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Abstract

By computing the low-lying energy excitation spectra with the density matrix
renormalization group algorithm we show that boundaries polarized in the di-
rection of the transverse field lead to scale-invariant conformal towers of states
at the critical point of the quantum four-state Potts model - a special symmet-
ric case of the Ashkin-Teller model. Furthermore, by direct comparison of the
excitation spectra we phenomenologically establish the duality between the
transverse-polarized and three-state-mixed boundary conditions at the four-
state Potts critical point. Finally, for completeness, we verify that in the
quantum three-state Potts model the ”new” boundary conditions dual to the
mixed ones can be realized by polarizing edge spins along the transverse field.

1 Introduction

Over the past decades boundary critical phenomena attracted a lot of interest in the
context of statistical physics [1–3] and impurity problem [4–6] in condensed matter and
particle physics. The presence of the boundary affects measurable observables and change
energy spectra making the problem highly non-trivial [7, 8]. Many exact results for the
simplest critical models and the simplest sets of boundary conditions have been predicted
by the boundary conformal field theory [1, 2, 7, 9–11].

The attention to the boundary critical phenomena has been re-attracted recently by
the progress in numerical techniques for quantum many-body systems. Over the years,
density matrix renormalization group (DMRG) algorithm [12–15] has established itself
as one of the most powerful and accurate numerical tool for low-dimensional systems.
Although DMRG is suitable for systems with either open or periodic boundary conditions,
the latter has significantly higher computational costs. Thus, numerical investigation of
the nature of quantum phase transitions often requires a theoretical understanding of
the boundary critical phenomena. Traditionally, the universality class of the transition
is identified numerically by computing critical exponents and the central charge. Both
can be extremely sensitive to finite-size effects and affected by logarithmic corrections or
possible crossovers. Excitation spectra at the conformal critical point are known to form
a special structure - conformal towers of states - and contain more information about the
underlying critical theory. Therefore, the catalog of the conformal towers of states for
different critical theories and under various boundary conditions is essential for numerical
investigation of quantum phase transitions.
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For the critical transverse-field Ising model the exact correspondence between primary
fields and various combinations of free and fixed boundary conditions has been worked
out analytically by Cardy [2] and further confirmed numerically [16–19]. For the tri-
critical Ising model Affleck [11] predicted partially-polarized boundary conditions to be
conformally invariant and different from the free and fully-polarized ones. This prediction
has been recently confirmed numerically in 1+1D [20] and 2+0D [19].

The three- and four-state Potts models are generalization of the transverse-filed Ising
model to a system with local Hilbert space d = 3 and 4 respectively and can be defined
by the Hamiltonian [21]:

HPotts = −J
N−1∑
i=1

d∑
µ=1

Pµi P
µ
i+1 − h

N∑
i=1

Pi, (1)

where Pµi = |µ〉ii〈µ| − 1/d tends to project the spin at site i along the µ direction while
Pi = |η0〉ii〈η0| − 1/d tends to align spins along the direction |η0〉i =

∑
µ |µ〉
√
d. The first

term in the Hamiltonian plays the role of the ferromagnetic interaction, while the second
one is a generalized transverse field. The model is critical for h = J . In appendix A we
provide alternative definition of the model used in the literature. For convenience, we label
single-particle states for d = 3 by A, B and C. The boundary-field correspondence for free,
fully-polarized (A, B or C), and mixed [3] (AB, AC or BC) boundary conditions has been
established in the original work by Cardy [2]. In general, restricting the local Hilbert space
at the boundary to take the values in {1, 2, ..., Q1}, that is, in a subset of the original range
{1, 2, ..., Q} of the ferromagnetic Q-state Potts model are also known as blob boundary
conditions. Blob boundary conditions naturally include free boundary conditions when
Q1 = Q and fixed boundary conditions when Q1 = 1. For the ferromagnetic three- and
four-state Potts models blob boundary conditions are conformally invariant [22,23].

Later, Affleck, Oshikawa and Saleur [24] have found that the fully-polarized boundary
conditions are dual to the free ones and predicted the ”new” conformally-invariant bound-
ary conditions dual to the mixed ones. This completes the set of the conformally-invariant
boundary conditions for the three-state Potts critical point [25]. Conformal tower of states
with the ”new” boundary conditions has been recently detected numerically in 2+0D by
allowing negative entries in the boundary Bolzmann weight matrix [19]. It is therefore not
obvious how to discuss the new boundary conditions in terms of the original local Hilbert
space and without invoking the duality.

However, quantum 1D chains allows a simpler physical realization of the new boundary
conditions. In the original paper [24], the authors got an indication that the new boundary
conditions can be stabilized by reverting the sign of the transverse field at the edges.
Moreover, it turns out that the new critical point is stable with respect to the magnitude
of the boundary transverse field. In other words, the new boundary conditions can be
expected when the edges are polarized in the direction of the transverse field. Below we
will provide the numerical evidence confirming this field-theory prediction.

The main goal of this paper is to show that the concept of the new boundary conditions
can be generalized beyond the three-state Potts model. Up to date, only two main classes
of conformally invariant boundary conditions of the four-state Potts and the Ashkin-
Teller models have been studied in the literature: various types of closed loops including
periodic, anti-periodic and twisted boundary conditions [26,27], and open chains with the
blob boundary conditions such as free, fixed and mixed [9, 28]. In the preset paper we
will show that in analogy with three-state Potts model, there is yet another type of ”new”
conformally invariant boundary conditions that can be realized by polarizing the edge
spins in the direction of the transverse field. Relying on extensive numerical simulations
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we will show that these transverse-polarized boundary conditions are dual to the three-
state mixed ones, i.e. those where only one out of four single-particle states is excluded
at the edges so Q1 = 3 and Q = 4. This provides a motivation and a phenomenological
starting point for further development of the boundary conformal field theory beyond the
simplest loop and blob boundary conditions in the critical Ashkin-Teller model.

The rest of the paper is organized as follows. In Section 2 we briefly review the
numerical method used in the paper. In Section 3 we verify that excitation spectra of the
critical three-state Potts model with transverse-polarized boundary conditions correspond
to the conformal tower of state with new boundary conditions. Section 4 is dedicated to the
boundary critical phenomena in the four-state Potts model. In Section 4.1 we benchmark
our method by verifying the duality between free and fixed boundary conditions in the
four-state Potts model. In Section 4.2 we present numerically extracted conformal towers
of states of the four-state Potts model with transverse-polarized boundary conditions and
show their duality the three-state mixed boundary conditions. The results are summarized
and put in perspective in Sec.5.

2 The method

Our numerical simulations have been performed with an extended version of the DMRG
algorithm explained in details in Ref. [16]. In this section we briefly review the main
features of the algorithm and provide model-specific technical details.

The DMRG [12] algorithm has been originally designed to search for the ground-state.
It provides an efficient low-entanglement approximation of quantum many-body state.
The accuracy of the wave-function is controlled by the dimension D of the tensors - the
number of basis vectors in the density matrix with the largest Schmidt values. Calcula-
tion of the excitation spectra is usually more involved. If the wave-function obeys some
symmetry, and if the excited state of interest is the lowest energy state of some symmetry
sector, then the energy of this state can be computed by running the ground-state DMRG
within the corresponding sector. This is a common practice to compute magnetic excita-
tions in spin chains [12, 29–31]. If, however, excitations cannot be distinguished by any
symmetry, as in the case of the three- and four-state Potts models, the algorithm has to be
modified significantly. There are three well established strategies. i) The density matrix is
constructed not only from basis vectors that appear in the Schmidt decomposition of the
ground state but mixed with the basis vectors that appear in the Schmidt decomposition of
low-lying excitations [32–36]. In this case the bond dimension and the complexity increase
very fast with the number of excitations, thus typically one targets five or fewer excited
states [13]. ii) After constructing the ground-state in the matrix product state (MPS)
representation, one can search for an eigenstate that is orthogonal to the ground state and
has the smallest energy [15,36,37]. Higher excitations can also be accessed by looking for
an eigenstate orthogonal to all previously constructed eigenvectors. By contrast to the
first approach, the bond dimension remains small, but the algorithm has to be re-run for
each eigenstate. iii) The third approach relies on the phenomenological observation that
for critical systems an approximate basis constructed for the ground state is also suitable
to describe the low-lying excited states [16]. By contrast to the first approach this method
remains variational with respect to the ground-state. Well converged excitations appear
as a flat modes as a function of DMRG iterations. The method has been benchmarked on
the critical Ising and three-state Potts models for which the conformal towers with up to
30 states have been computed [16].

We use infinite-size DMRG with the bond dimension D = 30 to produce a guess wave-
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function and increase the bond dimension up to D = 67 in the warm-up sweep. In the
following six sweeps we increase the bond dimension linearly with each half-sweep up to
its maximal value Dmax = 250. This way we can easily track the convergence with respect
to both the number of sweeps and the bond dimension D. When convergence cannot
be reached for the chosen Dmax, typically this only happens for large system size and
higher excitation levels, we still can get correct estimate of the spectra by extrapolating
the energies. In Fig.1 we present one of the trickiest case - the critical four-state Potts
model with free boundary conditions and N = 100.
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Figure 1: a Energy of the 19 low-energy states in the critical four-state Potts model with
N = 100 sites as a function of iterations. The periodic increase of the energy occurs close
to the chain boundary and is the result of the reduced Hilbert space by MPS construction.
The flattening of the energies in the middle of the chain is an indicator of convergence.
Non converged states are extrapolated towards infinite number of sweeps (equivalently
infinite bond dimension) as shown in b. Note that many of the shown states are three-fold
degenerate and some data points are completely hidden behind the others.
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In Fig.1a we show raw DMRG data for the energy spectrum as a function of DMRG
iterations. A periodic increase of the excitation energies occurs close to the chain boundary
and is the result of the reduced Hilbert space by MPS construction. The first excited state
is three-fold degenerate (yellow and red symbols are almost completely hidden under the
purple ones) and starting from the fourth sweep has a well converged energy reflected in
the flat intervals. The results for the lowest-lying excitation with free boundary conditions
agree within 0.5% with the corresponding Bethe ansatz calculations [9].

The convergence of higher excitations is often slower. When convergence cannot be
reached the results are obtained by extrapolating the value of the energy at the local
minima towards infinite number of sweeps (or equivalently towards infinite bond dimension
D). For extrapolation we use a linear fit of the last five points (black lines).

For the three-state Potts model we include only the converged results, without applying
an extrapolation. For the four-state Potts model the extrapolation has been applied for
higher energy levels for N > 50.

3 Transverse-polarized boundary conditions for three-state
Potts critical point

Let us first verify the realization of the new boundary conditions predicted by Affleck
at al. [24] in three-state Potts model defined by the Hamiltonian 1 with d = 3 with
transverse-polarized boundary conditions. The critical point h = J is described by the
minimal model of conformal field theory with (p, p′) = (6, 5) and ten primary fields listed
in B [38–40]. We realize fixed boundary conditions A (B, or C) by applying a negative
longitudinal field along the first (second, or third) component of the local Hilbert space,
while positive longitudinal field along the same component allows to exclude this state and
thus lead to mixed boundary conditions BC (AC, AB). In order to check the emergence of
the ”new” boundary conditions predicted by Affleck at al. [24] we polarize the edges along
the direction of the transverse field by setting up the field h1 = hN = −10 while keeping
the transverse field in the bulk critical hi = J = 1 for 2 ≤ i ≤ N − 1. Below we remind
the list of the partition functions involving the new boundary conditions [24]:

Znew,A = Znew,B = Znew,C = χ2,2 + χ3,2 (2)

Znew,AB = Znew,BC = Znew,AC = χ1,2 + χ4,2 + χ2,2 + χ3,2 (3)

Znew,free = χε + χσ + χ†σ (4)

Znew,new = χI + χε + χσ + χ†σ + χψ + χ†ψ. (5)

The structure of the conformal tower of states are given by the small-q expansion of
the corresponding characters listed is the B. The final expression for each set of boundary
conditions are provided below:

Znew,A = q−1/30+1/40
(
1 + q0.5 + q + q1.5 + 2q2 + 2q2.5 + 3q3

+3q3.5 + 4q4 + 5q4.5 + ...
)

(6)

Znew,AB = q−1/30+1/40
(
1 + q0.1 + q0.5 + q + q1.1 + q1.5 + q1.6 + 2q2

+q2.1 + 2q2.5 + q2.6 + 3q3 + 2q3.1 + 3q3.5 + 2q3.6 + ...
)

(7)
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Znew,free = q−1/30+1/15
(

2 + q
1
3 + 2q + 2q1

1
3 + 4q2 + 2q2

1
3 + 6q3 + 4q3

1
3 + ...

)
(8)

Znew,new = q−1/30
(

1 + 2q
1
15 + q

2
5 + 2q

2
3 + 2q1

1
15 + 2q1

2
5 + 2q1

2
3

+q2 + 4q2
1
15 + 2q2

2
5 + 4q2

2
3 + ...

)
(9)

Let us briefly remind how conformal towers can be read-out form the small-q expansion.
For example, let us consider the expansion for Znew,free given by Eq.8. There is a pre-factor
that is the same for all towers and defined by the central charge c of the critical theory
as q−c/24. For the three-state Potts model c = 4/5 that results in q−1/30. The second
pre-factor is the smallest scaling dimension of the primary fields entering the tower. For
Znew,free it is equal to 1/15 - the dimension of the primary field σ. Since both, σ and σ†

enter the tower, the multiplicity of the corresponding levels are doubled, in particular, the
ground-state is two-fold degenerate which is reflected in the first term in the brackets. All
other terms in the expansion are given in the form mqn, where m reflects the multiplicity
of the energy level n.

In order to extract conformal towers numerically, we compute low-lying energy spectra
with up to 21 energy levels. According to the conformal field theory, energy gap scales as
En−E0 = πvn/N , where N is the system size and v is a non-universal sound velocity. For
the three-state Potts model defined by the Hamiltonian 1 the value of the velocity is known
exactly v =

√
3/2 ≈ 0.866 [26] and will be used throughout this section. Our numerical

results for the four conformal towers involving transverse-polarized boundary conditions
are presented in Fig.2. Given that there are no fitting parameters the agreement between
the theory (colored lines) and the numerical data (blue symbols) is extremely good. One
can notice that some conformal towers (χ2,2, χ3,2, σ, ε) are affected by finite-size effects
stronger than the other (I, ψ, χ1,2, χ4,2). This effect has been observed before for fixed,
free and mixed boundary conditions [16].

To summarize this section, conformal towers of states predicted by Affleck at al. [24]
for the new boundary conditions appear in a quantum 1D version of the critical three-
state Potts model with boundaries polarized in the direction of the transverse field. This
provides a more physical and intuitive realization of the new boundary conditions in quan-
tum chains than in the classical 2D model that requires negative entries in the boundary
Bolzmann weight matrix.

4 Boundary critical phenomena in four-state Potts model

Boundary phenomena at the four-state Potts critical point are far less understood. The
four-state Potts model defined by the Hamiltonian 1 is a straightforward generalization of
the three-state Potts model to four-dimensional local Hilbert space. On the other hand,
the four-state Potts critical point is a special symmetric point of a generic Ashkin-Teller
critical theory [41]. An effective quantum Ashkin-Teller model can be defined by the
following microscopic Hamiltonian:
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Figure 2: Conformal towers of states of the critical three-state Potts model with one
edge polarized along the transverse field direction (following Ref. [24] we use the notation
’new’) and the second edge is (a) fixed to one of the three single-particle states; (b) mixed
between the two single-particle states; (c) free; (d) also polarized along the transverse
field. The velocity is fixed to the exact value v =

√
3/2. Blue symbols correspond to our

DMRG data (different symbols are chosen to clarify multiplicities), lines of different colors
correspond to different primary fields in the tower and listed on the right. The numbers
under each character show the expected multiplicities of the levels and always match our
numerical data. Blue dotted lines are guide to the eyes indicating where the energy levels
are expected to end in the thermodynamic limit and for infinite DMRG bond dimension
D.
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HAshkin−Teller = −J
N−1∑
i=1

1 + λ

2

d∑
µ=1

Pµi P
µ
i+1

−1− λ
2

(P 1
i P

4
i+1 + P 2

i P
3
i+1 + h.c.)

]
− h

N∑
i=1

Pi(λ), (10)

where λ is the Ashkin-Teller parameter and

Pi(λ) =
1

4


0 1 1 λ
1 0 λ 1
1 λ 0 1
λ 1 1 0

 .

The model coincide with the four-state Potts model given by Eq.1 for λ = 1. In appendix
A we provide alternative definitions of the model used in the literature. For λ = 0 the
model is a quantum version of the four-state clock model and corresponds to two decoupled
Ising chains. Along the J = h line the model is described by the Ashkin-Teller critical
theory with central charge c = 1 and critical exponents varying continuously with λ. The
operator content and partition functions on a torus have been analyzed by Yang [42]. The
energy spectra of the critical quantum Ashkin-Teller and Potts chains with free boundaries
have been obtained by mapping the problem onto the XXZ chain with free boundaries
and a complex surface field and solving the latter with the Bethe ansatz [9]. Boundary
critical phenomena for the special case of λ = 0 have been studied recently in the context
of a defect line in two-dimensional Ising model [43]. The conformal tower of states as a
function of λ ∈ [0, 1] for fixed and symmetric boundary conditions A-A has been reported
recently in Ref. [44].

There are two challenges associated with numerical investigation of the conformal
towers of the Ashkin-Teller model. First, by contrast to the Ising and 3-state Potts
minimal models, there are logarithmic corrections present in the Ashkin-Teller critical
theory which might significantly affect numerical results [45]. Second, there is an infinite
number of primary fields in the generic Ashkin-Teller model. The goal of this section is
to demonstrate the duality between the transverse-polarized boundary conditions and the
three-state mixed boundary conditions, the special case of the blob boundary conditions
with Q = 4 and Q1 = 3.

4.1 Free and fixed boundary conditions in the four-state Potts model

Our final goal will be to establish the duality between the two sets of boundary conditions
and for this we will compare the energy spectra obtained on finite-size clusters. In order to
benchmark the method, we start with free and fixed boundary conditions that are known
to be dual (see, for instance, Ref. [23]). Following the notations of the previous section we
label the single-particle states for d = 4 by A, B, C and D. The duality between free and
fixed boundary condition implies

ZFree−Free = ZA−A + ZA−B + ZA−C + ZA−D. (11)

Obviously, due to symmetry in the model the first index A can be replaced with either
B, C or D; for the same reason the conformal towers of states with A-B, A-C, and A-D
boundary conditions are identical. In other words, the energy spectra of a chain with free-
free boundary conditions corresponds to superposed energy spectra of a chain with A-A
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Figure 3: Conformal towers of states of the four-state Potts model with a fixed symmetric
and b fixed antisymmetric and c free boundary conditions. Symbols are DMRG data
points extracted from the low-lying energy excitation spectra with velocity v = π/4. The
velocity computed from the lowest energy gap in a v ≈ 0.785 is in excellent agreement with
this value. Gray lines are integer levels shown for reference. In c the results from a (red)
and b (green) are shown as a reference, the latter is shifted such that it starts at the first
excites state of the Free-Free tower. Each level in Free-Free tower that matches a level of
the A-B tower is three-fold degenerate. Magenta stars are results from the Bethe ansatz
calculations [9], the agreement with DMRG data is within 0.5%. Orange dashed lines
are finite-size extrapolation assuming log-corrections in the form derived by Cardy [45].
Extrapolated results (orange crosses) agree within 5% with the exact result x = 1 [9] and
x = 2 for higher levels.

boundary conditions and three-fold degenerate spectra with A-B (or equivalently A-C or
A-D) boundary conditions. Let us check this numerically.

In case of symmetric boundary conditions with the same state realized on the left and
on the right edges (including A-A and Free-Free) we expect a conformal tower of states
to contain the identity tower I with the scaling dimension x = 0. The distinct feature
of this tower is the absent linear in q term, i.e. the first excited state takes place at the
level 2 that corresponds to q2. Precisely this structure we observe in Fig.3(a). We extract
the velocity from the lowest energy gap in a chain with A-A boundary condition and get
the value v = ∆EN/(2π) ≈ 0.785 which is in excellent agreement with the exact value
π/4 [26]. We will use this value through the rest of this section.

The identity tower has the smallest possible scaling dimension x = 0 implying that the
ground-state of a chain with any symmetric boundary conditions (e.g. Free-Free) belongs
to the identity tower I. In Fig.3(c) we show with blue symbols the excitation spectrum
with Free-Free boundary conditions. We compare it with the tower obtained with A-A
boundary conditions shown in Fig.3(c) with red dots. The spectrum of a tower with fixed
but non-symmetric boundary conditions A-B (equivalently A-C and A-D) is presented
in Fig.3(b). Note that in this case we clearly see the excitation at the first level. Since
A-A and A-B towers are expected to be the only components of the Free-Free tower we
associate the first excited state in Free-Free tower that does not match the A-A one with
the ground-state in A-B tower and plot higher levels of the A-B tower with respect to this
level. The A-B tower is shown in Fig.3(c) in green. Note that each level in Free-Free tower
that matches a level of the A-B tower is three-fold degenerate in a complete agreement
with Eq.11.
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Figure 4: Direct comparison of the conformal tower of states with A-New (blue) and
Free-ABC (red) boundary conditions. a Finite-size scaling of the universal part of the
ground-state energy, where E0 is the total energy of a chain with N sites, ε0 is an energy
per site in the thermodynamic limit, ε1 is a non-universal contribution from the edges. b
Conformal towers of states extracted from the excitation spectra with A-New (blue) and
Free-ABC (red) boundary conditions. For clarity some data points are shifted horizontally
by up to 2 · 10−3. Black lines are finite-size extrapolation assuming log-corrections in the
form derived by Cardy [45]. Up to some minor finite-site effect the two spectra are identical
that implies the duality between the corresponding sets of the boundary conditions.

4.2 Transverse-polarized and three-state-mixed boundary conditions

Let us now consider the boundary conditions where one state, say D, is suppressed at the
edge, which leads to the three-state-mixed boundary condition ABC. As any blob bound-
ary conditions including free and fixed ones, the three-state mixed boundary conditions
are conformally invariant [22].

In Fig.4 we present a direct comparison of the energy spectra with ABC-Free and
New-A boundary conditions, where following the notation by Ref. [24] we use the name
”New” for the edges polarized in the direction of the transverse field. One can see in
Fig.4(b) that up to some minor discrepancy due to a finite-size effect the two excitation
spectra are identical. Moreover, the universal term in the ground-state energy shown in
Fig.4(a) is the same for both sets of boundary conditions.

This lead to an important conclusion: ZA−New = ZFree−ABC. Given that fixed bound-
ary conditions is dual to the free ones, the ”New” transverse-polarized boundary conditions
have to be dual to the three-state mixed one. In particular, it means that the transverse-
polarized boundary conditions are conformally invariant not only for the three-state Potts
but also for the four-state Potts models.

Note, that there is no fitting or adjustment parameter in Fig.4(b), thus the agreement
between the two towers is spectacular! This made our conclusion on the conformal invari-
ance and on the duality of the transverse-polarized boundary conditions to be solid and
independent on any sort of errors associated with an extrapolation. However, to the best
of our knowledge, this is the first time the duality of the transverse-polarized boundary
conditions is discusses in the context of the four-state Potts model. We therefore would
like to present the results that provide an additional check to our conclusion.

Let us first consider the symmetric New-New boundary conditions. If we assume the
duality between the transverse polarized and the three-state mixed boundary conditions,
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Figure 5: Conformal towers of states of the four-state Potts model with a three-state-
mixed symmetric and b three-state-mixed non-symmetric boundary conditions, and c
with symmetric boundaries polarized in the direction of the transverse field (following
Ref. [24] we use the term ”New” boundary conditions). Symbols are DMRG data points
extracted from the low-lying energy excitation spectra with velocity v = π/4. Gray lines
are integer levels shown for reference. In c the results from a (dotted red) and b (dotted
green) are shown as a reference, the latter is shifted such that it starts at the first excites
state of the New-New tower. Each level in New-New tower that matches a level of the
ABC-ABD tower is three-fold degenerate. Orange dashed line is a finite-size extrapolation
assuming log-corrections in the form derived by Cardy [45].

one can expect:

ZNew−New = ZABC−ABC + ZABC−ABD + ZABC−ACD + ZABC−BCD. (12)

Because of the symmetry of the model the last three terms are equal ZABC−ABD =
ZABC−ACD = ZABC−BCD. The spectrum of the ABC-ABC boundary condition is pre-
sented in Fig.5(a) and with ABC-ABD boundary conditions - in Fig.5(b). As always, we
expect the ground-state of a chain with symmetric edges to belong to the identity confor-
mal tower with x = 0. Therefore, we associate the lowest state of the New-New tower with
the lowest state of the ABC-ABC tower, as indicated by red dots in Fig.5(c). The first
excited state of the New-New tower is therefore associated with the ground-state of the
ABC-ABD tower and all higher levels are shown with respect to it. Note that all levels in
the New-New tower that match ABC-ABD tower are three fold degenerate, as expected
from Eq.12. In particular, the level that matches both ABC-ABC and ABC-ABD tower
(at (En − E0)N/(πv) ≈ 0.6) is five-fold degenerate: two-fold degeneracy comes from the
degenerate first excitation in ABC-ABC tower and three-fold degeneracy comes from the
non-degenerate first excited state in ABC-ABD, ABC-ACD, and ABC-BCD towers.

Finally, let us take another combination of the transverse-polarized and the blob
boundary conditions. Again, assuming the duality one can write:

ZFree−New = ZA−ABC + ZA−ABD + ZA−ACD + ZA−BCD. (13)

Because of the symmetry of the model the first three terms are identical ZA−ABC =
ZA−ABD = ZA−ACD. The spectrum of the A-ABC boundary conditions is presented
in Fig.6(a) and the spectrum of the A-BCD ones is shown in Fig.6(b). None of these
boundary conditions is symmetric, so we cannot assume the ground-state to belong to

11



SciPost Physics Submission

A-BCDA-ABC New-Free

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5

a b c

Figure 6: Conformal towers of states of the four-state Potts model with a-b fixed boundary
condition on one edge and three-state-mixed boundary conditions on the other edge, and
with c transverse-polarized (New) boundary condition on one edge, while the second edge
is free. Symbols are DMRG data points extracted from the low-lying energy excitation
spectra with velocity v = π/4. Gray lines are integer levels shown for reference. In c the
results from a (dotted red) and b (dotted green) are shown as a reference, the latter is
shifted such that it starts at the first excites state of the New-Free tower. Each level in
New-Free tower that matches a level of the A-ABC tower is three-fold degenerate. Orange
dashed line is a finite-size extrapolation assuming log-corrections in the form derived by
Cardy [45].

the identity tower. Instead, we notice the the ground-state of the New-Free spectrum is
three-fold degenerate and therefore we associate the zero-level of the New-Free tower with
a zero-level of the A-ABC tower while the first excited state of the New-Free tower we
associate with the ground-state of the A-BCD tower. All higher levels of the A-ABC tower
(red) and A-BCD tower (green) are plotted in Fig.6(c) with respect to these chosen origin.
The numerically obtained degeneracies of the levels always match Eq.13.

5 Discussion

In the first part of the paper we have provided numerical evidences that the ”new” bound-
ary conditions predicted with boundary conformal field theory by Affleck et al. [24] can
be realized in the quantum version of the three-state Potts model by polarizing the edges
in the direction of the transverse field. This complements previous DMRG results for
conformal towers of states in the quantum three-state Potts model with fixed, mixed
and free boundary conditions [16] and completes the numerical realization of all possible
conformally-invariant boundary conditions for this model [24,25].

The main conclusion of the paper relies on the empirical observation that the energy
spectra of the quantum critical four-state Potts model with A-New and with ABC-Free
boundary conditions are identical. This establishes the duality between the transverse-
polarized (New) and the three-state-mixed boundary conditions, with one single-particle
state suppressed at the edges. Together with the boundary conformal field theory pre-
dictions for the three-state Potts model [24] this allow us to say that transverse-polarized
boundary conditions are dual to the blob boundary conditions with Q1 = Q− 1, at least
for 2 ≤ Q ≤ 4. For the transverse-field Ising model with Q = 2 the transverse-polarized
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boundary conditions are equivalent to the free boundary condition, while suppressing one
out of two single-particle state at the edges naturally lead to the fixed boundary conditions;
the duality between free and fixed boundary condition is well established. Now, thus far,
the duality between the transverse-polarized boundary conditions have been established
only for integer values of Q. In field theory, however, Q is often treated as a continuous
parameter. We hope that our results will stimulate further field theory investigation of
the ”new” boundary conditions and the duality for an arbitrary values of Q.

Furthermore, it would be interesting to check whether the observed duality between
the transverse-polarized and the three-state mixed boundary conditions can be generalized
to a generic Ashkin-Teller critical model. At this stage we already know that the duality
holds at the two special points of this model: at λ = 1 that corresponds to the symmetric
four-state Potts critical point, and at λ = 0 that corresponds to two decoupled Ising
chains. It would be extremely interesting to see whether the duality can be established
for a generic Ashkin-Teller model with 0 < λ < 1.

Since three-state mixed boundary conditions of the four-state Potts model are known to
be conformally invariant, the established duality implies that transverse polarized bound-
ary conditions are also conformally invariant. This compliment the set of known confor-
mally invariant boundary conditions of the four-state Potts critical theory that up to date
was restricted to the blob (free, fixed, mixed) and various loop (periodic, anti-periodic,
twisted) boundary conditions. We further check the duality by comparing the energy
spectra with New-New and New-Free boundary conditions against the composed dual
counterparts. Finally, it would also be interesting to see whether there is a set of bound-
ary conditions dual to the two-state mixed one and what would be the nature of the
corresponding boundary term. In the Appendix C we briefly present the results for these
boundary conditions.
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A Alternative formulation of the Potts and Ashkin-Teller
models

Definition of the three- and four-state Potts models given by Eq.1 are not unique. In this
appendix we mention alternative definitions commonly used in the literature.

We start with a Zn formulation of quantum three-state Potts model inspired by the
corresponding classical Hamiltonian H = −(J/β)

∑
〈i,j〉 cos(θi − θj), where θi is restricted

to the values 0, ±2π/3. In the quantum version the Hamiltonian known also as three-state
clock model is defined by:

H = −
∑
i

Mi +M †i +R†iRi+1 +RiR
†
i+1, (14)

13
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where

M =

0 1 0
0 0 1
1 0 0

 ; R =

e2πi/3 0 0

0 e4πi/3 0
0 0 1

 (15)

This can easily be generalized to the four-state Potts model for whichM andR matrices
will take the following form:

M =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ; R =


eπi/2 0 0 0

0 eπi 0 0

0 0 e3πi/2 0
0 0 0 1

 (16)

There are also an alternative formulation of the Ashkin-Teller model where the four-
dimensional Hilbert space is defined with the help of two Ising variables. The the Ashkin-
Teller model is then defined by the following Hamiltonian:

HAT = −h
N∑
j=1

(
σxj + τxj + λσxj τ

x
j

)
− J

N−1∑
j=1

(
σzjσ

z
j+1 + τ zj τ

z
j+1 + λσzj τ

z
j σ

z
j+1τ

z
j+1

)
, (17)

where σx,z and τx,z are Pauli matrices. Similar to the Hamiltonian of the main text given
by Eq. the model is critical along h = J . At λ = 0 the model corresponds to two decoupled
transverse-field Ising chains. At λ = 1 the Hamiltonian corresponds to the four-state Potts
model.

One can express various boundary conditions in terms of Ising variables by associating
A, B, C, and D boundary states from the main text with ↑↑, ↑↓, ↓↑, and ↓↓ of the Ising
variables on the edges. For instance, to realize A-A boundary condition, one has to fix Ising
variables to ↑↑ state on each edge of the chain. In order to realize ABC-ABD boundary
condition, one has to suppress ↓↓ state at the left edge and ↓↑ state at the right edge,
keeping the remaining states equally probable.

B Characters of the three-state Potts model

Six out of ten primary fields appear in the description of the operators identity I of
zero dimension, magnetization σ of dimension 1/15, energy ε of dimension 2/5, and ψ of
dimension 2/3. The corresponding characters are:

χI = χ1,1 +χ4,1 χε = χ2,1 +χ3,1 χσ = χσ† = χ2,3 χψ = χψ† = χ1,3 (18)

The small-q expansions of the characters for the ten primary fields of the three-state
Potts minimal model are given by:

14
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χ(1,1)(q) = q−1/30
(
1 + q2 + q3 + 2q4 + 2q5 + 4q6 + ...

)
(19)

χ(2,1)(q) = q−1/30+2/5
(
1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + ...

)
(20)

χ(3,1)(q) = q−1/30+7/5
(
1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + ...

)
(21)

χ(4,1)(q) = q−1/30+3
(
1 + q + 2q2 + 3q3 + 4q4 + 5q5 + 8q6 + ...

)
(22)

χ(1,2)(q) = q−1/30+1/8
(
1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + ...

)
(23)

χ(2,2)(q) = q−1/30+1/40
(
1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + ...

)
(24)

χ(3,2)(q) = q−1/30+21/40
(
1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + ...

)
(25)

χ(4,2)(q) = q−1/30+13/8
(
1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + ...

)
(26)

χ(1,3)(q) = q−1/30+2/3
(
1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + ...

)
(27)

χ(2,3)(q) = q−1/30+1/15
(
1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + ...

)
(28)

C Two-state-mixed boundary conditions

In the main text we presented the results for blob boundary conditions with Q = 4 and
Q1 = 1 (fixed), Q1 = 3 (three-state mixed) and Q1 = Q = 4 (free) boundary conditions.
For completeness let us also present the numerical results for the spectra with Q1 = 2
two-state-mixed boundary conditions. There are three possible combinations. When the
pair of components along which we apply the field is the same on both edges, we will call
this boundary conditions AB-AB. When only one component coincides, we will refer to
these boundary conditions as AB-AC. When the two pairs of components do not overlap
we end up with the AB-CD boundary conditions. All other combinations ccan be redused
to these three by the symmetry arguments.

Our numerical results for these boundary conditions are presented in Fig.7. The struc-
ture of the spectrum excludes the duality between transverse-polarized and two-state
mixed boundary conditions. However, if one assumes that every blob boundary condi-
tion has the dual one, it would be extremely interesting to understand the nature of the
boundary conditions, dual to the two-state mixed one. This question, however, is beyond
the scope of this paper.
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