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We study the persistent current in a system of SU(N) fermions with repulsive interaction, confined in a ring-
shaped potential and pierced by an effective magnetic flux. Several surprising effects emerge. As a combined
result of spin correlations, (effective) magnetic flux and interaction, spinons can be created in the ground state
such that the elementary flux quantum can change its nature. The persistent current landscape is affected dra-
matically by these changes. In particular, it displays a universal behaviour. Despite its mesoscopic character,
the persistent current is able to detect a quantum phase transition (from metallic to Mott phases). Most of, if
not all, our results could be experimentally probed within the state-of-the-art quantum technology, with neutral
matter-wave circuits providing a particularly relevant platform for our work.

Quantum technology intertwines basic research in quantum
physics and technology to an unprecedented degree: differ-
ent quantum systems, manipulated and controlled from the
macroscopic spatial scale down to individual or atomic level,
can be platforms for quantum devices and simulators with re-
fined capabilities; on the other hand, the acquired technology
prompts new studies of fundamental aspects of quantum sci-
ence with an enhanced precision and sensitivity. Amongst
the various quantum systems relevant for quantum technolo-
gies, ultracold atomic systems play an important role due to
their excellent coherent properties and enhanced control and
flexibility of the operating conditions [1]. Atomtronics is an
emerging research area in quantum technology exploiting cold
atoms matter-wave circuits with a variety of different architec-
tures [2]. Being characterized by distinctive physical princi-
ples, atomic circuits can define a quantum technology with
specific features. In particular, one of the peculiar knobs that
can be exploited in atomtronics is the statistics of the particles
forming the quantum fluid flowing in the circuit. Most of the
studies carried out so far have been devoted to atomtronic cir-
cuits of ultracold bosons, whilst ones comprised of interacting
ultracold fermions require extensive investigations.

In this paper, we focus on quantum fluids comprising of
interacting multicomponent spin SU(N) fermions. Strongly
interacting fermions with N spin components, as provided
by alkaline-earth and ytterbium cold atomic gases, are highly
non-trivial multicomponent quantum systems. Such systems
extend beyond the physics of interacting spin- 1

2 electrons
found in condensed matter systems [3, 4]. They are very rel-
evant both for high-precision measurement [5–7] and to en-
large the scope of cold atoms quantum simulators of many-
body systems [8–11]. Additionally, atom-atom interactions
can be made independent on the nuclear spin. This feature ef-
fectively enlarges the symmetry of the systems to the SU(N)
one. Such a feature makes cold alkaline-earth atoms, espe-
cially with lattice confinements, an ideal platform to study ex-
otic quantum matter, including higher spin magnetism, spin

liquids and topological matter [4, 13, 14] and, beyond con-
densed matter physics, in QCD [15].

Here, we consider Np SU(N) fermions with repulsive in-
teraction, trapped in a ring-shaped circuit of mesoscopic size
L and pierced by an effective magnetic field. We study the
persistent current response to this applied field.

Different regimes depending on the filling fraction ν =

Np/L are explored. i) For incommensurate ν, the persistent
current is non-vanishing for any value of the interaction. Mon-
itoring the numerical results for the spectrum of the system
with the exact Bethe ansatz analysis [1], we find that as the
effective magnetic flux increases, spinon excitations can be
created in the ground state. Such a remarkable phenomenon
occurs as a specific ‘screening’ of the external flux, which be-
ing continuously adjustable quantity, can be compensated by
spinons excitations (quantized in nature) only partially. This
in turn results in an imbalance and causes the persistent cur-
rent to display characteristic oscillations with a period of 1/Np

shorter than the bare flux quantum. For two-spin component
fermions in the large interaction regime, such a phenomenon
was studied in [5, 6]. We shall see that such a process de-
pends on Np, number of spin components and interaction in
a non-trivial way. ii) In contrast with the SU(2) case [19],
SU(N) fermions with N > 2 undergo a Mott quantum phase
transition for a finite value of interaction U = Uc at integer
fillings. Accordingly, a metallic behaviour crosses over to a
regime in which the current is exponentially suppressed. This
regime is also monitored by Bethe ansatz [3] and corroborated
by exact diagonalization and Density Matrix Renormalization
Group (DMRG) [21]. We shall see that, despite the persis-
tent current being mesoscopic in nature, the onset of the Mott
transition is marked by a clear finite size scaling. The onset
to the gapped phase progressively hinders the spinon creation
phenomenon.

Methods – A system of Np SU(N) fermions residing in a
ring-shaped lattice composed of L sites threaded with a mag-
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netic flux φ can be modeled using the Hubbard model [4]

HSU(N) = −t
L∑

j=1

N∑
α=1

(
eı

2πφ
L c†α, jcα, j+1 + h.c.

)
+

U
2

∑
j

n j(n j − 1)

(1)
where c†α, j (cα, j) creates (annihilates) a fermion with colour

α, n j =
∑
α c†α, jcα, j is the local particle number operator for

site j. The parameters t and U > 0 account for the hopping
strength and on-site repulsive interaction respectively. The ef-
fective magnetic field is realized through Peierls substitution
t → teı

2πφ
L . For N = 2, the Hubbard model describing spin- 1

2
fermions is obtained. In this case, the Hamiltonian (1) is in-
tegrable by Bethe Ansatz (BA) for any U/t and ν [19]. For
N > 2, the BA integrability is preserved in the continuous
limit of vanishing lattice spacing, (1) turning into the Gaudin-
Yang-Sutherland model describing SU(N) fermions with delta
interaction [1, 2]; such a regime is achieved by (1) in the dilute
limit of small ν. Another integrable regime of (1) is obtained
for n j = 1∀ j and large repulsive values of U � t for which
the system is governed by the Lai-Sutherland model [3, 4].
The BA eigenstates are customarily labeled by a certain set of
quantum numbers Ia, a = 1 . . .Np and Jβ j , j = 1 . . .N −1. At
zero flux φ, the ground state is characterized by consecutive
quantum numbers {Ia, Jβ}. Instead, configurations of quantum
numbers with ‘holes’ correspond to excitations; in particular
holes in {Jβ} characterize the so-called spinon excitations [23].
For SU(N) fermions, there can be N − 1 different types of
such spinon states [24, 25]. For non-vanishing φ, we shall see
the quantum numbers configurations {Ia, Jβ} can change. For
intermediate interactions and intermediate fillings, the model
(1) is not integrable and approximated methods are needed to
access its spectrum. Indeed, Hubbard models for SU(2) and
SU(N) fermions enjoy very different physics. For incommen-
surate fillings, a metallic behaviour is found with character-
istic oscillations of the spin-spin and charge correlation func-
tions that, for N > 2 can be coupled to each other. At integer
ν, fermions may be in a Mott phase. Such phase is suppressed
only exponentially for N = 2 [19]; in striking contrast, for
N > 2 the system displays a Mott transition for a finite value
of U/t [4, 26].

At mesoscopic size, the properties discussed above are dis-
played as specific traits. In this regime, even though the appli-
cation of the magnetic flux does not change the nature of the
possible excitations, we shall see that the latter may be indeed
promoted to ground states. Our diagnostic tool is the persis-
tent current. At zero temperature, the persistent current of the
system is given by I(φ) = −

∂E0
∂φ

where E0 is the ground state
energy. For a quantum system in a ring, the angular momen-
tum is quantized (see [27, 28] for recent experiments). Ac-
cordingly, I(φ) displays a characteristic sawtooth behaviour,
with a periodicity that Leggett proved to be fixed by the effec-
tive flux quantum φ0 of the system [9–11]. Furthermore, the
persistent current is parity dependent: for systems with even
(odd) number of spinless particles, the energy is decreased (in-
creased) by the application of the external flux; therefore, the

persistent current displays a paramagnetic (diamagnetic) be-
haviour. Leggett predictions are independent of disorder. We
found that specific parity effects also hold for SU(N) systems
(see Supplementary material).

FIG. 1. Persistent current I(φ) at incommensurate filling for SU(3)
fermions with different interaction strengths U in the dilute fill-
ing regime of the Hubbard model. The exact diagonalization L =

30,Np = 3 is monitored with the BA of the Sutherland-Gaudin-Yang
model. The red, black and green dots in the main figure depict the
Bethe ansatz results for the persistent current for U = 0.1, 1.0 and
10,000 respectively. These dots are meant to be a guide to the eye, to
aid in perceiving the fractionalization of the persistent current with
increasing interaction Insets show how the BA energies need to be
characterized by X , 0, to be the actual ground state. At U = 0,
the ground state energy is a periodic sequence of parabolas meeting
at degeneracy points φd (φd = 1/2 for the case in this figure). The
values of the flux at which spinons are created φs have been included
as an example in the top inset, which for an interaction U = 1, range
from 0.37 to 0.63.

In our approach, we combine exact diagonalization or
DMRG analysis with, whenever possible, BA results. Specif-
ically: in the integrable regimes of dilute systems (described
by Gaudin-Yang-Sutherland model) and half-filling & large
interactions (captured by the Sutherland model), the BA re-
sults (through the Bethe quantum numbers introduced above)
are exploited as bookkeeping to monitor the eigenstates pro-
vided by the numerical results. This way, the nature and phys-
ical content of the system’s ground state can be established
as functions of the parameters. We shall see that the actual
lowest energy of the system can only be obtained with Bethe
quantum numbers corresponding to spinon excitations. In the
non-integrable regimes, we rely on numerical analysis. Here,
only systems with singlet states for which the total magnetiza-
tion S z = 0 are considered. In the following, the energy scale
is given by t = 1.

Persistent current of SU(N) fermions at incommensurate
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FIG. 2. Figures of merit for spinon creation in the ground state of SU(N) fermions. We consider the minimum value of U required for spinons
to be created in the ground state for a given value of φ; all the values of φ where a spinon is created are recorded. The displayed curves are
calculated by monitoring all the distances |φs − φd | at which the state with no spinons crosses states with any spinon states, where φs is the flux
at which spinons are created and φd is the degeneracy point (see Fig. 1). a) Spinon creation flux distance |φs − φd | against interaction U. Top
inset contains the data in the intermediate U regime. Bottom inset depicts the spinon creation flux distance against the interaction, rescaled
by N and Np respectively, in the limit of low UNp. b) Spinon creation flux distance |φs − φd | against interaction per particle U/Np. Bottom
(top) inset contains in the low (intermediate) U/Np regime. The discontinuities observed in the intermediate U/Np regime when Np/N > 1,
are more pronounced for larger values of Np/N for a system with the same Np but different N. All the presented results are obtained by BA
of Gaudin-Yang-Sutherland model for L = 40, with Np = 1(circles), 2(squares), 3(crosses) per spin component, with N = 2, 3, 4, 5. Thus, the
dilute limit of the Hubbard model (1) is covered.

fillings – Our analysis begins in the low ν regimes (contin-
uous limit) wherein we can rely on exact results based on
the Gaudin-Yang-Sutherland model BA. The numerical anal-
ysis shows that, by increasing φ, specific energy level cross-
ings occur in the ground state of the system. The BA anal-
ysis (see Supplemental material) allows us to recognize such
level crossings as ground state transitions between no-spinon
states and spinon states. Specific 1/Np periodic oscillations
occur in the ground state energy as φ is varied; therefore, a
curve with Np cusps/parabolic-wise segments per flux quan-
tum emerges. Such a feature was evidenced for two-spin com-
ponent fermions in the large interaction regime [5, 6]. Here,
we find that spinon creation defines a phenomenon occurring
for any value of U; additionally, we shall see that the spinon
creation mechanism displays a non-trivial dependence on the
number of spin components N. Indeed, the different N − 1
spinon configurations are found to play a relevant role for the
phenomenon. The quantity X =

∑N−1
j

∑
β j

Jβ j can be exploited
to characterize the properties of the specific spinon excitations
that are created in the ground state.

Specifically, for small and intermediate U, while the sys-
tem’s ground state with no spinons is found to be non-
degenerate, the one with spinons can be made of degenerate
multiplets corresponding to Bethe states with distinct config-
urations of the quantum numbers Jβ j (see inset of Fig. 1). By
further increasing U, the spinon states organize themselves in

multiplets of increasing degeneracy on a wider interval of the
flux. At large but finite U, the exact BA analysis shows that
the spectrum can be reproduced by a suitable continuous limit
of a SU(N) t − Je f f model with Je f f = 4E∞/(UL), where E∞
is the energy of the Gaudin-Yang-Sutherland model at infinite
interaction (see Supplementary material). We remark that the
specific features of the SU(N) fermions enter the entire energy
spectrum of the system through the SU(N) quantum numbers
{Ia, Jβ j }. In the limit of infinite U, the persistent current is an-
alytically obtained as (derivations in Supplementary material)

I(φ) = −2
(2π

L

)2 Np∑
a

[
Ia +

X
Np

+ φ
]

(2)

Equation (2) shows that, in this regime, the persistent current
displays 1/Np reduced periodicity; such a phenomenon is ob-
served for UL/Np � 1, for any number of spin components
N. Therefore, in this regime, the bare flux quantum of the sys-
tem is evenly shared among all the particles. We note that,
in the infinite U regime, the ground state reaches the highest
degeneracy (see inset of Fig.1).

As a global view of spinon creation in the ground state, we
monitor, for different values of U, N, and Np, the values of
the flux φs at which the ground state energy in the system is
no longer given by a state with no spinons – Fig 2. At mod-
erate U, spinon production is found to be a universal func-
tion of the Np/N– see lower inset of Fig. 2a; for systems with
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lower Np, spinons are generated at a lower value of interac-
tion. For large U, spinon production is dictated by Np, with a
fine structure that is determined by N: Systems with higher Np

produce spinons at a lower value of U; for fixed Np, systems
with the lower value of Np/N generate spinons at a lower U.
Such a phenomenon depends on the specific degeneracies of
the system discussed previously, that facilitate spinon creation
by increasing N. This feature emerges also by analysing the
dependence of the phenomenon on the interaction per parti-
cle U/Np – Fig. 2b. We observe that N enhances the spinon
production – see lower inset of Fig. 2b. While the number of
spinons decreases with Np for N = 2, such a trend appears to
be reversed for N > 2. For intermediate values of U, disconti-
nuities arise in the curves in cases where Np/N > 1 (Fig. 2b).
These discontinuities correspond to jumps ∆X in the spinon
character X. By comparing systems with the same Np but dif-
ferent N, we note that the discontinuities tend to be smoothed
out by increasing N and L (see Supplementary material). The
value of ∆X results to be parity dependent.

Commensurate fillings regime – At integer filling fractions
ν = 1, the system enters a Mott phase for U > Uc (thermo-
dynamic limit). In this phase, a spectral gap opens. For small
U, the current is a nearly perfect sawtooth. For our meso-
scopic system, we observe that I(φ) is smoothed out, indicat-
ing the onset of the Mott phase transition by increasing U (see
Fig. 3a). Such a behavior is found to hold for all N. The gap
indicating the onset of the Mott phase transition is studied in
Fig. 3c (see Supplementary material). For N = 2 such gap
opens at U = 0; for N > 2 the spectral gap opens at a fi-
nite value of U. Both the current amplitude Imax = maxφ(I)
and ∆Emin are suppressed exponentially for large U – Fig. 3b
and Fig. 3c. ∆Emin is around the same specific value U for
larger system sizes (L ≥ 8), which depends on N (U ≈ 2 for
N = 3, U ≈ 3 for N = 4). We carry out a finite size scaling
analysis [32] of the current I for values of U around the Mott
instability. In Fig. 4a, the persistent currents display a cross-
ing point at a particular value U∗ ≈ 2.9 (see also [33–36]); a
clear data collapse is obtained in Fig. 4b.

The onset to a gapped phase affects the spinon creation pro-
cess substantially. For N = 2 (U∗ = 0), spinon states have
energies larger than the ground state energy for any value of
U. In contrast for N > 2, spinons can be created for U < U∗

(see inset of Fig. 3a); for U > U∗ spinon energies result to
be well separated from the ground state energy. We note that
the Lai-Sutherland BA results can reproduce the qualitative
features of the low lying states of the model even for interme-
diate U obtained by numerics; as expected, for large U, BA
and numerics match exactly (see Supplementary material).

Conclusions– In this work, the coherence of a quantum gas
of SU(N) interacting fermions as quantified by the persistent
current, is studied. The analysis is carried out both for incom-
mensurate and commensurate filling ν regimes. We highlight
the nature of the ground state of the system by corroborat-
ing the numerical analysis (exact diagonalization and DMRG)
with Bethe ansatz, which allows the access to the specific
physical nature of the system’s states. For both incommen-

FIG. 3. SU(N) persistent current I(φ) at integer filling. a) I(φ) for
N = 3, L = 9 against flux φ. Insets display BA results of the
Sutherland-Lai model for different spinon configurations X for N = 3
and Np = L = 6 compared with exact diagonalization. The ground
state energy at small φ can only be reached with spinon Bethe quan-
tum numbers configuration. b) Maximal current Imax = maxφ(I) for
N = 3 (lower curves) and N = 4 (upper curves, shifted by factor 20)
plotted against U c) Minimal energy gap Emin against U for N = 3
(lower curves) and N = 4 (upper curves, shifted by 0.3). All curves
with L > 9 were calculated with DMRG.
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FIG. 4. Finite size scaling of the persistent current for N = 3. a)
Finite size critical crossing of Imax at U∗ = 2.9 b) Data collapse.
L = 6, 9 were calculated with exact diagonalization; larger L were
obtained with DMRG. The critical indices are η ≈ 0.2 and ζ ≈ 0.7

surate and commensurate ν, the ground state can have spinon
nature. Such a remarkable phenomenon implies that the spin
correlations can lead to a re-definition of the system’s effec-
tive flux quantum and, for incommensurate ν cases, yields the
1/Np fractional periodicity for the persistent current observed
at large U (see insets of Fig.1). The reduction of the effective
flux quantum indicates that a form of ’attraction from repul-
sion’ can occur in the system. Despite the similarities, such
a phenomenon follows a very different route from the flux
quantum fractionalization occurring for electrons with pair-
ing force interaction (that could compared to our study for
N = 2 only) [9, 11] and for bosons with attractive interaction
(occurring as consequence of quantum bright solitons forma-
tion) [37, 38]: For SU(N) fermions the persistent current and
the aforementioned redefinition of the flux quantum reflects the
coupling between the spin and matter degrees of freedom.

The ground state spinon creation displays a marked depen-
dence on the number of spin components N with distinctions
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between the N = 2 and N > 2 cases (see Fig. 2). At mod-
erate U, spinon production is found to be a universal func-
tion of Np/N – see lower inset of Fig. 2a. For integer ν,
spinon creation is suppressed by increasing U. The sawtooth
shape of the current is smoothed out (see Fig. 3). This fea-
ture arises since the Mott gap hinders both the motion of the
particles and the creation of spinons in the ground state. Re-
markably, a clear finite size scaling behaviour is observed for
N > 2, albeit the persistent current is a mesoscopic quan-
tity (see Fig. 4). Such a result provides an operative route for
the detection of the Mott phase transition in SU(N) systems, a
notoriously challenging problem in the field.

We believe that systems in physical conditions and param-
eter ranges as discussed here, can be realized experimentally
on several physical platforms, including cold atom quantum
technology [3, 4, 39, 40] with the twist provided by atomtron-
ics [2]. The momentum distribution through the time of flight
expansion of cold atom systems has been demonstrated to pro-
vide a precise probe for persistent currents [2]. In particular,
here we mention that it was previously demonstrated how the
flux fractionalization could allow to approach the Heisenberg
quantum limit for rotation sensing [38]. Our study indicates
how SU(N) systems can provide the platform for high preci-
sion sensors.
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Supplementary material
Persistent Current of SU(N) Fermions.

In the following sections, we provide supporting details of the theory discussed in the main manuscript.

The derivation of the persistent current for SU(N) fermions is sketched out in the limit of infinite interaction U. The analytics
are carried out for the two integrable limits of the Hubbard model: incommensurate low filling fractions and integer fillings. A
specific analysis is devoted to the energy and consequently the persistent current at large but finite U. The persistent current
undergoes a non-trivial change of the bare flux quantum. This feature occurs because of the presence of spinons in the ground
state of the system. Spinons of different types correspond to specific Bethe quantum numbers configurations. The Bethe quantum
number configurations needed for the given value of X are provided. We then proceed to discuss |φs − φd | providing the figure of
merit for the generation of spinons. Spinon generation is inhibited for commensurate fillings due to a spectral gap that opens up
for a finite value of U. Lastly, the parity effect for incommensurate systems is considered.

Derivation of the Persistent Current in the limit of infinite U for SU(N) Fermions

The derivation of the persistent current for SU(N) fermions in the limit of infinite interaction U, is sketched out for the two
integrable limits of the SU(N) Hubbard model.
A system of interacting fermions with SU(N) spin symmetry residing on a chain of length L threaded by an effective magnetic
flux φ, is described by the Gaudin-Yang-Sutherland model [1, 2],

H = −

N∑
m=1

Nm∑
i=1

(
− ı

∂

∂xi,m
−

2π
L
φ
)2

+ 4U
∑

i< j,m,n

δ(xi,m − x j,n) (3)

where Np is the number of electrons with colour α of SU(N) symmetry with m = 1, . . .N. The model is integrable by Bethe
ansatz and is given by the following set of equations.

eı(k jL−φ) =

M1∏
α=1

4
(
k j − λ

(1)
α

)
+ ıU

4
(
k j − λ

(1)
α

)
− ıU

j = 1, . . . ,Np (4)

Mr∏
β,α

2
(
λ(r)
α − λ

(r)
β

)
+ ıU

2
(
λ(r)
α − λ

(r)
β

)
− ıU

=

Mr−1∏
β=1

4
(
λ(r)
α − λ

(r−1)
β

)
+ ıU

4
(
λ(r)
α − λ

(r−1)
β

)
− ıU

·

Mr+1∏
β=1

4
(
λ(r)
α − λ

(r+1)
β

)
+ ıU

4
(
λ(r)
α − λ

(r+1)
β

)
− ıU

α = 1, . . . ,Mr (5)

for r = 1, . . . ,N − 1 where M0 = Np, MN = 0 and λ(0)
β = kβ. Np denotes the number of particles, Mr corresponds to the colour

with k j and λ(r)
α being the charge and spin momenta respectively. The energy corresponding to the state for every solution of

these equations is E =
Np∑
j

k2
j .

Taking the SU(3) case as an example, one obtains a set consisting of three non-linear equations

eık jL =

M1∏
α=1

4(k j − λ
(1)
α ) + ıU

4(k j − λ
(1)
α ) − ıU

(6)

M1∏
β,α

2(λ(1)
α − λ

(1)
β ) + ıU

2(λ(1)
α − λ

(1)
β ) − ıU

=

M0=Np∏
β=1

4(λ(1)
α − kβ) + ıU

4(λ(1)
α − kβ) − ıU

M2∏
β=1

4(λ(1)
α − λ

(2)
β ) + ıU

4(λ(1)
α − λ

(2)
β ) − ıU

(7)

M2∏
β,α

2(λ(2)
α − λ

(2)
β ) + ıU

2(λ(2)
α − λ

(2)
β ) − ıU

=

M1∏
β=1

4(λ(2)
α − λ

(1)
β ) + ıU

4(λ(2)
α − λ

(1)
β ) − ıU

(8)
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which can be re-written in logarithmic form as

k jL + 2
M1∑
α=1

arctan
(

4(k j − λ
(1)
α )

U

)
= 2π(I j + φ) j = 1, . . . ,Np (9)

2
Np∑
β=1

arctan
(

4(λ(1)
α − kβ)
U

)
+ 2

M2∑
a=1

arctan
(

4(λ(1)
α − la)
U

)
− 2

M1∑
β=1

arctan
(2(λ(1)

α − λ
(1)
β )

U

)
= 2πJα α = 1, . . . ,M1 (10)

2
M1∑
β=1

arctan
(4(la − λ

(1)
β )

U

)
− 2

M2∑
b=1

arctan
(

2(la − lb)
U

)
= 2πLa a = 1, . . . ,M2 (11)

where λ(2)
β was changed to la for the sake of convenience with I j, Jα and La being the Bethe quantum numbers, the first be-

ing associated with charge momenta and the other two for spin momenta. Carrying out a summation over α and over a for
Equations (10) and (11) respectively,

2
M1∑
α=1

Np∑
β=1

arctan
(

4(λ(1)
α − kβ)
U

)
+ 2

M1∑
α=1

M2∑
a=1

arctan
(

4(λ(1)
α − la)
U

)
− 2

M1∑
α=1

M1∑
β=1

arctan
(2(λ(1)

α − λ
(1)
β )

U

)
= 2π

M1∑
α=1

Jα (12)

2
M2∑
a=1

M1∑
β=1

arctan
(4(la − λ

(1)
β )

U

)
− 2

M2∑
a=1

M2∑
b=1

arctan
(

2(la − lb)
U

)
= 2π

M2∑
a=1

La (13)

and noting that the last term on the left hand side in both of the above equations goes to zero, leads one to the following
expression

2
M1∑
α=1

Np∑
β=1

arctan
(

4(λ(1)
α − kβ)
U

)
= 2π

( M1∑
α=1

Jα +

M2∑
a=1

La

)
(14)

In the limit U
Np
→ ∞, the k j terms can be neglected since they are significantly smaller in magnitude compared to the spin

momenta. Consequently,

2
M1∑
α=1

Np∑
β=1

arctan
(

4λ(1)
α

U

)
= 2π

( M1∑
α=1

Jα +

M1∑
a=1

La

)
=⇒ 2

M1∑
α=1

arctan
(

4λ(1)
α

U

)
=

2π
Np

( M1∑
α=1

Jα +

M1∑
a=1

La

)
(15)

which upon substitution in Equation (9) yields

k jL = 2π
[
I j +

1
Np

( M1∑
α=1

Jα +

M2∑
a=1

La

)
+ φ

]
(16)

Squaring the above expression,

k2
j =

(2π
L

)2[
I2

j + 2I j

(
X
Np

+ φ

)
+

(
X
Np

)2

+ 2φ
X
Np

+ φ2
]

(17)

the ground state energy of the system is given by

E0 =

Np∑
j

k2
j =

(2π
L

)2[ Np∑
j

I2
j + 2

Np∑
j

I j

(
X
Np

+ φ

)
+

( X
Np

)2
+ Np

(
2φ

X
Np

+ φ2
)]

(18)

assuming the I j quantum numbers are a consecutive integer/half-integer set, where X =

(
M1∑
α=1

Jα +
M2∑
a=1

La

)
. At zero temperature

the persistent current of the system is defined as,

I(φ) = −
∂E0

∂φ
(19)
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Therefore, the persistent current in the limit of infinite U turns out to be,

I(φ) = −2
(2π

L

)2 Np∑
j

[
I j +

X
Np

+ φ
]

(20)

In the case of SU(N) fermions, one would still have the same expression for the persistent current. The only difference is that

X =
N−1∑

j

α j∑
Jα j .

The other integrable limit of the SU(N) Hubbard model, is for commensurate filling fractions in the presence of a lattice. The

model is described by the Lai-Sutherland model [3, 4] with the energy of the system being given by E = −2
Np∑
j

cos k j. The Bethe

ansatz equations for this model are similar to the ones outlined in Equations (4) and (5). However, in this case in Equation (4)
there is sin k j instead of k j on the right hand side and for Equation (5) one substitutes λ(0)

β = sin kβ when required. By following
the same procedure one arrives to Equation (16). Substituting this expression in the energy of the system, one arrives to

E0(φ) = −Em cos
[
2π
L

(
D +

X
Np

+ φ

)]
(21)

and in turn the persistent current is of the following form,

I(φ) = −Em

(2π
L

)
sin

[
2π
L

(
D +

X
Np

+ φ

)]
(22)

where Em = 2 sin
( Npπ

L

)
sin

(
π
L

) where D = Imax+Imin
2 , which comes about due to the I j being consecutive for the ground state configuration.

The above expression is a generalization of the ground state energy for SU(2) fermions obtained in [5, 6]. In particular, at
infinite U for the same number of particles the pre-factor Em is the same for SU(N) as it was for SU(2). This in turn implies that
the ground state energy for fermions carrying different SU(N) spin, say SU(2) and SU(3), will coincide if their phase shift is the
same. The same also holds true for expression (18).

CORRECTIONS TO THE INFINITE U LIMIT: DERIVATION OF THE ENERGY SPIN CORRECTION

In this section we generalize the energy spin correction, obtained for SU(2) fermions in [6], for SU(N) fermions. At infinite U
the system is highly degenerate, meaning that there are multiple ways of choosing the spin rapidity Jα distribution [5, 6]. In order
to find out the lowest energy state at finite U when the degeneracy is lifted, leading order 1

U corrections have to be introduced for
the Bethe ansatz equations at infinite U. When U is at infinity, the charge momenta k j are of order unity whilst the spin momenta
λβ are of order U. With this picture in mind, we expand the arctangent function in Equation (9) to leading order in k j

U . Defining
the scaled variables xα as,

xα = lim
U→∞

(2λα
U

)
(23)

through Taylor expansion one finds that,

f (x + h) = arctan(2xα) − 2
k j

U
1

x2
α + 1

4

(24)

Therefore, for large but finite U, the k j have leading 1
U corrections,

δk j = −2
k j

UL

M∑
α

1
x2
α + 1

4

(25)

where the xα has to satisfy the remaining Bethe equations which in the SU(3) case for example are Equations (11) and (12). The
total ground state energy reads,

E =

Np∑
j

(k j + δk j)2 =

Np∑
j=1

(
k2

j + 2k jδk j + (δk j)2
)

(26)
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Therefore, the leading order 1
U correction is given by

+ 2k jδk j = −
4

UL

Np∑
j

k2
j

M∑
α

1
x2
α + 1

4

= Je f f

M∑
α

1
x2
α + 1

4

(27)

In the presence of a lattice, the energy correction is of a similar form

+ 2δk j sin(k j) = Je f f

M∑
α

1
x2
α + 1

4

(28)

but Je f f = − 4
UL

( Np∑
j=1

sin2 k j

)
in this case, whereby k j in Equation (27) was replaced by sin k j. The leading order 1

U correction to

the Bethe ansatz equations for SU(N) fermions has the same expression as the one obtained for SU(2) in [6]. This was to be
expected since Equation (9), which is the primary equation relating the charge and spin rapidities, is the same for all SU(N).

BETHE ANSATZ SPINON CONFIGURATIONS

To obtain the minimum energy for a given value of the flux φ, one requires that the summation over the spin rapidities satisfies
the degeneracy point equation having the form [5, 6]

2w − 1
2Np

≤ φ + D ≤
2w + 1

2Np
where X = −w (29)

with w only being allowed to have integer or half-integer values due to the nature of the spin rapidities.

Consider the case of three fermions with SU(3) spin. There are three sets of quantum numbers: one pertaining to the charge
momenta I j and the other two belonging to the spin momenta denoted as Jα1 and Jα2 . The ground state configuration for such a
system is given as I j = {−1, 0, 1}, Jα1 = {−0.5, 0.5} and Jα2 = {0}. The correction of the spin quantum numbers for all the values
of the flux per Equation (27) is as follows

Magnetic flux Jα1 Jα2 X
0.0 − 0.1 {−0.5, 0.5} {0} 0
0.2 − 0.5 {−1.5, 0.5} {0} −1
0.6 − 0.8 {−0.5, 1.5} {0} +1
0.9 − 1.0 {−0.5, 0.5} {0} 0

TABLE I. Spin quantum number configurations with the flux for Np = 3 with SU(3) spin with M1 = 2 and M2 = 1.

As can be seen from Table (I), in cases where X = 0, the spin quantum number configuration is different from the ground state
one and ‘holes’ are introduced such that the spin quantum number configurations are no longer consecutive, with the I j set
remaining unchanged. There are two notable points worthy of mention. The first is that one could have chosen a different way
to arrange the set of quantum numbers. An alternative arrangement is given by Table (II). The target value X is reached via
a different configuration, which in turn leads to a degenerate state. Such a phenomenon is a characteristic property of SU(N)
systems that is not present for SU(2). As N increases, the number of degenerate states that are present in the system increases
due to the various Bethe quantum number configurations that one can adopt.

Magnetic flux Jα1 Jα2 X
0.0 − 0.1 {−0.5, 0.5} {0} 0
0.2 − 0.5 {−0.5, 0.5} {−1} −1
0.6 − 0.8 {−0.5, 0.5} {+1} +1
0.9 − 1.0 {−0.5, 0.5} {0} 0

TABLE II. Alternative spin quantum number configurations with the flux for Np = 3 with SU(3) spin with M1 = 2 and M2 = 1.

The other point concerns the value of X for φ = 0.6 − 0.8 and φ = 0.9 − 1.0. According to Equation (29), X should be equal to
−2 and −3 respectively. The reason behind this is due to the fact that the degeneracy equation has to be applied within a specific
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flux range that depends on the parity of the system: for a flux in the interval of −0.5 to 0.5 for Np = N(2n + 1) and in the range of
φ = 0.0 to 1.0 in the case of Np = N(2n). The ground state energy of the system is given by a series of parabolas in the absence
of an effective magnetic flux. These parabolas each have a well defined angular momentum l. They intersect at the degneracy
points, which is parity dependent, and are shifted with respect to each other by a Galilean translation [7]. Consequently, when
the magnetic flux piercing the system falls outside the range outlined previously, one needs to change the I j quantum numbers
in order to offset the increase in angular momentum l that one obtains on going to the next energy parabola.

For positive φ one requires that the I j quantum numbers need to all be shifted by one to the left. For example in the case
considered above for φ > 0.5, the I j go from {−1, 0, 1} to {−2,−1, 0} for 0.5 < φ < 1.5. On going to the next parabola, they
would need to be shifted again by one to the left. In the case of negative φ, the shift occurs to the right.

Note that there are other combinations of the quantum numbers, not outlined in Tables I amd II, whose total sum reaches the
target value of X. However, these configurations do not give the lowest value for the energy as the ones mentioned, even though
the value of X is the same. At infinite U, the system is solely dependent on the value of X and not on the arrangement of the
spin quantum number configuration. Consequently, the system is highly degenerate. This is also observed in the SU(2) case.
However, as mentioned in the derivation of the energy correction, the degeneracy is lifted on going to large but finite U and one is
left with only one combination that gives the lowest energy in the case of SU(2) systems. On the other hand, for SU(N) systems
whilst this degeneracy is also lifted, they also benefit from an extra ‘source’ of degeneracy due to the different configurations of
the Bethe quantum numbers as shown in Tables I and II.

SPINON CREATION IN THE GROUNDSTATE SU(N) FERMIONS

The SU(N) Hubbard model is not integrable in all limits, unlike its SU(2) counterpart. The Hamiltonian is integrable by Bethe
ansatz for incommensurate and commensurate filling fractions. In this section, we take a look at spinon creation for SU(N)
fermions in these two regimes.

a)

d)

FIG. 5. Spinon creation in incommensurate SU(N) fermionic systems. The case of N = 3 is considered for Np = 3 fermions residing
on a ring composed of L = 30 sites. The above figures show how the Bethe ansatz energies need to be characterized by spinon quantum
numbers in order to have the actual ground state for various values of the interaction U. All curves are calculated with the Bethe ansatz of the
Gaudin-Yang-Sutherland model and exact diagonalization.
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For a system with incommensurate filling fractions, spinons are created with increasing U as can be observed from Fig. 5. Level
crossings occur between the groundstate with no spinons and levels with spinon character X, with the value of X obtained as
outlined in the previous section. The creation of spinons starts out around the degeneracy point φd (see Fig. 5b), which is parity
dependent. The degeneracy point φd is 0 for Np = N(2n) and 0.5 for Np = N(2n + 1) systems. Comparing Fig. 5a and Fig. 5d,
we observe that the elementary flux quantum φ0 has been renormalized in the latter case and that 1/Np periodicity is achieved,
resulting in Np cusps/parabolic-wise segments that corresponds to 3 in this case.

d)

e)

g) h) i)

FIG. 6. Spinon creation in commensurate SU(N) fermionic systems. The systems taken in consideration are SU(2) with Np = 6 (left column),
SU(3) with Np = 6 (middle column) and SU(4) with Np = 4 (right column). The different Bethe ansatz energies of the Lai-Sutherland
model characterized by different spinon configurations needed to make up the ground state of the system are considered for different values of
interaction with U = 1 (top row), U = 5 (middle row) and U = 100 (last row). All the presented results are obtained with Bethe ansatz of the
Gaudin-Yang-Sutherland model for Np = L. The Bethe ansatz states with no spinons, having two different colours (orange and red), are used
to indicate that the I j quantum numbers are shifted due to being in different energy parabolas. In the case of U = 1, the Bethe ansatz did not
converge for certain values of the flux. This does not have an impact on what we are tryong to discuss here and so they were left out.

In the case of commensurate filling fractions, spinon creation is drastically impacted by a spectral gap that opens around the
transition to the Mott phase (see Fig. 7). The energy gap is determined as the minimal gap for any flux ∆E = minφ(∆E). For
the special case N = 2, the gap opens at U = 0, whereas for any other N it opens at non-zero U indicating the onset to the Mott
phase transition. Indeed if spinon creation in a system with SU(2) fermions (Figs. 6a),d),g)) is compared to systems with SU(3)
(Figs. 6b),e),h)) and SU(4) (Figs. 6c),f),i)) spin components, we note that no spinons are created in the SU(2) case for any value
of U. On the other hand for SU(N) systems, spinon creation is present in the system for values of U below the threshold value of
where the transition happens U∗, which was calculated to be around 2.9. An interesting feature that pops up, is that after passing
U∗, one no longer needs to change the I j quantum numbers on going from one energy parabola to the other, as can be seen by
comparing (Figs. 6c),f)).
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0.0 2.5 5.0 7.5 10.0
U

0.0

0.1

0.2

0.3

E m
in

N = 2
N = 3
N = 4

FIG. 7. SU(N) energy gap at integer filling. Minimal energy gap Emin = minφ(∆E) for different N against U at comparable system sizes (N = 2
and N = 4 with L = 8 and N = 3 with L = 9). All curves were obtained by exact diagonalization.

Due to the specific N−1 types of excitations that are inherently present in SU(N) fermions for N > 2, spinon creation is facilitated
with N. This can be clearly seen from Figs. 8a),b). In the case where Np/N > 1, discontinuities arise in the intermediate U
regime as can be seen from the insets of Figs. 8a),b). The discontinuites arise due to jumps ∆X in the spinon character X and
are absent when Np/N = 1 (inset of Fig. 8a). Additionally, when comparing systems containing the same Np, the discontinuities
tend to smoothen out with increasing N and L. This can be clearly seen from Figs. 8b),c)

a) b) c)

FIG. 8. Comparison of spinon creation in SU(2) fermions and SU(N) fermions. a) Spinon creation flux distance |φs − φd | against interaction
U is considered for a ring of L = 40 sites with Np = 4 fermions with N = 2 and N = 4 spin components, where φs is the flux at which spinons
are created and φd is the degeneracy point. The intermediate U regime (inset) highlights the discontinuity present in the SU(2) case. b) Spinon
creation flux distance against interaction for a ring of L = 40 sites with Np = 6 fermions with N = 2 and N = 3 spin components. The inset
depicts the disconituities for intermediate U in both systems. c) Spinon creation is for a system with Np = 6 particles with N = 3 with various
system sizes, L = 20, L = 30 and L = 40. All the presented results are obtained with Bethe ansatz of the Gaudin-Yang-Sutherland model.
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PARITY EFFECT

Specific parity effects are observed for SU(N) fermions. Both for commensurate and incommensurate fillings, the persistent
current is found diamagnetic (paramagnetic) for ring systems containing Np = (2n + 1)N (Np = (2n)N) fermions, with n being
an integer. The nature of the current can be deduced by looking at the ground state energy of the system, whereby if the system
has a minimum (maximum) at zero flux, then it is diamagnetic (paramagnetic) - Fig. 9. Such phenomena generalize the 4n/4n+2
of spin- 1

2 fermions [8]. Indeed, for both non-integer and integer fillings fractions, we demonstrate how results of Byers-Yang,
Onsager and Leggett on the landscape of the system persistent current can be generalized to SU(N) fermions [9–11].

FIG. 9. Parity effect for SU(N) fermions. Ground state energy E0(φ) is plotted against the flux φ for different N ranging from 3 (circles)
to 5 (diamonds). Since the energy is suppressed (increased) by the effective magnetic field, systems with even (odd) number of particle per
spin component are paramagnetic (diamagnetic). All the presented results are obtained by Bethe ansatz of Gaudin-Yang-Sutherland model for
L = 30, with Np taken to be 1 particle and 2 particles per species for each N corresponding to n = 0, 1 respectively.

The behaviour of this parity effect holds for small and intermediate U but it is washed out at infinite U for incommensurate
fillings or above a finite threshold of interaction for integer fillings. Indeed, the character of the current is diamagnetic, since
the fractionalization of the bare flux quantum causes the ground state energy to always be a minimum at zero flux. In the cases
where the current already had a diamagnetic nature at small values of U, its nature remains unchanged. The washing out of the
persistent current can be clearly observed from Fig. 10 whereby comparison of SU(3) systems with Np = 3 and Np = 6 clearly
show the stark difference in the nature of the current for the latter case between the different regimes of U.
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a) b)

c) d)

e) f)

g)
h)

FIG. 10. SU(N) persistent current and the corresponding ground state energy at incommensurate filling for different interaction strengths U.
a),b) Ground state energy and Persistent current for Np = 3 for U = 0.1. c),d) Ground state energy and persistent current for Np = 3 for
U = 10, 000. e),f) Ground state energy and Persistent current for Np = 6 for U = 0.1. g),h) Ground state energy and persistent current for
Np = 6 for U = 10, 000. All curves are calculated with Bethe ansatz for the Gaudin-Yang-Sutherland model with L = 20.
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