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1 Introduction

The technique of supersymmetric localization allows for exact computations of observ-

ables in quantum field theories with a certain minimum amount of supersymmetry as

pioneered by Pestun [1] (see [2] for reviews).

It was shown in [3] that the partition function on a three-sphere S3 of a three-

dimensional gauge theory with N ≥ 3 supersymmetry reduces to a matrix model via

the localization.

For three-dimensional theories with N = 4 supersymmetry the sphere partition

functions can be decorated by either of two types of half-BPS local operators; the

Coulomb (resp. Higgs) branch operators whose expectation values define the Coulomb

(resp. Higgs) branch. As shown in [4–6], the localization also allows for the evaluation

of these protected correlators as generalized matrix integrals in such a way that a
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collection of the Coulomb or Higgs branch operators localize along a specific great

circle S1 in the S3.

The Ω deformation is very useful in the study of the supersymmetric gauge theories

(See e.g. [7–12]). The protected correlation functions of the Higgs branch operators or

the Coulomb branch operators in 3d N = 4 supersymmetric field theories are encoded

by one-dimensional topological quantum mechanical models [13, 14]. The associated

topological quantum mechanical models arise from certain Ω deformations of the par-

ent three-dimensional N = 4 supersymmetric field theories [15–17]. The topological

quantum mechanics can be viewed as a non-trivial space of solution to OPE Ward

identities equipped with the quantized Coulomb (resp. Higgs) branch algebra [15, 18]

which results from the quantization of the chiral ring of the Coulomb (resp. Higgs)

branch operators.

It is shown in [19] that these sphere correlation functions of the Coulomb or Higgs

branch operators as well as the sphere partition functions can be algebraically presented

from the quantized Coulomb and Higgs branch algebras in terms of the twisted traces

over the Verma modules without relying on the UV data.

The 3d N = 4 superconformal field theory (SCFT) appearing at low energy on

a stack of N M2-branes on R × C at an Al−1 singularity probing the space C2 ×
(C2/Zl) has a UV description as a 3d N = 4 ADHM gauge theory with a gauge

group U(N), an adjoint hypermultiplet and l fundamental hypermultiplets [20, 21].

In the near horizon limit of the M2-branes, one obtains the holographic dual AdS4 ×
(S7/Zl) background of M-theory, which provides us with an attractive example of the

AdS/CFT correspondence [22–24]. For l = 1, the ADHM theory is self-mirror [25, 26]

and equivalent to the ABJM theory with k = 1 in the IR [27].

The large N limit of the partition function in the ADHM theory was studied well in

[28, 29]. In spite of the explicit expressions of the partition function, it is still tricky to

evaluate it analytically in the large N regime. One of the analytic approach for the par-

tition function is the Fermi-gas formalism [30] where the partition function is rewritten

as the partition function of an ideal Fermi gas of N non-interacting particles. In the

large N expansion of the free energy F = − logZS3 for the SCFT of the N M2-branes

where ZS3 is the sphere partition function, the leading coefficient can be evaluated from

the two-derivative supergravity [31, 32] and the next-to-leading coefficient is expected

to be reproduced from higher derivative corrections in the supergravity. 1

Recently it has been proposed in [34] that the topological quantum mechanics that

encodes the protected correlation functions of the world-volume theory of M2-branes are

holographically dual to a certain protected sector of M-theory, that is the Ω-deformed

1See [33] for a recent approach to the higher derivative corrections from the conformal supergravity.
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or topologically twisted M-theory as an example of “twisted holography” [35].

Topologically twisted M-theory on an Ω-deformed background

R× C2/Zl × Cε1 × Cε2 × Cε3 (1.1)

obeying the Calabi-Yau condition ε1 + ε2 + ε3 = 0 can lead to a 5d theory on R×C2/Zl
[36, 37]. It is called the “twisted M-theory”. The twisted M-theory is locally trivial

and it is topological in R and holomorphic in the remaining four directions. It de-

pends on the ratio ε2/ε1 and it has a perturbative description as a non-commutative

Chern-Simons theory at least for l = 1 and in some range of parameters. One inter-

esting feature of this theory is a triality symmetry that permutes the Ω-deformation

parameters [38]

ε1 → ε2, ε2 → ε3, ε3 → ε1. (1.2)

The twisted M-theory can contain M2-branes and M5-branes as line operators and

surface operators in the 5d theory.2 In the Ω-deformed background (1.1), when a stack

of N M2-branes are placed on R × Cε1 , the ADHM theory would acquire the mass

parameter m for the adjoint hypermultiplet given by

m = i

(
1

2
+
ε2
ε1

)
. (1.3)

and it can be effectively described at low energy as topological quantum mechanics on R
equipped with certain spherical part of the cyclotomic rational Cherednik algebras [42]

with ε1 being the quantization parameter as the quantized Coulomb branch algebra.

The perturbative part of the protected correlation functions in the ADHM theory is

expected to be holographically dual to a perturbative twisted M-theory background. It

is shown from numerical and algebraic calculations in [43] that the perturbative part

of protected correlation functions of the ADHM theory with l = 1 on a three-sphere

enjoys the triality symmetry in the large N limit.

In this paper we analytically evaluate the sphere correlators of the Coulomb branch

operators for the ADHM theory in the Fermi-gas formulation. As argued in [44], the

large N behavior of the correlation functions can be evaluated from averages of many-

body operators in the Fermi-gas. The triality symmetry (1.2) that is associated to

the adjoint mass (1.3) is a key in our analysis. This symmetry should be manifest

in the perturbative part of the correlation functions in the large N limit [43]. In

fact we show that the leading terms of the perturbative grand canonical correlation

2 See [38–41] for recent studies of the operator algebras associated with the intersections of M2 and

M5 branes in the twisted M-theory.
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functions are generally invariant under the triality symmetry (1.2). Moreover, the

triality symmetry constrains the forms of the perturbative part. In the Fermi-gas

formulation, it is technically hard to compute the subleading terms of the perturbative

part analytically. We are able to obtain it partially. The triality symmetry enables us

to reconstruct the remaining missing pieces. In this way, we obtain consistent triality

invariant subleading terms for higher-point functions.

The organization of this paper is as follows. In the next section, we review the

Fermi-gas formulation by following the original argument in [30]. The technique there

is extended to the correlators of the Coulomb branch operators, as shown in Section 3.

We will derive the large N behavior for the multi-point correlators. Finally, we will

give some remarks on related topics in Section 4.

2 Fermi-gas formulation

We start with a review of the Fermi-gas formulation [30] to analyze partition functions

in 3d supersymmetric field theories on S3. In the Fermi-gas formulation, it is more

convenient to go to the grand canonical ensemble rather than the canonical one. We

show how to derive the grand potential in the large chemical potential limit.

Supersymmetric localization reduces path integrals to matrix models [3]. The par-

tition function of the ADHM theory on S3 takes the form

ZADHM =
1

N !

∫ N∏
i=1

dσie
2πiζσi

∏
i<j 4 sinh2 π (σi − σj)∏N

i,j=1 2 coshπ (σi − σj −m)
(∏N

i=1 2 coshπσi

)l , (2.1)

where m is the mass of the adjoint hypermultiplet, and ζ is the Fayet-Iliopoulos (FI)

parameter. For l = 1, this is equal to the matrix model of the ABJM theory with k = 1

[27].

Making use of the Cauchy identity, one can identify the matrix integral (2.1) with

the canonical partition function of a non-interacting, one-dimensional Fermi-gas with

N particles [30]:

ZADHM(N) =
1

N !

∑
ν∈SN

(−1)ε(ν)
∫ N∏

i=1

dσi

N∏
i=1

ρ(σi, σν(i)) (2.2)

where

ρ(σ1, σ2) =
eπiζ(σ1+σ2)

(2 coshπσ1)
l
2 (2 coshπ(σ1 − σ2 −m))(2 coshπσ2)

l
2

(2.3)
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is the one-particle density matrix in the position representation. This leads to a system-

atic analysis of the large N limit of the partition function on S3 as a thermodynamic

limit of an ideal Fermi-gas. The analysis of the Fermi-gas of the partition function

below has appeared in [45]. We generalize it to the computation of some correlation

functions, and find new features on a manifestation of the hidden triality symmetry,

expected in [38, 43].

The thermodynamic limit of an ideal Fermi-gas can be obtained by considering the

one-particle problem in the semi-classical approximation and the 1/N corrections to

the thermodynamic limit can be obtained by evaluating the quantum corrections to

the semi-classical limit. In the following discussion, we consider the grand canonical

ensemble, in which the grand potential is introduced by

eJ(µ) =
∞∑
N=0

e
2πµ
ε1

N
ZADHM(N). (2.4)

Our goal in this section is to derive the large µ limit of J(µ) by using the Fermi-gas

formulation.

Let σ̂ and p̂ be canonically conjugate operators obeying

[σ̂, p̂] = i~ (2.5)

where ~ = 1
2π

. Then we can write the density matrix operator as

ρ̂ = e−
1
2
U(σ̂)e−T (p̂)e−

1
2
U(σ̂) (2.6)

where

U(σ) = l log (2 coshπσ)− 2πiζσ, (2.7)

T (p) = log (2 cosh πp)− 2πimp (2.8)

so that the kernel (2.3) can be realized as the matrix element of the operator (2.6) in

the position space.

From the density matrix operator (2.6), we can define a one-body Hamiltonian Ĥ

of a system by

e−Ĥ := ρ̂ . (2.9)

In the classical limit, this Hamiltonian reduces to

Hcl(σ, p) = U(σ) + T (p) (2.10)
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where U(σ) is a potential term and T (p) is a kinetic term.

Given a density matrix (2.3), one can quantize the Fermi-gas system by following

the phase space formulation that is distinguished from the canonical quantization and

the path integral formulation. The phase space quantization is based on the Wigner-

Weyl transforms and the Weyl correspondence between c-number functions in the phase

space and quantum mechanical operators in the Hilbert space so that quantum mechan-

ical composition of functions relies on the star-product.

The Wigner transform of an operator Â with its matrix elements 〈σ|Â|σ′〉= A(σ, σ′)

in the position space is the function [46–49]

AW(σ, p, ~) =

∫
dσ′
〈
σ +

σ′

2

∣∣∣Â∣∣∣σ − σ′

2

〉
e−

ipσ′
~ (2.11)

in the phase space. This maps a quantum mechanical operator Â in the Hilbert space

to a function in the phase space. The inverse operation is the Weyl transform which

relates a function BW(σ, p, ~) in the phase space to a quantum operator B̂ in the Hilbert

space with matrix elements

〈σ|B̂|σ′〉 =

∫
dp

2π~
BW

(
σ + σ′

2
, p, ~

)
e
ip(σ−σ′)

~ . (2.12)

When we deal with more than one particle, we need to include the effects of quantum

statistics in the Wigner transform. For the Fermi-gas, the Wigner transform of the s-

body operator O(s) is obtained by taking the anti-symmetrized operators PAO(s) where

PA is the projection operator

PA =
1

s!

∑
ν∈SN

(−1)ε(ν)ν (2.13)

which anti-symmetrize the states [44].

The Wigner transform of a product of operators Â and B̂ is given by [46–49]

(ÂB̂)W = AW ? BW. (2.14)

Here ? is the star operation

? = exp

[
i~
2

(←−
∂ σ

−→
∂ p −

←−
∂ p

−→
∂ σ

)]
(2.15)

where the derivatives act on the left or on the right according to the directions indicated

by the arrows. One can express all operators of quantum mechanics in terms of the
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Wigner transforms of operators in such a way that the semi-classical expansion of an

operator Â is given by

AW(σ, p, ~) =
∞∑
n=0

An(σ, p)~n (2.16)

where A0 is the classical limit of Â.

From the Baker-Campbell-Hausdorff formula, (2.9) and (2.14) we find the Wigner

transform of the Hamiltonian

HW(σ, p) = T (p) + U(σ)− ~2

12
(T ′(p))2U ′′(σ) +

~2

24
(U ′(σ))2T ′′(p) +O(~4). (2.17)

Furthermore, the semi-classical expansion of arbitrary function f(Ĥ) of the Hamilto-

nian operator Ĥ is given by

fW(Ĥ)(σ, p, ~) =
∞∑
r=0

1

r!
f (r)(HW(σ, p))Gr(σ, p; ~) (2.18)

where f (r)(a) is the r-th derivative of f(x) evaluated at x = a and

Gr(σ, p; ~) =
[(
Ĥ −HW(σ, p)

)r]
W

(σ′, p′; ~)

∣∣∣∣∣
(σ′,p′)=(σ,p)

(2.19)

is the universal coefficients in the expansion around HW. It follows that Gr is an even

function of ~ such that

Gr(σ, p; ~) = O(~2(n+1)) (2.20)

for the largest integer n < r
3
. For example, we have [50, 51]

G0 = 1,

G1 = 0,

G2 = −~2

4

[
∂2HW

∂σ2

∂2HW

∂p2
−
(
∂2HW

∂σ∂p

)2
]

+O(~4),

G3 = −~2

4

[(
∂HW

∂σ

)2
∂2HW

∂p2
+

(
∂HW

∂p

)2
∂2HW

∂σ2
− 2

∂HW

∂σ

∂HW

∂p

∂2HW

∂σ∂p

]
+O(~4).

(2.21)
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In particular, the Wigner transform of a distribution operator at zero temperature

is given by [50]

θW

(
2πµ

ε1
− Ĥ

)
= θ

(
2πµ

ε1
−HW(σ, p)

)
+
∞∑
r=2

Gr
r!
δ(r−1)

(
2πµ

ε1
−HW(σ, p)

)
(2.22)

where θ(x) is the Heaviside step function. By taking the trace of the distribution

operator, we get the function nW(µ) that counts the number of eigenstates whose

energy is less than 2πµ
ε1

.

In the thermodynamic limit N →∞, the behavior of the system is semi-classsical

and the trace can be evaluated as an integral over the phase space. Therefore we obtain

nW(µ) =

∫
dσdp θ

(
2πµ

ε1
−HW(σ, p)

)
+
∞∑
r=2

∫
dσdp

Gr
r!
δ(r−1)

(
2πµ

ε1
−HW(σ, p)

)
.

(2.23)

Here the first term is the area of the quantum corrected Fermi surface defined by the

equation

HW(σ, p) =
2πµ

ε1
(2.24)

and the second term is the quantum corrections arising from the semi-classical ex-

pansion of the distribution operator. Then the density of energy eigenstates is given

by

ρW(µ) =
dnW(µ)

dµ
. (2.25)

Let us first evaluate the area of the quantum corrected Fermi surface in the limit

µ→∞:

Vol(µ) :=

∫
dσdp θ

(
2πµ

ε1
−HW(σ, p)

)
(2.26)

Since we have

log (2 coshπx) = πx+ log(1 + e−2πx) = πx+
∞∑
k=1

(−1)k+1 e
−2kπx

k
, (2.27)
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Figure 1. The quantum corrected curve (blue line) and the polygon as its large N approx-

imation (orange line). We divide the Fermi surface into four regions I, II, III and IV.

the potential term U(σ) and its derivative have the asymptotics

U(σ) =

{
π(l − 2iζ)σ +O(e−σ) σ →∞
−π(l + 2iζ)σ +O(eσ) σ → −∞

U ′(σ) =

{
π(l − 2iζ) +O(e−σ) σ →∞
−π(l + 2iζ) +O(eσ) σ → −∞

U ′′(σ) =

{
O(e−σ) σ →∞
O(eσ) σ → −∞

(2.28)
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and the kinetic term T (p) and its derivative have the asymptotics

T (p) =

{
π(1− 2im)p+O(e−p) p→∞
−π(l + 2im)p+O(ep) p→ −∞

T ′(p) =

{
π(1− 2im) +O(e−p) p→∞
−π(l + 2im) +O(ep) p→ −∞

T ′′(p) =

{
O(e−p) p→∞
O(ep) p→ −∞

. (2.29)

Let (σ+
∗ , p

+
∗ ), (σ+

∗ , p
−
∗ ), (σ−∗ , p

+
∗ ) and (σ−∗ , p

−
∗ ) be points in the quantum curve where

p+∗ =
µ

ε1(1− 2im)
, p−∗ = − µ

ε1(1 + 2im)
. (2.30)

It then follows from (2.24), (2.28) and (2.29) that

σ+
∗ =

µ

ε1(l − 2iζ)
+O(e−µ), σ−∗ = − µ

ε1(l + 2iζ)
+O(e−µ) (2.31)

where the exponentially small corrections in µ are power series in ~2.
We divide the quantum corrected Fermi surface into four domains:

I : 0 ≤ σ, p−∗ ≤ p ≤ p+∗

II : p+∗ ≤ p

III : σ ≤ 0, p−∗ ≤ p ≤ p+∗

IV : p ≤ p−∗ (2.32)

as shown in Figure 1. The area is then the sum of these four domains: Vol(µ) =

VolI + VolII + VolIII + VolIV.

On the quantum curve in the region I and III, the exponential terms in σ are larger

than those in µ. Thus we have the potential term and its derivatives

U(σ) =

{
π(l − 2iζ)σ +O(e−σ) for I

−π(l + 2iζ)σ +O(e−σ) for III
,

U ′(σ) =

{
π(l − 2iζ) +O(e−σ) for I

−π(l + 2iζ) +O(e−σ) for III
,

U ′′(σ) =

{
O(e−σ) for I

O(e−σ) for III
(2.33)
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and the Wigner transform of the Hamiltonian

HW(σ, p) =

{
π(l − 2iζ)σ + T (p) + ~2

24
π2(l − 2iζ)2T ′′(p) +O(~4) for I

−π(l + 2iζ)σ + T (p) + ~2
24
π2(l + 2iζ)2T ′′(p) +O(~4) for III

(2.34)

Therefore we can solve σ along the quantum curve

σ =

σ
+(µ, p) = 1

π(l−2iζ)

[
2πµ
ε1
− T (p)− ~2

24
π2(l − 2iζ)2T ′′(p)

]
for I

σ−(µ, p) = − 1
π(l+2iζ)

[
2πµ
ε1
− T (p)− ~2

24
π2(l + 2iζ)2T ′′(p)

]
for III

(2.35)

On the quantum curve in the regions II and IV, the exponential terms in p are

larger than those in µ so that the kinetic term and its derivatives become

T (p) =

{
π(1− 2im)p+O(e−µ) for II

−π(1 + 2im)p+O(e−µ) for IV
,

T ′(p) =

{
π(1− 2im) +O(e−µ) for II

−π(1 + 2im) +O(e−µ) for IV
,

T ′′(p) =

{
O(e−µ) for II

O(e−µ) for IV
(2.36)

and the Wigner transform of the Hamiltonian reduces to

HW(σ, p) =

{
U(σ) + π(1− 2im)p− ~2

12
π2(1− 2im)2U ′′(σ) +O(~4) for II

U(σ)− π(1 + 2im)p− ~2
12
π2(1 + 2im)2U ′′(σ) +O(~4) for IV

(2.37)

Thus we can solve for p along the quantum curve

p =

p
+(µ, σ) = 1

π(1−2im)

[
2πµ
ε1
− U(σ) + ~2

12
π2(1− 2im)2U ′′

]
for II

p−(µ, σ) = − 1
π(1+2im)

[
2πµ
ε1
− U(σ) + ~2

12
π2(1 + 2im)2U ′′

]
for IV

(2.38)

The area of the quantum corrected Fermi surface of the region I can be evaluated
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from the equation (2.35) as

VolI =

∫ p=p+∗

p=p−∗

dp

∫ σ=σ+(µ,p)

σ=0

dσ

=
1

π(l − 2iζ)

{∫ 0

p−∗

dp

[
2πµ

ε1
+ π(1 + 2im)p

]

−
∫ 0

p−∗

dp [log(2 cosh πp) + πp]− ~2π2

24
(l − 2iζ)2

∫ 0

p−∗

dpT ′′((p)

}

+
1

π(l − 2iζ)

{∫ p+∗

0

dp

[
2πµ

ε1
− π(1− 2im)p

]

−
∫ p+∗

0

dp [log(2 cosh πp)− πp]− ~2π2

24
(l − 2iζ)2

∫ p+∗

0

dpT ′′((p)

}

= −3

4

µ2

ε2(ε1 + ε2)(l − 2iζ)
− 1

12(l − 2iζ)
− ~2π2

12
(l − 2iζ) (2.39)

where we have extended the integration region to infinity up to non-perturbative terms

in µ. Similarly, we can calculate the area of the quantum corrected Fermi surface of

the region III:

VolIII =

∫ p+∗

p=p−∗

dp

∫ σ=0

σ=σ−(µ,p)

dσ

= −3

4

µ2

ε2(ε1 + ε2)(l + 2iζ)
− 1

12(l + 2iζ)
− ~2π2

12
(l + 2iζ). (2.40)

From the equation (2.38) one finds the quantum corrected area of the region II

VolII =

∫ σ=σ+
∗

σ=σ−∗

dσ

∫ p=p+(µ,σ)

p=p+∗

dp

=
lµ2

2ε1(ε1 + ε2)(l2 + 4ζ2)
− ε1l

24(ε1 + ε2)
+
l~2π2(ε1 + ε2)

3ε1
. (2.41)

The quantum corrected area of the region IV can be similarly computed by using the

equation (2.38). We get

VolIV =

∫ σ=σ+
∗

σ=σ−∗

dσ

∫ p=p−+

p=p−(µ,σ)

dp = − lµ2

2ε1ε2(l2 + 4ζ2)
+

ε1l

24ε2
− l~2π2ε2

3ε1
. (2.42)
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Putting all together, we finally obtain the quantum corrected area of Fermi surface

Vol(µ) = VolI + VolII + VolIII + VolIV

= − 2lµ2

ε2(ε1 + ε2)(l2 + 4ζ2)
− l

6(l2 + 4ζ2)
+
l(ε21 + ε1ε2 + ε22)

24ε2(ε1 + ε2)

= n2µ
2 + n0. (2.43)

The quantum corrections that correspond to the second term in (2.22), which are

associated with the semi-classical expansion of a function of the Hamiltonian turn out

to yield only the non-perturbative corrections of order e−µ [30]. Therefore we obtain

nW(µ) = n2µ
2 + n0 + nnp(µ) (2.44)

where nnp(µ) = O(µe−µ) denotes the non-perturbative terms. Since our Hamiltonian

is positive, it follows that nW(0) = 0 and nnp(0) = −n0 after resumming all the non-

perturbative corrections.

To obtain the leading and next-to-leadingg coefficients that show up in the free

energy, we observe that the grand canonical potential can be expressed in terms of the

density (2.25) of eigenstates:

J(µ) =

∫ ∞
0

dµ′ρW(µ′) log(1 + e
2π(µ−µ′)

ε1 )

≈ 2n2

( ε1
2π

)2 ∫ ∞
0

dν ν log(1 + e
2πµ
ε1
−ν

) +
2πµ

ε1

∫ ∞
0

dµ′
dnnp(µ′)

dµ′

= −2n2

( ε1
2π

)2
Li3(−e

2πµ
ε1 ) + n0

2πµ

ε1
µ (2.45)

According to the asymptotics of the trilogarithm

Li3(−ex) = −x
3

6
− π2

6
x+O(e−x), (2.46)

we get

J(µ) =
n2

3

(
2π

ε1

)
µ3 +

[
π2

3
n2

(
2π

ε1

)−1
+ n0

(
2π

ε1

)]
µ+ A+ Jnp(µ)

=
C

3
µ3 +Bµ+ A+ Jnp(µ) (2.47)

where

C =
4πl

ε1ε2ε3(l2 + 4ζ2)
(2.48)
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and

B = −πl(ε
2
1 + ε22 + ε23)(l

2 − 4 + 4ζ2)

24ε1ε2ε3(l2 + 4ζ2)
. (2.49)

We see that the leading coefficient (2.48) and the next-to-leading coefficient (2.49) are

actually invariant under the triality transformation (1.2). The overall factor 1
ε1ε2ε3

can

be interpreted as the equivariant volume of the Ω-deformed planes Cε1 × Cε2 × Cε3 in

the background (1.1) of the twisted M-theory.

In the next section, we extend this computation to correlation functions for Coulomb

branch operators.

3 Coulomb branch correlators

The 3d N = 4 supersymmetric gauge theory generically contains two types of half-BPS

local operators, i.e. the Coulomb and Higgs branch operators, which parametrize two

branches of supersymmetric vacua, the Coulomb and Higgs branches respectively. The

Coulomb branch operators can be built out of the monopole operators vn∗ dressed by

the vector multiplet scalar fields ϕ. They can be expanded as a sum over the monopole

operators

OC =
∑
n∗

Rn∗(ϕ,mC)vn∗ (3.1)

where Rn∗(ϕ,mC) are polynomials in ϕ. The sphere correlation function of the Coulomb

branch operators for the ADHM theory takes the form3

〈OC〉 =
1

N !

∫ N∏
i=1

dσie
2πiζσi

∏
i<j 4 sinh2 π(σi − σj)∏N

i,j=1 2 coshπ(σi − σj −m)(
∏N

i=1 2 coshπσi)l
R0(−iσ,−im).

(3.2)

The sphere correlation functions of the Coulomb branch operators can be universally

expressed in an algebraic way in terms of the twisted traces over the Verma modules of

the quantized Coulomb branch algebra [19]. The factor R0(−iσ,−im) inserted in the

correlation function is pulled back from generators in the quantized Coulomb branch

algebra.

3See [5, 6] for the result of supersymmetric localization.
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3.1 Quantized Coulomb branch algebra

There exist two types of Ω-deformations for the 3dN = 4 supersymmetric gauge theory,

in which two kinds of non-commutative algebras of the topological Coulomb and Higgs

branch operators emerge. They are called the quantized Coulomb and Higgs branch

algebras [15, 16]. The quantized Coulomb branch algebra ACN,l;ε1,ε2 of the ADHM theory

is isomorphic to the spherical part SHcyc
N,l of the cyclotomic rational Cherednik algebra

[42]. The algebra ACN,l;ε1,ε2 can be also identified with the shifted Yangian Yl(mi) of

ĝl(1) which is obtained by deforming the subalgebra of an affine Yangian Y (ĝl(1)) [52].

Let us introduce coordinates wa and shift operators va, v
−1
a , a = 1, · · · , N which

obey

[wa, wb] = 0, [va, vb] = 0,

v−1a vb = δab, vav
−1
b = δab,

[v±a , wb] = ±δabε1v±a . (3.3)

The algebra ACN,l;ε1,ε2 is generated by the operator

D0,n =
N∑
a=1

(−ε1)n

n

[
Bn

(
−wa
ε1

)
−Bn

(
(a− 1)ε2

ε1

)]
, n ≥ 1 (3.4)

where Bn(x) is the Bernoulli polynomial as well as raising and lowering operators which

take the forms:

en =
N∑
a=1

(wa + ε1)
n
∏
b 6=a

wa − wb − ε2
wa − wb

∏
a=1

va, (3.5)

fn+l =
N∑
a=1

wna
∏
b 6=a

wa − wb + ε2
wa − wb

N∏
a=1

(
l∏

i=1

(wa − ε1 −mi)v
−1
a ,

)
(3.6)

for non-negative integer n. Here mi are mass parameters for the SU(l) flavor symmetry.

They obey the relations

[D0,n, D0,m] = 0, (3.7)

[D0,n, em] = −ε1en+m−1, (3.8)

[D0,n, fm] = ε1fn+m−1, (3.9)

3[e2, e1]− [e3, e0] + (ε21 + ε1ε2 + ε22)[e1, e0] + ε1ε2(ε1 + ε2)e
2
0 = 0, (3.10)

3[f2, f1]− [f3, f0] + (ε21 + ε2ε2 + ε22)[f1, f0]− ε1ε2(ε1 + ε2)f
2
0 = 0, (3.11)

[e0, [e0, e1]] = [f0, [f0, f1]] = 0, (3.12)

[en, fm] = ε1hn+m. (3.13)
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Here the operator hn can be determined by the relation

1− ε2(ε1 + ε2)
∑
n≥0

hnz
n+1

=
l∏

i=1

(1− (mi + ε1)z)
(1− (ε1 + ε2)z)(1 +Nε2z)

1− (ε1 + (1−N)ε2)z
exp

[
−
∑
n≥0

D0,n+1ϕn(z)

ε1

]
(3.14)

where

ϕn(z) = zn
[
Gn(1 + ε1z)−Gn(1− ε1z) +Gn(1 + ε2z)−Gn(1− ε2z)

+Gn(1− (ε1 + ε2)z)−Gn(1 + (ε1 + ε2)z)
]
, (3.15)

Gn =

{
− log z for n = 0
z−n−1
n

for n ≥ 1
. (3.16)

3.2 dn operators

There is an alternative presentation of the algebra in such a way that all generators

can take the form of ε1 times a triality-invariant expression [38]. We can introduce the

Hamiltonian operator

W [f ] =
N∑
a=1

f(wa) (3.17)

associated to any polynomial f(w) in w.

When we choose polynomials

pn(σ) = (−1)nεn−11 Bn

(
1

2
− iσ

)
= inεn−11

∑
k:even
0≤k≤n

(−1)
k
2
+1 (2k − 2)Bk

2kk!

n!

(n− k)!
σn−k (3.18)

where Bn(x) is the Bernoulli polynomial, which satisfy the recursion relation 4

pn

(
w − i

2

)
− pn

(
w +

i

2

)
= n(iε1w)n−1, (3.19)

we obtain the operator

dn = W [pn]. (3.20)

4 This takes a similar form as the recursion relation for the Bernoulli polynomial Bn(x+1)−Bn(x) =

nxn−1.
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It has a generating function

1

ε21
ψ′
(

1

2
− iw +

z

ε1

)
=
∑
n

pn(w)

zn+1
(3.21)

where ψ(z) is the digamma function.

For example, we have

p1(w) = iw, (3.22)

p2(w) = −ε1
(
w2 +

1

12

)
, (3.23)

p3(w) = −iε21
(
w3 +

w

4

)
, (3.24)

p4(w) = ε31

(
w4 +

1

2
w2 +

7

240

)
, (3.25)

p5(w) = iε41

(
w5 +

5

6
w3 +

7

48
w

)
, (3.26)

p6(w) = −ε51
(
w6 +

5

4
w4 +

7

16
w2 +

31

1344

)
. (3.27)

Making use of the operator dn given by (3.20), one can also build the other generators

in the quantized Coulomb branch algebra ACN,l;ε1,ε2 which take triality-invariant fashion

up to the overall ε1 factor, as discussed in [38]. It manifests the symmetry of the algebra

under the triality symmetry (1.2).

3.3 Fermi-gas formulation

In terms of the Fermi-gas formulation, we can also evaluate correlation functions of the

Coulomb branch operators. The treatment is very similar to the previous work [53]

for Wilson loop correlators in ABJM theory. We can rewrite the sphere correlation

function (3.2) as

〈OC〉 =
1

N !

∑
ν∈SN

(−1)ε(ν)
∫ N∏

i=1

dσi

N∏
i=1

ρ(σi, σν(i))R0(−iσ,−im). (3.28)

First, we consider the sphere one-point function of a positive power function:

〈σn〉 :=
1

N !

∑
ν∈SN

(−1)ε(ν)
∫ N∏

i=1

dσi

N∏
i=1

ρ(σi, σν(i))

(
N∑
i=1

σi

)n

. (3.29)
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As we will see later, this is an important building block to compute the thermodynamic

limit N → ∞ of the one-point function 〈dn〉. To study the large N limit of the one-

point function (3.29), we evaluate an average of the one-point function by integrating

over the phase space in terms of the Wigner transform of the distribution operator

(2.22):

nσ
n

W (µ) :=

∫
dσdp θW

(
2πµ

ε1
−HW(σ, p)

)
σn (3.30)

=

∫
dσdp θ

(
2πµ

ε1
−HW(σ, p)

)
σn

+
∞∑
r=2

∫
dσdp

Gr
r!
δ(r−1)

(
2πµ

ε1
−HW(σ, p)

)
σn (3.31)

where the second line involves the corrections from the quantum Fermi surface and the

third is associated to the corrections from the semi-classical expansion of the distribu-

tion operator.

The corrections from the quantum Fermi surface can be evaluated in the same

manner in the previous section. The average over the quantum Fermi surface of the

region I is

Volσ
n

I =

∫ p=p−∗

p=p−∗

dp

∫ σ=σ+(µ,p)

σ=0

dσσn

=
1

(n+ 1)πn+1(l − 2iζ)n+1

∫ p+∗

p−∗

dp

[
2πµ

ε1
− T (p)− ~2π2

24
(l − 2iζ)2T ′′(p)

]n+1

(3.32)

Although it seems difficult to compute the integral (3.32) explicitly, we do not need to

do so. From the Wigner transform (2.17) that contains ~2 corrections, we can only get

the correct leading term proportional to µn+2 and the next-to-leading term proportional

to µn. The leading and next-to-leading terms which appear from the expression (3.32)

are

Volσ
n

I =
1

(n+ 1)πn+1(l − 2iζ)n+1

×

(∫ 0

p−∗

dp

[
2πµ

ε1
+ π(1 + 2im)p

]n+1

+

∫ p+∗

0

dp

[
2πµ

ε1
− π(1− 2im)p

]n+1

− (n+ 1)

(
2πµ

ε1

)n ∫ 0

−∞
dp

[
{log(2 cosh πp) + πp}+

~2π2

24
(l − 2iζ)2T ′′(p)

]
− (n+ 1)

(
2πµ

ε1

)n ∫ ∞
0

dp

[
{log(2 cosh πp)− πp}+

~2π2

24
(l − 2iζ)2T ′′(p)

])
.
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These integrals can be evaluated exactly, and we find the following large µ behavior:

Volσ
n

I = − 2n+2 − 1

2εn1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l − 2iζ)n+1
µn+2 − 2n−4 (4 + (l − 2iζ)2)

3εn1 (l − 2iζ)n+1
µn.

(3.33)

Similarly, the average over the quantum Fermi surface of the region III leads to the

leading and next-to-leading terms:

Volσ
n

III = − (−1)n(2n+2 − 1)

2εn1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l + 2iζ)n+1
µn+2 − (−1)n2n−4 (4 + (l + 2iζ)2)

3εn1 (l + 2iζ)n+1
µn.

(3.34)

On the other hand, the average over the quantum Fermi surface of the region II

takes the form

Volσ
n

II =

∫ σ=σ+
∗

σ=σ−∗

dσ

∫ p=p+(µ,σ)

p=p+∗

dpσn

=
1

π(1− 2im)

∫ 0

σ−∗

dσσn
[

2πµ

ε1
− U(σ) +

~2π2

12
(1− 2im)2U ′′(σ)

]
−
∫ 0

σ−∗

dσp+∗ σ
n

+
1

π(1− 2im)

∫ σ+
∗

0

dσσn
[

2πµ

ε1
− U(σ) +

~2π2

12
(1− 2im)2U ′′(σ)

]
−
∫ σ+

∗

0

dσp+∗ σ
n.

(3.35)

The integral can be evaluated by extending the integration region to infinity according

to the formulas ∫ ∞
0

dxxn log(1 + e−2πx) =
Γ(2 + n)ζ(2 + n)

(n+ 1)(4π)n+1
(2n+1 − 1), (3.36)∫ ∞

0

dxxn
π2

cosh2 πx
=

Γ(1 + n)ζ(n)

(4π)n−1
(2n−1 − 1). (3.37)

We find

Volσ
n

II =
1

2εn+1
1 (ε1 + ε2)(n+ 1)(n+ 2)

(
1

(l − 2iζ)n+1
+

(−1)n

(l + 2iζ)n+1

)
µn+2

+
l(1 + (−1)n)Γ(n+ 1) [2(2n − 2)(ε1 + ε2)

2π2ζ(n)− 3(2n+1 − 1)ε21ζ(n+ 2)]

22n+3 · 3πn+2ε1(ε1 + ε2)
.

(3.38)

We can analogously calculate the average over the region IV:

Volσ
n

IV = − 1

2εn+1
1 ε2(n+ 1)(n+ 2)

(
1

(l − 2iζ)n+1
+

(−1)n

(l + 2iζ)n+1

)
µn+2

− l(1 + (−1)n)Γ(n+ 1) [2(2n − 2)ε22π
2ζ(n)− 3(2n+1 − 1)ε21ζ(n+ 2)]

22n+33πn+2ε1ε2
. (3.39)
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Collecting the pieces (3.33), (3.34) (3.38) and (3.39), we obtain the leading and

next-to-leading terms of the average over the quantum Fermi surface in the first line of

(3.30): ∫
dσdp θ

(
2πµ

ε1
−HW(σ, p)

)
σn = Volσ

n

I + Volσ
n

II + Volσ
n

III + Volσ
n

IV

= − 2 [(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1]

εn1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

− 2n−4

3εn1

[
4 + (l − 2iζ)2

(l − 2iζ)n+1
+ (−1)n

4 + (l + 2iζ)2

(l + 2iζ)n+1

]
µn. (3.40)

Next proceed to the Gr corrections arising from the semi-classical expansion of the

distribution operator. To order ~2 corrections only come from G2 and G3 in (2.21):

1

2

∫
dσdpG2

 ∂

∂
(

2πµ
ε1

)δ(2πµ

ε1
−HW(σ, p)

)σn

+
1

6

∫
dσdpG3

 ∂2

∂
(

2πµ
ε1

)2 δ(2πµ

ε1
−HW(σ, p)

)σn. (3.41)

Since we have

δ

(
2πµ

ε1
−HW(σ, p)

)
=
δ(σ − σ−(µ, p))∣∣∣∂HW(σ,p)

∂σ

∣∣∣ +
δ(σ − σ+(µ, p))∣∣∣∂HW(σ,p)

∂σ

∣∣∣
=
δ(p− p−(µ, σ))∣∣∣∂HW(σ,p)

∂p

∣∣∣ +
δ(p− p+(µ, σ))∣∣∣∂HW(σ,p)

∂p

∣∣∣ , (3.42)

G2 and G3 in (3.41) are evaluated along the quantum curves (2.35) and (2.38)

G2|σ=σ±(µ,p) = 0, G2|p=p±(µ,σ) = 0,

G3|σ=σ±(µ,p) = −~2π2

4
(l ∓ 2iζ)2T ′′(p), G3|p=p±(µ,σ) = −~2π2

4
(1∓ 2im)2U ′′(σ). (3.43)
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Consequently, only non-trivial corrections may come from G3. We find

1

6

∫
dσdpG3

 ∂2

∂
(

2πµ
ε1

)2 δ(2πµ

ε1
−HW(σ, p)

)σn
= −~2

24

∂2

∂
(

2πµ
ε1

)2 ∫ p+∗

p−∗

dpT ′′(p)
1

πn−1(l − 2iζ)n−1

[
2πµ

ε1
− T (p)− ~2π2

24
(l − 2iζ)2T ′′(p)

]n

− ~2

24

∂2

∂
(

2πµ
ε1

)2 ∫ p+∗

p−∗

dpT ′′(p)
(−1)n

πn−1(l + 2iζ)n−1

[
2πµ

ε1
− T (p)− ~2π2

24
(l + 2iζ)2T ′′(p)

]n

− ~2

24

∂2

∂
(

2πµ
ε1

)2 ∫ σ+
∗

σ−∗

dσπ(1− 2im)U ′′(σ)σn − ~2

24

∂2

∂
(

2πµ
ε1

)2 ∫ σ+
∗

σ−∗

dσπ(1 + 2im)U ′′(σ)σn,

(3.44)

which involve µn−2 and lower order terms. Hence the quantum corrections associated

to the semi-classical expansion do not contribute to the leading and next-to-leading

terms.

Putting all together, we finally arrive at

nσ
n

W (µ) = − 2 [(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1]

εn1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

− 2n−4

3εn1

[
4 + (l − 2iζ)2

(l − 2iζ)n+1
+ (−1)n

4 + (l + 2iζ)2

(l + 2iζ)n+1

]
µn. (3.45)

For example, for l = 1 and ζ = 0 the expression reduces to a relatively simple form

nσ
n

W (µ) = − 2n+1(1 + (−1)n)

εn1ε2(ε1 + ε2)(n+ 1)(n+ 2)
µn+2 − 5 · 2n−4(1 + (−1)n)

3εn1
µn. (3.46)

3.4 Grand canonical one-point functions

In this and the next subsections, we would like to evaluate the large N limit of corre-

lation functions of the operators dn. The k-point function of dn generically takes the

form

〈dn1dn2 · · · dnk〉 =
1

N !

∑
ν∈SN

(−1)ε(ν)
∫ N∏

i=1

dσi

N∏
i=1

ρ(σi, σν(i))
k∏
j=1

(∑
i

pnj(σi)

)
. (3.47)

We go to the grand canonical ensemble, and study the large µ limit, as was done for

the partition function. We can easily translate obtained results in the grand canonical

ensemble into those in the canonical ensemble.
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Let us consider the one-point function. According to the formula (3.18), the poly-

nomial pn(σ) has the leading and next-to-leading terms:

pn(σ) = inεn−11 σn +
inεn−11 n(n− 1)

24
σn−2 + · · · . (3.48)

Thus the leading and next-to-leading terms of the one-point function in the thermody-

namic limit can be obtained from (3.45)

npnW(µ) = inεn−11 nσ
n

W (µ) +
inεn−11 n(n− 1)

24
nσ

n−2

W (µ)

= −i
n2 [(−2)n(l − 2iζ)n+1 + 2n(l + 2iζ)n+1]

ε1ε2(ε1 + ε2)(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

−
in2n−4

[
4+(l−2iζ)2
(l−2iζ)n+1 + (−1)n 4+(l+2iζ)2

(l+2iζ)n+1

]
3ε1

µn

− in2n−4ε1 [(−1)n(l − 2iζ)n−1 + (l + 2iζ)n−1]

3ε2(ε1 + ε2)(l2 + 4ζ2)n−1
µn

= cn+2µ
n+2 + cnµ

n. (3.49)

Making use of the Sommerfeld expansion

1

1 + eβĤ−µ
=
π

β
∂µ csc

(
π

β
∂µ

)
θ(µ− Ĥ), (3.50)

one can express the one-point function of operator O in the grand canonical ensemble

for an ideal Fermi-gas system as [54, 55]

〈O〉GC

Ξ
= Tr

(
O

1 + eβĤ−µ

)
=
π

β
∂µ csc

(
π

β
∂µ

)
nOW(µ)

=

(
1 +

π2

6β2
∂2µ +

7π4

360β4
∂4µ + · · ·

)
nOW(µ) (3.51)

where

Ξ = eJ(µ), 〈O〉GC =
∞∑
N=1

e
2πµ
ε1

N〈O〉, (3.52)
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By taking O = pn(σ) and β = 2π/ε1 in (3.51), we get from (3.49) the leading and

next-to-leading terms of the grand canonical one-point function of the operator dn:

〈dn〉GC

Ξ
= cn+2µ

n+2 +

(
π2

6
(n+ 2)(n+ 1)

(
2π

ε1

)−2
cn+2 + cn

)
µn

=
in2n+1 [(−1)n(l − 2iζ)n+1 + (l + 2iζ)n+1]

ε1ε2ε3(n+ 1)(n+ 2)(l2 + 4ζ2)n+1
µn+2

+
in2n−5

[
4+(l−2iζ)2
(l−2iζ)n+1 + (−1)n 4+(l+2iζ)2

(l+2iζ)n+1

]
(ε21 + ε22 + ε23)

3ε1ε2ε3
µn +O(µn−1). (3.53)

We see that the leading and next-to-leading coefficients of the grand canonical one-point

functions (3.53) are exactly invariant under the triality symmetry (1.2)!

Indeed, it is simple to check that our analytic formula (3.53) of the grand canonical

one-point function reproduces the numerical results in [43] when we specialize l = 1

and ζ = 0. We first encode the µ dependence into d0 by replacing µ with τ0
2π

. Then we

can obtain the perturbative correlation functions in [43] by taking the derivatives with

respect to τ0 and setting τ0 to zero.

For example, the grand canonical one-point function of d2 for l = 1 and ζ = 0 is

given by

〈d2〉GC

Ξ
= − 4

3ε1ε2ε3
µ4 − 5(ε21 + ε22 + ε23)

12ε1ε2ε3
µ2

= − τ 40
12π4ε1ε2ε3

− 5(ε21 + ε22 + ε23)τ
2
0

48π2ε1ε2ε3
. (3.54)

The derivatives of (3.54) with respect to τ0 lead to

∂4

∂τ 40

〈d2〉GC

Ξ

∣∣∣∣
τ0=0

= − 2

π4σ3
= 〈d2d0d0d0d0〉pertc , (3.55)

∂2

∂τ 20

〈d2〉GC

Ξ

∣∣∣∣
τ0=0

= − 5σ2
12π2σ3

= 〈d2d0d0〉pertc , (3.56)

where

σ2 =
1

2
(ε21 + ε22 + ε23) = (ε21 + ε1ε2 + ε22), (3.57)

σ3 = ε1ε2ε3. (3.58)

The results (3.55) and (3.56) perfectly match with the numerical results in [43].5

5See equation (2.48) in [43].
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3.5 Grand canonical higher-point functions

Higher-point functions can be evaluated by taking the averages of many-body operators

in the ideal Fermi-gas. The analysis is more involved than the one-point function.

Consider a system ofN particles whose density matrix is ρ(σ1, · · · , σN ;σ′1, · · · , σ′N).

The reduced s-particle density matrices are defined by [54, 56, 57]

ρs(σ1, · · · , σs;σ′1, · · · , σ′s) =
N !

(N − s)!

∫
dσs+1 · · · dσNρ(σ1, · · · , σN ;σ′1, · · · , σ′N).

(3.59)

The thermal average of an s-body operator O(s) in the canonical ensemble can be

calculated in terms of the reduced density matrix (3.59) as

〈O(s)〉 =
1

s!

∫
dσ1 · · · dσsO(s)(σ1, · · · , σs)ρs(σ1, · · · , σs;σ′1, · · · , σ′s). (3.60)

In the grand canonical ensemble, the reduced density matrix is defined by

ρGC
s (σ1, · · · , σs;σ′1, · · · , σ′s; z) =

∞∑
N=s

zNρs(σ1, · · · , σs;σ′1, · · · , σ′s). (3.61)

For an ideal Fermi-gas, the grand canonical reduced density matrix is given by [54, 55]

ρGC
s (σ1, · · · , σs;σ′1, · · · , σ′s; z) = Ξ

∑
ν∈Ss

(−1)ε(ν)
s∏
i=1

〈
σi

∣∣∣∣ 1

1 + z−1eβĤ

∣∣∣∣σν(i)〉 . (3.62)

The semi-classical average of an s-body operator O(s) for the Fermi-gas in the grand

canonical ensemble takes the form

〈O(s)〉GC

Ξ
=

Tr〈ρGC
s (O(s))W〉

Ξ

=

∫ s∏
i=1

dσidpi(PAO(s))W

s∏
i=1

(ρGC
s )W(σi, pi) (3.63)

where the trace have been performed by the phase space integration and PA is the

projection operator defined in (2.13).

The grand canonical k-point function can be computed from the average of s(≤ k)-

body operators in the Fermi-gas.
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3.5.1 Two-point functions

Let us see the grand canonical two-point functions of the operator dn. It has contribu-

tions from the following one- and two-body operators:

O(1)[d2n] =

(
N∑
i=1

pn(σi)

)2

, O(2)[d2n] =
∑
i 6=j

pn(σi)pn(σj). (3.64)

From (2.11) we get the leading and next-to-leading terms of the Wigner transforms of

the anti-symmetrized operators for (3.64)

(O(1)[d2n])W = pn(σ)2, (3.65)

(PAO(2)[d2n])W = pn(σ1)pn(σ2)− δ(σ1 − σ2)
∫
dypn(σ1 −

y1
2

)pn(σ1 +
y1
2

)e
i(p1−p2)y

~

= pn(σ1)pn(σ2)− 2π~δ(σ1 − σ2)δ(p1 − p2)pn(σ1)
2

− 2π~3δ(σ1 − σ2)δ′′(p1 − p2)
n

4
σ2n−2
1 + · · · (3.66)

where the ellipsis indicates the terms at low orders in σ which do not contribute to the

leading and next-to-leading coefficinets of the correlation functions.

Plugging the Wigner transforms (3.65) and (3.66) into (3.63), we find the leading

and next-to-leading terms of the two-point function

〈dndn〉GC

Ξ
=

∫
dσdp(O(1)[d2n])Wρ

GC
W (σ, p)

+

∫
dσ1dσ2dp1dp2(PAO(2)[d2n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

=

∫
dσdp pn(σ)2ρGC

W (1− ρGC
W ) +

(
〈dn〉GC

Ξ

)2

− 2π~3(−1)nε2n−21

∫
dσdp

n

2
σ2n−2 (ρGC

W ∂2pρ
GC
W − (∂pρ

GC
W )2

)
(3.67)

In the second equality we have combined the average of one-body operator pn(σ)2

with the average of the Wigner transform of the antisymmetrized two-body operator

−2π~δ(σ1 − σ2)δ(p1 − p2)pn(σ1)
2 where ~ = 1

2π
so that they can be evaluated as the

one-body integral involving ρGC
W (1− ρGC

W ).

The grand canonical connected two-point function of the operator dn can be ob-

tained by subtracting the square of the grand canonical one-point functions. Thus we
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get

〈dndn〉GC
c =

〈dndn〉GC

Ξ
−
(
〈dn〉GC

Ξ

)2

= (−1)nε2n−21

1

β
∂µ

∫
dσdp

(
σ2n +

n(n− 1)

12
σ2n−2 + · · ·

)
ρGC
W

− 2π~3(−1)nε2n−21

∫
dσdp

n

2
σ2n−2 (ρGC

W ∂2pρ
GC
W − (∂pρ

GC
W )2

)
= (−1)nε2n−21

(
1

β
∂µ +

π2

6β3
∂3µ + · · ·

)(
〈σ2n〉W +

n(n− 1)

12
〈σ2n−2〉W + · · ·

)
− 2π~3(−1)nε2n−21

∫
dσdp

n

2
σ2n−2 (ρGC

W ∂2pρ
GC
W − (∂pρ

GC
W )2

)
(3.68)

where we have used the relation

1

β
∂µρ

GC
W = ρGC

W (1− ρGC
W ) (3.69)

in the second equality. We obtain from (3.68) and (3.45) the leading term in the

connected two-point function:

〈dndn〉GC
c =

(−1)n22n

π

[(l − 2iζ)2n+1 + (l + 2iζ)2n+1]

ε1ε2ε3(2n+ 1)(l2 + 4ζ2)2n+1
µ2n+1 +O(µ2n−1). (3.70)

In fact, this is invariant under the triality symmetry (1.2)!

The subleading terms also have contributions from the last term in (3.68). Unfor-

tunately it seems difficult to evaluate it analytically because of the derivatives of ρGC
W in

the integrands. However, we can guess a consistent next-to-leading term by requiring

the triality invariance,{
(−1)n22n−4(2n)

[(l − 2iζ)2n+1 + (l + 2iζ)2n+1]

3πε1ε2ε3(l2 + 4ζ2)2n+1

+ (−1)n22n−5n(n− 1)
[(l − 2iζ)2n−1 + (l + 2iζ)2n−1]

3πε1ε2ε3(2n− 1)(l2 + 4ζ2)2n−1

}
(ε21 + ε22 + ε23)µ

2n−1. (3.71)

We will check the validity of this guess below.

It is straightforward to generalize the results (3.70) and (3.71) to the connected

two-point functions for two distinct operators dn1 and dn2 with n1 6= n2 by following

the same argument. To make a result simpler, we introduce N2 = n1 + n2. The result
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is

〈dn1dn2〉GC
c

= iN22N2

[
(−1)N2(l − 2iζ)N2+1 + (l + 2iζ)N2+1

]
ε1ε2ε3π(N2 + 1)(l2 + 4ζ2)N2+1

µN2+1

+

{
iN22N2−4N2

[
(−1)N2(l − 2iζ)N2+1 + (l + 2iζ)N2+1

]
3ε1ε2ε3π(l2 + 4ζ2)N2+1

+ iN22N2−6 [n1(n1 − 1) + n2(n2 − 1)]

[
(−1)N2(l − 2iζ)N2−1 + (l + 2iζ)N2−1

]
3ε1ε2ε3π(N2 − 1)(l2 + 4ζ2)N2−1

}
× (ε21 + ε22 + ε23)µ

N2−1 +O(µN2−2). (3.72)

We should say again that the next-to-leading term in this expression is a guess based

on the triality.

Now we check that our analytic formula (3.72) of the grand canonical connected

two-point function reproduces the numerical results in [43] as special cases with l = 1

and ζ = 0. For example, in a similar manner for the one-point function, we have

〈d1d1〉GC
c = − 8

3ε1ε2ε3π
µ3 − ε21 + ε22 + ε23

3ε1ε2ε3π
µ = − τ 30

3π4σ3
− σ2τ0

3π2σ3
(3.73)

〈d2d4〉GC
c = − 1920

105ε1ε2ε3π
µ7 − 1876(ε21 + ε22 + ε23)

105ε1ε2ε3π
µ5 = − τ 70

7π8σ3
− 67σ2τ

5
0

60π6σ3
(3.74)

by replacing µ with τ0
2π

where σ2 and σ3 are defined by (3.57) and (3.58). Then we get

∂3

∂τ 30
〈d1d1〉GC

c

∣∣∣∣
τ0=0

= − 2

π4σ3
= 〈d1d1d0d0d0〉pertc , (3.75)

∂

∂τ0
〈d1d1〉GC

c

∣∣∣∣
τ0=0

= − σ2
3π2σ3

= 〈d1d1d0〉pertc , (3.76)

∂7

∂τ 70
〈d2d4〉GC

c

∣∣∣∣
τ0=0

= − 720

π5σ3
= 〈d2d4d0d0d0d0d0d0d0〉pertc , (3.77)

∂5

∂τ 50
〈d2d4〉GC

c

∣∣∣∣
τ0=0

= −134σ2
π6σ3

= 〈d2d4d0d0d0d0d0〉pertc . (3.78)

In fact, the leading coefficient (3.75) and the next-to-leading coefficients (3.76) precisely

agree with the numerical results in [43]!6

In order to verify our results further, we note that the grand canonical connected

higher-point functions of the operator d1 can be derived from the grand canonical

6We thank Davide Gaiotto for telling us that our results (3.77) and (3.78) agree with his numerical

results.
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potential (2.47) with non-zero FI parameter ζ 6= 0 since it can be viewed as a generating

function of the correlation functions of the operator d1. By shifting the FI parameter

ζ by τ1
2π

and expanding the grand canonical potential (2.47) in powers of τ1, we can

extract the grand canonical connected higher-point functions of the operator d1

J(µ)ζ→ζ+ τ1
2π

= J0(µ) +
∞∑
`=1

τ `1
`!
〈

`︷ ︸︸ ︷
d1 · · · d1〉GC

c (3.79)

From the expansion (3.79) we find that the leading and next-to-leading terms of (k+1)-

point functions of the operator d1 are given by

〈
k+1︷ ︸︸ ︷

d1 · · · d1〉GC
c

=
(−1)k+1ik+12

3ε1ε2ε3πk
(k + 1)!

(l − 2iζ)k+2 + (−1)k+1(l + 2iζ)k+2

(l2 + 4ζ2)k+2
µ3

+
(−1)k+1ik+1

12ε1ε2ε3πk
(k + 1)!

(l − 2iζ)k+2 + (−1)k+1(l + 2iζ)k+2

(l2 + 4ζ2)k+2
(ε21 + ε22 + ε23)µ+O(1).

(3.80)

The result for k = 0 precisely agrees with (A.1) obtained from the formula (3.53) of

the grand canonical one-point function. Also the result for k = 1 coincides with (A.5)

obtained from the formula (3.72) of the grand canonical connected two-point function.

It is obvious to see that the grand canonical one-point functions (3.53) with non-

zero FI parameter ζ 6= 0 can also be viewed as the generating function of the grand

canonical connected correlation functions with an insertion of dn and an arbitrary

number of d1. By replacing ζ with ζ + τ1
2π

in (3.53) and then expanding it in powers of

τ1, we find

〈dn〉GC
ζ→ζ+ τ1

2π

Ξ
=
∞∑
`=0

τ `1
`!
〈dn

`︷ ︸︸ ︷
d1 · · · d1〉GC

c (3.81)

Thus we obtain the grand canonical connected correlation functions of dn and an arbi-
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trary number of d1:

〈dn
k︷ ︸︸ ︷

d1 · · · d1〉GC
c

=
(−1)kin+k2n+1

ε1ε2ε3πk
(n+ k)!

(n+ 2)!

((−1)n(l − 2iζ)n+k+1 + (−1)k(l + 2iζ)n+k+1)

(l2 + 4ζ2)n+k+1
µn+2

+
(−1)kin+k2n−5

3ε1ε2ε3πk
(n+ k − 2)!

n!
(ε21 + ε22 + ε23)

×

{
(−1)k

n(n− 1)(l − 2iζ)2 + 4(n+ k − 1)(n+ k)

(l − 2iζ)n+k+1

+ (−1)n
n(n− 1)(l + 2iζ)2 + 4(n+ k − 1)(n+ k)

(l + 2iζ)n+k+1

}
µn +O(µn−1). (3.82)

When n = 1, we again obtain the connected grand canonical higher-point functions

(3.80) of the operator d1. When k = 1, (3.82) agrees with the formula (3.72) of the

grand canonical connected two-point function for n1 = n and n2 = 1.

Furthermore, the grand canonical two-point functions (3.72) of the operators dn
with ζ 6= 0 can be treated as a generating function of the grand canonical higher-point

functions with dn1 , dn2 and an arbitrary number of d1. By shifting the FI parameter ζ by
τ1
2π

in (3.72) and expanding it in powers of τ1, we obtain the leading and next-to-leading

terms of higher-point functions:

〈dn1dn2

k︷ ︸︸ ︷
d1 · · · d1〉GC

c

= (−1)kiN2+k2N2
(N2 + k)!

(N2 + 1)!

[
(−1)N2(l − 2iζ)N2+k+1 + (−1)k(l + 2iζ)N2+k+1

]
ε1ε2ε3πk+1(l2 + 4ζ2)N2+k+1

µN2+1

+

{
(−1)kiN2+k2N2−4 (N2 + k)!

(N2 − 1)!

[
(−1)N2(l − 2iζ)N2+k+1 + (−1)k(l + 2iζ)N2+k+1

]
3ε1ε2ε3πk+1(l2 + 4ζ2)N2+k+1

+ (−1)kiN2+k2N2−6 (N2 + k − 2)!

(N2 − 1)!
[n1(n1 − 1) + n2(n2 − 1)]

×
[
(−1)N2(l − 2iζ)N2+k−1 + (−1)k(l + 2iζ)N2+k−1

]
3ε1ε2ε3πk+1(l2 + 4ζ2)N2+k−1

}
(ε21 + ε22 + ε23)µ

N2−1

+O(µN2−2). (3.83)

Again, when n1 = n2 = 1, (3.83) matches with the result (3.80) of the higher-point

functions of d1.
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3.5.2 Three-point functions

For the grand canonical three-point functions there are contributions from the one-,

two- and three-body operators of the forms

O(1)[d3n] =

(
N∑
i=1

pn(σi)

)3

, O(2)[d3n] =
∑
i 6=j

pn(σi)
2pn(σj),

O(3)[d3n] =
∑
i 6=j 6=k

pn(σi)pn(σj)pn(σk). (3.84)

From the Wigner transforms

(O(1)[d3n])W = pn(σ)3, (3.85)

(PAO(2)[d3n])W = 3pn(σ1)pn(σ2)
2 − 3pn(σ1)

3δ(σ1 − σ2)δ(p1 − p2) + · · · (3.86)

(PAO(3)[d3n])W = pn(σ1)pn(σ2)pn(σ3)

− 3pn(σ1)pn(σ2)
2δ(σ2 − σ3)δ(p2 − p3)

+ 2pn(σ1)
3δ(σ1 − σ2)δ(σ2 − σ3)δ(p1 − p2)δ(p2 − p3) + · · · (3.87)

of the antisymmetrized operators for (3.84) where the ellipsis stands for the terms which

do not contribute to the leading term, we get the grand canonical three-point functions

〈dndndn〉GC

Ξ
=

∫
dσdp(O(1)[d3n])Wρ

GC
W (σ, p)

+

∫
d2σd2p(PAO(2)[d3n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

+

∫
d3σd3p(PAO(3)[d3n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)

=

∫
dσdp (pn(σ))3

[
ρGC
W − 3(ρGC

W )
2

+ 2(ρGC
W )

3
]

+ 3
〈dndn〉GC

Ξ

〈dn〉GC

Ξ
− 2

(
〈dn〉GC

Ξ

)3

+ · · · (3.88)

The grand canonical connected three-point function of the operator dn is obtained

by subtracting the disconnected parts so that the leading term appears from the one-
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body integral. We obtain

〈dndndn〉GC
c =

〈dndndn〉GC

Ξ
− 3
〈dndn〉GC

Ξ

〈dn〉GC

Ξ
+ 2

(
〈dn〉GC

Ξ

)3

=

∫
dσdp (pn(σ))3

[
ρGC
W − 3(ρGC

W )
2

+ 2(ρGC
W )

3
]

+ · · ·

= i3nε3n−31

[
1

β2
∂2µ +

π2

6β4
∂4µ + · · ·

] ∫
dσdp

[
σ3n +

n(n− 1)

8
σ3n−2 + · · ·

]
ρGC
W

=
i3n23n−1 [(−1)n(l − 2iζ)3n+1 + (l + 2iζ)3n+1]

ε1ε2ε3π2(l2 + 4ζ2)3n+1
µ3n +O(µ3n−2). (3.89)

Here we have used the relation(
1

β

)2

∂2µρ
GC
W = ρGC

W − 3(ρGC
W )

2
+ 2(ρGC

W )
3
, (3.90)

the Sommerfeld expansion (3.51) and the result (3.45). We see that the resulting leading

term (3.89) is invariant under the triality symmetry (1.2). For n = 1 the result (3.89)

agrees with (3.80).

The next-to-leading term appearing from the one-body integral (3.89) is not still

triality invariant since it involves further contributions from higher order terms in the

Wigner transforms (3.85)-(3.87). Assuming the triality invariance, we find a consistent

expression for the next-to-leading term{
i3n23n−5(3n)(3n− 1)

[(−1)n(l − 2iζ)3n+1 + (l + 2iζ)3n+1]

3ε1ε2ε3π2(l2 + 4ζ2)3n+1

+ i3n23n−53n(n− 1)
[(−1)n(l − 2iζ)3n−1 + (l + 2iζ)3n−1]

3ε1ε2ε3π2(l2 + 4ζ2)3n−1

}
(ε21 + ε22 + ε23)µ

3n−2 (3.91)

The same argument yields the connected three-point functions for generic three
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operators dn1 , dn2 and dn3

〈dn1dn2dn3〉GC
c

= iN32N3−1
[
(−1)N3(l − 2iζ)N3+1 + (l + 2iζ)N3+1

]
ε1ε2ε3π2(l2 + 4ζ2)N3+1

µN3

+

{
iN32N3−5N3(N3 − 1)

[
(−1)N3(l − 2iζ)N3+1 + (l + 2iζ)N3+1

]
3ε1ε2ε3π2(l2 + 4ζ2)N3+1

+ iN32N3−7 [n1(n1 − 1) + n2(n2 − 1) + n3(n3 − 1)]

×
[
(−1)N3(l − 2iζ)N3−1 + (l + 2iζ)N3−1

]
3ε1ε2ε3π2(l2 + 4ζ2)N3−1

}
(ε21 + ε22 + ε23)µ

N3−2

+O(µN3−2), (3.92)

where N3 = n1+n2+n3. We find the triality invariant leading coefficient by analytically

computing the one-body integral as in (3.89). Again the next-to-leading coefficient has

additional contributions from the higher order Wigner transforms which we could not

analytically evaluate. Instead of computing them explicitly, we obtain a consistent

next-to-leading coefficient by restoring the triality invariance.

As a consistency check of our expression (3.92) of the connected three-point func-

tion, note that when one of the three operators is taken as d1, say for n3 = 1, it precisely

coincides with the result obtained from (3.83) when k = 1.

We can also obtain the leading and next-to-leading coefficients of the grand canon-

ical connected correlation functions with dn1 , dn2 , dn3 and an arbitrary number of d1
by shifting the FI parameter in (3.92) by τ1

2π
and expanding it in powers of τ1. We find

〈dn1dn2dn3

k︷ ︸︸ ︷
d1 · · · d1〉GC

c

= (−1)kin1+n2+n3+k2N3−1 (N3 + k)!

(N3)!

[
(−1)N3(l − 2iζ)N3+k+1 + (−1)k(l + 2iζ)N3+k+1

]
ε1ε2ε3πk+2(l2 + 4ζ2)N3+k+1

µN3

+

{
(−1)kiN3+k2N3−5 (N3 + k)!

(N3 − 2)!

[
(−1)N3(l − 2iζ)N3+k+1 + (−1)k(l + 2iζ)N3+k+1

]
3ε1ε2ε3πk+2(l2 + 4ζ)N3+k+1

+ (−1)kiN3+k2N3−7 (N3 + k − 2)!

(N3 − 2)!
[n1(n1 − 1) + n2(n2 − 1) + n3(n3 − 1)]

× (−1)N3(l − 2iζ)N3+k−1 + (−1)k(l + 2iζ)N3+k−1

3ε1ε2ε3πk+2(l2 + 4ζ2)N3+k−1

}
(ε21 + ε22 + ε23)µ

N3−2

+O(µN3−3). (3.93)
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3.5.3 Four-point functions

The grand canonical four-point functions can be computed from the one-, two-, three-

and four-body operators:

O(1)[d4n] =

(
N∑
i=1

pn(σi)

)4

, O(2)[d4n] =
∑
i 6=j

pn(σi)
3pn(σj) + pn(σi)

2pn(σj)
2,

O(3)[d4n] =
∑
i 6=j 6=k

pn(σi)
2pn(σj)pn(σk), O(4)[d4n] =

∑
i 6=j 6=k 6=l

pn(σi)pn(σj). (3.94)

The Wigner transforms of the antisymmetrized operators for (3.94) take the forms

(O(1)[d4n])W = pn(σ)4, (3.95)

(PAO(2)[d4n])W = 3pn(σ1)
2pn(σ2)

2 + 4pn(σ1)
3pn(σ2)

− 7pn(σ)4δ(σ1 − σ2)δ(p1 − p2) + · · · (3.96)

(PAO(3)[d4n])W = 6pn(σ1)
2pn(σ2)pn(σ3)− 6pn(σ1)

2pn(σ2)
2δ(σ2 − σ3)δ(p2 − p3)

− 12pn(σ)3pn(σ3)δ(σ1 − σ2)δ(p1 − p2)
+ 12pn(σ1)

4δ(σ1 − σ2)δ(p1 − p2)δ(σ2 − σ3)δ(p2 − p3) + · · · (3.97)

(PAO(4)[d4n])W = pn(σ1)pn(σ2)pn(σ3)pn(σ4)

− 6pn(σ1)
2pn(σ3)pn(σ4)δ(σ1 − σ2)δ(p1 − p2)

+ 3pn(σ1)
2pn(σ3)

2δ(σ1 − σ2)δ(p1 − p2)δ(σ3 − σ4)δ(p3 − p4)
+ 8pn(σ1)

3pn(σ4)δ(σ1 − σ2)δ(p1 − p2)δ(σ2 − σ3)δ(p2 − p3)
− 6pn(σ1)

4δ(σ1 − σ2)δ(p1 − p2)δ(σ2 − σ3)δ(p2 − p3)δ(σ3 − σ4)δ(p3 − p4)
+ · · · (3.98)

where the ellipsis indicates the terms which do not affect the leading term.

Making use of (3.95)-(3.98), we can compute the grand canonical four-point func-
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tion of the operator dn

〈dndndndn〉GC

Ξ

=

∫
dσdp(O(1)[d4n])Wρ

GC
W (σ, p)

+

∫
d2σd2p(PAO(2)[d4n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)

+

∫
d3σd3p(PAO(3)[d4n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)

+

∫
d4σd4p(PAO(4)[d4n])Wρ

GC
W (σ1, p1)ρ

GC
W (σ2, p2)ρ

GC
W (σ3, p3)ρ

GC
W (σ4, p4)

=

∫
dσdp (pn(σ))4

[
ρGC
W − 7(ρGC

W )
2

+ 12(ρGC
W )

3 − 6(ρGC
W )

4
]

+ 4
〈dndndn〉GC

Ξ

〈dn〉GC

Ξ
+ 3

(
〈dndn〉GC

Ξ

)2

− 12
〈dndn〉GC

Ξ

(
〈dn〉

Ξ

)2

+ 6

(
〈dn〉GC

Ξ

)4

.

(3.99)

In particular, when the FI parameter is turned off, the one and three-point functions

vanish so that the grand canonical four-point function (3.99) is simplified as

〈dndndndn〉GC
ζ=0

Ξ

=

∫
dσdp (pn(σ))4

[
ρGC
W − 7(ρGC

W )
2

+ 12(ρGC
W )

3 − 6(ρGC
W )

4
]

+ 3

(
〈dndn〉GC

Ξ

)2

(3.100)

The leading term that is proportional to µ4n+2 appears from the disconnected term

3(〈dndn〉GC/Ξ)2.

By eliminating the disconnected terms from (3.99) and using the relation(
1

β

)3

∂3µρ
GC
W = ρGC

W − 7(ρGC
W )2 + 12(ρGC

W )3 − 6(ρGC
W )4, (3.101)

we obtain the grand canonical connected four-point function of the operator dn

〈dndndndn〉GC
c =

〈dndndndn〉GC

Ξ
− 4
〈dndndn〉GC

Ξ

〈dn〉GC

Ξ

− 3

(
〈dndn〉GC

Ξ

)2

+ 12
〈dndn〉GC

Ξ

(
〈dn〉

Ξ

)2

− 6

(
〈dn〉GC

Ξ

)4

= i4nε4n−41

[
1

β3
∂3µ +

π2

6β5
∂5µ + · · ·

] ∫
dσdp

[
σ4n +

n(n− 1)

6
σ4n−2 + · · ·

]
ρGC
W

=
24nn [(l − 2iζ)4n+1 + (l + 2iζ)4n+1]

ε1ε2ε3π3(l2 + 4ζ2)4n+1
µ4n−1 +O(µ4n−3). (3.102)
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The leading term of the connected four-point function is proportional to µ4n−1. We

see that the expression (3.102) is triality invariant! When n = 1, it coincides with the

leading term in the previous result (3.80).

The next-to-leading terms in the one-body integral (3.102) are not still triality

invariant as there are additional contributions from the the higher order terms in the

Wigner transforms (3.95)-(3.98). Assuming that the Wigner transforms complete the

triality invariance so that it is consistent with (3.93), we find next-to-leading terms{
i4n24n−6(4n)(4n− 1)(4n− 2)

[(−1)4n(l − 2iζ)4n+1 + (l + 2iζ)4n+1]

3ε1ε2ε3π3(l2 + 4ζ2)4n+1

+ i4n24n−84n(n− 1)(4n− 2)
[(−1)4n(l − 2iζ)4n−1 + (l + 2iζ)4n−1]

3ε1ε2ε3π3(l2 + 4ζ2)4n−1

}
(ε21 + ε22 + ε23)µ

4n−3.

(3.103)

More generally, we get the grand canonical connected four-point functions for dn1 ,

dn2 , dn3 and dn4

〈dn1dn2dn3dn4〉GC
c

= iN42N4−2N4

[
(−1)N4(l − 2iζ)N4+1 + (l + 2iζ)N4+1

]
ε1ε2ε3π3(l2 + 4ζ2)N4+1

µN4−1

+

{
iN42N4−6N4(N4 − 1)(N4 − 2)

[
(−1)N4(l − 2iζ)N4+1 + (l + 2iζ)N4+1

]
3ε1ε2ε3π3(l2 + 4ζ2)N4+1

+ iN42N4−8(N4 − 2)

[
4∑
i=1

ni(ni − 1)

]

×
[
(−1)N4(l − 2iζ)N4−1 + (l + 2iζ)N4−1

]
3ε1ε2ε3π3(l2 + 4ζ2)N4−1

}
(ε21 + ε22 + ε23)µ

N4−3

+O(µN4−4), (3.104)

where N4 = n1 + n2 + n3 + n4. For n4 = 1 the expression (3.104) reproduces the

connected four-point function obtained from (3.93) for k = 1 involving a single d1.

Again we can extract from (3.104) the leading and next-to-leading terms of the
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connected higher-point functions with additional insertion of d1

〈dn1dn1dn3dn4

k︷ ︸︸ ︷
d1 · · · d1〉GC

c

= (−1)kiN4+k2N4−2 (N4 + k)!

(N4 − 1)!

[
(−1)N4(l − 2iζ)N4+k+1 + (−1)k(l + 2iζ)N4+k+1

]
ε1ε2ε3πk+3(l2 + 4ζ2)N4+k+1

µN4−1

+

{
(−1)kiN4+k2N4−6 (N4 + k)!

(N4 − 3)!

[
(−1)N4(l − 2iζ)N4+k+1 + (−1)k(l + 2iζ)N4+k+1

]
3ε1ε2ε3πk+3(l2 + 4ζ2)N4+k+1

+ (−1)kiN4+k2N4−8 (N4 + k − 2)!

(N4 − 3)!

[∑
i

ni(ni − 1)

]

×
[
(−1)N4(l − 2iζ)N4+k−1 + (−1)k(l + 2iζ)N4+k−1

]
3ε1ε2ε3πk+3(l2 + 4ζ2)N4+k−1

}
(ε21 + ε22 + ε23)µ

N4−3

+O(µN4−4). (3.105)

3.5.4 k-point functions

We can compute more general higher-point functions by considering the many-body

operators of dn. The grand canonical k-point function is obtained by summing over the

averages of the Wigner transforms of the antisymmetrized l-body operators PAO(l)[dkn]

with l = 1, · · · , k

〈
k︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
=

k∑
`=1

[∫ ∏̀
i=1

dσidpi
(
PAO(`)[dkn]

)
W

∏̀
i=1

ρGC
W (σ`, p`)

]
. (3.106)

From the grand canonical k-point function (3.106) and the lower-point functions, the

grand canonical connected k-point functions can be recursively computed as

〈
k︷ ︸︸ ︷

dn · · · dn〉GC
c =

〈
k︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
−

k−1∑
`=1

(
k − 1

`− 1

)
〈

`︷ ︸︸ ︷
dn · · · dn〉GC

c

〈
k−`︷ ︸︸ ︷

dn · · · dn〉GC

Ξ
. (3.107)

In particular, the leading terms of the grand canonical connected k-point functions

can be easily evaluated by acting on the one-body integral with the differential operator
1

βk−1∂
k−1
µ . We find the leading term of the grand canonical connected k-point function
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of the operators dni , i = 1, · · · , k:

〈dn1dn2 · · · dnk〉GC
c

= iNkεNk−k1

[
1

βk−1
∂k−1µ +

π2

6βk+1
∂k+1
µ + · · ·

] ∫
dσdp

×
[
σNk +

∑
i=1 ni(ni − 1)

24
σNk−2 + · · ·

]
ρGC
W + · · ·

= iNk2Nk−k+2 Nk!

(Nk − k + 3)!

[
(−1)Nk(l − 2iζ)Nk+1 + (l + 2iζ)Nk+1

]
ε1ε2ε3πk−1(l2 + 4ζ2)Nk+1

µNk−k+3 + · · · ,

(3.108)

where Nk =
∑k

i=1 ni. The leading term is proportional to µNk−k+3 and its coefficient is

proportional to 1
ε1ε2ε3

so that it is invariant under the triality symmetry (1.2).

The next-to-leading terms appearing from (3.108) are not yet triality invariant.

Provided that these altogether form the triality invariant expression, we get the consis-

tent triality invariant next-to-leading terms of the grand canonical connected k-point

function of the operators dni , i = 1, · · · , k proportional to µNk+1:{
i
∑k
i=1 ni2Nk−k−2

Nk!

(Nk − k + 1)!

[
(−1)Nk(l − 2iζ)Nk+1 + (l + 2iζ)Nk+1

]
3ε1ε2ε3πk−1(l2 + 4ζ2)Nk+1

+ iNk2Nk−k−4
(Nk − 2)!

(Nk − k + 1)!

[
k∑
i=1

ni(ni − 1)

]

×
[
(−1)Nk(l − 2iζ)Nk−1 + (l + 2iζ)Nk−1

]
3ε1ε2ε3πk−1(l2 + 4ζ2)Nk−1

}
(ε21 + ε22 + ε23)µ

Nk−k+1

+O(µNk−k). (3.109)

In fact, we have checked that the expressions (3.108) and (3.109) reproduce the leading

and next-to-leading terms in all the previous results.

It has been numerically found in [43] that the perturbative correlation function has

a conjectural pattern

〈dn1 · · · dnk〉pertc =
∑
m≥0

c{ni};mσ
m
2 σ
− 2m

3
+ 1

3

∑k
i=1(ni−1)

3 (3.110)

in such a way that the non-vanishing terms have a power of σ3 greater or equal to −1.

By setting µ = τ0
2π

in our results (3.106) and (3.109) and taking the derivatives with

respective to τ0, we can write from them the perturbative correlation function in [43]:

〈dn1 · · · dnk

Nk−k+3︷ ︸︸ ︷
d0 · · · d0〉pertc =

iNkNk!
[
(−1)Nk + 1

]
2πNk+2lNk+1

σ−13 (3.111)
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〈dn1 · · · dnk

Nk−k+1︷ ︸︸ ︷
d0 · · · d0〉pertc

=
iNk
[
4Nk(Nk − 1) + l2

∑k
i=1 ni(ni − 1)

]
(Nk − 2)!

[
(−1)Nk+1

]
48πNk lNk−1

σ2σ
−1
3 (3.112)

This is compatible with the conjectural pattern (3.110).

4 Concluding remarks

In this work, we evaluated the large N correlation functions of the Coulomb branch

operators for 3d N = 4 ADHM theory in the Fermi-gas formulation. We confirmed

that the leading perturbative part has the triality symmetry, expected from the dual

twisted M-theory. Interestingly, the full analytic form of the next-to-leading order

correction can be fixed by the requirement of this symmetry even though the Fermi-gas

computation is technically hard at this order. This idea should be useful in higher

order computations.

We remark several related directions. The correlators have been studied in boot-

strap program for 3d SCFTs which arise as the IR limit of the effective theory of

multiple M2-branes [13, 58–61]. It would be nice to address the dn correlators via the

bootstrap analysis to be compared with our results.

The twisted holography [35] (see also [34]) would relate our results to the pertur-

bative calculations around a dominant semi-classical saddle point in the holographic

dual five-dimensional holomorphic (symplectic)-topological theory on AdS2 × S3. The

k-point correlators that we have computed would correspond to an amplitude of the

Feynman diagram in the 5d Chern-Simons theory with k-points insertion on the 1d

defect, where the 1d topological quantum mechanics lives. Beyond the perturbative

calculations, the triality symmetry may be broken due to the instanton corrections [43].

It would be nice to extend our Fermi-gas analysis by calculating the non-perturbative

corrections to the correlators which capture the full geometry normal to AdS2 × S3 in

AdS4 × S7. Also our subleading terms could be used to test the holographic dual with

higher derivative corrections as recently studied in [33, 62].

The sphere correlators of the Coulomb and Higgs branch operators can be alge-

braically computed as a sum of the products of the twisted traces over the Verma

modules [19]. For the ADHM theory, this sum is taken over a set of l Young diagrams

with Nk (k = 1, · · · , l) boxes obeying
∑l

k=1Nk = N . It would be interesting to analyze

the large N behavior of the correlators in terms of the twisted traces.

In [43] it is conjectured from the numerical and algebraic computations that the

generating function of connected correlation functions of the operator dn satisfies a
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recursion relation that leads to a quadratic constraint on the perturbative correlation

functions. This is reminiscent of the “string equation [63, 64] in topological gravity and

it may play a key role in the twisted holography. It is intriguing to give an analytical

derivation or proof of this relation by extending our analysis.

The line operators in 3d N = 4 ADHM theory would be also realized in the twisted

M-theory by introducing extra M2-branes intersecting with the original ones. The space

of the local operators living at junctions of line operators is realized as Hom space which

generalizes the bulk Coulomb and Higgs branch algebras [65]. It is interesting to figure

out the triality symmetry in the presence of line operators by applying the Fermi-gas

analysis as studied for the ABJM model in [53].

Partition functions of 4d N = 2 SQFTs on S3 × S1, the superconformal index or

its specialization known as the Schur index [66] can reduce to partition functions of 3d

N = 4 SQFTs on S3 [67, 68]. The Schur index can be decorated by the line operators

wrapping the S1 so that it can be associated with the sphere correlators of the Coulomb

branch operators for 3d N = 4 SQFTs. It would be interesting to extend our Fermi-gas

analysis to the Schur index with line operators for the 4d N = 2∗ gauge theory which

reduces to the ADHM theory as in [69] to show the triality symmetry explicitly.
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A Some explicit results for correlation functions

The general results in the main text are quite complicated. In this appendix, we

summarize explicit forms of the connected correlation functions of dn for some lower

n’s in the large µ limit.

For the one-point functions, we have the following leading and next-to-leading
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perturbative terms:

〈d1〉GC
c = − 16lζ

3ε1ε2ε3(l2 + 4ζ2)2
µ3 − 2lζ(ε21 + ε22 + ε23)

3ε1ε2ε3(l2 + 4ζ2)2
µ, (A.1)

〈d2〉GC
c = − 4l(l2 − 12ζ2)

3ε1ε2ε3(l2 + 4ζ2)3
µ4 − [l5 + (8ζ2 + 4)l3 + 16lζ2(ζ2 − 3)] (ε21 + ε22 + ε23)

12ε1ε2ε3(l2 + 4ζ2)3
µ2

(A.2)

〈d3〉GC
c = − 64lζ(l2 − 4ζ2)

5ε1ε2ε3(l2 + 4ζ2)4
µ5 − i(ε21 + ε22 + ε23) [l4 + 8(ζ2 + 1)l2 + 16ζ2(ζ2 − 2)]

3ε1ε2ε3(l2 + 4ζ2)4
µ3,

(A.3)

〈d4〉GC
c =

32l(l4 − 40l2ζ2 + 80ζ4)

15ε1ε2ε3(l2 + 4ζ2)5
µ6

+
(ε21 + ε22 + ε23)

6ε1ε2ε3

[
4 + (l − 2iζ)2

(l − 2iζ)5
+

4 + (l + 2iζ)2

(l + 2iζ)5

]
µ4 (A.4)

where 〈dn〉GC
c := 〈dn〉GC/Ξ.

For the two-point functions, we have

〈d1d1〉GC
c = − 8(l3 − 12lζ2)

3ε1ε2ε3π(l2 + 4ζ2)3
µ3 − (l3 − 12lζ2)(ε21 + ε22 + ε23)

3ε1ε2ε3π(l2 + 4ζ2)3
µ (A.5)

〈d1d2〉GC
c =

32lζ(l2 − 4ζ2)

ε1ε2ε3π(l2 + 4ζ2)4
µ4 +

26lζ(l2 − 4ζ2)(ε21 + ε22 + ε23)

3ε1ε2ε3π(l2 + 4ζ2)4
µ2, (A.6)

〈d2d2〉GC
c =

32(l5 − 40l3ζ2 + 80lζ4)

5ε1ε2ε3π(l2 + 4ζ2)5
µ5 +

26(l5 − 40l3ζ2 + 80lζ4)(ε21 + ε22 + ε23)

9ε1ε2ε3π(l2 + 4ζ2)5
µ3 (A.7)

For the three-point functions with no d1 insertions, we have

〈d2d2d2〉GC
c

= −32 [(l − 2iζ)7 + (l + 2iζ)7]

ε1ε2ε3π2(l2 + 4ζ2)7
µ6

−
[

20 [(l − 2iζ)7 + (l + 2iζ)7]

ε1ε2ε3π2(l2 + 4ζ2)7
+

[(l − 2iζ)5 + (l + 2iζ)5]

ε1ε2ε3π2(l2 + 4ζ2)5

]
(ε21 + ε22 + ε23)µ

4 (A.8)

〈d2d3d3〉GC
c

=
128 [(l − 2iζ)9 + (l + 2iζ)9]

ε1ε2ε3π2(l2 + 4ζ2)9
µ8

+

[
448 [(l − 2iζ)9 + (l + 2iζ)9]

3ε1ε2ε3π2(l2 + 4ζ2)9
+

28 [(l − 2iζ)7 + (l + 2iζ)7]

3ε1ε2ε3π2(l2 + 4ζ2)7

]
(ε21 + ε22 + ε23)µ

6 (A.9)
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〈d4d4d4〉GC
c

=
2048 [(l − 2iζ)13 + (l + 2iζ)13]

ε1ε2ε3π2(l2 + 4ζ2)13
µ12

+

[
5632 [(l − 2iζ)13 + (l + 2iζ)13]

ε1ε2ε3π2(l2 + 4ζ2)13
+

384 [(l − 2iζ)11 + (l + 2iζ)11]

ε1ε2ε3π2(l2 + 4ζ2)11

]
(ε21 + ε22 + ε23)µ

10

(A.10)

For the four-point functions with no d1 insertions, we have

〈d2d2d2d2〉GC
c

=
512 [(l − 2iζ)9 + (l + 2iζ)9]

ε1ε2ε3π3(l2 + 4ζ2)9
µ7

+

[
448 [(l − 2iζ)9 + (l + 2iζ)9]

ε1ε2ε3π3(l2 + 4ζ2)9
+

16 [(l − 2iζ)7 + (l + 2iζ)7]

ε1ε2ε3π3(l2 + 4ζ2)7

]
(ε21 + ε22 + ε23)µ

5 (A.11)

(A.12)

〈d3d3d3d3〉GC
c

=
12288 [(l − 2iζ)13 + (l + 2iζ)13]

ε1ε2ε3π3(l2 + 4ζ2)13
µ11

+

[
28160 [(l − 2iζ)13 + (l + 2iζ)13]

ε1ε2ε3π3(l2 + 4ζ2)13
+

1280 [(l − 2iζ)11 + (l + 2iζ)11]

ε1ε2ε3π3(l2 + 4ζ2)11

]
(ε21 + ε22 + ε23)µ

9

(A.13)
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B Formulae

The Wigner transform of the Hamiltonian operator is given by

HW(q, p) = T + U +
1

12
[T, [T, U ]?]? +

1

24
[U, [T, U ]?]?

+
1

360
[[[[T, U ]?, U ]?, U ]?, T ]? −

1

480
[[[[U, T ]?, U ]?, T ]?, U ]?

+
1

360
[[[[U, T ]?, T ]?, T ]?, U ]? +

1

120
[[[[T, U ]?, T ]?, U ]?, T ]?

+
7

5760
[[[[T, U ]?, U ]?, U ]?, U ]? −

1

720
[[[[U, T ]?, T ]?, T ]?, T ]?

= T (p) + U(q)− ~2

12
(T ′(p))2U ′′(q) +

~2

24
(U ′(q))2T ′′(p)

+
~4

144
T ′(p)T ′′′(p)U (4)(q)− ~4

288
U ′(q)U ′′′(q)T (4)(p)

− ~4

240
(U ′(q))2U ′′(q)(T ′′(p))2 +

~4

60
(T ′(p))2T ′′(p)(U ′′(q))2

− ~4

80
(U ′(q))2U ′′(q)T ′(p)T ′′′(p) +

~4

120
(T ′(p))2T ′′(p)U ′(q)U ′′′(q)

+
7~4

5760
(U ′(q))4T (4)(p)− ~4

720
(T ′(p))4U (4)(q) (B.1)
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