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Abstract

By computing the low-lying energy excitation spectra with the density matrix
renormalization group algorithm we confirm the boundary conformal field the-
ory predictions for the three-state Potts minimal model in 141D with bound-
aries polarized in the direction of the transverse field. We further show that
the transverse-polarized boundary conditions lead to scale-invariant conformal
towers of states at the critical point of the quantum four-state Potts model -
a special symmetric case of the Ashkin-Teller model. Finally, we phenomeno-
logically establish the duality between fixed and free, and between transverse-
polarized and three-state-mixed boundary conditions at the four-state Potts
critical point.

1 Introduction

Over the past decades boundary critical phenomena attracted a lot of interest in the
context of statistical physics [1H3] and impurity problem [4-6] in condensed matter and
particle physics. The presence of the boundary affects measurable observables and change
energy spectra making the problem highly non-trivial [7,8]. Many exact results for the
simplest critical models have been predicted by the boundary conformal field theory [1,2,
7,9,10].

The attention to the boundary critical phenomena has been re-attracted recently by
the progress in numerical techniques for quantum many-body systems. Over the years,
density matrix renormalization group (DMRG) algorithm [11-14] has established itself
as one of the most powerful and accurate numerical tool for low-dimensional systems.
Although DMRG is suitable for systems with either open or periodic boundary conditions,
the latter has significantly higher computational costs. Thus, numerical investigation of
the nature of quantum phase transitions often requires a theoretical understanding of
the boundary critical phenomena. Traditionally, the universality class of the transition
is identified numerically by computing critical exponents and the central charge. Both
can be extremely sensitive to finite-size effects and affected by logarithmic corrections or
possible crossovers. Excitation spectra at the conformal critical point are known to form
a special structure - conformal towers of states - and contain more information about the
underlying critical theory. Therefore, the catalog of the conformal towers of states for
different critical theories and under various boundary conditions is essential for numerical
investigation of quantum phase transitions.
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For the critical transverse-field Ising model the exact correspondence between primary
fields and various combinations of free and fixed boundary conditions has been worked
out analytically by Cardy [2] and further confirmed numerically |[15H18]. For the tri-
critical Ising model Affleck [10] predicted partially-polarized boundary conditions to be
conformally invariant and different from the free and fully-polarized ones. This prediction
has been recently confirmed numerically in 141D [19] and 2+0D [18].

The three- and four-state Potts models are generalization of the transverse-filed Ising
model to a system with local Hilbert space d = 3 and 4 respectively and can be defined
by the Hamiltonian [20]:

N—-1 d N
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where P! = |u);i(p| — 1/d tends to project the spin at site ¢ along the p direction while
P; = |no)ii{no|l — 1/d tends to align spins along the direction |no); = >, |u)v/d. The first
term in the Hamiltonian plays the role of the ferromagnetic interaction, while the second
one is a generalized transverse field. The model is critical for h = J. For convenience, we
label single-particle states for d = 3 by A, B and C. The boundary-field correspondence
for free, fully-polarized (A, B or C), and mixed [3] (AB, AC or BC) boundary conditions
has been established in the original work by Cardy [2]. Later, Affleck, Oshikawa and
Saleur [21] have found that the fully-polarized boundary conditions are dual to the free
ones and predicted the "new” conformally-invariant boundary conditions dual to the mixed
ones. This completes the set of the conformally-invariant boundary conditions for the
three-state Potts critical point [22]. Conformal tower of states with the "new” boundary
conditions has been recently detected numerically in 240D by allowing negative entries in
the boundary Bolzmann weight matrix [18].

However, there is a simpler physical realization of the new boundary conditions in
quantum 1D chains. Based on the duality argument the new boundary conditions are
stabilized by reverting the sign of the transverse field at the edges [21]. Moreover, it turns
out that the new critical point is stable with respect to the magnitude of the boundary
transverse field. In other words, according to the boundary conformal field theory the new
boundary conditions could be realized when the edges are polarized in the direction of the
transverse field. In the present paper we will provide the numerical evidence confirming
this field-theory prediction.

Furthermore, relying on extensive numerical simulations we will show that the duality
remains valid in the four-state Potts model. Based on our numerical results we predict
the duality between free and fixed boundary conditions. Moreover, we will empirically
establish the duality between the boundaries polarized in the direction of the transverse
field and three-state-mixed boundary conditions, i.e. those where only one out of four
single-particle states is excluded at the edges. This generalizes previous predictions on the
duality to the four-state Potts model and provides a phenomenological starting point for
boundary conformal field theory for a generic Ashkin-Teller critical theory.

The rest of the paper is organized as follows. In Section [2| we briefly review the
numerical method used in the paper. In Section [3| we present the excitation spectra of the
critical three-state Potts model with transverse-polarized boundary conditions. Section
is dedicated to the boundary critical phenomena in the four-state Potts model. In
Section we present conformal towers of states of the four-state Potts model with free
and fixed boundary conditions and establish the duality between them. In Section [4.2
we present numerically extracted conformal towers of states of the four-state Potts model
with transverse-polarized boundary conditions and show their duality with respect to the
three-state mixed boundary conditions. In Section |4.3| we briefly present our numerical
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results for two-state-mixed boundary conditions. The results are summarized and put in
perspective in Sec[5

2 The method

Our numerical simulations have been performed with an extended version of the DMRG
algorithm explained in details in Ref. [15]. In this section we briefly review the main
features of the algorithm and provide model-specific technical details.

The DMRG [11] algorithm has been originally designed to search for the ground-state.
It provides an efficient low-entanglement approximation of quantum many-body state.
The accuracy of the wave-function is controlled by the dimension D of the tensors - the
number of basis vectors in the density matrix with the largest Schmidt values. Calcula-
tion of the excitation spectra is usually more involved. If the wave-function obeys some
symmetry, and if the excited state of interest is the lowest energy state of some symmetry
sector, then the energy of this state can be computed by running the ground-state DMRG
within the corresponding sector. This is a common practice to compute magnetic excita-
tions in spin chains [11,123-25]. If, however, excitations cannot be distinguished by any
symmetry, as in the case of the three- and four-state Potts models, the algorithm has to be
modified significantly. There are three well established strategies. i) The density matrix is
constructed not only from basis vectors that appear in the Schmidt decomposition of the
ground state but mixed with the basis vectors that appear in the Schmidt decomposition of
low-lying excitations [26-30]. In this case the bond dimension and the complexity increase
very fast with the number of excitations, thus typically one targets five or fewer excited
states |12]. i) After constructing the ground-state in the matrix product state (MPS)
representation, one can search for an eigenstate that is orthogonal to the ground state and
has the smallest energy [14,130L31]. Higher excitations can also be accessed by looking for
an eigenstate orthogonal to all previously constructed eigenvectors. By contrast to the
first approach, the bond dimension remains small, but the algorithm has to be re-run for
each eigenstate. 7ii) The third approach relies on the phenomenological observation that
for critical systems an approximate basis constructed for the ground state is also suitable
to describe the low-lying excited states [15]. By contrast to the first approach this method
remains variational with respect to the ground-state. Well converged excitations appear
as a flat modes as a function of DMRG iterations. The method has been benchmarked on
the critical Ising and three-state Potts models for which the conformal towers with up to
30 states have been computed [15].

We use infinite-size DMRG with the bond dimension D = 30 to produce a guess wave-
function and increase the bond dimension up to D = 67 in the warm-up sweep. In the
following six sweeps we increase the bond dimension linearly with each half-sweep up to
its maximal value Dy x = 250. This way we can easily track the convergence with respect
to both the number of sweeps and the bond dimension D. When convergence cannot
be reached for the chosen Dy,.y, typically this only happens for large system size and
higher excitation levels, we still can get correct estimate of the spectra by extrapolating
the energies. In Fig[I] we present one of the trickiest case - the critical four-state Potts
model with free boundary conditions and N = 100.

In Fig[ll we show raw DMRG data for the energy spectrum as a function of DMRG
iterations. A periodic increase of the excitation energies occurs close to the chain boundary
and is the result of the reduced Hilbert space by MPS construction. The first excited state
is three-fold degenerate (yellow and red symbols are almost completely hidden under the
purple ones) and starting from the fourth sweep has a well converged energy reflected in
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Figure 1: a Energy of the 19 low-energy states in the critical four-state Potts model with
N = 100 sites as a function of iterations. The periodic increase of the energy occurs close
to the chain boundary and is the result of the reduced Hilbert space by MPS construction.
The flattening of the energies in the middle of the chain is an indicator of convergence.
Non converged states are extrapolated towards infinite number of sweeps (equivalently
infinite bond dimension) as shown in b. Note that many of the shown states are three-fold
degenerate and some data points are completely hidden behind the others.

the flat intervals. The convergence of higher excitations is often slower. When convergence
cannot be reached the results are obtained by extrapolating the value of the energy at the
local minima towards infinite number of sweeps (or equivalently towards infinite bond
dimension D). For extrapolation we use a linear fit of the last five points (black lines).

For the three-state Potts model we include only the converged results, without applying
an extrapolation. For the four-state Potts model the extrapolation has been applied for
higher energy levels for N > 50.
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3 Transverse-polarized boundary conditions for three-state
Potts critical point

Let us first focus on the three-state Potts model defined by the Hamiltonian [I| with d = 3.
The critical point h = J is described by the minimal model of conformal field theory
with (p,p") = (6,5) and ten primary fields listed in [A| [32-34]. We realize fixed boundary
condition A (B, or C) by applying a negative longitudinal field along the first (second,
or third) component of the local Hilbert space, while positive longitudinal field along the
same component allows to exclude this state and thus lead to a mixed boundary conditions
BC (AC, AB). In order to realize the "new” boundary conditions predicted by Affleck at
al. [21] we polarize the edges along the direction of the transverse field by setting up the
field hy = hy = —10 while keeping the transverse field in the bulk critical h; = J =1
for 2 < i < N — 1. Below we remind the list of the partition functions involving the new
boundary conditions [21]:

Znew, A = Znew,B = Znew,C = X2,2 T X3,2 (2)

Znew,AB = Znew,BC = Znew,AC = X1,2 + X4,2 + X2,2 + X32 (3)
Znew,free = Xe + Xo + Xb (4)

Znewmew = XI + Xe + Xo + X} + Xu + X} (5)

The structure of the conformal tower of states are given by the small-q expansion of
the corresponding characters listed is the [A] The final expression for each set of boundary
conditions are provided below:

Tnewos = ¢ POV (14 %0 g+ 4"+ 2¢° + 2¢°° + 3¢°
+3¢*° +4¢" +5¢"° +...) (6)

Znew AB = g~ 1/30+1/40 (1 Ot 1 g0 gt gt 4 gl gl 242
+* 270 + PO+ 3¢5 + 2631 + 3637 + 2430+ ) (7)

1 1 1 1
Znew free = g /30FL/15 (2 + 3 +2q+2¢"5 +4¢* +2¢*3 + 6¢° + 4¢%5 + ) (8)

A—a (1 +275 + 5 + 205 +2¢'T5 +2¢'F +2¢'3
1 2 2
+¢% +4¢°T5 + 2¢%5 +4¢%5 + ) (9)

Let us briefly remind how conformal towers can be read-out form the small-g expansion.
For example, let us consider the expansion for Zyew free given by Eq There is a pre-factor
that is the same for all towers and defined by the central charge ¢ of the critical theory
as ¢~¢/?%. For the three-state Potts model ¢ = 4/5 that results in ¢~'/3°. The second
pre-factor is the smallest scaling dimension of the primary fields entering the tower. For
Znew free it is equal to 1/15 - the dimension of the primary field o. Since both, o and of
enter the tower, the multiplicity of the corresponding levels are doubled, in particular, the
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ground-state is two-fold degenerate which is reflected in the first term in the brackets. All
other terms in the expansion are given in the form mgq™, where m reflects the multiplicity
of the energy level n.

In order to extract conformal towers numerically, we compute low-lying energy spectra
with up to 21 energy levels. According to the conformal field theory, energy gap scales as
E, — Ey = mun/N, where N is the system size and v is a non-universal sound velocity.
For the three-state Potts model defined by the Hamiltonian [1| the value of the velocity has
been computed numerically v ~ 0.857 |15] and will be used throughout this section. Our
numerical results for the four conformal towers involving transverse-polarized boundary
conditions are presented in Fig[2l Given that there are no fitting parameters the agreement
between the theory (colored lines) and the numerical data (blue symbols) is extremely
good. One can notice that some conformal towers (x22, x3,2, 0, €) are affected by finite-
size effects stronger than the other (I, ¢, x1,2, x4,2). This effect has been observed before
for fixed, free and mixed boundary conditions [15].

To summarize this section, conformal towers of states predicted by Affleck at al. [21]
for the new boundary conditions appear in a quantum 1D version of the critical three-
state Potts model with boundaries polarized in the direction of the transverse field. This
provides a more physical and intuitive realization of the new boundary conditions in quan-
tum chains than in the classical 2D model that requires negative entries in the boundary
Bolzmann weight matrix.

4 Boundary critical phenomena in four-state Potts model

Boundary phenomena at the four-state Potts critical point are far less understood. The
four-state Potts model defined by the Hamiltonian [1]is a straightforward generalization of
the three-state Potts model to four-dimensional local Hilbert space. On the other hand,
the four-state Potts critical point is a special symmetric point of a generic Ashkin-Teller
critical theory [35]. An effective quantum Ashkin-Teller model can be defined by the
following microscopic Hamiltonian:

e PN
Haghkin—Teller = —J Y — > PIPE,
i=1 p=1
1-A

N
—T(R-lpﬁu +P2P3, —i-h.c.)] —h> P, (10)
=1

where A is the Ashkin-Teller parameter and

01 1 X\
1{ 10 X1
PZ’(A)_Z 1 X 0 1
A1 10

The model coincide with the four-state Potts model given by Eq[l]for A = 1. For A = 0 the
model is a quantum version pf the four-state clock model and corresponds to two decoupled
Ising chains. Along the J = h line the model is described by the Ashkin-Teller critical
theory with central charge ¢ = 1 and critical exponents varying continuously with A. The
operator content and partition functions on a torus have been analyzed by Yang [36].
Boundary critical phenomena for the special case of A = 0 have been studied recently in
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Figure 2: Conformal towers of states of the critical three-state Potts model with one edge
polarized along the transverse field direction (following Ref. we use the notation 'new’)
and the second edge is (a) fixed to one of the three single-particle states; (b) mixed between
the two single-particle states; (c) free; (d) also polarized along the transverse field. The
velocity is fixed to the value v & 0.857 reported in Ref. . Blue symbols correspond to
our DMRG data (different symbols are chosen to clarify multiplicities), lines of different
colors correspond to different primary fields in the tower and listed on the right. The
numbers under each character show the expected multiplicities of the levels and always
match our numerical data. Blue dotted lines are guide to the eyes indicating where the
energy levels are expected to end in the thermodynamic limit and for infinite DMRG bond
dimension D.



SciPost Physics

the context of a defect line in two-dimensional Ising model [37]. The conformal tower of
states as a function of A € [0,1] for fixed and symmetric boundary conditions A-A has
been reported recently in Ref. [3§].

There are two challenges associated with numerical investigation of the conformal
towers of the Ashkin-Teller model. First, by contrast to the Ising and 3-state Potts
minimal models, there are logarithmic corrections present in the Ashkin-Teller critical
theory which might significantly affect numerical results. Second, there is an infinite
number of primary fields in the generic Ashkin-Teller model. The goal of this section is to
identify which of the primaries appear at the four-state Potts point for a set of common
boundary conditions.

4.1 Free and fixed boundary conditions in the four-state Potts model

Following the notations of the previous section we label single-particle states for d = 4 by
A, B, C and D. We start our investigation with the the simplest case - fixed and symmetric
boundary conditions A-A (obviously, due to symmetry in the model the results for B-B,
C-C, and D-D boundary conditions will be the same). By analogy with the Ising and the
three-state Potts models, we expect the low-energy spectra to be described by an identity
conformal tower. Although from Eq[30]for the three-state Potts model we know that more
than one character might enter the identity tower (and that is indeed what we observe
numerically for d = 4). In any case, the smallest dimension of the primaries is expected
to be = 0. The Virasoro character of this primary field is given by:

xo=(1—2q) {q_l/% (14 q+2¢°+3¢ +5¢* +7¢° +11¢° + )]
=g VA4 + ¢ +2¢" +2¢° +4¢° +..), (11)

where the term in the square brackets is a small-q expansion of the Dedekind function. The
resulting expansion has the structure distinct for 0-dimensional characters of the minimal
models: the first order term in ¢ is absent. There is a non-universal parameter in the
critical theory - the sound velocity v. We extract the velocity from the lowest energy gap
in a chain with A-A boundary condition and get the value v = AEN/(27) ~ 0.785. We
will use this value through the rest of this section.

In Fig[3p we present our numerical data for the conformal towers of states obtained
with A-A boundary conditions. At the integer levels we recover the structure and multi-
plicities of xo given by Eq[I1] In addition, above n = 3 we detect the presence of another,
double-degenerate primary with the scaling dimension « ~ 3.5. In order to identify the
scaling dimension numerically we extrapolate the lowest level of the tower to the ther-
modynamic limit (dotted red line) and estimate the error-bar as a difference between the
extrapolated value and the last available data point (here N = 100). The resulting esti-
mate for the scaling dimension is x ~ 3.52 4+ 0.03. Moreover, we empirically extract the
structure of the tower and get:

Xamas = q /(14 q+2¢3 + ), (12)

This structure agrees with the character of the Virasoro algebra for z # k%/4 (k € Z) [36).
To summarize, the partition function of an open chain with fixed symmetric boundary
conditions A-A is given by:

ZA-A=X0o+2X X354+ ..., (13)

where three dots indicate that additional entries of primary fields with scaling dimension
x > 6 cannot be excluded by our numerical analysis.
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So far we assumed the lowest scaling dimension of the tower to be zero. Let us now
provide numerical argument supporting this hypothesis. According to conformal field
theory the ground-state energy Ej of a chain with open boundary conditions are expected
to scale with the system size N as:

™

ﬁv (14)

1
E0:80N+51+ <—24+$>

where €9 and 7 are non-universal constants. By fixing the sound velocity to the value
v = 0.785, we fit our numerical data as shown in Fig[3le. The numerically extracted value
of the scaling dimension & < 5x 1073 is in excellent agreement with our expectation 2 = 0.

Now, let us consider a non-symmetric combination of the fixed boundary conditions
A-B (equivalent to A-C, B-C, etc. - six combinations in total). We start by fitting
the scaling of the ground-state energy in the form of Eq[I4 The results of the fit is
presented in Figl3d. By fixing the value of the velocity to v ~ 0.785, we extract the
scaling dimension of the primary field to be x =~ 0.822. This points towards possible
candidate of the primary field with z = 5/6 ~ 0.833. This implies that the scaling
dimension = # k%/4 (k € Z) and, according to Yang [36], the character with x ~ 0.822 is
given by q’1/24+‘”(1 +q+2¢> +3¢3 +5¢* +7¢° + ..). In Fig we present our numerical
results for the confromal tower of states with A-B boundary conditions. Energy levels
up to n = 2 are in excellent agreement with the CFT predictions, especially given that
there is no adjustment parameter: the only non-universal value is the sound velocity that
we fix at v = 0.785 extracted from the A-A tower. However, the multiplicities of the
states ending at the levels above n = 2 do not match the expansion. There are two
possible explanations. On the one hand, some states might be affected by log-corrections
stronger than others. In this case, one can imagine that intermediate levels of the tower
detected at n ~ 2.7,3.7,4.7 will eventually end up at n = 3,4,5 respectively. This will
restore the correct multiplicity for the higher levels, in particular 3¢> and 5¢*. On the
other hand, the finite-size extrapolation of the lowest intermediate level (dotted line)
suggests that the energy level is at n =~ 2.68 £+ 0.03. If there is an additional primary field
entering the tower and responsible for these intermediate state, its dimension would be
x ~ 2.68 + 0.822 =~ 3.50 - the same as the dimension of the primary entering the A-A
tower. Moreover, the multiplicities of the available three levels identified in A-A towers
and summarized in Eq[I2] match the multiplicities observed in the A-B tower. Therefore,
our prediction for the A-B tower is the following;:

ZA-B = X5/6 T X35+ -5 (15)
with
Xsj6 = P01+ g+ 2¢% +2¢° + 4¢* + ...) (16)

Let us now study the conformal tower of a chain with free boundary conditions at both
ends. By analogy with the Ising and the three-state Potts models we expect the duality
between fixed and free boundary condition. From a dual point of view [21] the partition
functions at low energies satisfy:

ZFree—F'ree = ZA—A + ZA—B + ZA—C + ZA—D- (17)

Since Za—p = Za—¢ = Za—p, and using Eqgs[I3] and [I5] we end up with the following
prediction:

ZFree—Free = X0 + 3 X X5/6 +5 X x35+ .. (18)
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Figure 3: Conformal towers of states of the four-state Potts model with a fixed symmetric
and b antisymmetric and e free boundary conditions. Symbols are DMRG data point
extracted from the low-lying energy excitation spectra with velocity v ~ 0.785 computed
from the lowest energy gap in a. Gray lines are the expected levels of conformal towers
(see main text). In e the results from a (dashed red) and b (dashed green) are shown
as a reference, the latter is shifted by z = 5/6. The dotted blue line is a finite-size
extrapolation, the obtained value n ~ 0.855 is in good agreement with x = 5/6. The
numbers on the right side of the towers indicate the multiplicity of each energy level. c-d
Finite-size scaling of the universal part of the ground-state energy fitted with EqlT4]} Solid
lines are the results of the fit. ¢ For fixed A-A and free boundary conditions the extracted
scaling dimension agrees within 5 x 1072 with the expected value z = 0. d For the fixed
A-B boundary conditions the scaling dimension extracted numerically z ~ 0.822 is in good
agreement with z = 5/6.
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The small-q expansion then takes the form:

ZFree—Free = q_1/24 (1 + Sq% + 3q1% + q2 + 6q2% + q?’
5%+ 6¢%% +2¢" 45"+ ..) - (19)

This prediction is in excellent agreement with our numerical data presented in Fig[3e.
From finite-size scaling of the ground-state energy presented in Fig[3lc we get the smallest
scaling dimension to be < 5 x 1072 which is in good agreement with the expected value
x = 0. There are three cross checks available at this stage. First, on top of the Free-Free
conformal tower in Fig we plot our raw DMRG results for A-A (dashed red lines) and
for A-B (dashed green lines) towers, shifting the latter by 5/6. The excellent agreement
between these results confirms the duality. Second, by extrapolating the first excited state
of the Free-Free tower we get n ~ 0.855 which is in a good agreement with the scaling
dimension 5/6 obtained for the A-B tower. Finally, the almost perfect collapse of the
five-fold degenerate state at n = 3.5 in the Free-Free tower strongly supports the presence
of x = 3.5 primary field in both, A-A and A-B, towers.

4.2 Transverse-polarized and three-state-mixed boundary conditions

Let us now consider the boundary conditions where one state, say D, is suppressed at the
edge, which leads to the three-state-mixed boundary condition ABC. If the same local
single-particle state is suppressed at both edges, we end up with symmetric boundary
conditions ABC-ABC (equivalently ABD-ABD, etc). If the suppressed states are differ-
ent then boundary conditions would be ABC-ABD (equivalent to ABC-ACD, etc). Our
numerical results for conformal towers for these boundary conditions are presented in
Fig[a-b. We expect an identity tower given by Eq[I1]to appear for all symmetric bound-
ary conditions, including ABC-ABC. This agrees with the absence of the n = 1 level in
Figla. The presence of the identity tower is further confirmed by the finite-size scaling
of the ground-state energy presented in Fig[e where the numerically extracted scaling
dimension agrees within 2 x 1073 with # = 0. On top of the identity tower we see the
presence of a double degenerate primary with dimension x ~ 0.64 4 0.03 extracted from
the lowest level of the tower (dotted line). In addition, there is a primary with scaling
dimension = ~ 1.33 & 0.03(dash-dotted line). Numerical results might look a bit messy
around n = 2.5 because of the level crossing of a non-degenerate energy level going down
towards n &~ 2.33 and four-fold degenerate states going up towards n =~ 2.64.
The partition function is then given by:

ZABC—ABC = X0 + 2 X Xz~0.64 + Xzx1.33 + - (20)

Numerical results for the tower with non-symmetric three-state-mixed boundary con-
ditions ABC-ABD is shown in Fig[b. We do not expect the identity primary field to
enter this tower, therefore we naturally expect to observe an energy level at n = 1. Most
likely this is the state shown with green crosses and shifted above n = 1 by some finite-size
effects. In other words, the effective velocity of this tower and for accessible system sizes
is v ~ 0.85 which is about 8% higher than the estimate we got from the A-A tower. This
is not very uncommon and large deviation in the velocity has been reported for AB-AC
boundary conditions in the three-state Potts model [39]. We normally extract the scaling
dimension of the lowest state of the tower by analyzing the universal term of the ground-
state energy. However, as shown in Fig the data points are of the order 10~7 and are
non-monotonous. This suggests that (—1/24 4 z) is extremely small (below 1073). We
then may assume that the scaling dimension of the lowest primary is x = 1/24 or very
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Figure 4: Conformal towers of states of the four-state Potts model with a three-state-
mixed symmetric and b three-state-mixed non-symmetric boundary conditions, and e
with boundaries polarized in the direction of the transverse field (following Ref. we
use the term "new” boundary conditions). Symbols are DMRG data points extracted
from the low-lying energy excitation spectra with velocity v ~ 0.785. Gray lines are
expected levels of conformal towers with the smallest scaling dimension. In e the results
from a (dashed red) and b (dashed green) are shown as a reference, the latter is shifted by
x = 1/24. Dotted lines are finite-size extrapolation with quadratic polynomial in 1/N. e
The numbers on the right side of the towers indicate the multiplicity of each energy level.
c-d Finite-size scaling of the universal part of the ground-state energy fitted with EqT4] ¢
For ABC-ABC and New-New boundary conditions the extracted scaling dimension agrees
within 4 x 1073 with an expected value = 0. d For the fixed ABC-ABD boundary
conditions the scaling dimension of the primary field is close to x = 1/24 resulting in the
data points of the order of 1077.
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close to this value. Below n = 1 we observe two more levels of the towers, which means
that the partition function has at least three primaries. The numerically estimated scaling
dimension is z ~ 1/24+0.64+0.04 ~ 0.68+0.04 and = ~ 1/24+0.835+0.01 ~ 0.88+0.01.
Note that the error bar mentioned here does not include the possible 8% error in the sound
velocity. The partition function takes the following form:

ZABC—ABD = Xaw~1/24 + Xan0.68 + X2m0.88 + - (21)

In the three-state Potts model mixed boundary conditions AB, AC and BC are dual
to the new boundary conditions realized, as we have shown in the previous section, by
polarizing edges along the transverse field. Assuming that this duality holds for the four-
state Potts model, we expect

Znew—new = ZABC—ABC + ZABC—ABD + ZaBC—-ACD + ZABC—BCD: (22)

where due to symmetry the last three terms have the same conformal towers. The resulting
partition function is given by:

Znewfnew = X0+ [2 X Xza0.64 T 3 X X:v%O.GS] +3 X sz1/24 +3X Xz~0.88 + Xz~1.33 1+ - (23)

Numerical results for the conformal tower of states with both edges polarized in the di-
rection of the transverse field is presented in Fig[le. The raw DMRG data for ABC-ABC
(red dashed line) and ABC-ABD (green dashed line) are shown as a reference, the latter is
shifted by 1/24. Excellent agreement between the towers strongly supports the duality be-
tween the transverse-polarized (new) boundary conditions and the three-state mixed ones.
There are two observations that can be made here. First, the lowest excitation energy in
the New-New tower extrapolates to n =~ 0.021 4+ 0.06 which is two times smaller than
x = 1/24 obtained from the ground-state energy scaling. Thus more accurate, perhaps
analytical, methods are necessary to make a reliable prediction for the scaling dimension in
this case. Second, the almost perfect five-fold degeneracy observed for n ~ 0.64 suggests
that the two characters detected in ABC-ABC tower with z ~ 0.64 and in ABC-ABD
tower with x = 0.68 refer to the same primary field present in all three towers shown in
Fig This points towards = = 2/3 as a possible candidate, while x ~ 1.33 is consistent
with 4/3. Then our prediction for the new-new conformal tower is the following:

Znew—new = X0 + 3 X X1/24 + 9 X X2/3 + 3 X Xax0.88 + X4/3 + - (24)

For completeness, let us now consider the set of mixed boundary conditions, i.e. those,
where left and right edges of the chain are described by different classes of boundary states.
Based on the established duality between free and fixed and between three-state-mixed
and transverse-polarized boundary conditions, we expect:

ZAfNew = ZFreefABC (25)

and
ZFree—New = ZA—ABC + ZA—ABD + ZA—acD + Za-BCD- (26)

Eq[25] can be verified by a direct comparison of the two towers as presented in Figlh
The scaling dimension extracted from the finite-size scaling of the universal term in the
ground-state energy in Fig[Bla for both towers is « &~ 0.0204 and points towards the primary
field with = 1/48. Direct comparison between the excitation spectra for A-New and
ABC-Free boundary conditions presented in Fig[ib is spectacular given that there is no
adjustment parameter between the towers. Likely, non-degenerate levels just below and
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Figure 5: Direct comparison of the conformal tower of states with A-New (blue) and
Free-ABC (red) boundary conditions. a Finite-size scaling of the universal part of the
ground-state energy; the agreement is excellent and the numerically extracted value of the
scaling dimension = ~ 0.0204 is in good agreement with x = 1/48. b Conformal towers
of states extracted from the excitation spectra with A-New (blue) and Free-ABC (red)
boundary conditions. For clarity some data points are shifted horizontally by up to 1073.
The multiplicity of each level is marked with integer numbers on the right side of the
panel.

just above n = 2 become degenerate in the thermodynamic limit, in agreement with the
standard structure of the character of the Virasoro algebra for x # k?/4 (k € Z) [36]:
Xa=1/48 = q /P81 4 g+ 2¢% + 3¢°...). On top of the 2 = 1/48 one can detect the
presence of a double-degenerate primary with x ~ 1/48 +0.75+0.04 ~ 0.77 +0.04, so the
partition functions contain:

ZA-New = ZFree—ABC = Xa=1/48 + 2 X Xaa0.77 + --- (27)

In order to verify Eq[26] we compute the towers with Free-New, A-BCD and A-ABC
boundary conditions. Due to symmetry the latter is equivalent to A-ACD and A-ABD.
Our numerical results for this set of boundary conditions are summarized in Figlo] From
the finite-size scaling of the universal term in the ground-state energy (see Fig@c) we
obtain the scaling dimension to be z = 0.124 for A-ABC pointing towards the primary
with = 1/8. Scaling dimension obtained with A-BCD boundary condition in Fig@d is
x = 0.43. The structure of the excitation spectrum with A-ABC boundary conditions is
presented in Fig[6a. The tower is significantly perturbed by finite-size and presumably by
logarithmic corrections. If we assume, that the primary with z = 1/8 has the standard
structure x,—1/8 = q V2 H3(1 4+ g + 2¢% + 3¢°...) then one can clearly distinguish the
presence of another primary with the scaling dimension extracted from its lowest level
(dotted red line) to be x ~ 1/8 + 1.64 + 0.05 ~ 1.77 + 0.05. For A-BCD on top of the
x ~ 0.43 primary with xz~043 = q_1/24+0'43(1 +q+ ¢ + 2¢3...) we detect the two-fold
degenerate primary with z ~ 0.43+1.424+0.08 ~ 1.85+0.08 (dotted green line). Among A-
ABC and A-BCD towers, the ground-state scaling dimension is the smallest for A-ABC and
equal to z = 1/8. We therefore expect the ground-state of the Free-New tower to have the
same scaling dimension. The value x ~ 0.125 obtained numerically by fitting the ground-
state energy (Fig@c) is in excellent agreement with our expectation. Furthermore, because
ZA-ABC = ZA-ABD = ZA—acD the ground-state of the New-Free tower is expected to be
three-fold degenerate. This is in excellent agreement with our numerical results presented
in Figloe. On top of the New-Free tower we draw the raw DMRG data for A-ABC (red
dashed lines) and A-BCD (green dashed lines), shifting the latter by 0.43 — 1/8 = 0.305.
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The agreement between them is perfect which once again confirms the prediction made
in Eq26] and the duality in general. Furthermore, by extrapolating the lowest excitation
energy we obtain the value of the primary = ~ 1/8+40.224+0.03 ~ 0.35+0.03 significantly
smaller than 0.43. This value also suggests that the primary with x ~ 1.64+1/8 ~ 1.77 in
A-ABC tower and the primary with z ~ 1.424+0.35 =~ 1.77 in A-BCD tower corresponds to
the same operator, which is further supported by the five-fold degeneracy detected around
n = 1.64 in the New-Free tower in Fig|Ge.

4.3 Two-state-mixed boundary conditions

For completeness let us also consider the two-state-mixed boundary conditions, i.e. those
when only two single-particle states are allowed at the edges. Numerically we achieve this
by applying equal longitudinal fields simultaneously along two directions at the edges.
When the pair of components along which we apply the field is the same on both edges,
we will call this boundary conditions AB-AB. When only one component coincides, we
will refer to these boundary conditions as AB-AC. When the two pairs of components do
not overlap we end up with the AB-CD boundary conditions.

Our numerical results for these boundary conditions are summarized in Fig[7] In the
symmetric AB-AB case we clearly resolve the identity tower that according to our results
for the A-A tower is composed of xo + 2 X x3.5 (see Eq. On top of the identity tower
we detect the primary with = &~ 0.21 + 0.01 (dotted line) with an empirically extracted
character expansion:

Xomo.21 = ¢ /20200 4 90 4+ 267 + 4¢3 + ). (28)

There is yet another double-degenerate primary that appears around n ~ 2.5 and judging
by higher levels it is severely affected by finite-size effects and/or log-corrections.

The lowest scaling dimension extracted from the ground-state scaling in the AB-AC
tower is equal to x ~ 0.0625, which is in excellent agreement with the ”stable” scaling
dimension 1/16 that remains the same for a generic Ashkin-Teller critical theory even away
from the four-state Potts point and corresponds to the magnetization (or spin) operator
0. The character of this operator obeys the standard form:

Xam1j16 = @ P01+ g+ 242 + 3¢5 + ). (29)

On top of the x = 1/16 primary, we detect the presence of another primary with = ~
1/16 + 0.54 £ 0.01 ~ 0.60. This can point towards another magnetization operator with
x = 9/16, however this hypothesis requires further analytical confirmation.

Finally, the lowest state in AB-CD tower is described by the primary with x ~ 0.378,
which is sufficiently close to z = 3/8. On top of it, we detect the presence of the double-
degenerate primary with x ~ 0.378 + 0.67 £ 0.1 ~ 1.04 £ 0.01. A possible candidate
would be the primary with z = 25/24. Interestingly enough, slightly below the double
degenerate level at n = 1.67, a non-generate state appears, indicating the presence of yet
another primary with z ~ 0.378 4+ 1.62 + 0.02 ~ 2.0 = 0.02.

5 Discussion
In the first part of the paper we have provided numerical evidences that the "new” bound-
ary conditions predicted with boundary conformal field theory by Affleck et al. [21] can

be realized in the quantum version of the three-state Potts model by polarizing the edges
in the direction of the transverse field. This complements previous DMRG results for
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Figure 6: Conformal towers of states of the four-state Potts model with mixed a A-ABC
and b A-BCD boundary conditions, and e with boundaries polarized in the direction
of the transverse field (following Ref. we use the term "new” boundary conditions).
Symbols are DMRG data points extracted from the low-lying energy excitation spectra
with velocity v =~ 0.785. Gray lines are the expected levels of the conformal towers with
the smallest scaling dimension. In e the results from a (dashed red) and b (dashed green)
are shown as a reference, the latter is shifted by = 1/24. Dotted lines are finite-size
extrapolations with a quadratic polynomial in 1/N. e The numbers on the right side of
the towers indicate the multiplicity of each energy level. c-d Finite-size scaling of the
universal part of the ground-state energy fitted with Eq[I4 ¢ For ABC-ABC and New-
New boundary conditions the extracted scaling dimension agrees within 4 x 10~3 with
the expected value x = 0. d For the fixed ABC-ABD boundary conditions the scaling
dimension of the primary field is close to x = 1/24 resulting in the data points of the order
of 1077
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Figure 7: Finite-size scaling of the universal term in the ground-state energy (upper panels)
and conformal tower of states (lower panels) of the four-state Potts model with two-state-
mixed boundary conditions: a, d AB-AB; b, e AB-AC; and ¢, f AB-CD. Symbols are
DMRG data points extracted from the low-lying energy excitation spectra with the velocity
v == (0.785. The scaling dimension extracted from the ground-state in a agree with the
identity tower = 0 within 2x 1073, b The lowest scaling dimension extracted numerically
for AB-AC tower, x ~ 0.0625, is in excellent agreement with x = 1/16. ¢ The scaling
dimension of the AB-CD tower x =~ 0.378 points to x = 3/8 as a possible candidate. Gray
lines are the expected levels of conformal towers with the smallest scaling dimensions (in
a we also includes the double-degenerate primary with z ~ 3.5 as a part of the identity
tower). Dotted lines in d-f are finite-size extrapolation (linear in 1/N) of the lowest
non-trivial energy levels.

conformal towers of states in the quantum three-state Potts model with fixed, mixed
and free boundary conditions and completes the numerical realization of all possible
conformally-invariant boundary conditions for this model .

The main message of the paper relies on the empirical observation that conformal
towers of states of the quantum critical four-state Potts model with edges polarized in
the direction of the transverse field can be expressed as a superposition of conformal
towers of states with all possible combination of three-state-mixed boundary conditions.
This establishes the duality between the transverse-polarized and the (d — 1)-state-mixed
boundary conditions, with one single-particle state suppressed at the edges. This general-
izes previous predictions of the duality between the new and the two-state mixed boundary
conditions made for the three-state Potts critical theory. Furthermore, we also estab-
lish the duality between the fixed (A, B, C or D) and the free boundary conditions for the
four-state Potts model. This suggests that the duality between these two sets of boundary
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conditions is rather a generic feature. For Ising model the duality also holds, although
the two pairs of boundary conditions are identical: an edge polarized in the direction of
the transverse field is identical to free edge, while the d — 1-state for d = 2 naturally
corresponds to the fixed (A or B) boundary conditions. This implies that the established
duality holds at least at the two points on the Ashkin-Teller critical line: at the four-state
Potts with A = 1; and at A = 0 that corresponds to the two decoupled Ising chains. It
would thus be extremely interesting to see whether one can establish the duality for a
generic Ashkin-Teller model with 0 < A < 1.

In addition, our results provide a phenomenological starting point for the boundary
conformal field theory of the four-state Potts model. We empirically established the con-
tent of various conformal towers, in particular, the identity tower which on top of the
zero-dimensional primary contains a double degenerate one of dimension x =~ 3.5. We
detect the o tower with conformal dimension x = 1/16 which is known to be one of the
"stable” conformal dimensions of the Ashkin-Teller theory and thus will remain the same
for all values of A\. It would be very interesting to see whether the less obvious scaling
dimensions obtained in the context of this work can be explained by means of boundary
confornmal field theory. We hope that our numerical results will stimulate further analyt-
ical and numerical investigation of the boundary critical phenomena in the Ashkin-Teller
model.
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A Characters of the three-state Potts model

Six out of ten primary fields appear in the description of the operators identity I of
zero dimension, magnetization o of dimension 1/15, energy € of dimension 2/5, and 1 of
dimension 2/3. The corresponding characters are:

X1 = X1,1+X4,1 Xe = X2,1+X3,1 Xo = Xot = X2.3 X¢ = Xyt = X1,3 (30)

The small-q expansions of the characters for the ten primary fields of the three-state
Potts minimal model are given by:
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Xan(@ =a*0 1+ +¢* +2¢* +2¢° +4¢° + ... (31)

Xen(@) = ¢ 5 (14 g+ ¢* +2¢° + 3¢" + 4¢° + 6¢° + ...) (32)

Xe)(@) = a7 VPO (14 g+ 2¢% + 2¢° + 4" + 5¢° + 8¢5 + ...) (33)

X (@) = ¢ P (14 g+ 2¢% + 3¢° + 4" + 5¢° + 8¢° + ...) (34)

X(12)(@) = ¢ OB (1 g+ ¢ +2¢° + 3¢ +4¢° +64° + ...) (35)

X(2:2)(q) = ¢ /P00 (1 4 g + 2¢% + 3¢° + 4¢* + 6¢° + 9¢° + ...) (36)

X@2)(@) = ¢ OO (1 4 g+ 267 + 3¢ + 5¢* + T¢° +10¢° + ...) (37)

X(a2)(q) = ¢ 308 (14 g+ 2¢° + 3¢° + 4¢* + 6¢° + 9¢° + ...) (38)

X(13)(q) = a0 (14 g+ 2¢% + 2¢° + 4" + 5¢° + 8¢5 + ...) (39)

X(2,3)(q0) = q_1/30+1/15 (1 +q+2¢° 4+ 3¢% + 5¢* + 7¢° + 10¢° + ) (40)
References

[1] J. L. Cardy, Conformal invariance and surface critical behavior, Nuclear Physics B

2]

240(4), 514 (1984), doi‘https://doi.org/10.1016/0550-3213(84)90241-4

J. L. Cardy, Boundary conditions, fusion rules and the verlinde formula, Nuclear
Physics B 324(3), 581 (1989), doi:http://dx.doi.org/10.1016/0550-3213(89)90521-X.

H. Saleur and M. Bauer, On some relations between local height proba-
bilities and conformal invariance, ~ Nuclear Physics B 320(3), 591 (1989),
doizhttps://doi.org/10.1016,/0550-3213(89)90014-X.

I. Affleck and A. W. W. Ludwig, Universal noninteger “ground-state de-
generacy” in critical quantum systems, Phys. Rev. Lett. 67, 161 (1991),
doi:10.1103 /PhysRevLett.67.161.

I. Affleck, Conformal field theory approach to the kondo effect, Acta Physica Polonica
B (26), 1869 (1995), Cond-mat/9512099.

E. Wong and 1. Affleck, Tunneling in quantum wires: A boundary con-
formal field theory approach, Nuclear Physics B 417(3), 403 (1994),
doizhttps://doi.org/10.1016,/0550-3213(94)90479-0.

J. L. Cardy, Effect of boundary conditions on the operator content of two-
dimensional conformally invariant theories, Nuclear Physics B 275(2), 200 (1986),
doi:https://doi.org/10.1016/0550-3213(86)90596-1.

1. Affleck, Boundary condition changing operations in conformal field theory and
condensed matter physics, Nuclear Physics B - Proceedings Supplements 58, 35-41
(1997), doi:10.1016/s0920-5632(97)00411-8.

J. Cardy, Boundary Conformal Field Theory, arXiv e-prints hep-th/0411189 (2004),
hep-th/0411189.

I. Affleck, Edge critical behaviour of the two-dimensional tri-critical ising model, Jour-
nal of Physics A: Mathematical and General 33(37), 6473 (2000), doi:10.1088/0305-
4470/33/37/301.

19


https://doi.org/https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/http://dx.doi.org/10.1016/0550-3213(89)90521-X
https://doi.org/https://doi.org/10.1016/0550-3213(89)90014-X
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/https://doi.org/10.1016/0550-3213(94)90479-0
https://doi.org/https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1016/s0920-5632(97)00411-8
hep-th/0411189
https://doi.org/10.1088/0305-4470/33/37/301
https://doi.org/10.1088/0305-4470/33/37/301

SciPost Physics

[11]

[12]

[13]

[14]

[15]

[16]

[20]

[21]

[22]

[23]

S. R. White, Density matrixz formulation for quantum renormalization groups, Phys.
Rev. Lett. 69, 2863 (1992), doii10.1103/PhysRevLett.69.2863.

U. Schollwock, The density-matriz renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

S. Ostlund and S. Rommer, Thermodynamic limit of density matriz renormalization,
Phys. Rev. Lett. 75, 3537 (1995), doii10.1103/PhysRevLett.75.3537.

U. Schollwock, The density-matriz  renormalization group in the age
of matrix  product states, Annals of Physics 326(1), 96 (2011),
doizhttp://dx.doi.org/10.1016/j.a0p.2010.09.012, January 2011 Special Issue.

N. Chepiga and F. Mila, FExcitation spectrum and density matriz renormalization
group iterations, Phys. Rev. B 96, 054425 (2017), doii10.1103/PhysRevB.96.054425.

G. Evenbly and G. Vidal, Quantum Criticality with the Multi-scale Entanglement
Renormalization Ansatz, pp. 99-130, Springer Berlin Heidelberg, Berlin, Heidelberg,
ISBN 978-3-642-35106-8, doi:10.1007/978-3-642-35106-8_4 (2013).

A. M. Lauchli, Operator content of real-space entanglement spectra at conformal
critical points, ArXiv e-prints (2013), 1303.0741.

S. Iino, S. Morita and N. Kawashima, Boundary conformal spectrum and surface
critical behavior of classical spin systems: A tensor network renormalization study,
Phys. Rev. B 101, 155418 (2020), doi:10.1103/PhysRevB.101.155418.

N. Chepiga and F. Mila, Dmrg investigation of constrained models: from quantum
dimer and quantum loop ladders to hard-boson and fibonacci anyon chains, SciPost
Physics 6(3) (2019), doi:10.21468/scipostphys.6.3.033.

A. Rapp, P. Schmitteckert, G. Takacs and G. Zarand, Asymptotic scattering and
duality in the one-dimensional three-state quantum potts model on a lattice, New
Journal of Physics 15(1), 013058 (2013).

I. Affleck, M. Oshikawa and H. Saleur, Boundary critical phenomena in the three-
state potts model, Journal of Physics A: Mathematical and General 31(28), 58275842
(1998), doi:10.1088/0305-4470/31/28/003.

J. Fuchs and C. Schweigert, Completeness of boundary conditions for the
critical  three-state potts model, Physics Letters B 441(1), 141 (1998),
doi:https://doi.org/10.1016 /S0370-2693(98)01185-X.

A. Kolezhuk, R. Roth and U. Schollwock, First order transition in the frustrated
antiferromagnetic heisenberg S = 1 quantum spin chain, Phys. Rev. Lett. 77, 5142
(1996), doi:10.1103/PhysRevLett.77.5142.

N. Chepiga, 1. Affleck and F. Mila, Dimerization transitions in spin-1 chains, Phys.
Rev. B 93, 241108 (2016), doi:10.1103/PhysRevB.93.241108.

N. Chepiga, I. Affleck and F. Mila, Comment on “frustration and multicriti-
cality in the antiferromagnetic spin-1 chain”, Phys. Rev. B 94, 136401 (2016),
doi:10.1103 /PhysRevB.94.136401.

S. R. White, Density-matriz algorithms for quantum renormalization groups, Phys.
Rev. B 48, 10345 (1993), doi:10.1103/PhysRevB.48.10345.

20


https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/http://dx.doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.96.054425
https://doi.org/10.1007/978-3-642-35106-8_4
1303.0741
https://doi.org/10.1103/PhysRevB.101.155418
https://doi.org/10.21468/scipostphys.6.3.033
https://doi.org/10.1088/0305-4470/31/28/003
https://doi.org/https://doi.org/10.1016/S0370-2693(98)01185-X
https://doi.org/10.1103/PhysRevLett.77.5142
https://doi.org/10.1103/PhysRevB.93.241108
https://doi.org/10.1103/PhysRevB.94.136401
https://doi.org/10.1103/PhysRevB.48.10345

SciPost Physics

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[37]

[38]

[39]

M. Chandross and J. C. Hicks, Density-matriz renormalization-group method for
excited states, Phys. Rev. B 59, 9699 (1999), do0i:10.1103/PhysRevB.59.9699.

R. J. Bursill, Comment on “density-matriz renormalization-group method for excited
states”, Phys. Rev. B 63, 157101 (2001), doii10.1103/PhysRevB.63.157101.

C. Degli Esposti Boschi and F. Ortolani, Investigation of quantum phase transitions
using multi-target dmrg methods, The European Physical Journal B - Condensed
Matter and Complex Systems 41(4), 503 (2004), doi:10.1140/epjb/e2004-00344-1.

I. P. McCulloch, From density-matriz renormalization group to matrix product states,
Journal of Statistical Mechanics: Theory and Experiment 2007(10), P10014 (2007).

D. Porras, F. Verstraete and J. I. Cirac, Renormalization algorithm for the calcu-
lation of spectra of interacting quantum systems, Phys. Rev. B 73, 014410 (2006),
doi:10.1103 /PhysRevB.73.014410.

V. S. Dotsenko, Critical Behavior and Associated Conformal Algebra of the Z(3)
Potts Model, Nucl. Phys. B235, 54 (1984), doi:10.1016/0550-3213(84)90148-2.

2

H. N. V. Temperley and E. H. Lieb, Relations between the ’percolation’ and ’colouring
problem and other graph-theoretical problems associated with regular planar lattices:
some exact results for the ’percolation’ problem, Proc. Roy. Soc. Lond. A322, 251
(1971), doi:10.1098 /rspa.1971.0067.

P. Francesco P., Mathieu and Sénéchal, Conformal field theory (1997).

J. Ashkin and E. Teller, Statistics of two-dimensional lattices with four components,
Phys. Rev. 64, 178 (1943), doi{10.1103/PhysRev.64.178.

S.-K. Yang, Modular invariant partition function of the ashkin-teller model on the
critical line and n = 2 superconformal invariance, Nuclear Physics B 285, 183 (1987),
doi:https://doi.org/10.1016/0550-3213(87)90334-8.

M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical
two-dimensional ising model with a defect line, Nuclear Physics B 495(3), 533-582
(1997), doi:10.1016/s0550-3213(97)00219-8.

N. Chepiga and F. Mila, Kibble-zurek exponent and chiral transition of the period-4
phase of rydberg chains, Nature Communications 12(1) (2021), doii10.1038/s41467-
020-20641-y.

N. Chepiga, Dimerization and exotic criticality in spin-s chains, EPFL thesis 7621,
184 (2017), doi:10.5075/epfl-thesis-7621.

21


https://doi.org/10.1103/PhysRevB.59.9699
https://doi.org/10.1103/PhysRevB.63.157101
https://doi.org/10.1140/epjb/e2004-00344-1
https://doi.org/10.1103/PhysRevB.73.014410
https://doi.org/10.1016/0550-3213(84)90148-2
https://doi.org/10.1098/rspa.1971.0067
https://doi.org/10.1103/PhysRev.64.178
https://doi.org/https://doi.org/10.1016/0550-3213(87)90334-8
https://doi.org/10.1016/s0550-3213(97)00219-8
https://doi.org/10.1038/s41467-020-20641-y
https://doi.org/10.1038/s41467-020-20641-y
https://doi.org/10.5075/epfl-thesis-7621

	Introduction
	The method
	Transverse-polarized boundary conditions for three-state Potts critical point
	Boundary critical phenomena in four-state Potts model
	Free and fixed boundary conditions in the four-state Potts model
	Transverse-polarized and three-state-mixed boundary conditions
	Two-state-mixed boundary conditions

	Discussion
	Characters of the three-state Potts model
	References

