefinitely. We prove the absence
of localization by identifying a subsequence along which the Wang-Casati-Prosen counter
provably grows, albeit in a logarithmic fashion.

At a technical level, analytical results we obtained became possible thanks to the
solvability of the 45◦:45◦:90◦ billiards using the method of images.

2 Motivation: Wang-Casati-Prosen counter in right-triangular
billiards. First appearance of the rational billiards

In [1], authors consider a single two-dimensional point-like particle moving in a right-
triangular billiards (see Fig. 1) of an acute angle α̃/2 = ((

√
5− 1)/4)π (α/2 in the original).

The physical model behind the right-triangular billiards consists of two one-dimensional
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Figure 1: The right-triangular billiards considered in [1]. θ0 gives the orientation of
the initial velocity. α̃/2 is one of the angles. See text for the rationale behind the
names of the sides of the triangle.

hard-core point-like particles between two walls. The map is described in [1] and elsewhere.
According to the map, the vertical cathetus, the horizontal cathetus, and the hypothenuse
correspond respectively to the left particle colliding with a wall (L), the right particle
colliding with a wall (R), and a particle-particle collision (C); hence the naming of the
sides in Fig. 1 and throughout the text.

A particle’s trajectory starts at some point inside the billiards, with a velocity vector
at an angle θ0 to the horizontal axis. The authors of [1] observe that at any instant of
time, the angle θ between the velocity and the horizontal has the form

θ = Kα̃+



+θ0
or
−θ0
or
+(π − θ0)
or
−(π − θ0)


,

with the counter K being an integer. The paper studies the growth of the magnitude of K
over time. The numerical evidence presented in [1] suggests that K is localized within a
∼ ±20 range around the origin, suggesting absence of ergodicity. The authors suggest that
this phenomenon is general for generic α̃, while conjecturing an absence of localization for
α̃ = Liouvillian number× π. In our paper, we study an analogue of the counter K for the
rational case of α̃ = π/2. We find no localization, in accordance with the expectations
of [1].

To proceed, observe that the velocity orientation, and, thus, the counter value does
not change between the particle-wall collisions. Hence, the counter K is a function of the
number i of particle-wall collisions prior. As such, the temporal index i labels the time
intervals between two successive partcle-wall collisions. Accordingly, from now on, we will
denote K as Ki. It is easy to show (see [1]) that the rule for updating the counter Ki is as
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follows:

Ki+1 =


−Ki + 1 , if the event that separates the i+1’st

and i’th time interval is C

−Ki , if the event that separates the i+1’st
and i’th time interval is L or R


K0 = 0 .

(1)

This is a crucial moment. Let’s try to assign a rational value to α̃/π. The meaning
of the counter K as the value of the α̃/π contribution to the velocity orientation will be
completely lost: there will be an infinite multiplicity of values of K leading to the same
velocity orientation. However, the dynamics of the counter K itself remains nontrivial,
constituting a viable object of study. More interestingly, it remains nontrivial (i.e. no closed
form formula exists for the counter K as a function of i, for a given initial condition) even
the for the two integrable right-triangular billiards: 30◦:60◦:90◦ an 45◦:45◦:90◦ respectively.
The latter billiard is the one our article focusses on.

3 Irrational rotations

Given an α : 0 ≤ α < 1, we consider the α-rotational trajectory emerging for x0 ∈ [0, 1),

x
(α)
j+1 = (x

(α)
j + α) mod 1 , j ∈ N0 . (2)

x
(α)
0 = x0 , (3)

where N0 := N ∪ {0}.
For a fixed β : 0 ≤ β < 1, introduce an “observable” f (β) : [0, 1) → {−1, +1},

f (β)(x) =

{
+1 , for x ∈ II := [0, β) ,
−1 , for x ∈ III := [β, 1) .

(4)

and a corresponding sequence

f
(α, β)
j := f (β)(x

(α)
j ) , j ∈ N0 . (5)

Finally, for each j ∈ N0, consider an “increment”

ϵ
(α, β)
j := χ(f

(α, β)
j )

j∏
j′=0

f
(α, β)
j′ , (6)

with

χ(f) :=

{
2 , for f = +1
1 , for f = −1

. (7)

Our primary object of interest is the following “counter”:

S
(α, β)
j =

j−1∑
j′=0

ϵ
(α, β)
j′ , j ∈ N0 . (8)

A similar object was considered in [3]. There, III was any connected nonempty subset of
[0, 1) and χ(f) = 1.
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We recognize that there is a wide range of papers in the mathematics literature, written
from a more general point of view, which are dedicated to studying the ergodic properties of
billiards and cocycle maps of the type considered here. As mentioned earlier, our model can
be considered a part of a certain family of dynamical systems which were first investigated
in 1968 by W.A. Veech in [3]. Without aiming for a complete list, we refer the reader to
e.g. [4, 5] and [6–8] for a few more recent general accounts of recurrence and ergodicity of
cocycles over a rotation in relation to the model considered here.

Rather than aiming for generality, the purpose of this work is to construct explicit
analytical examples for a concrete physical model of interest, for which the numerical
studies in [1] indicated an interesting behavior of the counter depending on Diophantine
properties.

Specifically, our main result, Theorem 7.1, considers the “diagonal” case

α = β =: σ ,

for which, motivated by the results in [1], we provide analytical evidence for a subtle
dependence of the counter on the Diophantine properties of the parameter σ. Specifically,
we explicitly describe a set of irrational values of σ for which we can verify indefinite growth
of the counter for a full-measure set of initial conditions:

Theorem 3.1. There exists a non-empty set of irrationals Σ ⊆ (0, 1) so that for each
σ ∈ Σ, the following holds: There is an associated full measure set of initial conditions
Ω(σ) such that for all x0 ∈ Ω(σ), one has

lim sup
j→∞

|Sj | = ∞ . (9)

Remark 3.2. The set Σ in Theorem 3.1 is described explicitly in terms of continued
fraction expansion of its elements, see Theorem 7.1 of Section 7. The description of the
full measure set of initial conditions Ω(σ) is given in Remark 7.2 of Section 7. It remains
an interesting open question whether the conditions on σ and x0 are indeed necessary and
whether the growth along a subsequence could be strengthened to growth along the entire
sequence, which would replace the lim sup in (9) by a limit; see also our remarks at the
end of Section 7.

4 Connection between the irrational rotations and the Wang-
Casati-Prosen counter in a 45◦:45◦:90◦ billiard

Let us return back to the end of the Section 2. Without loss of generality, assume that
i = 0 labels an interval between an L and an R event, the former preceded by C (see
Fig. 1). Name the two events preceding the interval i = 0 as C⋆ and L∗, for future reference.
Introduce a counter

Pi := (−1)i+1Ki ,

a temporal index

m̄(i) := # C-events between the C⋆-event and the i’th interval, excluding C⋆ ,

and another temporal index

i′(m) := inf {i : m̄(i) = m} .
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Observe that the counter Pi is a function of m̄(i) alone as it does not change after L and
R events. Accordingly, introduce a counter

Qm := Pi′(m) .

Recall that, by construction,

|Qm| = |Ki′(m)| ,

so that if Qm is found to be unbounded, then Ki will be unbounded as well.
Note also that m labels a temporal interval between two successive C events. A crucial

observation is that the dynamics of the counter Qm is governed by

Qm+1 = Qm + εm

Q0 = 0
, (10)

with

εm := (−1)M , (11)

where

M := # CLRC- or CRLC-intervals between the C⋆-event,
inclusive, and the m’th interval, inclusive.

So far, our discussion concerned a generic right triangle of Fig. 1. From now on, let us
assume a 45◦:45◦:90◦ billiards, i.e. that

α̃ =
π

2
. (12)

Also assume, without loss of generality, that

π

4
≤ θ0 <

π

2
. (13)

Thanks to the method of images—described in the caption of Fig. 2—particle’s trajectory
becomes fully predictable, even for long propagation times, with no sensitivity to the initial
conditions. The evolution of the counter Q (see (10)-(11)) remains sensitive to the initial
conditions. During a sequence of CLRC and CRLC fragments, the counter Q lingers
around a particular value, with no substantial evolution. Such sequences are interrupted
by an occasional (isolated, given (12)-(13)) CRCLC fragment that changes the value of
the counter by ±2. Whether the change keeps the sign of the previous ±2 jump or flips it
depends on the parity of the number of the CLRC and CRLC fragment in between. This
parity, in turn, can be altered by a small change in the initial position, leading to large
deviations at long propagation times.

Let us introduce another temporal index,

j̄(m) := # CLRC, CRLC, and CRCLC fragments between
the C⋆-event and the m’th interval.

Note that j̄(m) counts the number of “vertical” C-events between C⋆, exclusive, and the
m’th interval (see Fig. 2).

Accordingly, introduce

m′(j) := inf {m : j̄(m) = j} .

6
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Figure 2: The relationship between the dynamics in a 45◦ : 45◦ : 90◦ billiards and
irrational rotations. The grey triangle corresponds to the billiards in question. The
white triangles are the images of the original billiards obtained via mirror reflections
with respect to the wall that the particle hits. The subsequent fragment of the
particle’s trajectory is reflected as well; as a result, the trajectory becomes a straight
line traveling through a plane tiled by the copies of the original billiards. The large
black circle corresponds to the initial position of the particle. The vertical dotted and
“hand-drawn” lines correspond to two intervals in the related irrational rotation model.
xj is the phase space variable in the irrational rotations. See the text for the definition
of the counter Sj . The time j counts the vertical C-lines crossed by the trajectory.

Observe now that the counter Qm is a function of j̄(m) alone. Finally, introduce the
counter

Sj := Qm′(j) .

Again, by construction,

|Sj | = |Ki′(m′(j))| ,

and a growth of the artificially constructed counter Sj would indicate a growth of the
physical counter of interest, Ki.

Recall that j labels the temporal intervals between successive “vertical” C events. Let
it also label the left “vertical” C event for a given j’th interval. Without loss of generality
assume that the hypothenuse C has unit length:

length(C) = 1 .

Introduce

xj := position of the “vertical” particle-wall collision ,

in terms of the tiling depicted in Fig. 2. Notice that—for notational convenience—the
origin x = 0 is a distance tan(ϕ0) away from the top corner. It is easy to see that xj
undergoes a sequence of irrational rotations, with a shift

σ = tan(ϕ0) ,
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where

ϕ0 := θ0 −
π

4

0 ≤ ϕ0 <
π

4
.

Now, divide each of the “vertical” C-walls onto two areas

II := [0, σ[

and

III := [σ, 1[ .

Observe that if xj gets to the II area, a CRCLC fragment will follow and the counter S
will change by ±2, with the same sign as the preceding increment. (Recall that (12)-(13)
dictate that CLCRC fragments are impossible, and that each CRCLC fragment is isolated,
i.e. it is surrounded by either CLC or CRC fragments.) Likewise, when xj is in III, a
CLC or CRC fragment follows, and the counter S changes by ±1, reversing the sign of
the previous change. All in all, it is easy to show that the counter Sj follows the dynamics
described by the equations (2), (4), (5), (6), (7), and (8).

5 The method of study: auxiliary rational rotations

Let us return back to the end of the Section 3. For a given irrational σ : 0 < σ < 1,
consider its continued fraction expansion

σ = [0; a1, a2, . . .] ,

and the corresponding convergents (rational approximants),

σn := [0; a1, a2, . . . , an] =
pn
qn

, n ∈ N ,

where pn and qn are mutually prime.

For n ∈ N, consider an auxiliary trajectory (x
(σn)
j )j∈N0 . Observe that this trajectory is

qn-periodic, i.e.

x
(σn)
j+qn

= x
(σn)
j , for all j ∈ N0 , (14)

whence so is the sequence of observables (f
(σn, σn)
j )j∈N0 . The definition in (6) thus implies

that (ϵ
(σn,σn)
j )j∈N0 is either periodic or anti-periodic with period qn,

ϵ
(σn, σn)
j+qn

= η(σn, σn)
n ϵ

(σn, σn)
j ,

where

η(α, β)n := sign(ϵ
(α, β)
qn−1 ) =

qn−1∏
j=0

f
(α, β)
j .

As a result, the sequence of corresponding counters either grows indefinitely, period
after period, or remains trapped around zero:

S
(σn, σn)
Nqn

=

 N , for η
(σn, σn)
n = +1{

0 , for N = even
1 , for N = odd

}
, for η

(σn, σn)
n = −1

 · S(σn, σn)
qn ,

8
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for any N ∈ N. In particular, if η
(σn, σn)
n = +1 and S

(σn, σn)
qn ̸= 0, the counter S

(σn, σn)
j is

obviously unbounded, since it is unbounded on the subsequence with j = Nqn, where it
grows as

S
(σn, σn)
Nqn

η
(σn, σn)
n =+1

= NS(σn, σn)
qn . (15)

This observation is the cornerstone of the proof of unboundedness of S
(σ, σ)
j for appro-

priately chosen irrational rotations σ and initial conditions x0, which will be constructed
in Section 7 (Theorem 7.1).

6 Growth for (rational) auxiliary rotations

Fix n ∈ N and consider the qn-periodic auxiliary trajectory (x
(σn)
j )j∈N0 . The goal of this

section is to explore the structure of the trajectory to quantify the growth of the counters

S
(σ, σ)
j over one period 0 ≤ j ≤ qn − 1. Specifically, we will establish the following:

Proposition 6.1. Suppose that both pn and qn are odd. Then, one has the lower bound∣∣∣S(σn, σn)
qn

∣∣∣ ≥ 2 . (16)

To prove Proposition 6.1, we start by recalling some basic facts about rational rotations.

First observe that since gcd(pn, qn) = 1, the finite trajectory {x(σn)
j , 0 ≤ j ≤ qn − 1}

consists of qn distinct points, each of which is visited only once. Moreover, identifying R/Z
with the unit circle S1 ⊆ C via the bijection t 7→ e2πit and noticing that(

e2πi(x0−x
(σn)
j )

)qn

= 1 (17)

shows that the points e2πi(x0−x
(σn)
j ) are merely permutations of the qn-th roots of unity, i.e.

{x(σn)
j , 0 ≤ j ≤ qn − 1} = {x0 +

k

qn
, 0 ≤ k ≤ qn − 1} . (18)

In particular, writing

x0 =

(
x0 mod

1

qn

)
+

⌊x0qn⌋
qn

=: x0,n + k0,n
1

qn
, (19)

we may represent the elements of the finite trajectory {x(σn)
j , 0 ≤ j ≤ qn − 1} in the form

x
(σn)
j = x0,n +

kj,n
qn

, 0 ≤ j ≤ qn − 1 , (20)

with
kj,n := (k0,n + jpn) mod qn . (21)

The main merit of the representation of the auxiliary trajectory in (19)-(21) is that it
allows to keep track of the value of the observable since

f
(σn, σn)
j =

{
+1 , for kj,n = 0, 1, . . . , pn − 1
−1 , for kj,n = pn, . . . , qn − 1

. (22)

In particular, (22) immediately yields

9



SciPost Physics 7 CONSTRUCTING AN UNBOUNDED SUBSEQUENCE . . .

Lemma 6.2.

η(σn, σn)
n = +1 , for qn − pn = even .

Proof. For 0 ≤ j ≤ qn − 1, kj,n will visit each of the qn points 0, 1, . . . , qn − 1 precisely
once. Therefore, (22) implies that

η(σn, σn)
n =

qn−1∏
j=0

f
(σn, σn)
j

is a product of pn factors +1 and qn − pn factors −1. Thus, if qn − pn is even, we conclude

that η
(σn, σn)
n = +1.

We are now ready to prove the main result of this section:

Proof of Proposition 6.1. According to (22), we have

ϵ
(σn, σn)
j =

{
+2 , for kj,n = 0, 1 . . . , pn − 1
−1 , for kj,n = pn, pn, . . . , qn − 1

}
· sign(ϵ(σn, σn)

j−1 ) . (23)

Using the fact that, for 0 ≤ j ≤ qn−1, kj,n will visit each of the qn points 0, 1, . . . , qn−1
precisely once, we may consider the subsequence jl consisting of all instances j for which

f
(σn, σn)
j = −1; in particular, along this subsequence one has

ϵ
(σn, σn)
jl

= −ϵ
(σn, σn)
jl−1

.

The sequence ϵ
(σn, σn)
jl

has an even number of terms (i.e. qn − pn), and thus does not

contribute to the sum S
(σn, σn)
qn =

∑qn−1
j′=0 ϵ

(σn, σn)
j . By (23), the remaining summands are all

±2, and there is an odd number of them (i.e. pn). In summary, we conclude |S(σn, σn)
qn | ≥ 2,

as claimed.

7 Constructing an unbounded subsequence of the counter
trajectory, for an irrational rotation

We are now in a position to formulate and prove our main result:

Theorem 7.1. Let σ = [0; a1, a2, . . . ] ∈ (0, 1) be irrational such that its continued fraction
expansion has the following properties: there exists a subsequence (nm)m∈N of 2N such that

(a) (anm)m∈N is unbounded

(b) for all m ∈ N, both pnm and qnm are odd ( and thus the conditions of the Lemma 6.1
are satisfied, for n = nm);

Then there exists a full measure set of initial conditions Ω(σ) ⊆ [0, 1) such that for
each x0 ∈ Ω(σ), one has

lim sup
j→∞

|Sj | = ∞ . (24)

10
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Remark 7.2. Our proof of Theorem 7.1 implies the following explicit description of the
set Ω(σ):

Ω(σ) :=
⋃
Q∈N

{
x0 ∈ [0, 1) : {x0qnm} < 1− 1

Q
, for infinitely many m ∈ N

}
. (25)

Here {x} := x− ⌊x⌋ denotes the fractional part of x ∈ [0, 1).
Observe that Ω(σ) is a set of full Lebesgue measure in [0, 1). Indeed, considering its

complement

[0, 1) \ Ω(σ) = {x0 ∈ [0, 1) : {x0qnm} → 1} (26)

⊆ {x0 ∈ [0, 1) : |||x0qnm ||| → 0} , (27)

where |||x||| := infn∈Z |x−n| is the usual norm in R/Z, shows that the set on the right-hand
side of (27) is a proper subgroup of R/Z. Thus, a well known fact from harmonic analysis
(see e.g. problem 14 in Sec. 1 of Katznelson’s book [9]) implies that (27), and hence also
[0, 1) \ Ω(σ), has zero Lebesgue measure.

Before turning to the proof of Theorem 7.1, we comment on the existence of irrationals
σ described in that theorem. To construct explicit examples of such σ, we first recall
that the continued fraction expansion of σ = [0; a1, a2, . . . ] ∈ (0, 1) satisfies the recursion
relations (see e.g. [10]):

pn = anpn−1 + pn−2 , (28)

qn = anqn−1 + qn−2 , for all n ∈ N , (29)

with initial conditions

p0 = 0 , p−1 = 1 ,

q0 = 1 , p−1 = 0 . (30)

Suppose that (an) is a sequence in (2N− 1). Using induction, the recursion relations
(28)-(29) together with the initial conditions (30) imply that

pn =

{
odd , if n ≡ 1, 2 mod 3 ,

even if n ≡ 0 mod 3 ,
(31)

and

qn =

{
odd , if n ≡ 0, 1 mod 3 ,

even , if n ≡ 2 mod 3 .
(32)

The conditions of Theorem 7.1 are thus satisfied for (n ≡ 1 mod 3), specifically by letting

nm = 3(2m− 1) + 1 , m ∈ N . (33)

In summary, we have shown that all irrationals σ = [0; a1, a2, . . . ] ∈ (0, 1) for which the
sequence of elements (an) has odd parity satisfy the hypotheses of Theorem 7.1.

Proof of Theorem 7.1. Let σ ∈ (0, 1). Observe that since both conditions (a) and (b)
are assumed to only hold along some subsequence (nm)m∈N of 2N, possibly passing to a
sub-subsequence one may replace hypothesis (a) with

lim
m→∞

anm = ∞ . (34)

11
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Fix an initial condition x0 ∈ Ω(σ), where Ω(σ) is described in (25); in particular, there
exists a Q ∈ N such that

{x0qnm} < 1− 1

Q
, for infinitely many m ∈ N . (35)

Again, possibly passing to an appropriate subsequence, we may simply assume that

{x0qnm} < 1− 1

Q
, for all m ∈ N . (36)

We recall two useful properties of continued fractions (see e.g. [10]): For all n ∈ N, one
has

|σn − σ| < 1

qnqn+1
; (37)

morevoer, since by hypothesis nm ∈ 2N, one has

σnm < σ , for all m ∈ N . (38)

Now fix m ∈ N, and let

j(Q)
m := ⌊anm+1

Q
⌋qnm . (39)

Then, for 1 ≤ j < j
(Q)
m , using (37), (39), and the recursion relation in (29), we make

the estimate

|x(σ)j − x
(σnm )
j | < j(Q)

m |σ − σm| ≤ 1

Qqnm

. (40)

Moreover, notice that the representation of the elements of the rational auxiliary
trajectory in (19)-(20) implies

x
(σnm )
j =

(
x0 mod

1

qnm

)
+

kj,nm

qnm

=
{x0qnm}

qnm

+
kj,nm

qnm

<
1− 1

Q

qnm

+
kj,nm

qnm

(41)

≤
1− 1

Q

qnm

+
qnm − 1

qnm

≤ 1− 1

Qqnm

, for 0 ≤ j ≤ qnm − 1 . (42)

Thus, for 0 ≤ j < j
(Q)
m , we conclude from (40) and (42) that

x
(σ)
j =

j(σ − σnm)︸ ︷︷ ︸
< 1

Qqnm

+ x
(σnm )
j︸ ︷︷ ︸

≤1− 1
Qqnm

 mod 1

= j(σ − σnm) + x
(σnm )
j ,

whence

x
(σ)
j < x

(σnm )
j +

1

Qqnm

, 0 ≤ j < j(Q)
m , (43)

x
(σ)
j ≥ x

(σnm )
j + (σ − σnm) , 1 ≤ j < j(Q)

m . (44)

12
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Let us now prove that

f
(σ, σ)
j = f

(σnm , σnm )
j , for 0 ≤ j < j(Q)

m . (45)

Using (43), one has for j < j
(Q)
m

f
(σnm , σnm )
j = +1 ⇔ x

(σnm )
j < σnm and kj,nm ≤ pnm − 1

⇒ x
(σnm )
j + 1

Qqnm

(41)

≤ σnm

(43)⇒ x
(σ)
j ≤ σnm

(38)
< σ

⇒ f
(σ, σ)
j = +1 .

(46)

Similarly, for 1 ≤ j < j
(Q)
m , (44) yields that

f
(σnm , σnm )
j = −1 ⇔ x

(σnm )
j ≥ σnm

⇔ x
(σnm )
j + (σ − σnm) ≥ σ

(44)⇒ x
(σ)
j ≥ σ

⇔ f
(σ, σ)
j = −1 .

(47)

Finally, since x
(σnm )
0 = x

(σ)
0 = x0,

f
(σnm , σnm )
j

j=0
= f

(σ, σ)
j . (48)

In summary, (46), (47), and (48) validate (45).

Therefore, for j < j
(Q)
m , any conclusion about the auxiliary sequence f

(σnm , σnm )
j will be

valid for the sequence f
(σ, σ)
j . By the definition of the increments ϵ

(α, β)
j in (6), (45) implies

ϵ
(σ, σ)
j = ϵ

(σnm , σnm )
j , for 0 ≤ j < j(Q)

m . (49)

Finally, since the counter S
(α, β)
j is only sensitive to the values of ϵ

(α, β)
j′ for j′ : 0 ≤ j′ ≤ j−1

(see (8)), we obtain

S
(σ, σ)
j = S

(σnm , σnm )
j , for j ≤ j(Q)

m . (50)

In particular, the property (15) will be valid for S
(σ, σ)
Nqnm

, with N = ⌊anm+1/Q⌋. To see

this, we combine (50), condition (b) of Theorem 7.1, and Proposition 6.1 to get∣∣∣∣S(σ, σ)

j
(Q)
m

∣∣∣∣ = ∣∣∣∣S(σnm , σnm )

j
(Q)
m

∣∣∣∣ = ∣∣∣∣S(σnm , σnm )

⌊anm+1
Q

⌋qnm

∣∣∣∣ = ⌊anm+1

Q
⌋
∣∣∣S(σnm , σnm )

qnm

∣∣∣ ≥ 2⌊anm+1

Q
⌋ . (51)

By hypothesis (a) of Theorem 7.1, this implies the claim in (24).

What follows from the Theorem 7.1, is that overall, the sequence S
(σ, σ)
j is unbounded,

in a seeming contradiction to the observation [1].

Remark 7.3. Inequality (51) implies, using (39) and the properties of continued fractions

[10], that the growth along the subsequence j
(Q)
m is at least logarithmic. Note that the

subsequence itself is at least exponentially sparse. However, choosing a very fast growing

sequence anm+1 one can also ensure any faster sublinear growth rate along j
(Q)
m , although

it will come at the expense of making the subsequence of growth even sparser.

We mention that it remains an open question whether the condition on the rotations σ
in Theorem 7.1, or the respective condition on the initial conditions in (25), are indeed
necessary. In particular, an interesting question for future research may be to examine the
case of σ of bounded type (e.g. take σ equal to the golden mean), which however requires
development of a different proof strategy.

13
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8 Conclusions: implications of our results on irrational rota-
tions for the Wang-Casati-Prosen counter in a 45◦:45◦:90◦

billiard

The result of Theorem 3.1 suggests that the counter Ki (see (1)) of [1] shows absence of
localization of the counter, for a 45◦: 45◦: 90◦ billiards, at least for one particular initial
condition, and, if proven, for all rational initial conditions. It seems unlikely localization
can reemerge in the generic α̃/2:(90◦ − α̃/2) :90◦ case of [1]. Numerical results of [1] do
however suggest localization. A potential resolution for this contradiction can be offered
by a probable very slow growth of the counter. In what follows, we will provide an explicit
example that confirms this slowness.

1 1000 106 109
0

5

10

15

20

25

30

# RCLC or LRC or RLC events, j

|S
j|

Figure 3: Counter Sj as a function of “time” j. We show 200 randomly chosen
instances. In addition, we show Sj at jm=0, 1, 2 (see (39) for Q = 1 and x0 = 0), along
with the lower bound (51). Blue, green, and orange dots correspond to m = 0, 1, 2,
respectively.

Consider

σ = [0; 2, 3, . . . , n+ 1, . . .] (52)

≈ 0.433127 .

Using the recurrence relations (28)-(29) with the initial conditions (30) one can easily show
that the subsequence of the rational approximants with

nm = 4m+ 2

will satisfy all conditions of Theorem 7.1. Thus, for x0 = 0, the proof of Theorem 7.1 (use
(39) with Q = 1) shows that Sjm is unbounded for

jm = a4m+3 q4m+2

14



SciPost Physics 8 CONCLUSIONS: IMPLICATIONS OF OUR RESULTS . . .

The first three temporal instances showing a provable growth are

m = 0 1 2 . . .
j = 28 55688 695991252 . . .
Sj = +8 +16 +24 . . .

|Sj | ≥ 2 a4m+3 = 8 16 24 . . .

(see Fig. 3). The last line gives the lower bound (51). Notice that |Sj | stays at its lowest
value allowed, something that we can neither prove nor disprove at the moment.

100 104 106 108
0

5

10

15

20

25

30

# L or R or C events, i

|K
i|

Figure 4: Counter Ki of [1] as a function of “time” i. In terms of [1], the rest is the
same as in Fig. 3

The growth of the counter, while present, appears to be slow. We suggest the following
order of magnitude estimate for the growth of the counter. From (29), we get

ln(qn) ∼ ln(an!) ≈ an ln(an) ⇒ ln(an) ∼
ln(qn)

ln(ln(qn))
⇒ Sj ≳ 2

ln(j)

ln(ln(j))− 1
.

The corresponding values of the “physical” counter in question, from Ref. [1], can also
be computed (see Fig. 4).:

m = 0 1 2 . . .
i = 96 191184 2389426656 . . .
Ki = −8 −16 −24 . . .

|Ki| ≥ 2 a4m+3 = 8 16 24 . . .

.

Recall that Sj = (−1)i(j)+1Ki(j). Also, i(j) can be estimated as

i(j) ≈ (σ × 4 + (1− σ)× 3)× j ≈ 3.43313× j ,

producing j = 96.1, 191184.0, 2389426656.0, . . . in the second line above. The estimate is
using (a) the ergodicity of the irrational rotations, leading to Prob (x ∈ II ≡ [0, σ[ ) = σ
and Prob (x ∈ III ≡ [σ, 1[ ) = 1 − σ and (b) the fact that x ∈ II corresponds to a four-
physical-events RCLC fragment, while x ∈ III corresponds to either LRC or RLC three-
physical-events fragments.
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