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Abstract

These lecture notes provide a brief introduction to extensions of gravity and
their connections to dark energy. Due to time and space limitations this is
not a comprehensive review of the field. Instead, I aim to introduce key
concepts and ideas in this area through a series of examples based on scalar
field extensions of gravity and models of dark energy.
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1 Introduction

The cosmological standard model contains a cosmological constant, Λ. The energy density
associated with this component makes up almost 70% of the energy density in the universe
today. In these lectures we will see how difficult it is to naturally encorporate this into our
standard models of gravity and quantum mechanics. Dark energy is the name we give to
the substance, fields or modifications of standard physics that solves this puzzle (although
some authors prefer to use the name dark energy specifically for a field which reproduces
all of the observed phenomenology).

In 2011 the Nobel prize was awarded to Saul Perlmutter, Brian Schmidt and Adam
Riess for their observations of Type 1a supernovae. These exploding stars have approxi-
mately the same luminosity wherever and whenever they occur in the universe, and there-
fore can be used as standard(-izeable)1 candles to form a cosmological distance ladder and
help us reconstruct the recent expansion history of the universe. These observations [2,3]
(combined with observations of the CMB [4]) conclusively proved that the universe could
not only be filled with matter and radiation. It needs, in addition, a significant component
of something that looks like a cosmological constant.2 Before these observations there were
already a number of indicators for a significant cosmological constant, including a tension
between the ages of the oldest stars and the calculated age of the universe (in the absence
of a cosmological constant), the number densities of galaxies, and the observed flatness of
the universe [6].

The cosmological constant problem, is the difficulty of reconciling the observed value
of the cosmological constant with our understanding of the Standard Model and its de-
scription in quantum field theory. As we will discuss in Section 4 there are both classical
and quantum aspects of this problem. There are no widely accepted solutions to the cos-
mological constant problem; in this way the problem of dark energy is different to that of
dark matter, where a number of different possible candidates have been identified, and the
challenge is in identifying which option the universe prefers. Solutions to the cosmologi-
cal constant problem [6–9] have been suggested within string theory based on anthropic
principles, through modifications of gravity and and also by modifying our fundamental
physical principles such as locality. It has also been suggested that we should just accept
that the cosmological constant is fine tuned [10,11].

In these lectures I will focus in particular on the possibility that the explanation for
how the universe is evolving is due to a modification of gravity. Gravity has been extremely
well tested in the laboratory, and in the solar system [12]. But it is an extrapolation over
a vast range of scales to assume the same theory applies on cosmological scales. Therefore,
it is possible that the solution to the cosmological constant problem is that the theory of
gravity we use in our calculations is not correct on cosmological scales. It is important
to note though, that the distinction between what is a modification of gravity and what
is the introduction of novel matter is sometimes rather arbitrary.3 Rather than debating

1The luminosity of Type 1a supernovae is not perfectly uniform, but a normalised version can be infered
taking other observed properties of the supernova into account [1].

2Note that there is debate about whether these observations conclusively show the acceleration of the
expansion, see for example Ref. [5].

3There are modifications of gravity that cannot be mapped to novel matter and vice versa, but there are
also many theories which could be put into either category depending on how the theory is formulated [13].
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classifications, we should focus on what degrees of freedom are present, what couples to
what at what scale, and what the observational consequences are.

In these lectures I aim to demonstrate the problems associated with the cosmological
constant and some of the phenomenology associated with proposed approaches to solving
these problems. Rather than trying to be comprehensive I will use illustrative scalar field
models through-out. New physics often means new particles - and scalars are the simplest
option (especially if we don’t have a reason to introduce direction or spin dependence).
Examples that introduce new scalars include f(R) modified gravity, massive gravity and
quintessence models of dark energy. Because we are looking for new physics on longer
distance scales in the universe these scalar fields are typically light.

I use the (−,+,+,+) metric convention, except in Section 8.1 where we use the particle
physicist’s (+,−,−,−) convention.

Key references used in putting together these notes are:
[6] Dynamics of dark energy. Edmund J. Copeland, M. Sami, and Shinji Tsujikawa.
https://arxiv.org/hep-th/0603057
[7] Modified Gravity and Cosmology. Timothy Clifton, Pedro G. Ferreira, Antonio Padilla,
Constantinos Skordis. https://arxiv.org/1106.2476
[8] Everything You Always Wanted To Know About The Cosmological Constant Problem
(But Were Afraid To Ask). Jérôme Martin. https://arxiv.org/1205.3365
[9] Beyond the Cosmological Standard Model. Austin Joyce, Bhuvnesh Jain, Justin
Khoury and Mark Trodden. https://arxiv.org/1407.0059

2 General Relativity is Special

General relativity is our current best theory of gravity, it can be equivalently thought of
as the theory of a curved space-time manifold, or as the theory of a massless spin two
field. Lovelock’s theorem is one way of expressing the uniqueness of General Relativity,
as it limits the theories that one can construct from the metric tensor alone. For a full
discussion of the uniqueness of general relativity we refer the reader to Ref. [7]. Lovelock’s
Theorem states that in a four dimensional space-time the only second-order equations of
motion obtained from an action of the form

S =

∫
d4xL(gµν) (1)

are

α
√
−g
(
Rµν − 1

2
gµνR

)
+ λ
√
−ggµν = 0 , (2)

where α and λ are constants. The simplest choice of action that gives such an equation
of motion is

S =

∫
d4x
√
−g
(
α
R

2
− λ

)
. (3)

Second order equations of motion are required to ensure that no ghost-modes are present
[14,15].

If we include additional matter fields into this action, it must be done in a coordinate
independent way, which means it must have the form

S =

∫
d4x
√
−g
(
α
R

2
− λ+ Lm(gµν , ψi)

)
. (4)
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Variation of equation (4), and appropriate choice of the constants α and λ, gives the
Einstein equations

Rµν −
1

2
Rgµν + Λgµν = M−2

p Tµν . (5)

where the stress-energy tensor of matter is

Tµν = − 2√
−g

∂(
√
−gLm)

∂gµν
. (6)

The reduced Planck mass is defined to be M2
P = 8πG, where G is Newton’s constant.

Note that the contracted Bianchi identities give the continuity equation

∇µTµν = 0 . (7)

3 Friedmann and Conservation Equations

Imposing the cosmological principles of homogeneity and isotropy, the Einstein equations
become the Friedmann equations. If the scale factor of the universe is a, so that the
Hubble ‘constant’ is H = ȧ/a. The Friedmann equations are then

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (8)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (9)

where ρ and p are respectively the energy density and pressure of matter fields, which we
have assumed can be modeled as a perfect fluid. From now on we are going to set K, the
curvature of the universe, to be zero. The conservation equation for matter4 is

ρ̇+ 3H(ρ+ p) = 0 . (10)

If the universe is dominated by a cosmological constant then

H =

√
Λ

3
(11)

and
a ∝ e

√
Λ/3t (12)

so we see that the cosmological constant drives an accelerated expansion. We can also see
from equation (9) that when Λ is large enough the second derivative of the scale factor is
positive, so the expansion accelerates.

Cosmological observations [4] indicate that our universe is currently dominated by a
cosmological constant with a value

Λ = (2× 10−33 eV)2 . (13)

We can also ask what properties a substance would have to have to mimic this ex-
pansion. From equation (9) we see that this means imposing the unusual requirements

ρ =
Λ

8πG
(14)

and p = −ρ (equivalently the equation of state of the matter fluid should be w = −1).
For matter to mimic the observed cosmological constant it would need to have an energy
density

ρ ∼ (2× 10−3 eV)4 . (15)
4Note that this is not independent of the Friedmann equations, and can be obtained by differentiating

and combining equations (8) and (9).
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4 The Problems of the Cosmological Constant

The stress-energy of matter in vacuum has to be of the form

〈0|Tµν |0〉 = −ρvacgµν , (16)

where the terms on the right hand side are gµν so that the vacuum is Lorentz invariant
(observations indicate that the vacuum should be invariant under arbitrary spatial rota-
tions and should be identical as seen by observers moving relative to each other at constant
speed) and ρvac is a constant so that the stress energy is conserved.

The observed cosmological constant is the sum of a bare cosmological constant in
the Einstein equations, and effective contributions from matter in vacuum of the form of
Eq. (16). If we can compute the contributions of matter, then we can choose the value of
the bare cosmological constant to match observations.

For a scalar field with action

S = −
∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ+ V (φ)

)
, (17)

in vacuum we find
〈Tµν〉 = −V (φmin)gµν . (18)

The potential energy stored in the field at the minimum of its potential behaves as an
effective cosmological constant

Λ2
eff = −V (φmin)

M2
P

(19)

If the value of V (φmin) changes over time, for example if the scalar field undergoes a
phase transition, this contribution to the cosmological ‘constant’ will also change. The
universe has gone through at least two phase transitions, the electroweak, and the QCD,
during its history. During the electroweak phase transition the Higgs field goes through
a phase transition which leads to a change in the vacuum expectation value (vev) of the
Higgs, and a change in the contribution to the vacuum energy density such that

|∆ρvac| ∼ m2
hv

2 (20)

where v is the Higgs vev today and mh its mass. It is possible to choose the bare cos-
mological constant to ensure that, when summed with the contribution from the Higgs
potential, the observed cosmological constant is small either before the phase transition,
or after. But not both. How to decide when it is natural to perform this tuning, and
how large a tunining of the bare cosmological constant can be considered natural are the
classical parts of the cosmological constant problem.

4.1 Quantum Zero Point Energy

The cosmological constant problem gets worse when we consider that the universe is not
only described by classical physics, but should also be described by quantum field theory.
Still thinking about our scalar field, we choose its potential to be

V (φ) =
1

2
m2φ2 . (21)

As φ is a free field we can Fourier expand it

φ(t, x) =
1

(2π)3/2

∫
d3~k√

2ω

(
cke
−iωt+i~k·~x + c†ke

iωt−i~k·~x
)
, (22)
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where ω2 = k2 +m2.
Substituting into the expression for the energy momentum tensor we find that

〈ρ〉 =
1

(2π)3
× 1

2
×
∫
d3kω(k) , (23)

〈p〉 =
1

(2π)3
× 1

6
×
∫
d3k

k2

ω(k)
, (24)

but both of these integrals blow up!
We clearly need to regulate these divergences, but we need to be careful. If we just

impose a hard cut off at the energy scale M we find

〈ρ〉 =
M4

16π2
, (25)

〈p〉 =
1

3
× M4

16π2
, (26)

which gives an equation of state of w = 1/3. This makes the vacumm energy look like
radiation, and not a cosmological constant.

In fact the problem here is that our regulation scheme breaks Lorentz invariance. To
see what happens if we use a scheme which respects Lorentz invariance we instead try
using dimensional regularization. This gives

〈ρ〉 =
µ4

2(4π)(d−1)/2

Γ(−d/2)

Γ(−1/2)

(
m

µ

)d
, (27)

〈p〉 = − µ4

2(4π)(d−1)/2

Γ(−d/2)

Γ(−1/2)

(
m

µ

)d
, (28)

where µ is the regularization scale. So this time we find an equation of state with w = −1.
If we subtract the pole in Γ(−d/2) then we find

〈ρ〉 = −〈p〉 =
m4

64π2
ln

(
m2

µ2

)
. (29)

So the amount of vacuum energy scales with the mass of the heaviest particle in our theory.
The heaviest observed particle to date is the top quark with a mass of 173 GeV. So our
calculation predicts a contribution to the cosmological constant from the quantum zero
point energy that is significantly larger than the observed energy density corresponding
to the cosmological constant today which is ∼ (10−3 eV)4! It seems that the cosmological
constant needs to be carefull fine-tuned to almost (but not quite) cancel the quantum
zero-point energy.

5 Why Extend Gravity?

• Why not? We have argued in Section 2 that if the metric is the only field in the
gravitational sector, then General Relativity is the unique theory of this field arising
from an action principle in four space-time dimensions with second order equations of
motion. However we could choose to break the assumptions that underlie Lovelock’s
theorem, and if we do there could be lots of interesting new phenomenology to study!

• Dark energy and the cosmological constant problem. As we have seen,
the only option within standard physics to explain the observed acceleration of the
expansion of the universe is a cosmological constant which needs significant fine
tuning to match observations.
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• UV completion. We can write a low energy effective field theory for gravity,
however this theory is not UV complete. One way of addressing this could be
through modifications of gravity.5

• Parameterising deviations. To fully test general relativity it is necessary to be
able to predict which observables would differ in alternative theories, and to be able
to parametrise the size of these deviations allowed by current observations.

6 How to Extend Gravity

There are many (many, many) ways to extend gravity (see Ref. [7] for a good review).
What we will discuss here is retaining Lorentz invariance and universal coupling, but
adding in additional fields, specifically an additional scalar field. We have already seen
how to add a scalar field to the matter sector, what does it mean to add a scalar in the
gravitational sector?

The way we will introduce our scalar modification here is to couple it non-minimally
to gravity through a function A(φ), so that the gravitational action is

S =

∫
d4x
√
−g
(
M2
P

2
A2(φ)R− 1

2
gµν∇µφ∇νφ− V (φ) + Lm(gµν , ψi)

)
, (30)

we can think of this as making Newton’s constant (or equivalently the Planck mass)
dependent on the scalar field. We remind the reader that Lm is the Lagrangian for the
matter fields ψi. The theory expressed in the form of Eq. (30) is known as the Jordan
frame description. We will generally assume that the scalar field φ is light in cosmological
environments so that it is a relevant and dynamical degree of freedom on large scles in the
late universe.

There is an equivalent description of this theory, known as the Einstein frame, which
we find if we do the field redefinitions g̃µν = A2(φ)gµν and(

dφ̃

dφ

)2

=
1

A2

(
1 + 6M2

P

(
dA

dφ

)2
)
, (31)

which results in the action

S =

∫
d4x
√
−g̃
(
M2
P

2
R̃− 1

2
g̃µν∇̃µφ̃∇̃ν φ̃− Ṽ (φ̃) + Lm(A−2

(
φ(φ̃)

)
g̃µν , ψi)

)
, (32)

where Ṽ =
√
g̃/gV , and ∇̃µ is the covariant derivative with respect to the metric g̃µν .

For specific choices of A(φ) and V (φ) there is a third way of framing these theories
as f(R) theories of gravity. An f(R) theory of gravity replaces the Ricci scalar in the
Einstein-Hilbert action for General Relativity with a general function of the Ricci scalar.
f(R) theories of gravity are a rare example of a theory where higher derivative terms do
not give rise to ghost instabilities, for a full discussion see Ref. [15]. The higher derivative
terms do lead to a new degree of freedom, which can be recast as a scalar field [16], but
this scalar mode is stable.

5Although this is a reason to extend or modify gravity, it is unclear whether such modifications will
also solve the cosmological constant problems or explain dark energy.
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7 How to Drive Accelerated Expansion

7.1 Quintessence

As stated above, an unusual substance with an equation of state w = −1 can mimic a
cosmological constant and drive an accelerated expansion. This can be achieved with a
scalar field with the action

S =

∫
d4x
√
−g
(
−1

2
(∇φ)2 − V (φ)

)
. (33)

By varying Eq. (33) with respect to φ, and assuming that space-time is described by an
FRW metric with scale factor a, we find that the background cosmological evolution is

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (34)

and the components of the energy momentum tensor are

ρ =
φ̇2

2
+ V (φ) , (35)

p =
φ̇2

2
− V (φ) . (36)

We see that the equation of state of this fluid can approach w = −1 if we are in a ‘slow
roll’ regime where φ̇2 � V (φ) (note we get accelerated expansion as long as w < −1/3).

We can get this slow-roll behaviour in a few different ways, particularly if the field is
settling into the minimum of its potential, or if Hubble friction stops the field from rolling
down its potential. A common choice of potential which allows Hubble friction (the 3Hφ̇
term in Eq. (34)) to stop the field at late times, known as ‘freezing’, is an inverse power
law V (φ) = Λ5/φ.

A quintessence field has the advantages that there can exist tracking solutions which
can help solve the coincidence problem - why does the cosmological constant term come
to dominate the evolution of the universe around the time of the formation of the solar
system [6]? The existence of scaling solutions can also remove dependence on initial
conditions [6]. However it doesn’t help to answer the question of why the cosmological
constant is not huge, and quintessence models contain an effective cosmological constant,
of the form in Eq. (19), in the choice of value of the scalar potential V (φ) today, so the
cosmological constant problems discussed in section 4 remain.

7.2 Self-Acceleration

For scalar field theories there is an alternative way to drive an accelerated expansion
known as self-acceleration. Thinking about the scalar modification of gravity that we
introduced earlier in Eq. (30), we had two descriptions, a ‘Jordan frame’ where the scalar
couples explicitly to the metric, and an ‘Einstein frame’ where the scalar couples explicitly
to matter, which are related by field redefinitions. Self-acceleration is the idea that the
scale factor in the Jordan frame will accelerate but the expansion in the Einstein frame
will not accelerate, even in the absence of a cosmological constant in either frame. If the
calculations are done carefully, observables are the same whichever frame we calculate
in (they should not be changed by field redefinitions!) however, implicitly, we normally
do cosmological analysis in the Jordan frame (as we assume that particle masses are
constants). The Jordan frame accelerated expansion comes entirely from the conformal
transformation between the metrics and the dynamics of the scalar field.

8
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The Jordan and Einstein scale factors are related by aJ = AaE . Comparing Friedmann
equations (this discussion follows [17]) we can show that

aJ äJ − aE äE =

(
A′

A

)′
, (37)

where a dot is a derivative with respect to proper time in the frame of interest (ȧE is
the derivative of the Einstein frame scale factor with respect to the Einstein frame proper
time), and a prime is a derivative with respect to conformal time (which is the same in
both frames). If the Einstein frame scale factor is not accelerating then we must have

aJ äJ ≤
(
A′

A

)′
, (38)

implying that 1 . ∆A/A over a (Jordan frame) Hubble time. Therefore the scalar field
has to evolve significantly to drive self-acceleration.

8 Scalar Forces and Screening Mechanisms

In these lecture notes we have previously considered scalar field extensions of gravity.
These scalar fields interact with matter, and this can be seen directly in the Einstein
frame in Eq. (30). If a scalar field couples to Standard Model matter it will mediate a new
force. The force will be long range if the scalar is light. Experiments constrain long range
forces to have couplings ∼ 105 times weaker than gravity [12]. This means introducing an
energy scale five orders of magnitude above the Planck scale. If we don’t want to introduce
another fine tuning, or contemplate physics above the Planck scale, one approach is to
consider scalar fields which have screening mechanisms to suppress their fifth forces in
the vicinity of large dense objects but still allow for significant deviations from general
relativity on cosmological scales. In this section we will see how the fifth forces arise, and
then how screening can dynamically suppress the fifth force in certain circumstances.

8.1 Scalar Forces

We will now compute the tree level 2-2 particle scattering interaction by exchange of a light
scalar. This section follows the discussion in the textbook by Peskin and Schroeder [18],
and as a result we change the sign convention of our metric in this section to (+,−,−,−).
We start from a Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2
φφ

2 + ψ̄(iγµ∂µ −m)ψ + gψ̄ψφ . (39)

The scalar propagator is
i

q2 −m2
φ + iε

. (40)

The fermion propagator is
i(�p+m)

p2 −m2 + iε
, (41)

and the vertex contributes
−ig . (42)

9
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In order to compare this with local experiments testing gravity, we want to work out
this interaction in the non-relativistic limit p = (m, ~p) and k = (m,~k), where the three-
momenta are small, and (p′ − p)2 = −|~p′ − ~p|2 +O(~p4). The external fermion is

us(p0) =
√
m

(
ξs

ξs

)
, (43)

where ξ is a 2 component spinor, and the factor of
√
m is a convenient normalization such

that ūrus = 2mδrs.
Now we can compute the scattering amplitude of our Feynman diagram

iM = (−ig2)

(
ū(p′)u(p)

i

(p′ − p)2 −m2
φ

ū(k′)u(k)

)
, (44)

≈ −g2

(
2m

i

−|~p′ − ~p|2 −m2
φ

2m

)
, (45)

iM≈ 4im2g2

|~p′ − ~p|2 −m2
φ

, (46)

where we have used the non-relativistic approximation in the second line.
We can compare this with non-relativistic quantum-mechanics governed by the Schrodinger

equation

− ~2

2m
∇2ψ + V ψ = 0 . (47)

If a particle with average momentum ~~k is incident on a potential V , the scattering
amplitude is defined as the coefficient of the outgoing wave in the asymptotic solution.

If we assume that scattering is weak and the total wavefunction is approximately the
incident wave function

〈p′|iT |p〉 = −iṼ (q)(2π)δ(E~p′ − E~p) , (48)

where ~q = ~p′ − ~p and Ṽ is the Fourier transformed potential.
In field theory

〈in|iT |out〉 = (2π)4δ(4)(kin − kout)iM , (49)

so we identify

Ṽ (~q) = − g2

|q|2 +m2
φ

, (50)

where we have had to divide by 1/(2m)2 to convert from relativistic to non-relativistic
normalizations.

Inverting this Fourier transform (close the integration contour with a semi-circle in the
upper half of the complex plane) we find

V (r) = − g
2

4π

1

r
e−mφr . (51)

8.2 Universally Coupled Scalars

We now return to the universally coupled scalar field introduced earlier. Matter fields
move on geodesics of the Jordan frame metric

gµν = A−2(φ)g̃µν , (52)

10
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where g̃µν is the Einstein frame metric.
To understand how the scalar field affects matter, we work with a simplified situation,

assuming that space-time is flat in the Einstein frame, g̃µν = ηµν and that the ‘coupling
function’ is A2(φ) ≈ (1 − φ/M). The motion of a matter particle, with position Xµ, is
governed by the geodesic equation

∂2Xν

∂λ2
+ Γνµρ

∂Xµ

∂λ

∂Xρ

∂λ
= 0 . (53)

The four velocity uµ is normalised such that

ηµνu
µuν = −1 , (54)

and the particle’s acceleration is

aµ = uν∇νuµ . (55)

By transforming the quantities in the geodesic equation into the Einstein frame, and
defining a new four velocity ũµ (normalised such that g̃µν ũ

µũν = −1) and acceleration
ãµ = ũν∇̃ν ũµ, we find

ãν = ũµ∂̃µũ
ν = − φ,ν̃/M

1 + φ/M
(3ũµũν + ηµν) . (56)

where φ,ν̃ = ∂φ/∂x̃ν . If we consider a static, spherically symmetric situation such that
ũµ = (1,~0) then we find that

ãr = −φ,r
M

(57)

to first order in φ/M , where the derivative of φ is with respect to the Einstein frame radial
coordinate.

8.3 Scalar Field Around a Source

We take the following Lagrangian

Lφ = −1

2
(∂φ)2 − 1

2
m2φ2 + Lm(ψi, (1 + φ/M)gµν) , (58)

and the overall energy-momentum tensor is

Tµν = − 2√
−g

δLm
δgµν

= − 2√
−g

(
1− φ

M

)
δLm
δg̃µν

. (59)

The equation of motion for φ is then

�φ−m2φ− 1

M
√
−g

δLm
δg̃µν

gµν =0 , (60)

�φ−m2φ− 1

M
gµν

(
− Tµν

2(1− φ/M)

)
=0 , (61)

�φ−m2φ− 1

2M
Tµµ = 0 . (62)

If the source is static, non-relativistic and spherically symmetric we can write the
energy momentum tensor as Tµµ = diag(−ρ(r),~0), so that the equation of motion is

�φ = m2φ+
1

2M
ρ(r) . (63)

11
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Now if we assume that the source has mass Ms, constant density ρ and radius R then

φ′′ +
2φ′

r
−m2φ =

1

2M
ρΘ(R− r) , (64)

we can solve this by finding solutions for r < R and r > R and then imposing that φ and
φ′ are continuous at the surface of the source. We also impose that the field is regular at
the origin and decays to zero at infinity. This becomes

φ =
ρ

2Mm3

(
sinhmr

r
−m

)
, r < R , (65)

φ =
1

2M

Ms

8π

em(R−r)

r
, r > R , (66)

which has the form of the Yukawa potential.
The force experienced by a test particle is Fφ = ∇φ/M (see Eq. (57)), and so we can

interpret the field value (divided by M) as the corresponding potential. The Yukawa force
is therefore

FYuk =
Ms(mr − 1)

16πM2r2
em(R−r) . (67)

Inside the Compton wavelength of the scalar field, where e−mr ≈ 1, we find

FYuk = − 1

2M2

Ms

8πr2
. (68)

8.4 Screening Around a Source

8.4.1 The Chameleon Model

We take the following Lagrangian, where we have chosen an inverse power law potential
inspired by quintessence models

Lφ = −1

2
(∂φ)2 − Λ5

φ
+ Lm(ψi, (1 + φ/M)gµν) . (69)

The corresponding equation of motion for the chameleon field is

�φ = Veff(φ) (70)

where, in the presence of a non-relativistic background matter density ρ, the behaviour of
the field is governed by an effective potential

Veff(φ) =
Λ5

φ
+
φρ

M
. (71)

For a given ρ the minimum of the effective potential is

φmin =

(
Λ5M

ρ

)1/2

, (72)

and the mass of small fluctuations around this minimum is

m2
min = 2Λ5

( ρ

Λ5M

)3/2
. (73)

It is therefore possible that the field behaves very differently inside and outside a
compact source. Screening of the fifth force occurs if the field is so massive inside the

12
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source that there is a region inside the source where the field is essentially constant, and
so no gradients of the field are built up. We call the radius of this region R∗. For r < R∗
we will assume that the field is constant and at the minimum of the effective potential.
For R∗ < r < R we assume the potential is well approximated by Veff ≈ ρφ/M . Then
outside the source we Taylor expand the potential around its minimum to approximate
Veff ≈ (1/2)m2

∞(φ − φ∞)2 where φ∞ and m∞ are the minimum of the potential and the
mass of small fluctuations in the background.

Constructing the field profile as before and imposing continuity of the field and its first
derivative at R∗ and R we find

φ = φin, r < R∗ , (74)

φ = φin +
ρinr

2

6M

(
1− 3R2

∗
r2

+
2R3
∗

r3

)
, R∗ < r < R , (75)

φ = φ∞ −
ρinR

3

3M

(
1− R3

∗
R3

)
e−m∞(R−r)

r
, r > R , (76)

and the position of the surface R∗ is determined by

1− R2
∗

R2
=

2M

ρin
R2(φ∞ − φin) , (77)

we see that if R∗ is close to R the field in the exterior of the source is approximately
constant.

We can take the ratio of the chameleon screened force to the unscreened Yukawa force
with the same mass in the background to find

Fcham

FYuk
= 2

(
1− R3

∗
R3

)
≈ 3M

ρR3
(φ∞ − φin) . (78)

where FYuk is as in Eq. (67), with m = m∞. If a source has a thin-shell, such that there is
a non-zero R∗ which satisfies Eq. (77), then the corresponding scalar mediated fifth force
will be suppressed.

8.4.2 Cubic Galileon

In this section we consider an example where screening of the fifth force arrises from a
modifcation of the kinetic term for the scalar field

L =
1

2
(∂φ)2 +

c3

Λ3
�φ(∂φ)2 , (79)

again we couple to matter through a linear φ/M coupling. Despite higher order derivative
terms in the Lagrangian, we find that the equations of motion are at most second order
in derivatives

�φ+
c3

Λ3
[(�φ)2 − ∂µ∂νφ∂µ∂νφ] =

ρ

M
. (80)

Taking the source to be spherically symmetric and of constant density as before we
find

1

r2

∂

∂r

(
r3

[(
φ′

r

)
+
c3

Λ3

(
φ′

r

)2
])

=
ρ

M
Θ(R− r) , (81)

which has solutions

φ′ =
Λ3r

2c3

(
−1 +

√
1 +

4c3ρ

3MΛ3

)
, r < R , (82)

φ′ =
Λ3r

2c3

(
−1 +

√
1 +

4c3ρ

3MΛ3

R3

r3

)
, r > R . (83)
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When R < r � RV where R3
V = c3Ms/πMΛ3 we find that the ratio of the screened

to unscreened scalar forces is

Fgal

Funscreen
= 2

(
r

RV

)3/2

. (84)

where Funscreen is the unscreened Yukawa force of Eq.(67) with m = 0. We see that inside
the Vainstein radius the scalar mediated force is suppressed.

9 Summary

Solving the cosmological constant problem and explaining the accelerated expansion of the
universe by other means is hard, and there are no widely accepted solutions. Even if we
assume that some, as yet unknown, mechanism sets the observed cosmological constant to
zero, it is still a challenge to explain the observed accelerated expansion without coming
into conflict with other measurements. But there are many avenues still to explore, for
example whether there exist viable theories which self-accelerate the universe that do not
conflict with any other observational test. What makes this problem even more interesting
is that the energy scale associated with it is a very accessible one, being roughly that of
neutrino masses, and a distance scale of roughly 0.1 mm. This is a very well tested
experimental regime.

There are many topics in this area that we have not touched on in these lectures. One
significant example is the constraints that come from cosmological observations and also
observations of gravitational waves. In the context of scalar tensor theories of gravity, a
very nice review of these constraints can be found in this Reference by Johannes Noller [19].

Acknowledgements

Funding information CB is supported by a Research Leadership Award from the
Leverhulme Trust and a Royal Society University Research Fellowship.

References

[1] M. M. Phillips, The absolute magnitudes of Type IA supernovae, Astrophys. J. Lett.
413, L105 (1993), doi:10.1086/186970.

[2] A. G. Riess et al., Observational evidence from supernovae for an accelerating uni-
verse and a cosmological constant, Astron. J. 116, 1009 (1998), doi:10.1086/300499,
astro-ph/9805201.

[3] S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae,
Astrophys. J. 517, 565 (1999), doi:10.1086/307221, astro-ph/9812133.

[4] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron.
Astrophys. 641, A6 (2020), doi:10.1051/0004-6361/201833910, [Erratum: As-
tron.Astrophys. 652, C4 (2021)], 1807.06209.

[5] R. Mohayaee, M. Rameez and S. Sarkar, Do supernovae indicate an accelerating
universe?, Eur. Phys. J. Spec. Top. (2021), doi:10.1140/epjs/s11734-021-00199-6,
2106.03119.

14

https://doi.org/10.1086/186970
https://doi.org/10.1086/300499
astro-ph/9805201
https://doi.org/10.1086/307221
astro-ph/9812133
https://doi.org/10.1051/0004-6361/201833910
1807.06209
https://doi.org/10.1140/epjs/s11734-021-00199-6
2106.03119


SciPost Physics Submission

[6] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod.
Phys. D 15, 1753 (2006), doi:10.1142/S021827180600942X, hep-th/0603057.

[7] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology,
Phys. Rept. 513, 1 (2012), doi:10.1016/j.physrep.2012.01.001, 1106.2476.

[8] J. Martin, Everything You Always Wanted To Know About The Cosmological Con-
stant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13, 566 (2012),
doi:10.1016/j.crhy.2012.04.008, 1205.3365.

[9] A. Joyce, B. Jain, J. Khoury and M. Trodden, Beyond the Cosmological Standard
Model, Phys. Rept. 568, 1 (2015), doi:10.1016/j.physrep.2014.12.002, 1407.0059.

[10] E. Bianchi and C. Rovelli, Why all these prejudices against a constant? (2010),
1002.3966.

[11] C. P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy
from Micro-physics, In 100e Ecole d’Ete de Physique: Post-Planck Cosmology, pp.
149–197, doi:10.1093/acprof:oso/9780198728856.003.0004 (2015), 1309.4133.

[12] E. G. Adelberger, B. R. Heckel and A. E. Nelson, Tests of the grav-
itational inverse square law, Ann. Rev. Nucl. Part. Sci. 53, 77 (2003),
doi:10.1146/annurev.nucl.53.041002.110503, hep-ph/0307284.

[13] A. Joyce, L. Lombriser and F. Schmidt, Dark Energy Versus Modified Gravity, Ann.
Rev. Nucl. Part. Sci. 66, 95 (2016), doi:10.1146/annurev-nucl-102115-044553, 1601.
06133.

[14] R. P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia
10(8), 32243 (2015), doi:10.4249/scholarpedia.32243, 1506.02210.

[15] R. P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes
Phys. 720, 403 (2007), doi:10.1007/978-3-540-71013-4 14, astro-ph/0601672.

[16] T. P. Sotiriou, f(R) gravity and scalar-tensor theory, Class. Quant. Grav. 23, 5117
(2006), doi:10.1088/0264-9381/23/17/003, gr-qc/0604028.

[17] J. Wang, L. Hui and J. Khoury, No-Go Theorems for Generalized Chameleon Field
Theories, Phys. Rev. Lett. 109, 241301 (2012), doi:10.1103/PhysRevLett.109.241301,
1208.4612.

[18] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory, Addison-
Wesley, Reading, USA, ISBN 978-0-201-50397-5 (1995).

[19] J. Noller, Cosmological constraints on dark energy in light of gravitational wave
bounds, Phys. Rev. D 101(6), 063524 (2020), doi:10.1103/PhysRevD.101.063524,
2001.05469.

15

https://doi.org/10.1142/S021827180600942X
hep-th/0603057
https://doi.org/10.1016/j.physrep.2012.01.001
1106.2476
https://doi.org/10.1016/j.crhy.2012.04.008
1205.3365
https://doi.org/10.1016/j.physrep.2014.12.002
1407.0059
1002.3966
https://doi.org/10.1093/acprof:oso/9780198728856.003.0004
1309.4133
https://doi.org/10.1146/annurev.nucl.53.041002.110503
hep-ph/0307284
https://doi.org/10.1146/annurev-nucl-102115-044553
1601.06133
1601.06133
https://doi.org/10.4249/scholarpedia.32243
1506.02210
https://doi.org/10.1007/978-3-540-71013-4_14
astro-ph/0601672
https://doi.org/10.1088/0264-9381/23/17/003
gr-qc/0604028
https://doi.org/10.1103/PhysRevLett.109.241301
1208.4612
https://doi.org/10.1103/PhysRevD.101.063524
2001.05469

	Introduction
	General Relativity is Special
	Friedmann and Conservation Equations
	The Problems of the Cosmological Constant
	Quantum Zero Point Energy

	Why Extend Gravity?
	How to Extend Gravity
	How to Drive Accelerated Expansion
	Quintessence
	Self-Acceleration

	Scalar Forces and Screening Mechanisms
	Scalar Forces
	Universally Coupled Scalars
	Scalar Field Around a Source
	Screening Around a Source
	The Chameleon Model
	Cubic Galileon


	Summary
	References

