SciPost Physics

Extended Gravity and Connections to Dark Energy
Clare Burrage!,
1 School of Physics and Astronomy, University of Nottingham, University Park,
Nottingham NG7 2RD, United Kingdom

* Clare.Burrage@nottingham.ac.uk

September 6, 2021

Abstract

Lecture notes on extensions of gravity and their connections to dark energy
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1 Introduction

The cosmological standard model contains a cosmological constant, A. The energy density
associated with this component makes up almost 70% of the energy density in the universe
today. In these lectures we will see how difficult it is to naturally encorporate this into our
standard models of gravity and quantum mechanics. Dark energy is the name we give to
the substance, fields or modifications of standard physics that solves this puzzle (although
some authors prefer to use the name dark energy specifically for a field which reproduces
all of the observed phenomenology).

In 2011 the Nobel prize was awarded to Saul Perlmutter, Brian Schmidt and Adam
Riess for their observations of Type la supernovae. These exploding stars have approxi-
mately the same luminosity wherever and whenever they occur in the universe, and there-
fore can be used as standard candels to form a cosmological distance ladder and help us
reconstruct the recent expansion history of the universe. These observations [1,2] (com-
bined with observations of the CMB [3]) conclusively proved that the universe could not
only be filled with matter and radiation. It needs, in addition, a significant component of
something that looks like a cosmological constantr_-] Before these observations there were
already a number of indicators for a significant cosmological constant, including a tension
between the ages of the oldest stars and the calculated age of the universe (in the absence
of a cosmological constant), the number densities of galaxies, and the observed flatness of
the universe [5].

There are no widely accepted solutions to the cosmological constant problem. In
this way the problem of dark energy is different to dark matter where a number of
different possible candidates have been identified, and the challenge is in experimen-
tally /observationally identifying which option the universe prefers. Solutions to the cosmo-
logical constant problem [5-8] have been suggested within string theory using hierarchies
between extra dimensions, modifications of gravity (giving the graviton a mass would
have been an elegant solution, but unfortunately is in tension with other observations)
and modifications to our fundamental physical principles such as locality. It has also been
suggested that we should just accept that physics is fine tuned.

In these lectures I will focus in particular on the possibility that the explanation for
how the universe is evolving is due to a modification of gravity. Gravity has been extremely
well tested in the laboratory, and in the solar system [9]. But it is an extrapolation over
a vast range of scales to assume the same theory applies on cosmological scales. It is
important to note though, that the distinction between what is a modification of gravity
and what is the introduction of novel matter is rather arbitrary. Rather than debating
classifications, we should focus on what degrees of freedom are present, what couples to
what at what scale, and what the observational consequences are.

In these lectures I aim to demonstrate the problems associated with the cosmological
constant and its solutions. Rather than trying to be comprehensive I will use illustrative
scalar field models through-out. We will see that we may want to modify gravity on long
distance scales. New physics often means new particles - and scalars are the simplest
option (especially if we don’t have a reason to introduce direction or spin dependence).
Examples that introduce new scalars include f(R) modified gravity, massive gravity and
quintessence models of dark energy. Because we are looking for new physics on longer
distance scales in the universe these scalar fields are typically light.

I use the (—, 4+, +,+) metric convention.

Key references used in putting together these notes are:

1 T noted that there is debate about whether these observations conclusively show the acceleration of
the expansion, see for example [4].
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[5] Dynamics of dark energy. Edmund J. Copeland, M. Sami, and Shinji Tsujikawa.
https: //arxiv.org/hep-th /0603057

[6] Modified Gravity and Cosmology. Timothy Clifton, Pedro G. Ferreira, Antonio Padilla,
Constantinos Skordis. https://arxiv.org/1106.2476

[7] Everything You Always Wanted To Know About The Cosmological Constant Problem
(But Were Afraid To Ask). Jérome Martin. https://arxiv.org/1205.3365

[8] Beyond the Cosmological Standard Model. Austin Joyce, Bhuvnesh Jain, Justin
Khoury and Mark Trodden. https://arxiv.org/1407.0059

2 General Relativity is Special

General relativity is our current best theory of gravity, it can be equivalently thought of
as the theory of a curved space time manifold, or as the theory of a massless spin two
field.

Lovelock’s theorem is one way of expressing the uniqueness of General Relativity. It
states that in a four dimensional space-time the only second order equations of motion
obtained from an action of the form

s = [ dacig) 1)
is )
W (RW - 29“”1%) g =0, 2)

where a and A\ are constants. The simplest choice of action that gives such an equation
of motion is

S = /d4x\/?g <a}; - /\> : (3)

If we include additional matter fields into this action, it must be done in a coordinate
independent way, which means it must have the form

S = /d‘lx\/fg <a§ — A+ Lo (G m)) : (4)

Variation of equation , and appropriate choice of the constants a and )\, gives the
Einstein equations

1 _
Ry = 5 Rgu + Aguy = M, 2Ty - (5)
Note that the contracted Bianchi identities give the continuity equation

vV, TH =0 (6)

3 Friedmann and Conservation Equations

Imposing the cosmological principles of homogeneity and isotropy, the Einstein equations
become the Friedmann equations. If the scale factor of the universe is a, so that the
Hubble ‘constant’ is H = a/a. The Friedmann equations are then

8rG K A

H>=—""p— = 7
3P~ st g (7)
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From now on we are going to set K, the curvature of the universe, to be zero. We are

treating the matter in the universe as a perfect fluid, and the corresponding conservation
equation is

p+3H(p+p)=0. (9)

If the universe is dominated by a cosmological constant then

H = \/§ (10)

a o eVA/3 (11)

and

so we see that the cosmological constant drives an accelerated expansion.
We can also ask what properties matter would have to have to mimic this expansion.
This means imposing the unusual requirements

A
= — 12
P=5G (12)
and p = —p (equivalently w = —1).
4 The Problems of the Cosmological Constant
The stress-energy tensor of matter is
2 0S,
Tl“’ = _ﬁaglﬂl . (13)
The stress energy of matter in vacuum has to be of the form
<O‘T/LV’O> = —PvacGuv » (14)

where the terms on the right hand side are g,, so that the vacuum is Lorentz invariant
and pyac is a constant so that the stress energy is conserved.
For a scalar field

5= [ dey=3 (300,006 + V() (19

In vacuum we find
<T;w> = _V(¢min)g;w . (16)

The classical cosmological constant problem is whether we can fix A to be zero (or small).
We can see now that it’s possible to do this before or after a phase transition, but not
both. We also know that the universe has gone through at least two phase transitions,
the electroweak, and the QCD, during its history.
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4.1 Quantum Zero Point Energy

The cosmological constant problem gets worse when we consider that the universe is not
only described by classical physics. Still thinking about our scalar field, we choose its
potential to be

1
V() = 5 (17)
As ¢ is a free field we can Fourier expand it
1 43k
(2m)3/2 | 2w

o(t,z) = <Ck€fiwt+i1%'~i‘ 4 czeiwtﬂ'l}f) 7 (18)

where w? = k? + m?2.
Substituting into the expression for the energy momentum tensor we find that

(p) = (271T)3 X % X /d%w(k) , (19)
1 1 k2
0= G 5% [ P (20

but both of these integrals blow up!
We clearly need to regulate these divergences, but we need to be careful. If we just
impose a hard cut off at the energy scale M we find

4
()= 25 (21)
4
) =3 % reg (22

which gives an equation of state of w = 1/3. Is this radiation?!

In fact the problem here is that our regulation scheme breaks Lorentz invariance. To
see what happens if we use a scheme which respects Lorentz invariance we instead try
using dimensional regularization. This gives

pt o T(=d/2) (m\°®
= s () %

gt T(=d/2) (m\*
0 =g () 2

where p is the regularization scale. So this time we find an equation of state with w = —1.
If we subtract the pole in I'(—d/2) then we find
4 2
m m
=——In|—) . 25
0= gzt () (25)

So the amount of vacuum energy scales with the mass of the heaviest particle in our theory.
This is a problem when the observed energy scale is ~ 1073 eV!

5 Why Extend Gravity?

e Why not? There could be lots of interesting new phenomenology to study!
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e Dark energy and the cosmological constant problem. As we have seen,
standard physics does not explain the observed acceleration of the expansion of the
universe (absent a massive fine tuning).

e UV completion. We can write a low energy effective field theory for gravity,
however this theory is not UV complete. One way of addressing this could be
through modifications of gravity.

6 How to Extend Gravity

There are many (many, many) ways to extend gravity. What we will discuss here is retain-
ing Lorentz invariance and universal coupling, but adding in additional fields, specifically
an additional scalar field. We have already seen how to add a scalar field to the matter
sector, what does it mean to add a scalar in the gravitational sector?

The way we will introduce our scalar modification here is to couple it non-minimally
to gravity, so that the gravitational action is

2
5= [dov=g (SEAOR - 307,076 - V(0)) (26

we can think of this as making Newton’s constant (or equivalently the Planck mass)
dependent on the scalar field.

There is an equivalent description of this theory, known as the Einstein frame, which
we find if we do the field redefinitions g, = A%(¢)g,w and

B\’ 1 dA\?
<d¢> :AQ(HWI% () ) , (27)

which results in the action
b (Mo e o
S= [ dx\/—g TR - ig“ VuoViup—=V(e) | , (28)

where V = 1/G/gV .

For specific choices of A(¢) and V(¢) there is a third way of framing these theories as
f(R) theories of gravity. The scalar mode appears because higher powers of R in the action
lead to higher derivative terms in the equations of motion. The gravitational instability of
general relativity means that the new scalar mode does not introduce a ghost instability.

7 How to Drive Accelerated Expansion

7.1 Quintessence

As hinted at above, an unusual form of matter with an equation of state w = —1 can
mimic a cosmological constant and drive an accelerated expansion. This can be achieved
with a scalar field with the action

5= [dtay=g (—;M)? - V(¢>) - (29)
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The background cosmological evolution is

. . dV
3H — =0, 30
o+ 3HO+ 5 (30)
and the components of the energy momentum tensor are

12
p=5+V®), (31)

(Z')2
pP=5 - V(e) . (32)
We see that the equation of state of this fluid can approach w = —1 if we are in a ‘slow

roll’ regime where ¢? < V() (note we get accelerated expansion as long as w < —1/3).

We can get this slow roll behaviour in a few different ways, particularly if the field is
settling into the minimum of its potential, or if Hubble friction stops the field from rolling
down its potential. A common choice of potential which allows Hubble friction to stop
the field at late times, known as ‘freezing’, is an inverse power law V(¢) = A%/¢.

A quintessence field has the advantages that there can exist tracking solutions which
can help solve the coincidence problem - why does the cosmological constant term come
to dominate the evolution of the universe around the time of the formation of the solar
system. The existence of scaling solutions can also remove dependence on initial condi-
tions. However it doesn’t help to answer the question of why the cosmological constant is
not huge, and arguably quintessence models contain a ‘hidden’ cosmological constant so
all of the cosmological constant problems remain.

7.2 Self-Acceleration

For scalar field theories there is an alternative way to drive an accelerated expansion known
as self-acceleration. Thinking about the scalar tensor theory we introduced earlier we had
two descriptions, a 'Jordan frame’ where the scalar couples explicitly to the metric, and
an ‘Einstein frame’ where the scalar couples explicitly to matter, which are related by field
redefinitions. Self-acceleration is the idea that the scale factor in the Jordan frame will
accelerate but the expansion in the Einstein frame will not accelerate. If the calculations
are done carefully observables are the same which ever frame we calculate in (they should
not be changed by field redefinitions!) however, implicitly, we normally do cosmological
analysis in the Jordan frame (as we assume that particle masses are constants). The
Jordan frame accelerated expansion comes entirely from the conformal transformation
between the metrics and the dynamics of the scalar field.

The Jordan and Einstein scale factors are related by ay = Aag. Comparing Friedman
equations (this discussion follows [10]) we can show that

. . AN/
ajajy —apap — <A) s (33)

where a dot is a derivative with respect to proper time, and a prime is a derivative with
respect to conformal time. If the Einstein frame scale factor is not accelerating then we

must have
AN\
a7 < | = 4
ajiy < <A> , (34)

implying that 1 < AA/A over a (Jordan frame) Hubble time. Therefore the scalar field
has to evolve significantly to drive self-acceleration.
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8 Scalar Forces and Screening Mechanisms

If a scalar field couples to Standard Model matter (and without a good reason to forbid
these interaction we should include them) it will mediate a new force. The force will be
long range if the scalar is light. Experiments constrain long range forces to have couplings
~ 10° times weaker than gravity. This means introducing an energy scale five orders of
magnitude above the Planck scale. If we don’t want to introduce another fine tuning -
what can we do?

8.1 Scalar Forces

We will now compute the tree level 2-2 particle scattering interaction by exchange of a
light scalar (This section follows the discussion in the textbook by Peskin and Schroeder).
We start from a Lagrangian

1 1 o _
L= 5(0u8)" = 5med” + (7" 0y — m)v + gunpe (35)
The scalar propagator is '
i
- 36
q* —m} + ie (36)
The fermion propagator is
i(p+m)
—— 37
p? —m? +ie’ (37)
and the vertex contributes
—ig . (38)

We want to work out this interaction in the non-relativistic limit p = (m,p) and
k = (m, k), where the three-momenta are small, and (p' — p)? = —[p' — p|> + O(p*). The
external fermion is
S
wi) = v (& ) 39
where £ is a 2 component spinor, and the factor of \/m is a convenient normalization such
that @"u® = 2mo".
Now we can compute the scattering amplitude of our Feynman diagram

i

iM = (~ig?) (ﬂ(p/)U(p)<ﬁ(/€')U(/€)> ; (40)

— )2 — 2
P —p)? —m?
9 i
N — 2 2 41
/ (m—\ﬁ—ﬁ]?—mg m) (41)
4im?g®
M ——————— 42
- -m? 2

where we have used the non-relativistic approximation in the second line.
We can compare this with non-relativistic quantum-mechanics governed by the Schrodinger
equation

R

If a particle with average momentum hk is incident on a potential V', the scattering
amplitude is defined as the coefficient of the outgoing wave in the asymptotic solution.
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If we assume that scattering is weak and the total wavefunction is approximately the
incident wave function

('liTlp) = —iV(¢)(2m)d(Ey — Ey) , (44)

where ¢ = — p and V is the Fourier transformed potential.
In field theory

(in]iT)out) = (27)*6™ (kin — kout)iM (45)
so we identify
2
- g
V() =——"—+ | 46

where we have had to divide by 1/(2m)? to convert from relativistic to non-relativistic
normalizations.

Inverting this Fourier transform (close the integration contour with a semi-circle in the
upper half of the complex plane) we find

Vir)= —g—le_m‘” . (47)

8.2 Universally Coupled Scalars

We now return to the universally coupled scalar field introduced earlier. Matter fields
move on geodesics of the rescaled metric

I = A(¢)9uu ) (48)

where g, is the metric that determines the geometry of spacetime.

To understand how the scalar field affects matter we work with a simplified situation,
assuming that spacetime is flat, g,, = 7., and that the ‘coupling function’ is A(¢) ~
(14 ¢/M). The motion of a matter particle, with position X, is governed by the geodesic
equation

PXV -, OXHIXP

= = 0. 4
oxe Tl Ton an =0 (49)
Now we write a new four velocity u* such that
UWU”UV =-1, (50)
and acceleration
a =u"'Vyut . (51)

By transforming the quantities in the geodesic equation we find

bu/M

1 B ). (52)

a’ =u'ou” =

If we consider a static, spherically symmetric situation such that u* = (1,0) then we find
that
_Pw

Y (53)

Ay =

to first order in ¢/M.
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8.3 Scalar Field Around a Source

We take the following Lagrangian

L= _%(&W _ %m2¢2 + Lo (i, (14 ¢/M)gy) | (54)

and the overall energy-momentum tensor is

2 6L, 2 ¢>> 0Ly,
T, v — — = - 1-—= ., 55
g V=989 /=g ( M ) 5g (55)
The equation of motion for ¢ is then
1 L
O — 24 moprv
06— m2 — g (-1 __) g (57)
M 2(1—¢/M) ’
O¢ — m2¢ — Loy (58)

oM

If matter is a static, non-relativistic and spherically symmetric we can write the energy
momentum tensor as T}, = diag(—p(r),0), so that the equation of motion is

O¢ = m?¢ + ﬁp(r) : (59)

Now if we assume that the source has mass M, constant density p and radius R then

o+ 2 g = Lper ). (60)

2M

we can solve this by finding solutions for » < R and r > R and then imposing that ¢ and
¢’ are continuous at the surface of the source. We also impose that the field is regular at
the origin and decays to zero at infinity. This becomes

sinh mr
¢—2]\ij< : —m), r<R, (61)
1 Mse—m(R r)
s o 0 T (62)

and again we recover the Yukawa potential.
The force experienced by a test particle is Fj, = V¢/M, and inside the Compton
wavelength of the scalar field we find

1M,
T oM 8t

(63)

8.4 Screening Around a Source
8.4.1 The Chameleon Model

We take the following Lagrangian, where we have chosen an inverse power law potential
inspired by quintessence models

5

10
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In the presence of a non-relativistic background matter density p the field now moves in

an effective potential

A° gp
Vi = — 4+ —. 65
For a given p the minimum of the effective potential is
AS M 1/2
Pmin = ( ) ; (66)
P
and the mass of small fluctuations around this minimum is
p \3/2
m2,. = 2A5 ( e M) . (67)

It is therefore possible that the field behaves very differently inside and outside a
compact source. Screening of the fifth force occurs if the field is so massive inside the
source that there is a region inside the source where the field is essentially constant, and
so no gradients of the field are built up. We call the radius of this region R,. For r < R,
we will assume that the field is constant and at the minimum of the effective potential. For
R, < r < R we assume the potential is well approximated by Veg ~ p¢/M. Then outside
the source we assume Veg =~ (1/2)m2, (¢ — ¢oo)? Where ¢oo and me, are the minimum of
the potential and the mass of small fluctuations in the background.

Constructing the field profile as before and imposing continuity of the field and its first
derivative at R, and R we find

¢ = ¢, 7T <Ry, (68)
2 2 3
PinT 3R; 2R;
¢ = ¢in + i <1— 2 t3 ) R, <r<R, (69)
B B pinRS B Ri) e—moo(R—r)
¢ = Poo 3N <1 ®) 5 r>R, (70)

and the position of the surface R, is determined by

R? 2M
=75 = o R (¢o0 — ¢in) , (71)

we see that if R, is close to R the field in the exterior of the source is suppressed.
We can take the ratio of the chameleon screened force to the unscreened Yukawa force
with the same mass in the background to find

F 3 M
cham 2(1_ & ~ 37(
R3 pR3

Fyx

¢oo - ¢in) . (72)

8.4.2 Cubic Galileon

In this section we consider an example where screening of the fifth force arrises from a
modifcation of the kinetic term for the scalar field

1 2, & 2
L= 5(09) + 1500(06)° , (73)

again we couple to matter through a linear ¢/M coupling. Despite higher order derivative
terms in the Lagrangian, we find that the equations of motion are at most second order
in derivatives

06 + 35 [06)? - 9,0,60"3"¢] (74)

_r
7

11
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Taking the source to be spherically symmetric and of constant density as before we

find 10 (5[ cs (¢
o ( [() (%) D =3O )

which has solutions

A3 4

d>’:20;“(_1+ 1+3]\cjf\)3> . r<R, (76)
A3r desp R3

r_

When R < r < Ry where Rij’, = c3M; /7T M A3 we find that the ratio of the screened

to unscreened scalar forces is
r 3/2
el <r> ' (78)
F unscreen RV

9 Summary

The main message of these lectures has been that solving the cosmological constant prob-
lem is hard. Even if we assume that some, as yet unknown, mechanism sets the observed
cosmological constant to zero, it is still a challenge to explain the observed accelerated ex-
pansion without coming into conflict with other measurements. What makes this problem
even more interesting is that the energy scale associated with it is a very accessible one,
being roughly that of neutrino masses, and a distance scale of roughly 0.1 mm. This is
a very well tested experimental regime, explaining why it is so difficult to construct new
theories which pass all existing tests. Perhaps this is another indication that the solution
must be non-linear, and that what we observe is a reprocessing of other more fundamental
scales.

There are many topics in this area that we have not touched on in these lectures.
One significant one is the constraints that come from cosmological observations and also
observations of gravitational waves. In the context of scalar tensor theories of gravity, a
very nice review of these constraints can be found in this Reference by Johannes Noller |11].
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