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Abstract

Lecture notes for Les Houches Summer School 2021: Dark Matter. These
lectures give a brief introduction to sub-GeV dark matter models, and then
reviews theory and approaches to direct detection of sub-GeV dark matter.
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These lecture notes are largely based on material from my TASI lecture notes from
2019 [1] (Secs. 1,4) and from a review article written with Yonatan Kahn [2] (Secs. 2,3,4).
The material has been lightly edited and adapted for the format and length of the two
lectures planned at the Les Houches summer school; interested readers are encouraged to
follow up with those reviews for original material and more in-depth discussion. In these
notes, as in the reference material, we use natural units with ~ = c = 1.
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1 Overview of sub-GeV models

Our starting point is thermal relic dark matter, which has historically driven extensive
searches for WIMPs. Recall that the full DM relic abundance is obtained when there is
an annihilation cross section given by:

〈σv〉 '
√
g∗

g∗,S

10

eV×Mpl
' 1

109 GeV2
, (1)

which is the minimum annihilation cross section needed for a thermal relic DM candidate,
in order to avoid an overabundance. We will take as an illustrative example annihilation
that occurs through an s-channel mediator with mass mV (remaining for the moment
agnostic as to the identity of V ):

χ̄

χ

V

f̄

f

where the vector V has coupling gχ with the DM and coupling gf with the final state
fermions. We will neglect the mass of the final state fermions. In the non-relativistic
limit, the cross section for this process is given by

σ =

∫
dΩcm

|pf |
16π2E3

cm|v1 − v2|
|M|2 =

∫
dΩcm

1

|v1 − v2|
|M|2
32π2s

(2)

where Ωcm are center of mass scattering angles, the center of mass energy is s = E2
cm =

4m2
χ + O(mχT ) + ..., and we used that |pf | ≈ Ecm/2 in the limit of massless fermions f .

Using this result, we can approximate the thermally averaged 〈σv〉 for annihilation by

〈σv〉 ' |M|2
32πm2

χ

. (3)

Assuming Dirac fermion DM, a single flavor/color of the fermion, and a vector mediator,
the spin-averaged matrix element squared of the process is given by

|M|2 ≈ g2
χg

2
f

32m4
χ

(s−m2
V )2

(4)

in the nonrelativistic limit.

• mV > mχ: In this case, the heavy V state generates a four-fermion interaction with
amplitude gχgf/m

2
V . The annihilation cross section can be estimated as

〈σv〉 '
16παχαfm

2
χ

m4
V

(5)

with αχ ≡ g2
χ/(4π) and αf ≡ g2

f/(4π).

• mV < mχ: We find that the annihilation χχ̄→ ff̄ is:

〈σv〉 ' παχαf
m2
χ

. (6)
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However, a new process is then kinematically allowed, χχ̄→ V V . If mV � mχ then
the only mass scale in the problem is mχ and we obtain:

〈σv〉χχ̄→V V '
πα2

χ

m2
χ

. (7)

If αχ � αf , then the relic abundance may be primarily determined by this latter
process. The “secluded” scenario is where αχ � αf and where V is a new mediator
not already present in the Standard Model [3]. Then we may regard the χ and V
states as comprising a “dark sector”, and couplings to the SM thermal bath are not
important for thermal freezeout.

We find, generally, that the thermally-averaged cross section is bounded from above by

〈σv〉 .
π max(αχαf , α

2
χ)

m2
χ

(8)

since for the case mV > mχ there is an additional suppression in the cross section by
(mχ/mV )4. (An exception is if there is a resonance in the s-channel, mV ≈ 2mχ.) If
the desired cross section is that of Eq. 1, then there are a few important lessons to draw
from this. First, one can set an upper bound on the DM mass, if we assume perturbative
couplings – this is also known as a perturbative unitarity bound [4]. Taking αχ,f → 1 in
Eq. 8 then gives mχ . 50−100 TeV. The second lesson is that a TeV-scale DM candidate
is a viable possibility, where αχ,f can be on the order 10−2 − 10−1. Indeed, the WIMP
miracle is the observation that 〈σv〉 above can be rewritten in the form 〈σv〉 ≈ α2

w/TeV2

with αw ≈ 0.03 for SU(2)L weak interactions. A minimal WIMP model comes from
introducing an extended electroweak multiplet; if the lightest state in the multiple has
zero electric charge, this provides a good DM candidate. These candidates have mass at
the TeV scale and above; for a recent systematic study of such candidates, see [5].

In turning to lighter DM below the weak scale, the minimalist approach becomes
insufficient at a certain point. Let us take V to be a weak scale mediator, which could be
the Higgs or an EW gauge boson. We have a cross section given by Eq. 5, which can be
rewritten as

〈σv〉 ≈
m2
χ

GeV2

αχαf
α2
w

1

109 GeV2
(9)

where we have taken mV ≈ 100 GeV. If the couplings are the weak gauge couplings,
αχαf = α2

w, then the cross section drops below the desired thermal relic cross section
when mχ < GeV. Weak interactions would thus lead to an overabundance of sub-GeV
DM, a conclusion commonly known as the Lee-Weinberg bound [6]. The implication is
that for sub-GeV DM, new mediators below the weak scale are required.

However, there is one more candidate for V in the Standard Model, the photon. Since
mV � mχ, the Lee-Weinberg bound does not apply. Although this would appear to go
against the notion of dark matter as “dark”, one must work through this possibility in a
more quantitative way. Consider a DM candidate which has a small, fractional electric
charge Q � 1, otherwise known as a millicharged or minicharged DM candidate.1 The
annihilation cross section χ̄χ → ff̄ for a single charged species f is given by 〈σv〉 ≈
πα2

emQ
2/m2

χ; this should be summed over all final states with appropriate final state

1For a discussion of specific models realizing this, see for example Refs. [7–9].

3



SciPost Physics Lecture Notes Submission

charges and color factors. Neglecting such factors for the purpose of estimation, one finds
that

Q ' 10−3
( mχ

GeV

)
(10)

in order to obtain the desired thermal relic cross section. Such charges can potentially be
constrained in accelerator experiments, as well as in stellar environments such as SN1987a.
One of the strongest test of charged DM arises from its behavior in the early universe.
At redshifts z & 1000, the universe was mostly ionized in the form of free protons and
electrons. A millicharged DM candidate can scatter off the protons and electrons with
a Rutherford-type cross section, leading to both a suppression of the growth of DM
structure [10] as well as a DM-baryon drag force which leaves an imprint on the CMB
anisotropies [11–15]. This leads to a strong bound on Q, which excludes the charges in
Eq. 10. Thus, a model for sub-GeV DM which obtains its relic abundance by thermal
freezeout generically requires additional new sub-GeV states for sufficient DM annihila-
tion. Note however that charged DM is still a possible DM candidate if it is produced by
freeze-in, which we will return to in Sec. 1.1.1.

The arguments here motivate the study of dark sectors for sub-GeV DM, that contain
both the DM and other light states. The excess of energy and entropy density in a dark
sector may be excluded by other cosmological considerations, requiring that the excess be
deposited back into the SM thermal bath. As a result, we will often consider new light
mediators to the SM.

1.1 Dark photons

Perhaps the most often studied mediator in recent times is the kinetically-mixed dark
photon, owing to the appeal of a simple U(1) extension with a rich phenomenology and
the absence of any flavor problems. Focusing on the interactions with just the photon (most
relevant for the low-energy phenomenology), the vacuum interactions for this portal are:

L ⊃ −1

4
FµνF

µν − 1

4
VµνV

µν +
ε

2
FµνV

µν +
1

2
m2
V VµV

µ + eAµJ
µ
EM + gχVµJ

µ
D (11)

where JµEM is the electromagnetic current and JµD is a dark current with gauge coupling
gχ. We denote the electron charge throughout as e =

√
4πα with α ' 1/137 the fine

structure constant2. The kinetic mixing parameter ε can be positive or negative, though
constraints are typically shown on the absolute value |ε|. In addition, there are the kinetic
or mass terms for any dark charged particles, which aren’t written explicitly in order to be
general. The vector mass could arise from a dark Higgs mechanism, where the dark Higgs
boson is extremely massive and has been integrated out of the theory (i.e, a Stueckelberg
mass term). However, in some dark sector models the dark Higgs is also a light degree of
freedom and important to the phenomenology.

First consider the case that mV = 0. Then we can make a field redefinition Ṽµ =
Vµ − εAµ. This eliminates the kinetic mixing term, and we are left with the following
interactions:

L ⊃ −1

4
(1− ε2)FµνF

µν − 1

4
Ṽµν Ṽ

µν + eAµJ
µ
EM + gχ

(
Ṽµ + εAµ

)
JµD (12)

where the factor of (1 − ε2) in the photon kinetic term can be eliminated by a field
(or electric charge) redefinition. In the absence of a dark current JµD, we would have a

2Note that we are using Heaviside-Lorentz conventions for the electric charge as is common in high-
energy physics, where α = e2/(4π). This differs by factors of 4π from cgs-Gaussian units where α = e2.
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completely decoupled vector Ṽ with no observable effects. Hence in the massless vector
limit, we expect that the only limits would come from effects that involve the DM. Now
suppose there is a DM particle, for example JµD = χ̄γµχ. In this basis, it is clear that the
DM couples to the photon with an effective charge εgχ or millicharge Q = εgχ/e. This
model gives an explicit realization of millicharged DM, discussed earlier in these lectures
around Eq. 10.

Now we examine what happens when mV 6= 0, starting with the vacuum Lagrangian.
Another often-used basis comes from making the field redefinition Ãµ = Aµ − εVµ, which
eliminates the kinetic mixing term:

L ⊃ −1

4
F̃µνF̃

µν − 1

4
(1− ε2)VµνV

µν +
1

2
m2
V VµV

µ + e(Ãµ + εVµ)JµEM + gχVµJ
µ
D (13)

where we see that dark photon mass eigenstate V couples to SM charged particles. Of
course, the physics is independent of any field redefinitions or change of basis for the A, V
fields3. This basis is most often used in collider studies of dark photon phenomenology,
where the vacuum assumption is valid. However, one must be more careful when consid-
ering dark photons in a dense medium, for example in the early universe, in stars, or in a
solid state material.

When mV > mχ, then direct annihilation of DM DM → e+e− is sufficient to set
the relic abundances. In this direct coupling scenario, DM with mass mχ & few MeV is
viable given constraints from Big Bang Nucleosynthesis (BBN). This is because primordial
element abundances would be sensitive to additional particles in equilibrium with the
SM thermal bath at the time of nucleosynthesis [16]. If mV < mχ, DM annihilation to
mediators is possible; then the DM mass may be as low as the 1-10 keV scale, which is
consistent with warm DM and BBN limits as long as the dark sector is decoupled from
the SM plasma and sufficiently cold. And in the limit of ultralight mediator mV � eV,
the DM behaves effectively like a millicharged particle and freeze-in of DM through an
ultralight vector is an interesting benchmark, as we discuss next.

1.1.1 Freeze-in

There is another well-studied benchmark particularly relevant for direct detection of sub-
GeV dark matter, which strictly speaking is not a thermal candidate. Freeze-in [17] is
a mechanism whereby rare interactions within the SM thermal bath slowly build up an
abundance of DM. (In the usual freeze-in story, it is thus assumed that dark sector particles
are not produced at an appreciable level through decay of the inflaton during reheating.)
As a specific example, let’s look at freeze-in by s-channel annihilation of SM particles, such
as e+e−, into DM particles. The coupling of the DM particles is assumed to be sufficiently
feeble, that the reaction is never in equilibrium.

In the “UV-dominated” scenario, the production cross section depends on a high scale
Λ; for example, for scalar DM the interaction is a dimension-5 operator which we can
parameterize as

gχgevH
Λ2 χ2ēe. We have included the factor of the Higgs vacuum expectation

value, vH = 246 GeV, to account for the fact that the operator is not SU(2)L invariant.
Then the cross section goes as

〈σv〉 ' αχαev
2
H

Λ4
. (14)

3One could also use this basis for the massless mV limit. Then in the absence of a dark current,
there is no phenomenological difference from regular QED. One can then check that Coulomb scattering,
bremsstrahlung etc, are all the same as in QED up to an overall redefinition of electric charge squared as
e2(1 + ε2) in the limit ε� 1. This redefinition of electric charge is identical to the charge renormalization
in the basis of Eq. 12.
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The rate of producing a DM particle per electron is Γe+e−→χχ = ne〈σv〉 ∼ αχαeT 3v2
H/Λ

4

for T � me,mχ. Thus, the number of DM particles created per electron in a Hubble time
is ΓH−1. The abundance of total newly-created DM at any given time is

Yχ =
nχ
s
' neΓH

−1

s
' Γ

g∗,S H
' αχαe v

2
HMplT√

g∗g∗,S Λ4
, (15)

with the greatest abundance produced at the highest T (as long as T < Λ). The relic den-
sity is sensitive to the reheating of the universe and the maximum available temperatures.
Assuming that this process gives all of the dark matter and requiring that the highest
T > MeV and mχ > keV gives a lower bound on Λ/(αχαe)

1/4 & 106 GeV. With such
high scales or small couplings, the prospects for laboratory detection in the near future
are quite limited.

On the other hand, if the mediator is lighter than the DM, then we can have “IR-
dominated” freeze-in. Going back to the example introduced above Eq. 2 where DM is
coupled to a light vector mediator, the production cross section for e+e− → χχ̄ has the
form

〈σv〉 ' αχαe
T 2

(16)

in the limit of mV � mχ. Similar to above, the comoving abundance of total newly-created
DM is given by

Yχ =
nχ
s
≈ Γ

g∗,S H
' αχαeMpl√

g∗g∗,S T
(17)

so that most of the DM is produced at around the lowest T where the process is kine-
matically accessible. Either the DM becomes too heavy (T < mχ) which suppresses the
production rate, or the electrons become too dilute (T < me). While the total abundance
should be obtained by integrating the production at all times, we can estimate the relic
abudance by taking the co-moving abundance at freeze out to be Yfo = Y (T ) at the lowest
T . There are two possibilities depending on the DM mass, which results in the following
condition on the couplings

αχαe '
{√

g∗g∗,S |T=mχ × eV
Mpl
≈ 3× 10−27 − 10−26, mχ > me

√
g∗g∗,S |T=me × eV

Mpl

me
mχ
≈ 3× 10−27 × me

mχ
, mχ < me

. (18)

If we take the mediator to be the SM photon, this is then an example of a sub-GeV
DM candidate that does not require any new mediators beyond the SM! In particular,
the couplings required satisfy the bound on Q discussed below Eq. 10. (Note that for
mχ < me and the SM photon as the mediator, there is an additional large production
mechanism whereby the in-medium plasma oscillations can decay to χχ̄; this modifies the
coupling constants above by about an order of magnitude, depending on the mass [9].)
Despite the tiny couplings, this scenario is potentially detectable with direct detection or
indirect searches when the mediator mass is much smaller than the DM mass.

1.1.2 Example benchmarks

Here we identify some specific benchmark parameters that will motivate our discussion of
direct detection searches. To be concrete, consider the following two benchmarks with the
kinetically-mixed vector portal:

• mχ = 10 MeV, mV = 30 MeV, gχ = 0.3 and ε = 10−4 (thermal relic, direct coupling)
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• mχ = 1 MeV, mV = 10−12 eV, gχ = 3× 10−6, and ε = 10−6 (freeze-in)

where gχ is the coupling of the dark photon with Dirac fermion DM.

? Exercise: Check that the first benchmark is a good candidate for a thermal relic, that
the entire relic abundance can be produced by freeze-in for the second benchmark,
and that the above parameters can satisfy the existing constraints on dark photons.

The spin-averaged matrix element squared and cross section for DM-electron scattering
can be written as

|M|2 =
16g2

χε
2e2m2

χm
2
e

((q2
µ)−m2

V )2
≈

16g2
χε

2e2m2
χm

2
e

(|q|2 +m2
V )2

. (19)

σ̄e ≡
16πµ2

χeε
2αχα

((αme)2 +m2
V )2

(20)

where α is the fine structure constant, me is the electron mass, µχe is the DM-electron
reduced mass, and αχ = g2

χ/(4π). |q| is the momentum transfer, and a typical value
for electron scattering is |q| ' αme. Interestingly, the two benchmarks give comparable
values for σ̄e ≈ 10−37cm2. Consider for example a target with atomic Xe, in which DM
can excite the outer 6 valence shell electrons in each atom. We can estimate the rate as
Rχ ∼ NT

ρχ
mχ
σ̄ev with the number of targets per kilogram as NT ∼ 6× 6× 1026/(131) and

typical velocity v ∼ 10−3, giving Rχ ∼ 10−3 events/kg/s or 300 events/kg/day. Therefore,
cosmologically motivated benchmarks could in principle be detectable even with relatively
small detectors of around 1 kg that are sensitive to single electron ionizations. The same
is true for detectors sensitive to single phonon excitations as well, though in that case
getting a rate estimate is more involved, as we must know something about phonons.

1.2 Scalar mediators

The dark photon model illustrates the “top-down” approach, where we began with a
particular model of DM dynamics in the early universe to derive DM interactions in the
laboratory. That approach predicts a particular coupling strength of DM to electron and
proton number density in the nonrelativistic limit. Another approach one might take is
to start with a general scalar or vector mediator coupling to electron, proton, or neutron
number density. Consider DM that couples to nucleons or electrons only, mediated by a
scalar Yukawa interaction. Let’s parameterize the interactions as ynφn̄n (where we assume
equal coupling to neutrons and protons) and yeφēe, where yn and ye need not be directly
related. The DM also has an interaction yχφχ̄χ.

For this benchmark, the cosmology is quite different from the dark photon model. Due
to the strong stellar and fifth force constraints on a scalar mediator, thermal freezeout
of DM in the direct coupling scenario is highly constrained, and there are strong upper
bounds on the possible scattering rates. For sub-GeV DM coupling to electrons, thermal
freezeout from χχ̄ → e+e− (though an off-shell φ) is only viable for mχ,mφ & 10 MeV
due to BBN constraints. Even then, there are strong constraints from SN1987a and beam
dump constraints on such a mediator coupled to electrons. Thermal freezeout in a secluded
sector is possible for lower mass DM, but the combination of stellar constraints and self-
interacting DM constraints leads to strong upper bounds on ynyχ and therefore on σ̄e,
which are not detectable with any proposed DM-electron scattering experiments [18,19].

For sub-GeV DM coupling to nucleons, the annihilation process χχ̄ → nn̄ is clearly
not possible when the temperature of the universe is well below T ≈ GeV, while at higher
temperatures, one needs to specify a microscopic coupling of DM to quarks or gluons,
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which can be model-dependent. In addition, there are strong constraints on mediators
coupling to quarks or gluons from observations of rare meson decays. The upshot is that
thermal freezeout scenarios with sharp benchmark values of ynyχ are excluded for sub-
GeV dark matter [20]. Again, one can consider enlarging the dark sector, which does lead
to viable thermal relic possibilities. Combining astrophysical/cosmological and laboratory
constraints still leads to upper bounds on ynyχ and therefore on σ̄n [21]. For MeV-GeV
mass dark matter and the massless mediator limit (mφ � mχv0), the bounds on σ̄n are
the weakest, with the potential for large signals in direct detection experiments. However,
there are more stringent limits on sub-MeV DM and the massive mediator limit [18–20].
Despite these caveats, we will use this as an example model in considering DM-phonon
interactions, since it is the simplest interaction to consider in that context.

2 Direct detection of sub-GeV dark matter

At this point in the school, we have discussed direct detection of WIMPs with nuclear
recoils, including how to determine DM scattering rates dR/dER in terms of the DM
interaction and velocity distribution. In order to treat scattering for WIMPs into other
types of modes, including condensed matter systems, it is useful to introduce an alternative
writing of the DM scattering rate which will generalize more easily.

2.1 Scattering rate

In an arbitrary detector of volume V and density ρT , Fermi’s Golden Rule gives the
scattering rate for DM per unit target mass:

Rχ =
1

ρT

ρχ
mχ

∫
d3vfχ(v)

V d3p′χ
(2π)3

∑

f

|〈f,p′χ|∆HχT |i,pχ〉|22πδ(Ef −Ei +E′χ−Eχ). (21)

where fχ(v) is the lab-frame DM velocity distribution, ∆HχT is the non-relativistic Hamil-
tonian governing the interactions between DM and the target constituents, and |i〉, |f〉
are the initial and final detector states with energies Ei and Ef respectively. We assume
that the DM interactions with the target ∆HχT may be treated as a perturbation on the
free-particle DM Hamiltonian, such that unperturbed eigenstates are plane waves |p〉, and
that there is no entanglement between the DM and the target so that |i,pχ〉 ≡ |i〉 ⊗ |pχ〉
and similarly for |f,p′χ〉. To simplify the expression further, we assume that the matrix
element also factorizes into Fourier components q as

〈f,p′χ|∆HχT |i,pχ〉 ≡
∫

d3q

(2π)3
〈p′χ|Oχ(q)|pχ〉 × 〈f |OT (q)|i〉 (22)

=
1

V

√
πσ̄(q)

µ2
χ

〈f |OT (q)|i〉 (23)

where the Oχ and OT operators only add on the DM and target system states, respectively.
In the second line, we have inserted plane wave states for the DM, e.g., eipχ · r/

√
V , and

used the fact that the matrix element 〈p′χ|Oχ(q)|pχ〉 will lead to momentum conservation

with q ≡ pχ − p′χ. The quantity (πσ̄(q)/µ2
χ)1/2 (where q ≡ |q|) corresponds to the

strength of the interaction potential in terms of a cross section σ̄(q) and mass parameter
µχ, and we will give examples later for particular models. With this convention, OT is a
dimensionless operator and while it only acts on the target system, it could still depend
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on the DM model, such as the strength of DM coupling to the electron, proton, neutron
constituents of the system.

To continue our factorization of the DM and target system portions of the above
rate, we can introduce an auxiliary variable ω and integrate over ω with a delta function
δ(ω + E′χ − Eχ). This gives the rate as

Rχ =
1

ρT

ρχ
mχ

∫
d3vfχ(v)

∫
d3q

(2π)3
dω

πσ̄(q)

µ2
χ

δ(ω + E′χ − Eχ)

× 2π

V

∑

f

|〈f |OT (q)|i〉|2δ(Ef − Ei − ω)

︸ ︷︷ ︸
S(q, ω)

. (24)

Note that we can swap between q and p′χ using momentum conservation for the DM,
but that we have not assumed momentum conservation in the target; as we will see, a
crystal explicitly breaks translation invariance in a number of ways, so the eigenstates of
the target are not necessarily momentum eigenstates. Eq. 24 gives a factorized form of
the rate, where all of the dynamics of the target system are in contained in the final terms
of the expression. This target response piece is called the dynamic structure factor , and
denoted S(q, ω). The factor of 1/V is included in the normalization to indicate that we
are dealing with an intrinsic quantity (since the sum over final states also scales as V )
rather than an extrinsic quantity. As noted above, the target response does still depend on
details of the DM model. To obtain the rate, the target response is weighted by the DM
potential strength, and integrated over the phase space in terms of momentum transferred
q and energy deposited ω by the DM, as well as the DM velocity distribution. We will
use this form of the rate throughout.

At this point, the only assumption we have made about the target system is that it can
be treated with non-relativistic quantum mechanics. The approach can thus be applied
to nuclear recoils or condensed matter systems. We also generally work with systems in
the ground state at zero (or at least negligible) temperature, so that we do not have to
sum over an ensemble of initial states, and we will use |i〉 and |0〉 interchangeably to refer
to the initial (ground) state.

2.2 Interaction strength

We can connect the quantity σ̄(q) with particle physics models discussed in Sec. 1. In the
non-relativistic limit, the dark photon model yields the following interaction Hamiltonian
between DM and charged particles, to leading order in the relative velocity:

∆HχQ =

∫
d3q

(2π)3
eiq · (rQ−rχ) εQegχ

q2 +m2
V

(25)

where rχ is the DM position operator, rQ is the position operator of a particle of electric
charge Qe, e =

√
4πα is again the electron charge, and gχ is the dark charge. Evaluating

between plane-wave DM states gives

〈p′χ|∆HχQ|pχ〉 =

∫
d3q

(2π)3

d3rχ
V

ei(pχ−p
′
χ) · rχeiq · (rQ−rχ) εQegχ

q2 +m2
V

=
1

V

εQegχ
q2 +m2

V

eiq · rQ

(26)
where in the last equality the integration over the DM coordinate enforces momentum
conservation, q = pχ − p′χ. The matrix element of ∆HχQ thus has the factorized form of
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Eq. 23, with

〈f,p′χ|∆HχQ|i,pχ〉 =
1

V

εQegχ
q2 +m2

V

〈f |eiq ·xQ |i〉 ≡ 1

V
V(q)〈f |eiq ·xQ |i〉 (27)

where we identify the cross section σ̄(q) as propoortional to the scattering potential V(q),

σ̄(q) =
µ2
Tχ

π

(
εQegχ
q2 +m2

V

)2

≡
µ2
Tχ

π
(V(q))2 (28)

and µTχ =
mTmχ
mT+mχ

is the DM-target reduced mass; for a target proton or electron, for
instance, mT = mp or me respectively.

It is common in the DM literature to rewrite σ̄(q) = σ̄TF
2
DM(q), where σ̄T is a fiducial

cross section at fixed momentum transfer q0,

σ̄T =
µ2
Tχ

π

(
εQegχ
q2

0 +m2
V

)2

(29)

and FDM(q) is a momentum-dependent DM form factor

FDM(q) ≡ q2
0 +m2

V

q2 +m2
V

. (30)

which parameterizes the momentum dependence of the scattering potential. For T = e,
σ̄T can be interpreted as a cross section for DM scattering off a free electron at a reference
momentum q0, which is typically taken to be the inverse Bohr radius, q0 = 1/a0 = αme '
3.7 keV. For T = p, σ̄p is the DM-proton cross section and q0 is an arbitrary reference
momentum which is often taken to be q0 = mχv0. The two limits FDM → 1 and FDM →
(q0/q)

2 correspond to a heavy mediator, mV →∞, or light mediator, mV → 0, respectively.
Since the mass of the dark photon is unknown, these two limiting cases span the range
of possibilities for the scattering amplitude. In position space, the heavy mediator limit
corresponds to a contact interaction, V(rχ − rQ) ∝ δ(3)(rχ − rQ).

Plugging in some numerical values, we find that for the freezeout scenario with mV >
mχ, the typical electron cross section is

σ̄e ' 3× 10−39cm2

(
10 MeV

mχ

)2

, (31)

independent of mV , gD, and ε. Assuming a typical electron density of ne = 1024/cm3 in
a generic material, the mean free path of a 10 MeV DM particle in a generic detector is

λ = (neσ̄e)
−1 ' 4× 1012 m. (32)

Unlike ordinary Coulomb scattering between charged SM particles, then, there is no pos-
sibility of multiple scattering in any detector (or even of correlating scattering events
between two nearby detectors on an event-by-event basis); thermal relic DM experiments
are rare-event searches.

Motivated by the search for WIMP-nucleus scattering, the other case we will consider
in this review is DM that couples to protons and neutrons only, mediated by a Yukawa
interaction. The DM-nucleon Hamiltonian is given by

∆Hχn =

∫
d3q

(2π)3
eiq · (rn−rχ) ynyχ

q2 +M2
(33)

10
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Figure 1: The blue shaded region is the kinematically allowed region for DM scattering
with v = 10−3. This region must be matched onto the allowed response of the target
system, which for nuclear recoils is a resonant response at q2/(2mN ). When mχ = mN

we have the optimal matching since it is possible for DM to deposit up to all of its initial
kinetic energy. When mχ � mN , there is nonzero response of the system only in a corner
of the phase space, and the maximum recoil energy is much smaller.

for a mediator of mass M , where n denotes either a proton or a neutron. The coupling
yn now plays the role of the charge of a nucleon with respect to this new mediator, and
yχ is the DM coupling. We will assume equal proton and neutron coupling for simplicity.
As before, we can define a DM-nucleon fiducial cross section

σ̄n =
µ2
χn

π

(
ynyχ

q2
0 +M2

)2

(34)

where q0 = mχv0 as before. Again, there is also a DM form factor FDM(q), which is
identical to Eq. 30 but with the replacement mV →M .

2.3 Kinematics

Suppose incoming DM with momentum pχ = mχv scatters off a detector target and exits
with momentum p′χ. Using that for nonrelativistic DM, the energy eigenstates of the DM
Hamiltonian are Eχ = p2

χ/2mχ and E′χ = p′2χ /2mχ, we may write the energy deposited in
the target in terms of the momentum transfer q:

ωq = Eχ − E′χ =
1

2
mχv

2 − (mχv − q)2

2mχ
= q ·v − q2

2mχ
. (35)

Eq. (35) defines the kinematically-allowed region in ω,q for DM scattering as a function
of DM mass and velocity.4 As shown in Fig. 1, for fixed v, this region is bounded by an
inverted parabola in the ω− q plane; as v increases, the parabola moves up in ω since the
DM has more kinetic energy. The upper boundary of the parabola corresponds to forward
scattering, q ·v = qv, which gives the largest possible energy deposit ω for a given q. The
apex of the parabola corresponds to q = mχv and ω = 1

2mχv
2, where the target absorbs

4For bosonic DM, there is the additional possibility of absorption, where the entire mass-energy of the
DM is transferred to the target, yielding q = mχv and ω ≈ mχ. Condensed matter systems then provide
sensitivity to eV-mass DM and below. While we focus exclusively on the scattering process in this review,
see Refs. [22–31] for a dedicated treatment of absorption in various targets.
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all of the kinetic energy of the incoming DM and p′χ = 0. The right boundary of the
parabola corresponds to maximum momentum transfer for a given energy deposit, which
reduces to elastic “brick-wall” scattering when p′χ = −pχ and ωq → 0.

This allowed scattering region must be compared with the allowed response of a target
system in terms of q, ω. For instance, for nuclear recoils the dynamic structure factor is

S(q, ω) = 2πnnuc|FN (q)|2δ
(
ω − q2

2mN

)
(36)

for a nucleus with mass number A and number density nnuc. |FN (q)|2 is the elastic recoil
form factor, where in the low-momentum limit |FN (q)|2 → A2. This means we have a
resonant response of the system at the nuclear recoil dispersion relation. This resonant
response must them be compared with the allowed scattering phase space. Defining cos θ =

v̂ · q̂, setting ω = q2

2mN
= ωq gives:

qv cos θ =
q2

2µχN
(37)

where µχN = mχmN/(mχ +mN ) is the reduced mass for the DM-nucleus system. There
is a maximum momentum transfer qmax = 2µχNv. For a WIMP scattering off a typical
nucleus, then µχN ' 10−100 GeV and qmax ' 20−200 MeV. The corresponding maximum
recoil energy is

Emax
R =

2µ2
χNv

2

mN
' 20− 200 keV. (38)

However, we see that for mχ � mN , Emax
R ≈ 2m2

χ/mN , which drops rapidly with DM
mass. This corresponds to the right panel of Fig. 1, where the resonant response only
appears in a corner of the allowed phase space. The maximum recoil energy occurs in the
“hard-wall” limit where the DM bounces off the heavy nucleus.

In the above discussion, we have considered a fixed DM velocity v with typical v ∼
10−3. Larger recoil energies are possible from DM with greater speeds, but the likelihood
of an incident DM with larger velocities eventually becomes exponentially suppressed and
it is typically assumed there is essentially no DM above the local escape velocity, which
translates to v . 3× 10−3 in the lab frame. Eq. (35) implies that for a given ω, q in the
scattering phase space, there is a minimum DM initial velocity required:

vmin(q, ω) =
ωq

q
+

q

2mχ
. (39)

For nuclear recoils, this becomes vmin =
√
mNER/2µ2

χN . We can see this restriction

explicitly in the rate by taking an isotropic approximation, in which we assume the target-
dependent piece of Eq. 35 depends only on q and not on q. (Including the full q dependence
can be important, however, for anisotropic target systems.) Using the delta function
δ(ω − ωq) to integrate Eq. (24) over the angle q̂ · v̂, we obtain the isotropic rate:

Riso
χ =

1

ρT

ρχ
mχ

∫
q dq

(2π)2
dω η(vmin(q, ω))× πσ̄(q)

µ2
χ

× S(q, ω) (40)

where we have introduced a function for the mean inverse DM speed:

η(vmin) =

∫ ∞

v>vmin

d3v
fχ(v)

v
. (41)

Anisotropic effects are an important feature of scattering in condensed matter targets, but
for simplicity we will work in the isotropic approximation and use Eq. (40) throughout.

12
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? Exercise: Take the heavy mediator limit of the interaction in Eq. (33), and show
that it gives the dynamic structure factor given in Eq. (36). Using Eq. (24), show
that this reproduces the usual WIMP scattering rate. To account for the nuclear
recoil form factor, use the fact that the initial and final states are many-body nucleon
states, and for elastic recoils the initial and final states are the same (up to an overall
boost given by the final recoil of the nucleus).

2.4 Direct detection with bound systems

The previous section showed that nuclear recoils are not well matched to the allowed
scattering kinematics of sub-GeV dark matter. What we seek, instead, are systems with
strong response in the relevant q, ω for keV-GeV dark matter. This is a quite broad range
of DM masses, of course, and different systems will be useful throughout this mass range.
Rather than being limited by the free-particle kinematics assumed for nuclear recoils, the
response of bound systems (including atomic, molecular, and condensed matter systems)
is important to consider for two reasons. The first is that any realistic target system must
be treated as a bound system at low energies and momentum transfers, which will overlap
with the regime relevant for sufficiently low mass DM. The second is that the bound system
response can differ significantly from free particle response, and in particular condensed
matter systems offer an enormous array of possible excitations and response functions
(dynamic structure factors) to which the DM can couple. Fig. 2 illustrates these ideas
with possible excitations in various bound systems.

The general dynamic structure factor we will consider is given by:

S(q, ω) ≡ 2π

V

∑

f

|〈f |
(∑

k

fee
iq · rk +

∑

I

fIe
iq · rI

)
|i〉|2δ(Ef − Ei − ω) (42)

where fe is a (normalized) DM coupling with electrons and fI is the DM coupling to ions,
and we have summed over all constituents of the system. Note that different conventions
exist in the literature for the overall normalization of S(q, ω) in terms of factors of 2π and
volume, and the couplings fe,I are typically normalized relative to an overall interaction
strength. For example, for the dark photon model, we have the natural definition fe = −1
and fI = ZI , while the strength of the interaction potential is absorbed in σ̄(q). Note
also that we will focus on the particular choice of structure factor above, which depends
only on the position operators for electrons rk and ions rI , as this is the structure factor
relevant for the most commonly-studied models in the literature. In other models, the
leading nonrelativistic coupling could have additional dependence on the target momenta
and spins, and requires defining additional structure factors.

In Eq. (42), the initial and final states |i〉, |f〉 are in general many-body states of the
bound system. A key quantity which determines the importance of including these many-
body states is the momentum transfer q from the DM to the target system. For sufficiently
large q, the relative phases between the electrons or nuclei will average out to zero, and the
scattering can be effectively treated as if DM interacted incoherently with an individual
electron or nucleus. However, when q becomes comparable to the momentum spread of
the bound wavefunctions, we must consider the bound states. In the remainder of this
section, we will give an overview of the dynamic structure factor with various systems and
excitations, and how this can guide our intuition in the search for optimal target systems
for dark matter direct detection.
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Atomic systems Ionizations with 
q ∼ αme ∼ 4 keV, ΔE ∼ α2me ∼ 10 eV

Molecular systems Excitations and ionizations with 
q ∼ 1 − 10 keV, ΔE ∼ 1 − 10 eV

Bond breaking with 
ΔE ≳ 10 eV, q ≳ 100 keV

Vibrational modes with 
ΔE ∼ 0.1 − 1 eV, q ≲ 10 − 100 keV

Condensed matter systems

Vibrational modes with ΔE ≲ 0.2 eV, q ≲ 10 − 100 keV Bond breaking with 
ΔE ≳ 10 eV, q ≳ 100 keV

Multiphonon 
regime

Excitations with q ≲ 10 keV, ΔE ≲ 10 eV

Dark matter mass

Figure 2: For various bound systems, we indicate some possible excitation modes in the
system, some typical (q, ω ∼ ∆E) where they give a large response, and the corresponding
range of DM masses which are well-matched to that system. Blue shaded boxes indicate
electronic excitations, while orange shaded boxes indicate modes that can be excited by
a DM-nucleus coupling. For electronic excitations in condensed matter systems, different
materials will have ideal response to different ranges of DM masses, so the shaded region
just indicates that there exist known systems that have been studied for the whole mass
range. For these lectures, we will focus on spin-independent DM interactions with elec-
trons and/or nuclei. For spin-dependent interactions, other excitation modes and response
functions can be considered.

3 Electron excitations

The phenomenology of DM-electron scattering is dominated by the fact that electrons are
bound in atomic, molecular, and solid-state systems, with wavefunctions that are very
far from momentum-eigenstate plane waves. The typical length or momentum scale for
electronic wavefunctions is set by the Bohr radius:

a0 =
1

αme
= 5.29× 10−11 m, p0 ≡

1

a0
= 3.73 keV. (43)

In the ground state of the hydrogen atom, 〈r〉 = 3
2a0; in an larger atom, the larger value of

the principal quantum number n is partially compensated by the increased screened nuclear
charge, giving a parametrically similar answer. In a molecule, the interatomic distance
is set by minimizing the total energy of covalently-bonded atoms, and since the atomic
wavefunctions must overlap to bond, the bond length is also of order a0; for example,
the carbon-carbon bond length in organic molecules is 0.14 nm ' 2a0. The same logic
holds for solid-state lattices (silicon has a minimum interatomic distance of ∼ 4.4a0 and
a lattice constant of ∼ 10a0), and even the Fermi momentum kF for delocalized electrons
in a metal is of order p0, since it depends on the number density of electrons and hence is
set in part by the lattice spacing. The ground state position-space orbitals are localized
as exp(−r/a0), yielding momentum-space orbitals which fall off at large p as a power law.
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Figure 3: For DM-electron interactions, the response at high q is peaked about the free-
electron dispersion ω = q2/(2me). The dashed lines at q ∼ 1/a0 = αme and ω ∼ α2me

indicate typical scales for the wavefunction spread and energies of bound electrons. Many-
body effects are expected to be particularly important at lower q, ω, indicated by the
shaded region. Depending on the target material and detection method, the relevant
response function will be cut off at low ω; we show typical gaps for ionization in atomic
systems, scintillation in molecules, electron-hole excitations in semiconductors, and gapped
excitations in superconductors and Dirac materials. Kinematically allowed regions for DM
scattering are shown for mχ = 10 keV, 1 MeV, and 100 MeV at v = 10−3, as in Fig. 1.

The energies of electronic states are parametrically set by the Rydberg energy: 13.6 eV
for the ionization energy of hydrogen, O(10) eV for outer-shell binding energies in noble
atoms, O(5) eV for excitation gaps in organic molecules, and O(1−5) eV for semiconductor
gaps. As shown in Fig. 2, these binding energies decrease from isolated atoms to molecules
to solid-state systems.

We can compare these scales to the typical energy and momentum scales of DM. The
minimum and maximum momentum transfer required to create an excitation ω can be
obtained by setting q ·v = qv in Eq. (35) and solving for q. The minimum is given by

qmin = mχv −
√

(mχv)2 − 2mχω

' ω

v
, (44)

where in the second line we have taken the large mχ limit (for smaller mχ, qmin is strictly
larger). Taking v = vmax = v⊕ + vesc ' 800 km/s = 2.67× 10−3, we find

qmin ' p0

( ω

10 eV

)
. (45)

For the maximum momentum transfer, we similarly find

qmax = mχv +
√

(mχv)2 − 2mχω

' 2mχv ' p0(mχ/0.7 MeV). (46)

From this, we learn a number of things:
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• MeV–GeV DM has the correct kinematics to access the electronic response for atomic
and molecular systems where they have strong support, as shown schematically in
Fig. 3. However, it can also be seen from Fig. 3 that the DM scattering kinematics is
not necessarily ideally matched to the response. For example, for atomic ionization,
the rate will be strongly peaked at low ionization energies, since larger ω requires
accessing the high-momentum tail of the electron wavefunctions which is power-law
suppressed. Thus, while it is kinematically permitted for (say) 100 MeV DM to
deposit all of its ∼ 50 eV of kinetic energy on an atomic electron, it is extremely
unlikely to do so. Similarly, this will favor scattering on the high-velocity tail of
the DM velocity distribution, which implies a large increase in rate as the gap is
lowered [32].

• For conventional semiconductors with O(eV) gaps, DM necessarily probes distance
scales smaller than the lattice constant. Taking silicon as an example, with ω = 1 eV,
we find from Eq. (45) qmin ' p0/10 ' (10a0)−1, which is the inverse lattice spacing.
Thus, while it is true that the valence electrons are delocalized across the lattice,
the particular kinematics of DM scattering weights the the quasi-localized portion
of the electronic wavefunctions. Many-body effects will therefore be less important
for conventional semiconductors than for lower-gap materials.

• Accessing the true long-range behavior of delocalized electrons requires a narrow-gap
material, many of which have rather exotic electronic properties. Since these narrow
gaps are mandatory to probe sub-MeV DM which carries sub-eV kinetic energies,
the search for novel materials with the required electronic properties, involving close
collaboration with condensed matter physicists, is a key component of the active
research in light DM detection.

3.1 Atomic systems

The first application of dark matter-electron scattering involved electron ionization in
liquid xenon [33,34], but to illustrate the essential features we will deal with a simpler toy
example, dark matter scattering off a single hydrogen atom [1,35]. Throughout this section,
we will take the benchmark dark photon model, where DM couples to both protons and
electrons with a spin-independent potential. Summing over all target atoms (or nuclei),
the dynamic structure factor is

S(q, ω) =
2πNnuc

V

∑

f

|〈f |eiq · rN − eiq · re |0〉|2δ(Ef − E0 − ω) (47)

where rN and re are the nuclear and electronic coordinates, respectively, and |f〉 represents
an excited electronic state of the atom. In the approximation where the nucleus is infinitely
heavy and thus stationary, we may set rN = 0.

The excited electron state |f〉 may be either a bound state or a continuum state, the
latter of which corresponds to an ionized electron. Since the formalism of atomic electron
scattering is typically applied to liquid noble element detectors which are sensitive to
ionized electrons, we will focus on the continuum states. The initial state is simply the

ground state of the hydrogen atom, ψ100(r) = 2a
−3/2
0 e−r/a0 . Excited states are labeled

by a wavevector k, so the sum over |f〉 turns into an integral, and the structure factor
becomes

S(q, ω) =
2πNnuc

V

∫
d3k

(2π)3
δ(Ek − E0 − ω)|f0→k(q)|2 (48)
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where

f0→k(q) =

∫
d3r ψ∗k(r)ψ100(r)eiq · r (49)

is the atomic form factor for transitions between the ground state and the continuum state
k. Asymptotically far away from the nucleus, the final-state electron behaves as a free
particle, so we have absorbed an extra factor of

√
V inside ψ∗k(r), such that it behaves as

ψ∗k(r) ∝ eik · r as r →∞. Similarly, we may define k through the energy of the continuum

state as Ek = k2

2me
. Typically we are interested in the energy spectrum of ionized electrons

dR/dEer, so using dEer = dEk = kdk/me, so we may trade the integral over k for an
integral over Eer. Collecting the various normalization factors, and decomposing the
outgoing wavefunction into spherical waves with angular quantum numbers l′ and m′,
it is convenient to define an ionization form factor,

|fion(k, q)|2 =
∑

l′,m′

2k3

(2π)3
|f0→k,l′,m′(q)|2 (50)

where the factor of 2 accounts for spin degeneracy. The radial part R̃kl of the ionized
wavefunctions is normalized as

∫
dr r2 R̃∗kl(r) R̃k′l′(r) = (2π)3 1

k2
δll′δ(k − k′) , (51)

so that R̃kl(r) itself is dimensionless, and therefore so is fion. Using Eq. 40 since the target
system is spherically symmetric, we obtain the total differential rate per unit detector
mass,

dR

d lnEer
= NT

ρχ
mχ

σ̄e
8µ2

χe

∫
dq q |FDM(q)|2|fion(k, q)|2η(vmin), (52)

where for electron scattering

vmin =
Eer + |E0|

q
+

q

2mχ
(53)

and the form factor for a dark photon mediator FDM(q) was defined in Eq. 30. NT is the
number of target nuclei per unit detector mass, and E0 = −13.6 eV is the binding energy
of hydrogen.

For the Hydrogen atom, the form factors can be computed exactly. In particular, for
a nucleus with charge Z, the exact outgoing radial wavefunctions are [36]

R̃kl(r) = (2π)3/2

√
2
π

∣∣∣Γ
(
l + 1 + iZ

ka0

)∣∣∣ e
πZ
2ka0

(2l + 1)!
eikr 1F1

(
l + 1 +

iZ

ka0
, 2l + 2, 2ikr

)
. (54)

where Γ is the gamma function, 1F1 is the confluent hypergeometric function, and we
can take Z = 1 arbitrary to facilitate later comparison with larger hydrogenic atoms.
Since this is an eigenstate of the same potential which determines the ground state, it
is automatically orthogonal to ψ100 when Z = 1. Using this for the outgoing states, the
ionization form factor can be obtained as [35]

|fion(k, q)|2 =
512Z6k2q2a4

0(3(q2 + k2)a2
0 + Z2) exp

[
− 2Z
ka0

tan−1
(

2Zka0
(q2−k2)a20+Z2

)]

3((q + k)2a2
0 + Z2))3((q − k)2a2

0 + Z2)3(1− e−
2πZ
ka0 )

. (55)
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Figure 4: The dynamic structure factor for ionization of hydrogen, obtained using Eq. (55)
with an arbitrary reference natom = 1/(a0)3. For q � p0, the bound nature of the electron
becomes less important and the peak of the structure factor converges to the free-particle
dispersion ω = q2/(2me), indicated by the dotted line. The dashed line is the minimum q
for DM scattering, Eq. (45).

Note that this vanishes as q → 0, as required by orthogonality of the initial and final
states. The dynamic structure factor for ionization of atomic hydrogen is then given by

S(q, ω) = πnatom
me

k2
× |fion(k, q)|2, k =

√
2me(ω − E0). (56)

We plot this in Fig. 4, as compared with the kinematic restriction for DM scattering,
which requires us to be to the right of the dashed line. As discussed in the introduction to
this section, this implies that we obtain the largest rates for DM on the tail of the velocity
distribution and favoring low ω. Furthermore, it is clear that atomic hydrogen is not an
ideal direct detection target given that the region where the dynamic structure factor is
largest is not entirely accessible to DM.

With k ∼ q ∼ αme and natom ∼ (αme/10)3, we can estimate |S(q, ω)| ∼ (αme)
2/α.

Using this in Eq. (40) with ω ∼ α2me gives an order of magnitude estimate for the rate
when mχ � me:

Rχ ∼
1

ρT

ρχ
mχ

σ̄e
α2

v
(αme)

3. (57)

For mχ = 10 MeV and σe = 10−37 cm2 at the freezeout cross section, this gives an
expected rate of O(10) events/s/kg, an enormous rate compared to WIMP experiments.
However, this estimate is of course an overestimate, since we are using typical values of
S(q, ω) closer to the peak. The kinematic restriction to the allowed DM phase space shown
in Fig. 4 implies we only access the structure factor when it is smaller, which can give a
suppression by a few orders of magnitude.

For a general atom, it is expected that the qualitative behavior is quite similar for the
outermost electrons. However, one no longer has exact solutions for the wavefunctions
and the results for the structure factor are more uncertain. One approach is to use
the Hartree-Fock approximation to construct the approximate many-electron bound-state
wavefunctions as a Slater determinant of single-particle orbitals. One can then compute
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the scattering rate using single-particle orbitals, with many-body effects included in the
chosen form of the orbitals, which are tabulated in the literature. In the Hartree-Fock
approximation, the radial wavefunctions for each orbital can be expressed in a basis of
Slater-type orbitals with effective charges Zjl and coefficients Cjln as [37]

Rnl(r) = a
−3/2
0

∑

j

Cjln
(2Zjl)

n′jl+1/2

√
(2n′jl)!

(
r

a0

)n′jl−1

e−Zjlr/a0 . (58)

These wavefunctions are known as Roothaan-Hartree-Fock (RHF) wavefunctions after a
standard technique in quantum chemistry for solving the Hartree-Fock equations. How-
ever, Ref. [37] does not provide parameterizations of the continuum wavefunctions, the
earlier applications of this formalism [34, 38] had to supply the final-state wavefunctions
externally, which were not guaranteed to be orthogonal to the bound states and thus ne-
glect many-body effects in a possibly important way. Indeed, in the earliest literature [33],
a plane-wave approximation was used for computational simplicity, along with adding in a
Fermi factor by hand. As the atomic number of an atom increases, relativistic effects also
become more important. These can be incorporated [39, 40] with the Dirac-Hartree-Fock
approximation, for which a public code, FAC, exists to calculate both the bound and con-
tinuum wavefunctions from a self-consistent potential [41], ensuring orthogonality. The
combination of relativistic and many-body effects (which are expected to be important
for excited states) in xenon produces a spectrum which differs by almost an order of mag-
nitude at both small and large ionization energies, suppressing the rate at small energies
but drastically increasing the tail at large energies, which can potentially have a large
impact on experimental searches [40]. As of yet there is no direct measurement of the
ionization form factors of xenon and argon in the relevant kinematic regime for sub-GeV
DM-electron scattering, and thus each of the above approximations for the wavefunctions
must be considered to carry some unquantified systematic uncertainty.

3.2 Solid state systems

To probe dark matter with MeV mass or below, electronic excitation energies at the eV
scale and below are required, necessitating the use of solid-state systems with the required
low band gaps. Historically, much of the theoretical and experimental effort has focused
on conventional semiconductor detectors – specifically silicon and germanium – as well as
conventional superconductors like aluminum. Recently there has been a flourishing effort
to identify new materials with particular properties which are well-suited to the kinematics
of sub-GeV DM.

The difficulties with writing down the true many-body states of the crystal are even
worse than for atoms, but fortunately an effective single-particle description is possible.
One of the primary tools in condensed matter is that of Density Functional Theory (DFT),
which provides a first principles approach to determine single-particle wavefunctions self-
consistently in terms of effective potentials due to all the other electrons. For electrons
in a periodic potential satisfying V (r) = V (r + R), the single-particle wavefunctions are
called Bloch states, and given by

ψk(r) =
1√
V
eik · ruk(x), uk(r + R) = uk(r), (59)

where V is the total volume of the crystal and uk is a cell function which is also periodic.
R is a lattice vector which is any integer linear combination of three basis vectors called
the primitive lattice vectors, a1,a2,a3. The above result is known as Bloch’s theorem, and
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(a)
(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one o↵set by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, o↵set by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF2. Ca
ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) ↵-quartz: SiO2. Each
Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al2O3.
Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF2. Each
Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO4. Each Ca ion is
bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

(b)
(a) Simple cubic: CsI. (b) Face centered cubic: Diamond,

Si, Ge, GaAs, InSb, GaSb, ZnS,
NaCl, MgO, LiF, NaF, NaI, PbS,
PbSe, PbTe, CaF2.

(c) Simple tetragonal: MgF2.

(d) Body centered tetragonal: CaWO4. (e) Hexagonal: SiO2, GaN, AlN, ZnO. (f) Rhomohedral: Al2O3.

(c)
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ZnSFigure 5: (a) Real-space face-centered cubic (FCC) lattice structure for Si (b) First
Brillouin Zone for FCC crystal (c) Electron band structure for Si. The reciprocal
space primitive vectors are given by b1 = 2π/a(−1, 1, 1), b2 = 2π/a(1,−1, 1), and
b3 = 2π/a(1, 1,−1). Γ labels the origin of the reciprocal space while the capital Ro-
man letters indicate standard high-symmetry points in the BZ. Graphics reproduced from
Ref. [42], which also gives examples of additional crystals and target materials.

has the important implication that valence electrons are delocalized : their wavefunctions
have support throughout the entire crystal, thanks to the constant modulus of the phase
factor and the periodicity of the cell function. Solving the single-particle Schrödinger
equation with the ansatz (59) for the wavefunction will yield a discrete set of quantized
energy eigenvalues and eigenfunctions for each k, which may be labeled with an integer
n, called the band index, and restricting to inequivalent solutions restricts k to a region
of the reciprocal lattice space known as the first Brillouin zone (BZ). A diagram of such
a band structure, along with the associated real-space crystal lattice and BZ diagram is
shown in Fig. 5. The vector k is called a crystal momentum, and differs from the physical
momentum because crystal momentum is only conserved up to the addition of an arbitrary
reciprocal lattice vector G where G ·R = 1.

The first calculations of DM-electron scattering in silicon and germanium used either
DFT band structures and wavefunctions [33,43] or semi-analytic models based on hydro-
genic or tight-binding orbitals [32,44]. By the arguments at the beginning of this section,
the typical momentum transfers probe electrons on length scales smaller than a single unit
cell as long as the gap is O(eV) or larger, so both of these approaches are expected to
give the correct order of magnitude for the total scattering rate, though there are impor-
tant differences between the spectra at small and large recoil energies. The original DFT
approach of Ref. [43] amounts to the following procedure: start with Eq. (42) assuming
only electron interactions, treat the initial and final states as Bloch states, and neglect the
sum over all electrons in the operator by taking

∑
k e

iq · rk → eiq · r. Then the dynamic
structure factor can be written as

S(q, ω) =
2π

V

∑

k,k′,i,i′

|〈k′, i′|eiq · r|k, i〉|2δ(ω + Eik − Ei′k′) (60)

where i denotes occupied valence state, i′ denotes an unoccupied conduction state (at
zero temperature), and |k, i〉 is a Bloch state. However, the assumption that we can use
single-particle states for the initial and final excitations is not correct in general.

More recently, Refs. [45, 46] showed instead that the true dynamic structure factor in
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Figure 6: (left) Dynamic structure factor for a free electron gas with ωp = 15 eV
and kF = 3.3 keV. The plasmon resonance shows up as an infinitely narrow resonance
indicated by the dotted line, while the rest of the support is interpreted as electron-hole
excitations. (right) Dynamic structure factor for ionization in a Si semiconductor, based
on the calculation in Ref. [45]. At low q, it is peaked at the plasmon resonance, while at
high q the peak converges to the free-electron dispersion q2/(2me), similar to the structure
factor for Hydrogen. In both panels, the dashed line is the minimum q for DM scattering,
Eq. (45), showing that the peaks of the structure factor are not accessible to halo DM.

terms of many-body states is given instead in terms of the dielectric function ε(q, ω):

S(q, ω) =
q2

2πα
Im

(
− 1

ε(q, ω)

)
(61)

=
2π

V |ε(q, ω)|2
∑

k,k′,i,i′

|〈k′, i′|eiq · r|k, i〉|2δ(ω + Eik − Ei′k′). (62)

This applies to both scalar and vector mediators coupling to electrons (including dark pho-
tons), since the leading non-relativistic coupling in all these cases is just a spin-independent
Yukawa potential between DM and electrons. In the equation above, the second line can
be shown explicitly by using the Lindhard formula for the dielectric function [45], which is
essentially an approximation to the dielectric function in a noninteracting gas, i.e. com-
puting the leading order polarization function in an electron gas. Now an additional
factor of 1/|ε(q, ω)|2 appears compared to Eq. (60). The difference arises from the fact
that the true initial and final states are many-body states, and the actual result in terms
of single-particle states must account for the total response of the medium, which screens
any external perturbation by ε(q, ω). In other words, the factor of 1/|ε(q, ω)|2 accounts for
in-medium screening effects and is equivalent to resumming an infinite series of insertions
of the polarization loop, where we see explicitly that the structure factor includes terms
to all orders in α.

The result from including the full many-body response with screening leads to quali-
tatively different behavior in the low q limit. For example, in generic solid-state systems
(including both semiconductors like silicon and metals like aluminum), there is a resonance
for q . pF called the plasmon, which appears in the dynamic structure factor as

S(q, ω) ∝ q2ω
ω2
pΓp

(ω2
p − ω2)2 + ω2Γ2

p

. (63)

with Γp a finite width which regulates the resonance. The appearance of the plasma
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Figure 7: Reach to DM-electron cross section in different solid state targets for scattering
through a light mediator (left) and heavy mediator (right), assuming kg-year exposure and
zero background. Diamond (C) gives an example of a somewhat high gap target Egap = 5.5
eV; the reach shown is from Ref. [47]. Si and Ge have O(eV) gaps and have been studied
extensively as target materials. The reach for Ge with a massless mediator and Si in both
cases is from Ref. [45]. For Ge and a massive mediator, the reach shown is from Ref. [48];
for DM masses above ∼ 20 MeV, the reach is dominated by the excitation of semi-core
electrons. For sub-MeV DM, lower gap materials are needed and we show projections for
an example Dirac material from Ref. [49] and for Al from Refs. [45,46]. In the left plot, the
thick blue line is the predicted cross section if all of the relic DM is produced by freeze-in
interactions [9, 33] and the shaded regions are constraints from stellar emission [8, 50]. In
the right plot, the thick blue lines are cross sections for freezeout of scalar DM or fermionic
asymmetric DM [38]; note that for asymmetric DM, the line is a lower bound and cross
sections above it also satisfy relic density and CMB annihilation considerations. The
shaded region shows combined direct detection bounds (solid grey) and model-dependent
accelerator bounds when the dark photon mass is mA′ = 3mχ (hatched grey) [51]. All
bounds and relic density lines assume a dark photon mediator.

frequency

ωp =

√
4παne
me

(64)

suggests an interpretation of this resonance as the collective oscillation of the entire valence
electron density ne, which is not visible in a picture of single-particle wavefunctions. The
quantized mode corresponding to the collective excitation is also known as a plasmon,
where we can interpret this result as this structure factor for producing a single plasmon.
This mode can be seen most easily in calculating the response of a degenerate electron
gas, which gives an infinitely narrow resonance where ε(q, ω) = 0, as illustrated in Fig. 6
(left panel). This response function was calculated assuming a spherical Fermi surface,
leading to a restricted part of phase space for electron-hole excitations. In a realistic
material, electron-hole excitations are no longer so restricted and the plasmon can decay
to electron-hole excitations. A DFT-based calculation for Si is shown in the right panel
of Fig. 6.

From Eq. (61), we can estimate the size of the response to be |S(q, ω)| ∼ q2/(2πα) ∼
100 keV2, which is borne out by the calculations shown in Fig. 6. Using |S(q, ω)| ∼
q2/(2πα) in Eq. (40) with q ∼ αme and ω ∼ α2me gives an order of magnitude estimate
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Figure 8: For DM-nucleus interactions, the response at high q is highly peaked about the
free-nucleus dispersion ω = q2/(2mN ). As the energy drops below the displacement energy
for a nucleus in a potential, Ed, the response about the free-nucleus dispersion broadens
and we enter the multiphonon regime at q ∼ 10−100 keV. For q well below ∼ 10 keV, the
dynamic structure is dominated by resonant response on the acoustic and optical phonon
dispersions, corresponding to single phonon excitations. Kinematically allowed regions for
DM scattering are shown for mχ = 10 keV, 1 MeV, and 100 MeV at v = 10−3.

for the rate when mχ � me:

Rχ ∼
1

ρT

ρχ
mχ

σ̄e
α2

v
(αme)

3 (65)

which is similar to the estimate we obtained from the atomic dynamic structure factor,
Eq. (56). However, similar to the atomic case, we see from Fig. 6 that the peaks of
the dynamic structure factor are again not kinematically matched to the allowed DM
scattering phase space, which requires ω < qvmax. At q > kF , the peak at ω ∼ q2/(2me)
is not accessible, since in this regime ω & qkF /me ∼ qα. At low q < kF , most of the
weight in the ELF is carried by the plasmon which is located at ω > qvF . However, the
DM velocity is typically much slower than the Fermi velocity in conventional materials,
so that the DM cannot access the plasmon. However, semiconductors are still better than
a typical atomic target as in Fig. 4, due to the lower gaps. This motivates the search
for more ideal targets to search for DM-electron interactions, although to date Si and
Ge still remain among the best targets for DM masses above MeV. For sub-MeV dark
matter, the behavior of the dynamic structure factor in the q .keV and ω <eV regime
becomes important. In this mass range, some of the materials proposed include that of
superconductors [46, 52] and Dirac materials [46, 49, 53, 54], which we will not discuss in
detail here. Cross section curves for these materials are included for reference in Fig. 7.

4 Phonon excitations

Similar to the case of electron excitations, at low energies we must account for the fact
that nuclei are bound in atomic, molecular, and solid-state systems. As the DM mass
drops below ∼ GeV, the free-nucleus recoil energy ∼ (mχv)2/mN becomes comparable
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to the typical energy to break a molecular bond or displace an ion in a crystal, O(10)
eV. Indeed, a possible direct detection signature of sub-GeV might be chemical bond
breaking or production of defects in crystals [55, 56]. In the DM mass range above O(10)
MeV where bond breaking is possible, the typical momentum transfer q ∼ mχv & O(10)
keV. These momentum transfers are sufficiently large that it is still possible to treat the
scattering as occurring off individual bound nuclei in a crystal, for instance. However,
the bound state nature induces some spread in the response compared to the resonant
free elastic recoil in Eq. (36), which can be also interpreted as a multi-phonon response of
the system [51, 57]. For DM mass below ∼ 1 MeV, the maximum momentum transfer is
q < 1 keV, comparable to the inverse interparticle spacing. Then we must account for the
fact that the nuclei (ions) are all coupled, the fundamental modes are vibrational modes
called phonons, and DM can scattering coherently off the crystal.5 This leads to single
and few phonon excitations at low energies. The various regimes of nuclear response are
illustrated in Fig. 8, as compared with the kinematically allowed regions for DM of various
masses. Phonon excitations are particularly interesting since they naturally offer a more
optimal (and resonant) response in the sub-MeV DM scattering phase space as compared
with existing systems identified for electron scattering. In this section, we give a brief
introduction to phonon excitations in crystals to illustrate this point.6.

4.1 Introduction to phonons

Introductions to phonon modes can be found in standard references [59], and for com-
pleteness we provide a brief review. The system we will consider is a 1D regular lattice
of N atoms of mass M , shown in the top left of Fig. 9. All of the atoms are identical, so
the unit cell has a size a (the lattice spacing) and contains one atom. Each atom i has
a possible displacement from its equilibrium position, denoted by ui. The Hamiltonian
for this system is modeled with an effective potential for the relative displacements of
neighboring atoms:

H =
∑

i

1

2
Mu̇2

i +
1

2
keff(ui+1 − ui)2 + ... (66)

where the ... are possible higher order terms in the displacements. Those terms could lead
to three-phonon couplings, for instance.

We will take the continuum limit for this system, or equivalently consider long-wavelength
excitations, so that the displacement field u(x, t) is a function of position and time. Writing
∆x = a, the sum over positions i can be replaced by an integral over x:

H =

∫
dx

(
1

2
ρu̇2 +

1

2
k̃eff(∇u)2

)
(67)

where ρ = M/a is the mass per unit length, k̃eff = akeff , and we have replaced the finite
difference with a gradient. Equivalently, introducing a minus sign for the potential, the
Lagrangian for the system is:

L =

∫
dx

(
1

2
ρu̇2 − 1

2
k̃eff(∇u)2

)
. (68)

5For a given atom, we can think of the nucleus plus the most tightly bound electrons as being relatively
unaffected by the presence of the other atoms. Meanwhile, the outer shell electrons of the atom interact
with electrons of neighboring atoms, giving rise to the delocalized electron wavefunctions and complex
electron band structure in a material. Therefore, in what follows we will interchangeably use nucleus or
ion to refer to the nucleus plus inner-shell electrons.

6For an interesting and detailed study on the possibility of detecting vibrational and rotational modes
in molecules induced by DM scattering in a gaseous target, see Ref. [58].
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Figure 9: (left) A 1D lattice of atoms of mass M has a single longitudinal acoustic
phonon branch. (right) The dispersion relation of the acoustic phonon is shown over the
first Brillouin Zone; near q = 0, the phonon has a linear dispersion with slope given by
the speed of sound.

This describes a free, massless particle with linear dispersion, ωq = cs|q| = csq, and

speed of sound cs =
√
k̃eff/ρ =

√
a2keff/M . The mode is otherwise known as an acoustic

phonon, with an energy that goes to zero in the q → 0 limit. This reflects the fact
that the acoustic phonon is a Goldstone boson associated with spontaneous breaking of
translational symmetry. As q → 0, all atoms are displaced by the same amount and the
arrangement is physically equivalent to the original ground state.

The quantized displacement field (phonon) is written in a standard way, in terms of a
mode expansion in the interaction picture:

u(x, t) =
∑

j

1√
2Naρωqj

(
âqj e

iqjx−iωqj t + h.c.
)

(69)

=

√
aN√
ρ

∫
dq

(2π)

1√
2ωq

(
âq e

iqx−iωqt + h.c.
)

(70)

with creation and annihilation operators âq, â
†
q satisfying the commutation relations [âq, â

†
q′ ] =

δq,q′ . In the first line, we have written the expansion in terms of a discrete sum – this
reflects the actual discrete lattice, with qj = 2πj/(aN) for a lattice of length aN . In the
second line, we have given the continuum limit result. (If the factor of

√
aN looks funny

in the continuum limit, it is because in the QFT convention we typically normalize the
creation and annihilation operators differently, [âq, â

†
q′ ] = 2πδ(q − q′) → V = aN when

q = q′. This would remove the factor.) As an exercise, you can check that plugging the
above expansion into the Hamiltonian gives, in the discrete limit:

H =
∑

j

ωqj

(
â†qj âqj +

1

2

)
. (71)

We have found that the excitations are described by phonons created by the â†q operator.
The energy eigenvalues ωqj can be solved for exactly, see Ref. [59]. The right panel

of Fig. 9 shows the exact phonon band structure over the first Brillouin zone (BZ), ac-
counting for the lattice periodicity. In the long-wavelength limit q � π/a, we see the
linear dispersion expected for Goldstone modes. The size of the first BZ is set by π/a;
for a typical material a ∼ few Å, and so q . keV in the first BZ. In the q → 0 limit, the
propagation speed is the sound speed cs with typical values are ∼ 3 − 10 km/s, yielding
typical energies

ωacoustic = csq ' 8 meV

(
cs

5 km/s

)( q

500 eV

)
(72)
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Figure 10: (left) A 1D lattice of atoms of mass M1 and M2, with respective displacements
from equilibrium ui and wi. This lattice has both a longitudinal acoustic and longitudinal
optical phonon branch. (right) The dispersion relations are shown over the first Brillouin
Zone for M2/M1 = 1.5.

again for small q. The physical interpretation is that all N ions in the crystal are os-
cillating in phase with the same amplitude as q → 0, which must have zero energy. In
an anisotropic material cs may differ along different lattice directions, leading to distinct
dispersion relations for the three acoustic modes.

A realistic lattice has more than one atom per unit cell, resulting in additional phonon
branches associated with the relative motions of the atoms within the cell. In the contin-
uum limit, we must define fields u1(x, t) and u2(x, t) for the displacements and for each
momentum q we therefore have two eigenmodes. The exact dispersions for the 1D model
are shown in the right panel Fig. 10, where we see now a gapped mode, called the optical
phonon. These modes generically correspond to out-of-phase oscillations within a unit
cell, with only mild variation in the energy across the BZ. We can understand the energy
scale of optical phonons from dimensional analysis: the normal mode frequencies will be
proportional to

√
κ/MI where κ is a spring constant and MI an ion mass. In addition the

acoustic branch has a linear dispersion as q → 0, so ωacoustic ∼
√
κ/MI(qa) where a is the

lattice spacing. Identifying a
√
κ/MI with cs, we have

ωoptical '
cs
a
' 10 meV

(
cs

5 km/s

)(
0.5 nm

a

)
. (73)

We can also estimate optical phonon frequencies based on the electrostatic interactions of
ions within the unit cell [60], yielding similar values of

ωoptical '
√

e2

MIa3
' 20 meV

√
14 GeV

MI

√
(0.5 nm)3

a3
. (74)

The fact that this energy scale corresponds to the kinetic energy of DM with keV-MeV
scale masses, and that they can be excited with a wide range of momentum transfers .
keV, makes the optical phonon branch particularly useful for DM detection.

Finally, going to three spatial dimensions, the displacement field becomes a vector field
which can be written as

un,j(t) =
∑

q,ν

1√
2NcellMjων,q

[
eν,qjaν,qe

iq ·R0
nje−iων,qt + e∗ν,qja

†
ν,qe

−iq ·R0
njeiων,qt

]
(75)

where n labels the unit cell and j labels the atom within the unit cell. The operators
aν,k, a

†
ν,k are phonon annihilation and creation operators and the eigenmodes are given by
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Figure 11: A representative phonon band structure. The Γ point is where q = 0, and the
acoustic modes are indicated by TA (transverse acoustic) and LA (longitudinal acoustic).
The TO and LO branches are the optical phonon modes. Reproduced from Ref. [64].

eν,kj with energy ων,k. Ncell is the number of unit cells, R0
nj is the equilibrium position of

that atom. Given nc atoms per unit cell, there are now 3nc phonon branches, labeled by
ν. For sufficiently symmetric directions of q, it is also possible to classify the eigenmodes
according to transverse modes (displacements perpendicular to q) and longitudinal modes
(displacements parallel to q).

With modern density functional theory methods, the eigenmodes and frequencies can
all be computed from a first principles approach for a given material, see [61–63] for more
details. The band structure for a possible direct detection material (GaAs) is shown in the
right panel of Fig. 11, with the phonon energies plotted against a specific path within the
first BZ. Here the q → 0 limit is labelled by the Γ point, and there are three acoustic modes
for a 3-dimensional lattice – two transverse acoustic (TA) branches where the oscillation of
the atoms is perpendicular to q and one longitudinal acoustic (LA) branch. The acoustic
modes have linear dispersions for sufficiently small q, although the sound speed is different
for transverse vs. longitudinal phonons. Because the unit cell for GaAs contains more
than one atom, it is seen that there are also optical phonon branches (LO and TO).

4.2 Dynamic structure factor

The dynamic structure factor for phonon scattering is given by

S(q, ω) ≡ 2π

V

∑

f

|〈f |
∑

I

fIe
iq · rI |i〉|2δ(Ef − Ei − ω) (76)

where fI are again the normalized interaction strengths with the ions. The relative scat-
tering strength will depend on the type of ion, and the factors fI do not factorize out of
the structure factor if the system is composed of different types of ions. Thus, in contrast
to the electron-excitation dynamic structure factor, for multi-atom target materials there
is not a single dynamic structure, but a continuous class of structure factors depending
on how the external probe couples to the individual atoms. As will be discussed further
later, this allows for additional interesting effects in the material-dependence of DM scat-
tering, as a way to distinguish different DM coupling scenarios. Note that in this work we
will restrict to spin-independent DM interaction strengths fI ; if there is a spin-dependent
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interaction potential, then one must also perform an average over all possible spin states
of the ions. An extensive review of the dynamic structure factor for phonons, including
such spin-dependent interactions, can be found in Ref. [65].

First, it is worth commenting on how the kinematics of single-phonon excitations
compares to elastic nuclear recoils. As discussed above, there are two basic branches of
phonons we could consider, acoustic and optical phonons. The comparison of DM scatter-
ing kinematics with the dispersion relations of these phonons is illustrated schematically
in Fig. 8. For the acoustic phonon branch, the energy deposited must be ω ∼ csq with
cs ∼ 10−5. Because the sound speed is so low compared to the DM speed, energy conser-
vation (Eq. 35) leads to the solution q ∼ 2mχv, which is the same as for sub-GeV elastic
nuclear recoils. However, for acoustic phonons the energy deposited will be

ω ∼ 2csmχv ∼ 2 meV × mχ

100 keV
. (77)

which is well above the elastic recoil energy for the same DM mass, ER ∼ 10−7− 10−6 eV
depending on target mass. The energy deposited into a single acoustic phonon could be
made larger by using a relatively hard target material, such as SiC [66] or diamond [67]
where cs ≈ 4−5×10−5. However, this energy deposition is still quite small: a DM particle
of mass 100 keV has a typical kinetic energy of 100 meV, suggesting that acoustic phonons
are not ideal in terms of matching DM kinematics.

The optical phonon branch offers a potential solution to the problem of kinematic
matching. Since the dispersions are fairly flat in momentum across the BZ, Eq. 35) gives
the approximate solution

q ∼ mχv ±
√

(mχv)2 − 2mχωoptical. (78)

The typical energies are around ωoptical ∼ 30 − 150 meV, which matches well with the
total kinetic energy of DM with mass ∼ 10 keV – 1 MeV. The higher energies are also
favorable for experimental implementation. From this discussion, we might expect that
an ideal target material would likely have a broad spectrum of optical phonon energies
in the range of 10 meV up to 150 meV, to allow kinematic matching with a broad range
of DM masses. In fact, one can go further and consider systems with some amount of
disorder, which further smears out the phonon spectrum and leads to broad spectrum of
available modes; this idea was introduced in Ref. [68], which looked at single molecular
magnet crystals as a possible direct detection target. Treating the DM coupling to specific
modes is more challenging in this type of system, however. In this section, we will study
only ordered crystalline lattices, where we can next specify how DM couples to individual
phonon branches.

To compute Eq. (76) in terms of phonon excitations, the final states can simply be
written by acting with the phonon creation operators introduced in Eq. 75 on the vacuum.
For a single phonon being created, |f〉 = a†ν,k|0〉, while multiphonon excitations are also
possible. In order to detect the phonon excitations being created, the energy deposited
is necessarily well above the operating temperature of the experiment, and it is a good
approximation to take T = 0 and assume |i〉 = |0〉 for the initial state. The ion positions
are written as rI = R0

nj + un,j . Substituting this into the exponential appearing in the
matrix element gives:

fje
iq ·R0

nj exp


iq ·

∑

ν,k

1√
2NcellMjων,k

[
a†ν,ke

∗
ν,k,je

−ik ·R0
nj + aν,keν,k,je

ik ·R0
nj

]

 . (79)
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Expanding this operator will contain a 0-phonon contribution, a 1-phonon creation contri-
bution, and so on. (Note that in Eq. 75 we gave the time-dependent Heisenberg or interac-
tion picture operator un,j(t), but the matrix elements given in Eq. 76 are computed with
the Schrödinger operators where the time-dependence of the states has already been taken
into account in Fermi’s Golden rule, leading to the energy-conserving delta function. This
is why the time-dependent phase factors have been removed in substituting in Eq. 75.)

To perform the full expansion explicitly in terms of phonon creation and annihilation
operators, one can use the Baker-Campbell-Hausdorff formula, and the general result can
be found in Refs. [69, 70]. To simplify the discussion, here we just give a qualitative
argument for the form of the single-phonon structure factor. First, note that taking only
the zeroth-order term in the exponential of phonon creation operators a†ν,k, there are no
phonon transitions, and this just corresponds to DM elastically recoiling off the lattice as a
whole. The leading nontrivial contribution comes from expanding the exponential to linear
order, which allows for single-phonon creation. Summing over final states |f〉 = a†ν,k|0〉,
this leads to the single-phonon structure factor

S(1−ph)(q, ω) =
2π

V

∑

ν,k

∣∣∣∣∣∣
∑

n,j

fje
i(q−k) ·R0

nje−Wj(q)
iq · e∗ν,k,j√

2NcellMjων,k

∣∣∣∣∣∣

2

δ(Ef − Ei − ων,k).

(80)

The Debye-Waller factor is Wj(q) = 1
2

∑
ν,k

|q · e∗ν,k,j |2
2NcellMjων,k

, which roughly speaking accounts

for the effect of the zero-point motion of the ions in the lattice.
We next use the fact that for q smaller than any reciprocal lattice vector G, the sum

over lattice sites simply enforces momentum conservation:7

∑

n

ei(q−k) ·Rn = Ncellδq,k (81)

since phonon modes are only defined for k within the first Brillouin Zone. This implies
that we will have excitation of any phonon with the same momentum q and energy ω.
The single-phonon structure factor then simplifies to

S(1−ph)(q, ω) =
2πNcell

V

∑

ν

∣∣∣∣∣∣
∑

j

fje
−Wj(q)

iq · e∗ν,q,j√
2Mjων,q

∣∣∣∣∣∣

2

δ(Ef − Ei − ων,q)

≡ 2π

Ω

∑

ν

|Fν(q)|2
ων,q

δ(Ef − Ei − ων,q) (82)

where the second line defines a single-phonon form factor Fν(q) and we defined Ω = V/Ncell

as the primitive unit cell volume. This form factor sums over the coupling of the probe with
the ions fj in the unit cell, multiplied by the normalized motion of that ion ∝ e∗ν,q,j/

√
Mj

and is therefore describing an effective coupling of the probe with a particular phonon
mode, accounting for interference effects. This structure factor therefore describes coherent
scattering off the ions in the lattice. However, we explicitly see the 1-phonon form factor
is an intrinsic quantity of the material and does not scale with the size of the system.

Assuming the contact interaction limit of Eq. (33) with M � q and again applying
our main rate formula Eq. 24, the rate is given by

R(1−ph)
χ =

1

ρT

ρχ
mχ

∫
d3vfχ(v)

∫
d3q

(2π)3
dω

πσ̄n
µ2
χn

δ(ω + E′χ − Eχ)S(1−ph)(q, ω) (83)

7Since reciprocal lattice vectors are defined by the condition eiG ·R = 1, momentum is only conserved
up to a reciprocal lattice vector, k = q + G. For nonzero G, this is called Umklapp scattering.
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where we will take fj → Aj for equal couplings to protons and neutrons.
While the eigenmodes and dispersions of the phonon branches must be solved by DFT

methods for arbitrary q, it is possible to obtain approximate results in the long-wavelength
limit q � π/a where π/a is the typical size of the first BZ. In this limit, we know that the
acoustic phonon modes are Goldstone bosons of broken translation invariance, and that as
q → 0 all the ions are displaced by the same amount for a zero-energy mode. Comparing
with Eq. (75) for the displacement u, we see that in order for the

√
Mj dependence to drop

out, the eigenmodes for the acoustic phonons must be given by |eν,q,j | =
√
Mj/

√∑
dMd

as q → 0; here the factor of
√∑

dMd is just to give a normalized eigenvector, where d
sums over all ions in the unit cell. In addition, we can restrict only to the longitudinal
acoustic (LA) phonon branch where eLA,q,j = q̂

√
Mj/

√∑
dMd because of the q · e∗ν,q,j

dot product. This gives the LA single-phonon form factor in the long-wavelength limit:

lim
q→0

S(1−ph,LA)(q, ω) ≈ 2π

Ω

q2|∑j Aj |2
2 (
∑

dMd) csq
δ(csq − ω) (84)

where we have also taken e−Wj(q) ≈ 1 and an isotropic speed of sound. The form of
this structure factor is similar to that computed for the harmonic oscillator model, ∝
q2A2/(2mNω0)δ(ω − ω0) for single-phonon excitations. The difference here is that we are
taking coherent sum of the couplings over the ions in the unit cell, |∑j Aj |2, as well as
dividing by unit cell mass. In addition, replacing ω0 with the linear dispersion of the
acoustic phonons leads to a ∼ q scaling for the single phonon structure factor, rather than
the ∼ q2 scaling that was found in the toy harmonic oscillator model. Eq. 84 shows a
coherent coupling enhancement over ions in a unit cell for acoustic phonons, and in total
scales as the number of ions in the unit cell. As noted above, however, the kinematic
matching is not ideal.

We next turn to the optical phonon branch. For DM models where fj = Aj , there
is instead a destructive interference for the optical phonon coupling. To see why, let us
assume Mj = Ajmn. Then we can rewrite the structure factor as

S(1−ph)(q, ω) =
2π

Ω

∑

ν

∣∣∣∣∣∣
∑

j

e−Wj(q)
i
√
Mjq · e∗ν,q,j√
2m2

nων,q

∣∣∣∣∣∣

2

δ(ω − ων,q). (85)

In the long-wavelength limit, we can exploit the scaling of the LA phonon mode and
rewrite the dot product

√
Mjq · e∗ν,q,j as a dot product with the LA mode, eLA,q,j · e∗ν,q,j .

However, by definition for normal modes, the optical phonon eigenmodes are orthogonal
to the acoustic phonon eigenmodes, so this dot product vanishes as q → 0. For example,
for a unit cell with two atoms, in the q → 0 limit, the LO modes are given explicitly by

eLO,q→0,1 ≈ q̂

√
M2√

M1 +M2
, eLO,q→0,2 ≈ −q̂

√
M1√

M1 +M2
. (86)

Thus, the rate to produce optical phonons in this model (where the DM coupling is
proportional to mass) is highly suppressed compared to the acoustic phonon rate, despite
the kinematic advantages. This effect was observed in the first calculations of scattering
into optical modes for specific materials [64,71], and shown to be true in general using the
orthogonality argument in Ref. [72]. It can be shown instead that the leading behavior of
the structure factor scales instead goes as [69,72]

S(1−ph,LO)(q, ω) ≈ 2π

Ω

q2A1A2

2(M1 +M2)ωLO

q2a2

16
δ(ω − ωLO). (87)
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Figure 12: Reproduced from Ref. [66]. Sensitivity of a SiC target to DM-nucleon inter-
actions with a massive mediator. Results are shown assuming kg-year exposure and zero
background and for scattering into acoustic phonons (ω > meV) and for scattering into
optical phonons (ω = ωLO ≈ 35 meV). Also shown are example nuclear recoil sensitivities.

This has a similar form to the previous single-phonon excitation factors derived, but there
is an additional (qa)2 suppression when q � π/a due to the destructive interference in
the coupling. The structure factor thus scales as ∼ q4 for sub-MeV DM scattering. This
behavior has been confirmed in numerical calculations [71, 72], and leads to the reduced
cross-section sensitivity for producing a single optical phonon in Fig. 12.

Given that the single-optical-phonon rate scales as q4, it is worth considering whether
the 2-phonon contribution to the rate is comparable, since it is expected to have the same
scaling. This question was studied in Ref. [69], where it was found that the 2-phonon
contribution does indeed scale as q4, but is still smaller than the single-phonon rate, at
least for sub-MeV DM.

4.3 Dark photon couplings

Up to this point, we have dealt with equal proton and neutron couplings (and zero electron
coupling), but it is instructive to also consider a dark photon mediator for single phonon
excitations. The scaling for the acoustic and optical structure factors above is not universal
and depends on the DM model couplings. The situation is quite different for dark photons,
with enhanced couplings to optical phonons and a destructive interference with acoustic
phonons. With this example, we will see the possibility of selecting target materials to
optimize for a certain DM model.

For massless dark photon mediators, the DM will couple equally and oppositely to
electrons and protons, similar to the ordinary photon, but with an additional overall
factor of εgχ. The electron coupling introduces some additional complication, since as the
ions undergo displacements, the electrons will respond on a rapid time scale. With the
same Born-Oppenheimer approximation allowing decoupling of ion and electron motion,
the electron response to ion motion can be calculated with first-principles approaches, such
that one can determine an effective dynamical ion charge. This leads to the definition of
the Born effective charge, which is the dynamical ion charge in the long-wavelength limit.
Formally, it is a charge tensor for each ion j in the unit cell, defined as the change in
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Figure 13: Cross section for 3 events/kg-year for single optical phonon excitations in var-
ious polar materials, and assuming a massless dark photon mediator. For this mediator,
the convention in the literature is to show projections in terms of the DM-electron cross
section σ̄e even when the scattering is into phonons; the mapping is performed by translat-
ing the phonon reach in terms of the coupling parameters εgχ and translating into σ̄e for
a massless dark photon mediator. This allows comparison with experiments searching for
DM-electron scattering, which can probe the same model; the different faint lines in this
plot are the various projections for DM-electron scattering in Fig. 7. The thick blue line is
the predicted cross section if all of the relic DM is produced by freeze-in interactions [9,33]
and the shaded regions are constraints from stellar emission [8, 50].

polarization P resulting from a displacement to ion j:

Z∗j ≡
Ω

e

∂P

∂uj
. (88)

The Born effective charges are nonzero for polar materials, while they vanish for standard
non-polar semiconductors such as Si and Ge. Let us take as a simple example of a polar
material GaAs, which has a unit cell of just two ions. The Born effective charges can be
approximated to be diagonal and isotropic, so that Z∗Ga ≈ diag(2.27, 2.27, 2.27) and Z∗As ≈
diag(−2.27,−2.27,−2.27) [71], describing an effective charge sharing/splitting between the
two ions. If one had modeled the Ga as donating all 3 outer shell electrons to the As, the
electric charges would be +3 and −3 of the two ions, but the actual Born effective charges
of +2.27 and −2.27 account for the deformation of the electron wavefunctions as the ion
is displaced. Since we are dealing with a net neutral target, the sum of Born effective
charge tensors for the ions must also be equal to zero. Note that aside from determining
the structure factor, the polarization induced P implies that the phonon energies must
be re-calculated including the electrostatic energy of this polarization. This leads to an
additional contribution to the dynamical force matrix, and an increase of the LO phonon
energy. For further discussion of the Born effective charges and their effect on the LO
energies, see discussion in Refs. [70, 71].

Recalling the out of phase oscillations for LO modes, Eq. (86), and the fact that Ga
and As have opposite Born effective charges, we see that the LO mode in a polar material
can be thought of as a coherently oscillating dipole in the q → 0 limit. Thus, we can
expect that the dark photon mediator primarily couples to the LO mode. To relate the
dynamical ion charge to the DM couplings fj , we must further use the fact that the ion
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charge will be screened in a medium, where the relevant screening factor is given by ε∞.
Here ε∞ is the long-wavelength dielectric screening at frequencies below the electron band
gap but well above the optical phonon frequencies, such that ε∞ only receives contributions
from valence electrons. (At frequencies below the optical phonon frequencies, the optical
phonons also contribute to dielectric screening, giving rise to a low-frequency dielectric
constant ε0, with ε0 > ε∞ in a polar material.) Then, taking fj → Z∗j /ε∞ and using
Eq. (86), we accordingly find

S(1−ph,LO)(q, ω) ≈ 2π

Ω

(Z∗)2

ε2∞

q2

2µ12ωLO
δ(ω − ωLO). (89)

where µ12 is the reduced mass of M1 and M2. Because of the opposite signs of both the
phonon eigenmodes and the Born effective charges, there is a coherent sum over the ions
in the unit cell, in contrast to the case in Eq. (87). We find the same form and q2 scaling
as the harmonic oscillator toy model, if we make the identification of the nucleus mass
with µ12 and the replacement of the nucleus coupling with Z∗/ε∞. The structure factor
in the case is also sometimes written in terms of a Fröhlich interaction which characterizes
electron-phonon interactions, since the interaction of the electron is very similar to that
of DM through a dark photon mediator [64, 71]. Finally, for the acoustic phonons, the
opposite Born effective charges implies a destructive interference when we sum coherently
over ions in the unit cell, with the structure factor going to 0 in the limit q → 0.

From these examples, we see that polar materials with large effective charges and a
range of optical phonon energies are nearly-ideal target systems for DM interacting through
a dark photon, since they enjoy both the kinematic matching and a coherent sum over the
ions in the unit cell. For crystals with multiple optical phonon energies, it is also often
the case that the highest-energy mode gives the strongest coupling [71]. This is because
large effective charges also implies larger electrostatic energies associated with the phonon.
For DM which couples equally to protons and neutrons, instead the rate is determined
primarily through a combination of the sound speed cs, target nucleus masses, and optical
phonon energies of the target system, depending on the energy threshold. Fig. 13 shows
cross section sensitivities for example polar materials experiments, including GaAs and
Al2O3 which are planned to be used in experimental collaborations. Studies of additional
target materials can be found in Refs. [42, 66, 71, 73, 74]. Due to the resonant response,
it can also be seen that single phonon excitations can give a much larger rate than DM-
electron scattering (faint lines) for sub-MeV dark matter, at least in the materials studied
so far; we will explore the DM-electron response more in the following section. Note that
in Fig. 13, a massless dark photon mediator has been assumed where FDM(q) = (αme/q)

2.
For sub-MeV DM with q < keV, this form factor can be quite large. For massive dark
photon mediators with FDM(q) = 1, the rate is much smaller and there is very limited
sensitivity to cosmologically interesting parameter space from optical phonon excitations.

While we have mainly taken an isotropic approximation for the dynamic structure
factors, another advantage of condensed matter systems is the potential directional de-
pendence in S(q, ω). If the DM-phonon couplings or the phonon dispersions are highly
anisotropic, this will lead to a modulation of the DM scattering rate as the Earth (and
thus crystal) rotates relative to the typical direction of the incoming DM. The modulation
is also sensitive to the DM model details. Combined with the fact that the scattering form
factor depends on the DM model, it might be possible to obtain some signal-to-background
discrimination in phonon-based detection schemes, or in the case of multiple targets and
a positive signal, to deduce information about the DM candidate. The directionality of
single-phonon excitation rates is explored further in Refs. [66, 71,73].
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