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We study the energy minima of the fully-connected m-components vector spin glass model at
zero temperature in an external magnetic field for m ≥ 3. The model has a zero temperature
transition from a paramagnetic phase at high field to a spin glass phase at low field. We study
the eigenvalues and eigenvectors of the Hessian in the minima of the Hamiltonian. The spectrum is
gapless both in the paramagnetic and in the spin glass phase, with a pseudo-gap behaving as λm−1 in
the paramagnetic phase and as

√
λ at criticality and in the spin glass phase. Despite the long-range

nature of the model, the eigenstates close to the edge of the spectrum display quasi-localization
properties. We show that the paramagnetic to spin glass transition corresponds to delocalization of
the edge eigenvectors. We solve the model by the cavity method in the thermodynamic limit. We
also perform numerical minimization of the Hamiltonian for N ≤ 2048 and compute the spectral
properties, that show very strong corrections to the asymptotic scaling approaching the critical
point.

I. INTRODUCTION

Low energy excitations of glasses display a remarkable
degree of universality. In addition to usual phonons and
other extended modes, in a variety of model glassy sys-
tem it has been found the presence of low energy quasi-
localized excitations with density of states (DOS) be-
having quartically at low frequencies DQLS(ω) ∼ Aω4

[1–11]. While the prefactor is found to depend on the
details of the models and preparation protocols [10, 11],
the ω4 behavior seems to be very general, independent
of composition, preparation procedure and the space di-
mension [8, 9, 12]. Remarkably, the same ω4 behavior
of the DOS can be also found in a granular amorphous
solid with long-range electroscatic interactions [13]. De-
spite the fact that this spectrum of localized modes was
first predicted by phenomenological theories [14, 15], a
theoretical comprehension based on microscopic models,
as well as an understanding of its generality is at present
lacking.

In the theoretical study of glassy landscapes it is use-
ful to turn to mean-field models, where the Hessian of
typical minima are random matrices from the classical
Wigner-Dyson ensemble, or simple variations. Mean-field
models usually display either a gapped spectrum or a
quadratic DOS, D(ω) ∝ ω2, at low frequencies [16, 17].
In both cases, the corresponding eigenstates are delocal-
ized, since they are related to the eigenvectors of sim-
ple random matrices.1 Only very recently a mean-field
spin glass model has been studied [18–20] displaying, in
presence of an external field, D(ω) ∝ ω4 with localized
modes. However, this model has unbounded variables
subject to a constraining quartic potential, very useful

1 The relation between eigenvalues and frequency λ = ω2 implies√
λ dλ ∼ ω2dω.

for performing computations, but rather unrealistic. We
aim at studying spin glasses with continuous degrees of
freedom, also known as vector spin glasses, where every
variable is a fixed norm vector of m ≥ 2 components. The
most common models consider XY variables (m = 2) and
Heisenberg variables (m = 3).

Vector spin glasses are good candidates for glassy mod-
els having a non-trivial spectrum of low-energy excita-
tions. In Ref. [21] the Hessian of the minima of the
Heisenberg spin glass model in three dimension in pres-
ence of a magnetic field was considered. It was found
numerically that the model has a zero temperature phase
transition as a function of the field intensity, from a para-
magnetic phase with a single isolated disordered min-
imum to a spin-glass phase with many minima. The
paramagnetic phase has remarkable features: one finds
that within this phase, it exists a value of the field, be-
low which the spectrum of the Hessian at the dominat-
ing energy minimum become gapless, and its properties
approach the one found in glasses. The low frequency
behavior of the density of states behaves as ω4 and cor-
responds to quasi-localized modes of excitation. The be-
havior changes at the spin-glass transition, and strong
hints were found that the low lying eigenvectors become
delocalized.

Recent studies showed a similar picture for the XY
spin glass model on the Bethe lattice in a field, which
also has a paramagnet to spin-glass transition at zero
temperature varying the external field. The model can be
solved analytically with the cavity method [22] and thus
the phase diagram can fully determined [23, 24]. Also in
this case, one finds the absence of a gap in the spectral
density, a density of low-energy excitations behaving as
D(ω) ∝ ω4 and the quasi-localized nature of the low
energy excitations [25].

Unfortunately the solution of models on the Bethe lat-
tice is rather involved and one would like to find similar
results in mean-field models defined on fully connected
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graphs. Among the latter the most studied have been
spherical models: p-spin models, that are paradigmatic
for the random first order transition, and perceptrons,
allowing to formulate the simplest model for jamming.
In spherical p-spin models the structure of the minima of
the energy has been studied extensively [26]. One finds
either a paramagnetic phase with a single minimum, or a
stable glass phase with many, well separated, stable min-
ima, or a marginal glass phase with marginal minima that
lie one close to each other in the energy landscape. The
Hessian matrices in the different minima, up to an over-
all shift of the diagonal elements, turn out to be random
matrices from the Wigner-Dyson (GOE) ensemble. Cor-
respondingly, the lower spectral edge presents a square
root singularity, typical of dense random matrices. The
spectral gap, determined by the overall shift, is positive
both in paramagnetic and stable glass minima while it
vanishes in marginal glass minima. In the perceptron,
where the Hessian is a shifted Wishart random matrix
the situation is similar, but richer due to the presence of
a jamming point, where the spectral density behaves as
λ−1/2 in the origin [16].

The presence of a spectral gap in the stable glass and
paramagnetic phases, seems to be a limitation of fully-
connected models. Moreover, the dense nature of the
Hessian matrix implies complete delocalization of the
eigenvectors, that for the above-mentioned ensembles are
just random points on the hypersphere defined by the
spherical constraint, irrespective of the eigenvalue they
correspond to.

In this paper we would like to reexamine these points
for the richer models of vector spin glasses defined on
fully-connected graphs. The study of these models were
pioneered by Bray and Moore in ref. [27–29]. It is
well known, that differently from the Ising and XY spin
glasses, the fully-connected m-component vector spin-
glass models with m ≥ 3 have a zero temperature tran-
sition in a field [30]. In particular the Heisenberg fully-
connected spin glass in a field at zero temperature has
been studied in Ref. [17], where the authors find a gapped
spectrum in the paramagnetic phase (i.e. for a large
enough external field). We are going to revisit this re-
sult, showing that the spectrum of this model extends
down to λ = 0 in the whole paramagnetic phase, with a
pseudo-gap behavior ρ(λ) ∝ λm−1.

The Hessian matrix of vector spin glass models is a
random matrix of the Rosenzweig-Porter ensemble [31]
(also called deformed Wigner-Dyson ensemble) with ran-
dom diagonal elements whose statistics is directly related
to the distribution of local fields. We present a derivation
of the spectral properties of the Hessian matrix based on
the cavity method, that returns the known result [32]
with a very clear physical interpretation.

We then study the eigenvectors, whose inverse partic-
ipation ratio turn out to be proportional to 1/N with
a prefactor that diverges on the edges of the spectrum
as λ−2(m−1), revealing non-trivial localization properties
even in the paramagnetic phase of fully-connected mean-

field spin glass models, induced by the random external
field.

Approaching the critical field, where a paramagnet to
spin glass transition takes place, the (quasi-)localized
low-energy eigenmodes undergo a delocalization transi-
tion, becoming system-wide extended. Below the critical
line, in the spin glass phase, we expect the spectrum of
the Hessian to have a square root singularity and ex-
tended eigenvectors.

To support and complement the analytical results ob-
tained in the thermodynamical limit, we perform energy
minimization for a large number of samples of sizes up to
N = 2048, and we compute the spectrum of the Hessian
at the energy minimum. The numerical data fully sup-
port the scenario obtained analytically, but also reveal
the presence of large finite size corrections, that become
even larger approaching the critical point, possibly hiding
the correct asymptotic scaling.

II. ANALYTICAL SOLUTION OF THE MODEL

A. The cavity equations

In this section we review some well known properties
of the fully-connected m-component vector spin glass at
zero temperature in an external random field. The model
is defined by the Hamiltonian

H = −
∑
i<j

JijSi · Sj −
∑
i

bi · Si (1)

where the N spins Si are m-components vectors, normal-
ized to |Si| = 1, and the couplings Jij (with i < j) are
Gaussian independent and identically distributed ran-

dom variables (iidrv) with Jij = 0 and J2
ij = 1/N . For

i > j, Jij = Jji, while Jii = 0. We choose the exter-
nal fields to be iidrv with Gaussian distribution of zero
mean and variance (bαi )2 = ∆2. At zero temperature, the
Gibbs measure concentrates on the absolute minima of
H, where the following equations hold

−H′i ≡ −∂SiH =
∑
j

JijSj + bi = µiSi (2)

where µi = |H′i|. Eq.(2) expresses the fact that in min-
ima the spins are oriented along their local fields.

This set of equations can be analysed with the cavity
method. As usual one compares the solution of the full
system of equations with N spins, with the the solution
of a system where a single spin i is removed. The cru-
cial hypothesis is that the solutions of (2) are continuous
when the spin is removed. Since the couplings are small,
the effect of a single spin i on the others is small and can
be treated within linear response.

If the system is in a replica symmetric phase, there is
a single relevant low-energy solution that can be followed
straightforwardly. If replica symmetry is broken there are
multiple solutions of (2) that are quasi-degenerate with
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the ground-state: the removal or addition of one spin
causes level crossing which should be taken into account
when one is interested to the statistics of the solutions.

Denoting by S(i) the solution of the minimization
problem in absence of i, and S the corresponding solution
of the full problem, we can write [33]

Sj = S
(i)
j + χjjJjiSi with χjj =

δSj
δbj

. (3)

Notice that the susceptibility χjj is an m × m matrix.
Inserting into Eq. (2) we find

−H′i =
∑
j

JijS
(i)
j +G0Si + bi , (4)

where G0 is given by G0Im =
∑
j J

2
ijχjj =

∑
j χjj/N and

is thus the average diagonal component of the susceptibil-
ity matrix, G0 =

∑
j χ

αα
jj /N , which is obviously indepen-

dent of α. The variables Jij are independent from S
(i)
j ,

so that the cavity fields hi =
∑
j JijS

(i)
j are Gaussian

random variables with zero mean and covariance matrix

hαi h
β
j = 1

mδijδαβ .
If the variance of the external field ∆ is large enough,

the system is replica symmetric and a single solution
needs to be considered. The components of total cav-
ity field Hi = hi + bi are also Gaussian with variance
σ2 = ∆2 + 1/m, while the parameters µi are given by
µi = G0 + Hi with Hi = |Hi|. As a consequence the
moduli Hi have distribution

Pm(H) =
1

Zm
Hm−1e−H

2/(2σ2) , (5)

where Zm = Γ(m/2)(2/m+ 2∆2)m/2/2. Notice that the
variables µi = |H′i| verify the well known stability con-
dition µi ≥ G0 [33].

B. The Hessian

The excitations around the minima, are characterized
by the spectrum of the Hessian matrix whose elements we

write as Mαβ
ij . The Hessian matrix, around a minimum,

restricted to spin fluctuations that keep each spin on its
m-dimensional spheres of unit norm, can be written as

Mαβ
ij =

∑
γ

Pαγi P γβj (−Jij + µiδij) (6)

Pαβi = δαβ − Sαi S
β
i (7)

which is a symmetric random matrix. To understand its
statistics, we observe that the dependence of the diagonal
elements µi on each of the Jij is very weak, and it can
be safely neglected. In the N(m − 1) ×N(m − 1) space
orthogonal to S we have then a Rosenweig-Porter ran-
dom matrix, whose off-diagonal elements have a Gaus-
sian distribution of zero mean and variance of order 1/N ,
while the diagonal elements are finite random variables

distributed like the µi variables. A more precise defi-
nition could be given introducing on each site i an or-
thonormal basis of m-vectors {Si,ui,1, . . . ,ui,m−1}. The
Hessian is thus the N(m − 1) × N(m − 1) matrix given
by Mab

ij = (−Jij + µiδij)ui,a · uj,b.
The properties of the Hessian can be studied with the

cavity method, following a procedure similar to the one
we have used for the equations defining the minima. We
write the eigenvalue equations in presence of a small ex-
ternal source hαi

−
∑
j

Jijv
α
j + µiv

α
i − λvαi = hαi , (8)

where the index α runs over the m components, the
eigenvector with mN components can be written as
v(λ) = (v1, . . . ,vN ) and each vi is orthogonal to the cor-
responding Si, i.e.

∑m
α=1 v

α
i S

α
i = 0. A small imaginary

part in λ is implicitly assumed to insure invertibility.
As in the previous section, we single out a site i and

compare the solution of the full system (8) to the one

where the site i is removed. Defining v
(i)
j the solution of

Eq. (8) in absence of spin i and assuming continuity, we
can write

−
∑
j

Jijv
(i)
j −G(λ)vi + µivi − λvi = hi , (9)

where G(λ) =
∑
j G

αα
jj (λ)/N is the mean value of the

diagonal component of the λ-dependent susceptibility
Gααjj ((λ) = ∂vαj /∂h

α
j (all the other components of the

susceptibility matrix are zero on average). This suscep-
tibility is directly related via G(λ) = TrR(λ)/(Nm) to
the resolvent matrix, defined by

Rαβij (λ) =
∑
γδ

Pαγi

[
(J + diag({µi})− λIN )

−1
]γδ
ij
P δβj ,

from which we get the spectral density by the usual limit

ρ(λ) = lim
η→0

m

π(m− 1)
Im(G(λ+ iη)) . (10)

The prefactor m/(m− 1) takes into account that fluctu-
ations are restricted to the directions orthogonal to the
spins.

Taking the derivative of Eq. (9) w.r.t. hαi we get an
equation for the local resolvent

Gii(λ) = (1− 1/m) (Hi +G0 − λ−G(λ))
−1

, (11)

and averaging over i the self-consistent equation for G(λ)

G(λ) =
m− 1

m

∫
dH

Pm(H)

H +G0 − λ−G(λ)
(12)

with G0 ≡ G(λ = 0) =
m− 1

m

∫
dH

Pm(H)

H
.

Knowing the cavity field distribution Pm(H), Eq. (12)
can be solved numerically and analysed analytically for
small λ. giving us access the spectral density, once we
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separate the real, G′(λ), and imaginary, G′′(λ), parts of
G(λ).

Notice that Eq. (9) gives us also access to the statis-
tics of eigenvectors. The statistical properties of eigen-
vectors of the Rosenzweig-Porter ensemble have been re-
cently discussed in [34] with supersymmetry, in [35] with
Dyson Brownian motion and rigorously proven in [36].
The analysis via Eq. (9) offers a quick way of obtain-
ing many of the results of these papers. One can eas-
ily realize that for hαi → 0 a non-vanishing solution
to Eq. (9) is such that 〈|vαi |2〉 ∝ |µi − λ − G(λ)|−2,
where the angular brackets represent the average over
all spins with a field Hi = µi − G0 and the normaliz-
ing constant should be fixed imposing

∑
i,α〈|vαi |2〉 = 1.

Noticing that the imaginary part of Eq. (12) implies
(m − 1)/m

∫
dHPm(H)|H + G0 − λ − G(λ)|−2 = 1, we

have

〈|vαi |2〉 =
m− 1

Nm2|Hi +G0 − λ−G(λ)|2
. (13)

With respect to the simple Rosenzweig-Porter ensemble
we should take care to the fact that the vi should be
orthogonal to the Si. If not for that reason, we would
immediately conclude that the components vi(λ) of the
eigenvector corresponding to eigenvalue λ are indepen-
dent Gaussian random variables2, with variances given
by Eq. (13). We will discuss more this point at the time
of computing the inverse participation ratio.

Notice that Eq. (13), while it implies O(1/
√
N) ele-

ments for the bulk eigenvectors, on the edge of the spec-
trum it admits solutions localized on a single site i in
correspondence of eigenvalues λ of the Hessian such that
|Hi + G0 − λ − G(λ)|2 = O(1/N) for some i. In this
case the component i of the eigenvector v(λ) is such that
|vi(λ)| = O(1). We will find such solutions in the para-
magnetic phase, with an amplitude that vanishes at the
critical point.

C. The spin glass transition

The solution to Eq. (12) can be found in the param-
agnetic phase, where the cavity field distribution Pm(H)
is given by Eq. (5). The paramagnetic solution is sta-
ble as long as the spin glass susceptibility is finite. This
quantity is defined as

χSG =
1

Nm

∑
ijαβ

(
∂Sαi

∂bβj

)2

=
dG

dλ

∣∣∣∣
λ=0

=
A

1−A
, (14)

A =
m− 1

m

∫
dH

Pm(H)

H2
=

(m− 1)

(m− 2)(1 +m∆2)
.

2 We neglect the small dependence between components due to
overall normalization of the eigenvectors.

We find therefore the well known condition A < 1 [27],
which is verified for ∆ > ∆c = 1√

m(m−2)
. At ∆c we

have A = 1 and χSG diverges as χSG(∆) ∝ (∆ −∆c)
−1,

as expected in mean field models. Hereafter we consider
only m ≥ 3 values, as for m = 2 the system is in the
spin-glass phase for all values of the field.

D. The lower edge of the Hessian spectrum

From Eq. (14) it is simple to see that Eq. (12) for
the resolvent is incompatible with G′′(λ) = 0 for small
positive λ. We postpone to the Appendix A and B a
detailed analysis and the derivation of the several differ-
ent solutions depending on whether the system is in the
paramagnetic phase (∆ > ∆c) or at the critical point
(∆ = ∆c), and also depending on the value of m. Here
we report a summary of these results, which turn out to
be well compatible (apart some logarithmic corrections
at specific values of m) with those derived in Ref. [32] for
deformed Wigner matrices.

We introduce a parameter ε = 1 − A setting the dis-
tance from the critical point. It can be shown that this
parameter coincides with the replicon eigenvalue setting
the stability of the replica symmetric solution in the
replica formalism [27]. While in the following ε will not
have to be necessarily considered small, close to the crit-
ical point it takes the form

ε =
2
√
m(m− 2)

m− 1
(∆−∆c) + o(∆−∆c) . (15)

For ε > 0, in the paramagnetic phase dominated by the
external fields, the density of states at the lower band
edge of the Hessian spectrum is controlled by the distri-
bution of the cavity field that behaves as Pm(H) ∝ Hm−1

for small values of H. As a consequence we have

ρ(λ) =
1

π

m

m− 1
G′′(λ) ' 1

ε
Pm(λ/ε) ∝ λm−1

εm
, (16)

while for the real part of G(λ) we get

G′(λ) ' χSGλ =
1− ε
ε

λ . (17)

As announced the spectrum is ungapped for all val-
ues of the field. Notice that the condition (1 −
1/m)

∫
dH P (h)
|H+G0−λ−G(λ)|2 = 1, which should be valid

for all λ in the support of ρ(λ) and expresses the nor-
malization of the eigenvectors (13), cannot be fulfilled
for λ → 0 if A < 1. Eigenvectors corresponding to the
smallest eigenvalues should therefore condense a finite
fraction of weight on a single component, with a mech-
anism similar to the Einstein condensation of the Bose
gas (see below for more details).

Approaching the critical point the ε dependent coef-
ficient in Eq. (16) diverges and indeed the low-energy
excitations become more and more abundant. Exactly
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at criticality (ε = 0) the shape of the lower band edge
does depend on the specific value for m as follows

ρ(λ) ∝

√
λ

| log λ|
for m = 3 (18)

ρ(λ) ∝
√
λ

J
for m ≥ 4 (19)

where J ∝
∫
dHPm(H)H−3. The spectrum for small ε

has a crosses-over from the ρ(λ) ∼ λm−1/εm behavior at

λ � λ∗ to a square root behavior ρ(λ) ∼
√

(λ− λ∗)/J
for λ & λ∗. The cross-over eigenvalue λ∗ is estimated in
Appendix C to be λ∗ ∼ ε2/J . For m = 3 the mean of
H−3 is divergent and a logarithmic corrections should be
expected.

Let us comment on the above findings. First of all,
at variance with previous studies [17], we find that the
spectrum of the Hessian of fully-connected vector spin
glasses is gapless in the paramagnetic (high field) phase.
The spectrum shows a pseudo-gap, ρ(λ) ∝ λm−1, induced
by the probability law of cavity fields that determine the
diagonal elements of the Hessian. The density of low
cavity fields Pm(H) ∝ Hm−1 is just a consequence of the
statistical rotation invariance together with the fact that
the cavity fields are just Gaussian vectors in the param-
agnetic phase. In other words, the presence of low energy
excitations is a simple consequence of the disordered na-
ture of the minima and of the abundance of small fields.
The factor Hm−1 is just a local entropic term determined
by the nature of the microscopic variables. One can easily
imagine very different forms for such local terms depend-
ing on the system under study. We also notice that the
pseudo-gap disappears for m→∞ corresponding to the
spherical model. We remind that the result ρ(λ) ∝ λm−1
translates to a low-frequency DOS, D(ω) ∝ ω2m−1. This
is different from what happens in disordered minima of
finite dimensional glassy models, where a ω4 behavior
seems to be ubiquitous.

A DOS of quasi-localised modes that depends on the
dimension of the site variable can be found also in [37]. In
that work the authors studied the lower band edge spec-
trum of a mean field model of soft spheres, such that the
contact network of the spheres is a Bethe lattice, but the
average number of contacts z depends on the dimension d
of the contact vectors. In this aspect, it is very similar to
the present vector spin glass model with d components,
which is a mean-field model with finite-dimensional spin
variables. In the hyperstatic phase z > 2d+1 they found
D(ω) ∼ ωα(d), i.e. an exponent depending on d.

On approaching the spin glass transition the spectrum
has a crosses-over from the λm−1 behavior to a square
root behavior, which in terms of frequencies means a
DOS behaving as ω2. The cross-over occurs around a
characteristic value λ∗ ∼ ε2. We notice here a similarity
of behavior with simulations of structural glasses, where
the ω4 behavior of quasi-localized excitations crosses-over
to a ω2 behavior of extended excitations.

The above cavity computation cannot be extended to
the spin glass phase straightforwardly, since the detailed
knowledge of the cavity field distribution would need to
take into account Replica Symmetry Breaking effects,
the presence of many dominating energy minima and
the marginality of each of them. Nonetheless, we know
that the spin glass susceptibility is divergent in the whole
∆ < ∆c space phase, and this is enough to conclude that
spectral density should display a simple square root be-
havior in the whole spin glass phase for all m (see Ap-
pendix for a detailed analysis).

E. Localization at the lower edge

In dense matrices, the bulk eigenvectors are generically
extended over O(N) elements, and the inverse participa-
tion ratio (IPR) is typically of order O(1/N). In the large
N limit the IPR can thus written as IPR ∼ i(λ)/N , where
the coefficient i(λ) determines to what extent is the typ-
ical eigenvector of eigenvalues equal to λ extended. It
is indeed well known that on the edges of the spectrum
a certain degree of localization can be present, and this
is manifested by the divergence of i(λ) at the edges. In
turn this implies that the IPR of the lowest eigenstates
may have a system size dependence slower than 1/N and
even tending to a finite value in the large N limit. Given
the central physical role of the low-energy excitations, it
is very important to understand the localization proper-
ties of the lowest eigenstates and whether these proper-
ties undergo any relevant change approaching the critical
point.

The arguments in Sec. II B suggest the eigenvector
components vαi would be independent Gaussian variables
with a variance given by Eq. (13) if not for the constraint
that each element vi must be orthogonal to Si. This
constraint not only reduces the number of degree of free-
dom from m to m − 1, but correlates fluctuations, and
this has a direct implication on the components fourth
moment 〈|vαi |4〉. The correct computation of the mean
fourth moment can be done by firstly noticing that in the
subspace orthogonal to Si, spanned by the vectors ui,a,
the m − 1 components of the eigenvector are indeed in-
dependent Gaussian variables, and secondly computing
the components of the eigenvector in the canonical basis
by performing a projection with respect to a randomly
oriented spin Si. The prediction for the bulk IPR is thus

IPR =
3(m2 − 1)

Nm2(m+ 2)

∫
Pm(H)dH

|H +G0 − λ−G(λ)|4
. (20)

The value of the integral in Eq. (20) approaching the
lower band edge can be estimated with considerations
similar to the ones used for the spectrum, which are
detailed in the Appendix. In the paramagnetic phase
(ε > 0) the integral is dominated by the singularity in
H = 0 and we have

N IPR = i(λ) ∝ ε3
(
λ

ε

)−2(m−1)
. (21)
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Notice that this behavior of the IPR as a function of λ
cannot hold till the minimum eigenvalue of the system,
which is of the order λmin ∼ N−1/m. In fact, such a be-
haviour would imply a divergent IPR(λmin) ∝ N1−2/m,
which is obviously impossible, being the IPR upper-
bounded by 1 by construction. In fact, at the edge of
the spectrum eigenvectors localize [32] on sites having a
very small field Hi.

Suppose to order the sites according to growing cav-
ity fields (H1 < H2 < . . . < HN ) and remind that for
large fields the Hessian is almost diagonal and thus its
spectrum is made of groups of m − 1 almost degener-
ate eigenvalues λai ≈ Hi, with 1 ≤ a ≤ m − 1, and
the corresponding m− 1 eigenvectors are all localized on
the i-th site. For smaller fields, but still in the param-
agnetic phase, the bulk eigenvectors becomes extended,
but localization still takes place on the edge of the spec-
trum (i.e. for λ� 1). Localization can be derived simply
from Eq. (13). This equation admits solutions with one
condensed component |vi(λ)| = O(1) if the eigenvalues
λai are such that |Hi + G0 − λai − G(λai )| = O(N−1/2).
Since G0 − λ − G(λ) ≈ −λε , for small λ, this implies
that the lowest lying states are organized in multiplets of
quasi-degenerate eigenvalues λai directly proportional to
the lowest fields in the large N limit 3

λai ≈ εHi, a = 1, . . . ,m− 1 (22)

The same conclusion would be reached computing the
lower eigenvalues to second order perturbation theory,
which is exact to the leading order.

As for the eigenvectors, observing that for λ close

to λai one has mGii(λ) ≈
∑m−1
a=1

|vi(λai )|
2

λai−λ
, combining

with eq.(11) we get that in the thermodynamic limit the
square modulus of the i-th components, |vi(λai )|2 takes a
finite value

|vi(λai )|2 ≈ ε, a = 1, . . . ,m− 1 (23)

while all the other components vanish for N going to
infinity. As observed, this mechanism for single site lo-
calization is thus similar to a Bose-Einstein condensation
on ‘single particle’ lowest energy states.

We also notice that since the N cavity fields are inde-
pendent variables with Pm(H) ' Hm−1/Zm, the proba-
bility density of the smallest one H1 is the Weibull dis-
tribution

P[H1 = N−1/mu] =
um−1

Zm
exp(− um

mZm
) (24)

whose mean is given by

〈H1〉W = (mZm)1/mΓ

(
1 +

1

m

)
(25)

3 It can be shown that the typical splitting of the multiplets is
of order N−1/2, much smaller than the typical spacing between
adjacent i values λai+1−λbi ∼ N−1/m. The same kind of consid-
erations show that hybridization between different levels i does
not occur for large N .

and in turn provides the mean value of the lowest eigen-
values via Eq. (22)

〈λa1〉W = ε〈H1〉W . (26)

At criticality (ε = 0) the spectrum concentrates much
more on the lower band edge and this changes the be-
havior of i(λ) close to the edge as follows:

i(λ) ∝


√
| log λ|/λ m = 3
| log λ| m = 4
const m > 4

(27)

We argue that now the IPR vanishes in the thermody-
namic limit even for the lowest eigenvectors. Inserting
the value of λ1 ∼ N−2/3 (we neglected logs in m = 3),
one gets that IPR(λ1) = i(λ1)/N → 0 for large N (in
particular IPR(λ1) ∼ N−2/3 for m = 3). In this case
we do not find condensation, all the eigenvector elements
are vanishing in the large N limit, even at the lower band
edge. The spin glass transition appears in this sense to be
a delocalization transition for the low eigenvalue modes.
Excitations become more and more collective as the criti-
cal point is approached. These phenomena are the closest
we can have to a delocalization transition in a mean field
model.

III. NUMERICAL RESULTS

We present simulations of the O(m) spin glass at zero
temperature in a field in the high field paramagnetic
phase and at the transition point. We concentrate our
numerical study on the Heisenberg (m = 3) case.

We minimize the Hamiltonian starting from a random
initial configuration and using an over-relaxation algo-
rithm, that has been used with success in other disor-
dered models with vector spin variables [21]. The ba-
sic step of the algorithm consists in aligning sequentially
each spin Si to a direction which is obtained as the lin-
ear combination of the gradient,

∑
j JijSj + bi, and the

over-relaxed spin, Si,‖ − Si,⊥, where Si,‖ and Si,⊥ are
the spin projections respectively parallel and orthogonal
to the gradient (the over-relaxed spin corresponds to the
most distant direction that preserves the energy). The
algorithm depends on a single parameter Λ ≥ 0 that fixes
the level of greediness via

S
(new)
i =

∑
j JijSj + bi + Λ(Si,‖ − Si,⊥)

|
∑
j JijSj + bi + Λ(Si,‖ − Si,⊥)|

(28)

We stop the algorithm when the mean displacement

δ = 1
N

∑N
i=1(S

(new)
i −Si)·S(new)

i = 1− 1
N

∑N
i=1 Si·S

(new)
i

is smaller than a given threshold δmax that in our simula-
tions is set in the range [10−9, 10−7]. A strictly positive
over-relaxation parameter Λ allows a much better explo-
ration of the configuration space with respect to simple
gradient descent (Λ = 0). It allows to avoid some high en-
ergy local minima and gives rise to better performances,
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FIG. 1. Numerical values of the energy versus ∆/∆c: the con-
tinuous line is the theoretical energy density of the model in
the paramagnetic phase. The minimization was performed
with over-relaxation (Λ 6= 0) close to the critical point,
whereas on the contrary for high values of the field we carried
out an ordinary gradient descent minimization.

both in terms of the minimal value of the energy reached
and in convergence time.

We run simulations covering a wide range of values
of external field width ∆ = k∆c, with k going from 1 to
roughly 10, and sizes N = 2n×64, with n = 0, . . . , 5. For
each size N , we choose the number of samples Ns such
that N Ns ≥ 3× 106. Only close to the critical point we
found necessary to set a non-zero Λ: in particular, we set
Λ = 3 for k ∈ [1, 1.5], Λ = 2 for k ∈ [1.5, 2] and Λ = 0 for
k > 2. The convergence time increases when ∆ → ∆+

c ,
signalling that the energy landscape is becoming more
complex in this limit. Although our numerical method
is heuristic, minimization works very well and we believe
that the minima that we reach are very good minima
at least in the whole paramagnetic phase including the
critical point. Fig. 1 shows a perfect matching between
the theoretical ground state energy as a function of ∆
and its value in the simulations.

Once reached the energy minimum S∗, we compute
absolute value of the local fields, µi = |bi +

∑
j JijS

∗
j |,

and the cavity fields Hi = µi −G0, where for G0 we use
its large N value

G0 =
m− 1

m

√
2

π(∆2 + 1/m)
. (29)

In Fig. 2 we show the distribution of cavity fields ob-
tained numerically for two values of the field variance:
∆ = 1.2 (N = 800, 1600) and ∆ = ∆c (N = 200, 400).
The lines report the analytical result in the large N limit,
Eq. (5), and reproduce very well the numerical data.

FIG. 2. The distributions of the cavity fields for ∆ = 1.2 and
∆ = ∆c = 1/

√
3 ' 0.577. The lines report the analytical

prediction in the large N limit, Eq. (5). The inset shows the
data in a logarithmic scale.

FIG. 3. The full spectrum ρ(λ) for N = 1024 and several ∆
values. The inset is a zoom on the lower edge. The pseudo-
gap is clearly visible for large ∆ values. Approaching the
critical point the pseudo-gap region shrinks and the curves
progressively approach the critical density.

A. The Hessian spectrum: bulk and lowest
eigenvalues

In Fig. 3 and 4 we present data for the Hessian spec-
trum ρ(λ) obtained with N = 1024 and various values of
∆ in the paramagnetic phase and at the critical point.
We plot ρ(λ) in Fig. 3, with a zoom on the lower edge
of the spectrum in the inset. For ∆ > ∆c, we clearly
see the pseudo-gap behavior, ρ(λ) ∝ λ2, which crosses
over to the square root behavior at the critical point.
To better appreciate the power law behavior for λ � 1,
we plot in Fig. 4 the ρ(λ) in a double logarithmic scale.
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FIG. 4. The log-log plot of the Hessian spectrum ρ(λ) for m =
3 and N = 1024 clearly shows the crossover in the behavior
at the lower band edge: from λ2 at large fields to

√
λ at the

critical field. The continuous lines are the analytical spectral
densities computed in the large N limit.The dashed vertical
lines mark the cross-over values λ∗ computed in appendix
B between the λm−1 behavior to the

√
λ one in the curves

corresponding to ∆/∆c = 1.3, 1.7, 2.1. The inset is a scaling
plot according to Eq. (16).

FIG. 5. Spectrum of the Hessian at criticality, ∆ = ∆c, for
m = 3: data have been measured on roughly a thousand
samples of sizes N = 400, 800, 1600, while the line is the an-
alytical large N limit. The inset shows ρ(λ)/

√
λ to highlight

the formation of the logarithmic singularity in the large N
limit (orange full curve).

The lines are the analytic predictions obtained in the
large N limit, that behaves as ρ(λ) ∼ λ2 for ∆ > ∆c

and as ρ(λ) ∼
√
λ at criticality. In the inset we show a

scaling plot, that supports the prediction from Eq. (16),
ρ(λ) ∼ (1− ε)3/2λ2/ε3 on the left tail of the spectrum.

In Fig. 5 we single out the spectrum at the critical point
plotting it for several values of N . The agreement with

FIG. 6. Cumulative distributions for the lowest eigenvalue
and lowest cavity field, measured at different ∆ values, follow
nicely the theoretical prediction (N =∞).

the theoretical curve is very good. The inset, showing
ρ(λ)/

√
λ, allows to see the formation of the predicted

logarithmic singularity for the m = 3 case.

We now turn to the statistics of the lowest eigenvalues.
We start with a clarification about the notation. In the
theory we identify the eigenvalues λai with two indices,
because in the localized phase and in the large N limit,
the eigenvalues form N multiplets of size m − 1 each.
However, we prefer to order the eigenvalues measured
numerically λi via a single index 1 ≤ i ≤ (m − 1)N .
Obviously, when eigenstates are very well localized, we
will have (e.g. for m = 3) that λ1 = λ11, λ2 = λ21, λ3 = λ12,
λ4 = λ22, and so on.

Given that the lowest eigenvalues are expected to scale
to zero as N−1/m, we study the rescaled lowest eigen-
value λ1/〈λ1〉emp and the rescaled lowest cavity field
H1/〈H1〉emp. The scaling of the empirical averages will
be discussed below. According to the theory in the large
N limit, see Eqs. (24) and (25), the cumulative distribu-
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tion of both variables reads

P[λ11/〈λ11〉emp > x] = P[H1/〈H1〉emp > x] =

= 1− exp

[
−Γ

(
1 +

1

m

)
xm
]

(30)

In Fig. 6 we report these cumulative distributions for the
largest size N = 2048 and several values of ∆. We see an
very good agreement with the theory, although we have
some noise on the table due to the finite number of sam-
ples in our statistics. We will see in Subsection (III C)
that most of the finite size corrections are condensed in
small dependence on N of 〈H1〉emp and a much larger
one of 〈λ11〉emp. Notice that the cavity fields Hi are in-
dependent from site to site; the finite size corrections to
the distribution of their minimum could be analyzed e.g.
with the RG-like formalism developed in [38].

We check now the relation λai ≈ εHi for the lowest
eigenvalues and cavity fields. We first notice that such
a relation is fully compatible with the scaling ρ(λ) =
Pm(λ/ε)/ε we have already checked. As before, we use
the rescaled variables λ11/〈λ11〉emp and H1/〈H1〉emp to
compare data from different sizes on the same plot. Scat-
tered plot of these two variables for several sizes are
shown in Fig. 7 for three values of ∆. It is apparent
that for all values of ∆ the two variables are strongly
correlated and the correlation improves upon increasing
the system size, thus supporting the exact relation

λ1
〈λ1〉emp

=
H1

〈H1〉emp
(31)

in the largeN limit. We notice that the above result, that
holds sample by sample, is stronger than the one reported
in [32], where the relation is proved only in distribution
sense.

The relation λ1 = εH1 finally follows from the study of
the empirical mean values that should satisfy the equal-
ity 〈λ1〉emp = ε〈H1〉emp. We discuss this relation below
when finite size effects are analyzed. Indeed the conver-
gence of the empirical mean 〈λ1〉emp to the large N value
〈λ1〉W has finite size corrections that become important
approaching criticality (similarly to the broadening of the
clouds in the scattered plot in Fig. 7).

B. IPR and delocalization transition in the lowest
eigenvectors

Similarly to the case of eigenvalues, we observe that the
analytical predictions are very well respected for the bulk
eigenvector statistics both in the paramagnetic phase and
at the critical point. In Fig. 8 we show the sample aver-
ages of i(λ) ≡ N IPR versus the sample averages of the
eigenvalues λi, which show excellent agreement between
theory and simulations in the bulk, where the IPR scales
as 1/N .

As already discussed above, the numerical data can
not follow the bulk law for i(λ) until the lower edge

FIG. 7. Scatter plots of λ1
1/〈λ1

1〉emp versus H1/〈H1〉emp for
∆ = 6.0, 2.9, 1.2 (from top to bottom) show that these vari-
ables become more correlated increasing the system size. Fi-
nite size effects (signaled by the width of the clouds) become
more evident approaching the critical field ∆c.
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FIG. 8. Plot of the sample average of i(λ) versus the sample
average of λ, for ∆ = 1.0 ' 1.7∆c and ∆ = ∆c.

FIG. 9. The IPR of the lowest eigenvector versus N−1 for
several values of ∆. For ∆ > ∆c the IPR converges to a
finite value, signalling a localization on sites with the smallest
external field. At the critical point a delocalization transition
takes place, and the IPR decays to zero as N−2/3.

λ = 0, otherwise the IPR would violate the upper bound
IPR ≤ 1. Indeed, in Fig. 8 (upper panel) we clearly see
the deviation from the bulk law for the lowest eigenstates.
It remains to understand whether the lowest eigenvectors,
i.e. the eigenvectors corresponding to the lowest eigenval-
ues, are localized and to what extent in the paramagnetic
phase, and more importantly what happens approaching
the critical point. In Fig. 9 we show the IPR of the
smallest eigenvector versus 1/N . We clearly see that
IPR1 tends to a constant value for ∆ > ∆c (although
approaching the critical point, the finite size corrections
becomes important and the crossover to a constant value
will happen for larger sizes).

At criticality, ∆ = ∆c, a delocalization transition of
the lowest eigenvectors takes place and the IPR1 decays
to zero as N−2/3 (the exponent is the same one as in a
GOE random matrix, given that the spectrum has the
same

√
λ singularity).

C. Finite size corrections

The analytic theory derived via the cavity method
(which actually turns out to be equivalent to the study of
a random matrix) is expected to be correct in the whole
phase with ∆ ≥ ∆c. Nonetheless we have clearly ob-
served the increase of finite size effects approaching the
critical point. This is a standard crossover in critical phe-
nomena, and must be considered with care in order not
to make wrong assessments. In this section we analyze
numerically the main finite size effects, in order to avoid
confusing them with the genuine physical behavior that
should eventually dominate in the large N limit.

We start from the study of the empirical averages of
the lowest eigenvalues and the lowest cavity field. In
Fig. 10 we show the empirical average (over samples) of
the lowest cavity field H1 (top) and the lowest Hessian
eigenvalue λ1 (bottom). Straight lines are the analytical
predictions in the large N limit.

The smallest cavity field shows some deviations from
the theory only very close to ∆c. This deviations are es-
sentially due to fluctuations in the left tail of the distribu-
tion of the cavity fields: these fluctuations systematically
produce a mean value smaller than the large N limit.
Nonetheless the inset shows that the relative difference
between empirical average and theoretical prediction is
going to zero in the large N limit.

Finite size corrections in the smallest eigenvalue of
the Hessian are more important. In particular, for
the values of the field closer to criticality, ∆ & ∆c,
we notice a change of slope, due to a crossover from
a preasymptotic behavior where 〈λ1〉 ∼ N−2/3 (as if
the system where critical) to the asymptotic behavior
〈λ〉 ∼ N−1/3. This crossover effect is particularly im-
portant as it could induce an incorrect estimate of the
exponent if the preasymptotic effects are not taken into
account.

The origin of this crossover can be well understood
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FIG. 10. Sample averages of the smallest cavity field H1 (top)
and the smallest eigenvalue λ1 (bottom) as functions of N .
For H1 we find a very good agreement with the asymptotic
expectation in Eq. (25) for the largest values of ∆, but non-
negligible finite size effects close and at the critical point. The
inset shows that such finite size corrections goes to as N−1/6.
For λ1, we can appreciate the appearance of a preasymptotic
decay as ∆ → ∆+

c , that makes very hard to estimate the
asymptotic decay close to criticality.

looking at the ρ(λ) in Fig. 4 and noticing that for ∆ & ∆c

we have (ignoring log factors)

ρ(λ) ∼
{
λ2/ε3 for λ < λ∗√
λ for λ > λ∗

(32)

where λ∗ ∼ ε2 (more details in Appendix C). The asymp-
totic behavior for the smallest eigenvalue is visible only
for sizes such that λ1 < λ∗, and given that λ1 ∼ εN−1/3,
we have a crossover size N∗ ∼ ε−3. This is a very strong
divergence that actually makes finite size effects domi-
nant in a broad range of fields in the paramagnetic phase.

In Fig. 11 we show the lowest four rescaled eigenval-
ues N1/3λi with i = 1, . . . , 4 for ∆ = 5∆c and we make
several interesting observations. First of all, these four

FIG. 11. The sample means of the four smallest rescaled
eigenvaluesN1/3λi converge to a constant in the largeN limit,
as they should. The differences within a pair scale as N−1/2,
while differences between pairs scale as N−1/3 (see the inset),

so each pair converges to a unique value with N−1/6 correc-
tions (hence the horizontal scale).

eigenvalues clearly form two pairs, (λ1, λ2) and (λ3, λ4).
The separation between these two pairs is very neat
thanks to the large value of the field. Approaching criti-
cality, the separation between pairs becomes less clear.
Nonetheless, what it is important is the scaling with
N of the separation within a pair and between pairs.
These separations are shown in the inset and decay as
〈λ2−λ1〉 ∼ N−1/2 within a pair and as 〈λ3−λ1〉 ∼ N−1/3
between pairs. This holds also for lower ∆ values, but
one needs to go to larger N values to clearly separates
the pairs of eigenvalues.

In the rescaled eigenvalues N1/3λi the splitting within
a pair becomes a finite size correction of order N−1/6.
This is the reason why in the main panel of Fig. 11 we
have plotted the rescaled eigenvalues versus N−1/6. We
notice en passant that within each pair of eigenvalues the
largest seems to have weakest finite size correction and
it is very well compatible with the large N limit (dashed
horizontal lines).

Finite size corrections of order N−1/6, that is of order
N−1/2+1/m for generic m values, seem to be widespread
in this kind of models (and also in the related random ma-
trix ensemble). Unfortunately, being the exponent 1/6
rather small, these corrections persist to very large sizes
and may lead to wrong estimation if a theory is missing.
We end this section on finite size corrections, by showing
how important these corrections may become approach-
ing the critical point.

In Fig. 12 (top) we report the relative difference be-
tween the empirical mean and the large N limit, 1 −
〈λ〉emp/〈λ〉W , for the lowest eigenvalue and three differ-

ent values of ∆ as a function of N−1/6, which is the ex-
pected order of magnitude of the leading corrections. Al-
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FIG. 12. Plots of the relative differences between empirical
and asymptotic average quantities: 1−〈λ〉emp/〈λ〉W (above),
the relation 〈εH1/λ1〉−1 (middle) and the largest component
of the smallest eigenvectors ε−〈|v1(λ1)|2〉 and ε−〈|v1(λ2)|2〉
(bottom). We plot these differences as a function of N−1/6

which is the expected leading finite size correction. All the
data are compatible with a zero value in the large N limit, but
finite size effects become very severe as ∆ is lowered, showing
a non-monotonic dependence of the curves with respect to the
size N . Dashed lines are quadratic interpolations to the data.

though the data can be extrapolated to zero for large N ,
thus supporting the validity of the theory in that limit,
we also notice that for smaller ∆ values the corrections
are severe.

We also notice in the central panel of Fig. 12 that the
relation λ1 = εH1 has much weaker fluctuations with
respect to the single averages of λ1 and H1.

In the lower panel of the same Fig. 12 we show the dif-
ference between the theoretical prediction for the largest
component of the lowest two eigenvectors and the ac-
tual value measured in systems of finite size. We use the
same three values of ∆ as in the other panels. We super-
impose a smooth curve showing the data is compatible
with a large N limit tending to zero. It is worth noticing
that for smaller values of ∆ the extrapolation would be
much more difficult giving that finite size corrections are
still non-monotonic for the system sizes studied.

IV. DISCUSSION

In this paper we studied the energy minima of the long-
range vector spin-glass with m components in a field. At
zero temperature, the model has a paramagnetic phase
at high field, ∆ > ∆c, with a unique isolated minimum
and a replica symmetry breaking spin-glass phase with
many quasi degenerate minima close to each other at low
field. In both phases, the minima are rich of low energy
excitations and never show a gap in the Hessian spectrum
(at variance with previous claims in the literature).

The Hessian spectrum displays a different abundance
of low-energy excitations in the two phases: a pseudo-
gap, ρ(λ) ∼ λm−1, in the paramagnetic phase and a

square root singularity, ρ(λ) ∼
√
λ, at the critical point

(and probably in the spin-glass phase as well). The
square root behavior in ρ(λ) is present also for ∆ & ∆c

for not too small eigenvalues, λ > λ∗, and this in turn
produces visible finite size effects, and a crossover size
N∗ diverging at the critical point.

Smallest Hessian eigenvalues are directly connected to
lowest cavity fields, which in turn are a consequence of
fluctuations in the external random field. Essentially the
sites with lowest fields are those where fluctuations can
arise more easily and thus produce low-energy excita-
tions. These low-energy modes are quasi-localized in the
whole paramagnetic phase and becomes extended only
approaching the critical field ∆c.

The Hessian bulk eigenvectors are random variables,
whose components follow Gaussian statistics. As it
should, their variance is proportional to 1/N , but the
prefactor depends both on the eigenvalue and on the cav-
ity field, and it is divergent at the lower band edge (i.e.
for small λ) on sites with small field. The lowest eigen-
vector turn out to be quasi-localized, with its component
on a single site remaining finite in the thermodynamic
limit. This causes the IPR also to remain finite for any
∆ > ∆c. At the spin glass transition, low lying exci-
tations become more abundant and minima flatter; as a
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consequence the lowest eigenvectors are much less local-
ized and the IPR(λmin) vanishes for large N .

We would like now to make a general comment about
the generality of our results for isolated minima. It is well
known that passing from pairwise to p-body interaction
the phenomenology of spin-glass models becomes the one
of Random First Order transition (RFOT) (see e.g. [39]),
in particular, one sees the appearance of plethora — ac-
tually exponentially many — of isolated glassy energy
local minima at different values of the energy. Corre-
spondingly, one sees a stable glass phase appearing in
the zero temperature phase diagram. The actual fea-
tures of the stable glassy minima are very similar to the
one of the paramagnetic minima. The vector spin-glass
has been indeed generalized to multi-spin interactions in
[40, 41] (see also [42]) and display a typical RFOT phase
diagram. The computation of the Hessian, its spectrum
and the IPR in these minima, follows directly from the
present computation for pairwise interactions [43]. Stable
glassy minima present features similar to the paramag-
netic minima that we have analysed here. In particular
one finds a spectral pseudo-gap and quasi-localized exci-
tations.

The absence of spectral gap is generic: it depends
on the presence of sites with small cavity field. These,
put aside the remarkable exception of spherical models,
are deemed to exist even in random stable phases do to
purely entropic reasons in systems with continuous vari-
ables (they remind somehow the ‘soft spots’ in disordered
packing [44]). Differently from the common belief, the
generic situation of mean-field models is that glassy min-
ima — even the most stable ones — have a spectrum
of excitation that extends to zero frequency. Approach-
ing lower and lower frequencies these excitations tend to
concentrate on smaller and smaller fractions of the sys-
tem sites, till for the lowest excitation a single site of the
system takes a finite weight of the wave function.

Whether the above scenario is totally due to properties
of random matrices [45] or requires some more ingredient,
will be discussed in a forthcoming paper.
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Appendix A: Analytic derivation of the lower band
edge spectrum in the paramagnetic phase

In the following primed quantities will indicate real
parts and double primed imaginary parts of complex
variables. In general, the solutions to Eq. (12) will be

complex if λ lies in the spectrum of the Hessian. Let
us define then x = G0 − G(λ) − λ = x′ + ix′′ and

P̃ (H) = (1 − 1/m)P (H). Detailing the real and im-
maginary part of Eq. (12), we have

G′ =

∫
dH P̃ (H)

H + x′

(H + x′)2 + (x′′)2
(A1)

G′′ =

∫
dH P̃ (H)

G′′

(H + x′)2 + (x′′)2
(A2)

These equations can be easily solved numerically if we
know the distribution of the cavity field H, in particu-
lar this is possible in the paramagnetic phase assuming
Eq. (5) for P (H). In this appendix we study analytically
the spectral edge. We would like first to illustrate a sim-
ple mechanism implying the absence of spectral gap, for
any choice of the parameters in the model, and then to
show that in the whole paramagnetic phase the spectral
density presents a pseudo-gap ρ(λ) ∼ x′′(λ) ∼ λm−1 at
small λ.

We can prove that the spectrum is ungapped with the
following argument. From the definition of x, we have
x = 0 for λ = 0, while A < 1 in the whole paramagnetic
phase. We should then have x′ = G0 − G′(λ) − λ ≈
−(1 + χSG)λ < 0 for small but positive λ > 0. But in
that case, admitting that x′′ = 0, the resulting integral
for G in (A1) would be divergent. In order to have a
convergent result for x′ < 0 one clearly needs a small
imaginary part x′′ 6= 0. Let us then proceed to estimate
the spectrum in the vicinity of 0. To this aim we observe
that defining ε = 1−A, Eq. (12), can be rewritten as

λ+ εx = −
∫
dH P̃ (H)

x2

H2(H + x)
(A3)

= −
∫
dH P̃ (H)

x2H + x|x|2

H2|H + x|2

= −x2J − x|x|2I
with

J =

∫
dH P̃ (H)

1

H|H + x|2
(A4)

I =

∫
dH P̃ (H)

1

H2|H + x|2

giving

I|x|2 = −ε− 2x′J (A5)

λ = |x|2J
It is clear that for λ→ 0, in order to compensate for the
λ-independent term in the first of (A5) at small x′ and
x′′, the integrals I and J must be dominated by divergent
contributions. Using x′′/((H+x′)2+(x′′)2) ≈ πδ(H+x′),
valid for |x′| � x′′ we can estimate the leading behavior
of the integrals as:

J ≈ π P̃ (|x′|)
|x′||x′′|

(A6)

I ≈ π P̃ (|x′|)
|x′|2|x′′|
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so that

ε = π
P̃ (|x′|)
|x′′|

(A7)

J = ε/|x′|
|x′| = λ/ε

ρ(λ) =
m

m− 1
|x′′|/π = P (λ/ε)/ε ∼ λm−1/εm

This analysis is valid as long as |x′| � ε and x′′ � |x′|,
i.e. λ/ε � λm−1/εm or λ � ε

m−1
m−2 . As we approach

the critical point, when |x′| ∼ ε the singular contribution
to J would not be divergent any more and the analysis
needs to be revised.

Appendix B: Analytic derivation of the lower band
edge spectrum at the critical point and in the spin

glass phase

At the critical point ε = 0, and Eqs. (A5) reduce to

I|x|2 = −2x′J (B1)

λ = |x|2J.
The contributions that dominates the integrals for ε >
0, become small for ε = 0, In particular, one has here
|x′|m−2 � x′′. The behavior depends now on the value
of m. Let us start at large m. If m > 4, one can assume,
and check at the end that |x′| � x′′. If this is the case I
and J remain finite and the leading contribution is just
given by

J ≈
∫
dH P̃ (H)

1

H3
(B2)

I ≈
∫
dH P̃ (H)

1

H4
. (B3)

which are convergent respectively for m > 3 and m > 4.
We therefore have |x′| ∼ (x′′)2 ∼ λ and

ρ(λ) ≈
√
λ

π
√
J
. (B4)

If 3 < m < 4 the integral I is divergent in zero and for
|x′| � x′′ it gets a contribution of order I ∼ (x′′)m−4,
giving |x′| ∼ (x′′)m−2 � x′′. Since J remains finite, the

spectral density still behaves as
√
λ in the origin. The

cases m equal to 4 or 3 where logarithmic divergences are
present should be treated separately. Notice that since

P̃m(H) = Z̃−1m Hm−1e−
H2

2σ2 , we have Im = cmJm−1. Let
us estimate I3, I4. It is clear that I3 is still divergent,
and I3 ≈ 1/(Z̃3x

′′). To estimate I4 we can write

J3 =
I4
c4
≈ −x′I3 +

1

2̃Z3

∫
e−

H2

2σ2 d log(|H + x|2)

. (B5)

which is dominated by the logarithmic contribution in
zero:

I4 = c4J3 ≈ −
1

Z̃3

log(|x|). (B6)

Notice that I5 = J4 remains finite. As a consequence, for
m = 4, we can assume x′ � x′′ and

|x′| ∝ −(x′′)2 log x′′ (B7)

J4(x′′)2 = λ (B8)

The logarithmic divergence of I4 does not have conse-

quences for the spectrum that is ρ(λ) ≈ 1
π

√
λ
J4

. For

m = 3 we can also assume x′ � x′′ and we have:

x′′ = −2|x′| log(x′′) ≈ −2|x′| log(|x′|) (B9)

λ ≈ − 1

Z̃3

log(x′′)(x′′)2 (B10)

Giving x′′ = πρ(λ) ≈
√

Z̃3λ
2| log λ| .

The logarithmic correction to edge-behavior of the crit-
ical spectrum at m = 3 suggests a different critical so-
lution should be valid for 2 < m < 3, and the square
root behavior of spectrum be modified to an m depen-
dent power. In this case in fact, the singular contribution

to Jm, namely Jsingm = 1
πZ̃

(x′)m−2

x′′ would still be diver-

gent if x′′ ∼ x′, which would be therefore a consistent
solution. If this is the case we have that (x′′)m−1 ∼ λ

and ρ(λ) ∼ λ
1

m−1 . Notice that the exponent is larger
then 1/2 for m < 3 and is equal to 1/2 for m = 3. Non
integer m of course does not have a direct interpreta-
tion as a vectorial spin-glass. It is not clear to us if such
non-square root critical spectra could be found in some
physically realizable glass model.

We can now extend this analysis to the whole spin
glass phase. We first notice that our estimates at the
critical point only depend on the fact that A = (1 −
1/m)〈1/H2〉 = 1, i.e. ε = 0 and the cavity field distri-
bution behaves as P (H) ∼ Hm−1 in the origin. The
first property expresses the divergence of the spin glass
susceptibility which also holds in the whole spin glass
phase, the second, is a consequence of statistical rota-
tion invariance together with the fact that the fields are
gaussian in the paramagnetic phase. In the spin glass
phase rotation invariance implies that close to the origin
P (h) ≤ Chm−1 for some constant C. In fact, the cavity
field distribution is expected to vanish more rapidly than
Hm−1 in the origin. For example, the analysis in Ref. [27]
predicts an essential singularity P (H) ∼ exp(−a/H) for
RSB metastable states. Under this conditions the analy-
sis above apply and the integrals I and J remain finite at
small λ. We conclude that the spectral density displays a
simple square root behavior in the whole spin glass phase
for all m.

Appendix C: Crossover from quasi-localised modes
to extended modes

For small ε, the tail behavior ρ(λ) ∼ λm−1

εm crosses-over
as λ grows but still λ� 1 to a conventional square root
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behavior ρ(λ) ∼
√
λ− λ∗. In order to see this, we can

rewrite Eq (12) as

−λ− εx = x2
∫
dH

P̃ (H)

H2(H + x)
. (C1)

If m > 3, the integral appearing in the r.h.s. of
(C1) is convergent for x → 0, in our region of inter-
est we can therefore estimate it simply as B = (1 −
1/m)

∫
dHP (H)/H3. We obtain

λ = (1−A)x+Bx2 (C2)

with B = (1 − 1/m)
∫
dHP (H)/H3. The apparent gap

value λ∗ is the value of λ that make null the discriminant
of this equation, namely

λ∗ =
ε2

4B
. (C3)

Correspondingly, the spectral density in the vicinity of
λ∗ can be written as as

ρ(λ) =
λ∗

πε

√
λ

λ∗
− 1. (C4)

If m = 3, we should take into account the logarithmic
divergence of the integral in (C1). Proceeding as in Ap-
pendix A, it is easy to see that λ∗ gets a logarithmic
correction and reads

λ∗ =
3Z3

8

ε2

| log ε|
. (C5)
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