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Abstract1

Since the breakthrough of twistronics a plethora of topological phenomena in correlated2

systems has appeared. These devices can be typically analyzed in terms of lattice mod-3

els using Green’s function techniques. In this work we introduce a general method to4

obtain the boundary Green’s function of such models taking advantage of the numeri-5

cal Faddeev-LeVerrier algorithm to circumvent some analytical constraints of previous6

works. We illustrate our formalism analyzing the edge features of a Chern insulator, the7

Kitaev square lattice model for a topological superconductor and the Checkerboard lat-8

tice hosting topological flat bands. The efficiency and accuracy of the method is demon-9

strated by comparison to standard recursive Green’s function calculations and direct10

diagonalizations.11
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Figure 1: Cylindrical geometry obtained by applying periodic boundary conditions
(PBC) along the direction parallel to the boundary in a 2D plane, where x⊥ denotes
a coordinate in the perpendicular direction measured in units of the lattice constant.
In this geometry there is a well defined momentum k‖ and the open boundaries at
x⊥ = ±1 (magenta lines) are obtained by adding a localized impurity line with an
amplitude ε→∞ (black line) at x⊥ = 0. The impurity line breaks the translational
symmetry in the x⊥−direction and opens two boundaries in the bulk infinite system.

1 Introduction28

In recent years, due to the appearance of twistronics [1,2] and specially since the discovery of29

the special properties of twisted bilayer graphene at the magic angle [3,4], there is a renewed30

interest in 2D topological materials exhibiting different phases of matter (e.g. superconductiv-31

ity, magnetism, nematicity, etc). In these systems new phenomena arise from the combination32

of strong interactions and topology.33

These circumstances claim for a flexible unified theoretical framework going beyond ide-34

alized minimal models to account for interactions, strongly correlated behaviour, spatial inho-35

mogeneities or hybrid devices Several techniques have been developed to analyze open bound-36

aries, like exact Hamiltonian diagonalization of finite systems, wave matching in finite scatter-37

ing regions [5], some analytical techniques to derive effective boundary Hamiltonians [6] or38

the complementary approaches provided by T -matrix and Green’s functions formalisms [7–9].39

Nevertheless, methods based in exact diagonalization of microscopic Hamiltonians may re-40

quire huge computational capabilities with information on several model parameters and gen-41

erally, they provide only numerical results with, in some cases, little or no insight in the un-42

dergoing physics. For these reasons we are interested in theoretical mesoscopic descriptions43

of intermediate complexity which could give us access not only to discrete surface modes but44

also to a well defined continuum of excitations.45

In this work we focus on the boundary Green’s function (bGF) method, which is specif-46

ically suited to obtain transport properties in heterostructures [10–15]. The bGF approach47

allows also to explore electronic spectral properties such as the local density of states (LDOS)48

or checking out the bulk-boundary correspondence of topological phases and computing topo-49

logical invariants [16,17]. Furthermore, the Green’s function formalism allows to incorporate50

in a natural way electron-phonon and/or electron-electron interaction effects. Even more,51

from bGFs it is possible to deduce effective Hamiltonians including all of these effects and52

obtain their topological properties [18–20].53
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Here we extend and extrapolate the bGF approach developed in Refs. [13,21,22] from 1D54

nearest-neighbour (nn) Hamiltonians to generalized d-dimensional systems with an arbitrary55

number of degrees of freedom and neighbours. This method performs the Fourier transform56

(FT) into real space needed to compute the bGF (see Fig. 1) by the analytic continuation of the57

momenta into the complex plane followed by residue integration. This approach exhibits bet-58

ter convergence performance compared to recursive approaches for which precision is linked59

to the number of iterations [22]. However, previous implementations of the method required60

analytical expressions for the key building blocks of the formalism such as the characteristic61

polynomial. A typical symbolic Laplace expansion to evaluate the characteristic polynomial is62

highly inefficient for generalized problems with potentially enormous memory demand and63

computational complexity of O(N !) [23] where N is the total Hamiltonian dimension. In ad-64

dition, the other main building block of the method, the adjugate matrix, has to be obtained65

with a separate routine.66

In the present work we complement the method of Refs. [13,21,22]with a straightforward67

computational approach using the Faddeev-LeVerrier algorithm (FLA) [24–28] that sorts out68

diverse disadvantages of the semi-analytical calculations. The FLA requires a low computa-69

tional cost to construct not only the characteristic polynomial but also the adjugate matrix in70

the same process and for the same price which are, as mentioned before, the main building71

blocks to obtain the bGF using the residue integration method. This algorithm is not only72

useful for large dimensions but it is also convenient for smaller problems due to its simple im-73

plementation. In addition it does not rely in huge analytical expressions for the characteristic74

polynomial which arise for N ≥ 3, thus avoiding possible algebra errors without relevant time75

consuming drawbacks.76

Furthermore, the semi-analytical approach used in Refs. [13,21,22] suffer from rigidity in77

the definition of the GF as any new terms that might be inserted in the Hamiltonian impose78

a redefinition and consequently, all the analytical coefficients of the characteristic polynomial79

have to be re-obtained from scratch by time consuming symbolic algorithms. In contrast, the80

only analytical entry for the FLA is the polynomial decomposition of the Hamiltonian in the81

analytic continuation variable of the momentum perpendicular to the boundary z = eik⊥L⊥ .82

This is a simpler and flexible analytical requirement that can be computed without any upper83

end limit in the number of degrees of freedom of the system.84

The rest of the paper is organized as follows: in Sec. 2, we describe the computation85

of the Green’s function formalism taking advantage of the residue theorem introduced in86

Refs. [22, 29]. We then use Dyson’s equation to open a boundary in the bulk system with87

an infinity impurity perturbation. Sec. 3, we describe our method based on FLA to compute88

the boundary Green’s functions with barely no analytical demands to operate. In Sec. 4, we use89

some relevant model Hamiltonians for 2D topological systems as examples to compute steadily90

the FLA, first in a purely analytic problem to then jump into purely computational approaches.91

These models include the 2D Chern insulator [30], the 2D Kitaev topological superconduc-92

tor [31] and the Checkerboard lattice hosting topological flat bands [32]. Furthermore, we93

study the spectral properties at edges of such 2D models exhibiting topological features like94

chiral edge states. Sec. 5 includes a study of the convergence of the spectral density of the95

Checkerboard lattice model comparing the recursive GF technique with the bGF obtained via96

FLA. We finally summarize the main results with some conclusions in Sec. 6. Technical details97

like the finite system diagonalization or an explicit FLA pseudocode are included in the ap-98

pendices. Throughout, we use units with nn hopping amplitude t = 1 and lattice parameter99

a = 1.100
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2 bGF method for 2D lattice models101

To obtain the bGF we start from a d-dimensional bulk infinite system and introduce a local102

perturbation with the characteristic profile that defines the boundary. As this local perturba-103

tion or impurity surface amplitude tends to infinity we are left with two (d − 1)-dimensional104

open surfaces [7, 8] e.g. two boundary lines in a 2D system induced by an impurity line, see105

Fig. 1. The bGF is obtained using the Dyson equations associated to the local surface impurity106

potential which breaks translational symmetry albeit the momenta in the direction parallel to107

the impurity surface are conserved and thus well defined.108

The starting GF must be explicitly dependent on the local coordinate associated to the109

perpendicular direction to the boundary. In order to get these real space GFs, starting from110

N×N tight-binding Hamiltonians in momentum space Ĥ(k), we have to compute the FT of the111

bulk GF in the direction perpendicular to the boundary. For this purpose, we decompose the112

momenta into parallel and perpendicular components k = (k‖, k⊥) relative to the boundary113

direction (in higher dimensional models the parallel momentum component would be itself114

a vector k‖). The bulk Hamiltonian periodicity in both directions is set by (L‖, L⊥), such that115

Ĥ(k+2πu⊥/L⊥) = Ĥ(k), where u⊥ is the unitary vector in the perpendicular direction. As to116

compute the FT we need orthogonal lattice vectors, in some cases like the triangular lattice we117

have to double the primitive cell. Using this periodicity, the Hamiltonian can be expanded in a118

Fourier series, Ĥ(k) =
∑

n V̂n(k‖)eink⊥L⊥ , where n is the number of neighbours and Hermiticity119

implies V̂−n = V̂†
n. Then, the advanced bulk GF is defined as120

ĜA(k,ω) =
�

(ω− iη)Î− Ĥ(k)
�−1

, (1)

whereη is a small broadening parameter that ensures the convergence of its analytic properties121

[33] (e.g. to compute the spectral densities and integrated quantities). This parameter is122

specially needed in the case of recursive methods where the spectrum is approximated by a123

finite set of poles. In this work we set η= 2∆ω/nω, where ∆ω is the energy window that we124

are studying and nω is the number of points that we are computing within that window. The125

N × N matrix structure is indicated by the hat notation.126

Fourier transforming along the perpendicular direction, the GF components are given by127

ĜA
j j′(k‖,ω) =

L⊥
2π

π/L⊥
∫

−π/L⊥

dk⊥ei( j− j′)k⊥L⊥ ĜA(k‖, k⊥,ω), (2)

where j and j′ are lattice site indices in the x⊥−direction. By the identification z = eik⊥L⊥ , this128

integral is converted into a complex contour integral,129

ĜA
j j′(k‖,ω) =

1
2πi

∮

|z|=1

dz
z

z j− j′ ĜA(k‖, z,ω). (3)

Further simplification can be obtained by introducing the roots zn(k‖,ω) of the character-130

istic polynomial in the z−complex plane,131

P(k‖, z,ω) = det
�

ωÎ− Ĥ(k‖, z)
�

=
cm

zm

2m
∏

n=1

�

z − zn(k‖,ω)
�

, (4)

where m is the highest order of the characteristic polynomial and cm is the highest order132

coefficient. In terms of these roots the contour integral in Eq. (3) can be written as a sum over133
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the residues of all roots inside the unit circle in the complex plane134

ĜA
j j′(k‖,ω) =

∑′

|zn|<1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

, (5)

where q = j − j′ +m−m′ − 1 and z−m′ M̂(k‖, z,ω) is the adjugate matrix of [ωÎ− Ĥ(k‖, z)]135

where all the poles at zero were taken out of M̂ as a common factor in z−m′ . Finally,
∑′

means136

that if q < 0 then we include zn = 0 as a pole in the sum of residues (e.g., in the non local GF137

components with j′ > j). Consequently when q < −1 higher order poles at zero appear in the138

sum of residues. To simplify these situations we can take advantage of the residue theorem to139

avoid these poles and compute the integral as140

ĜA
j j′(k‖,ω) = −

∑

|zn|>1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

. (6)

To simplify the notation, we omit the superscript ‘A’ denoting advanced GFs from now on.141

Given the real-space components of the bulk GF in Eq. (5), we next extend the method of142

Refs. [11,13,34] to derive the bGF characterizing a semi-infinite 2D systems. To this effect, we143

add an impurity potential line ε localized at the frontier region. Taking the limit ε→∞ the144

infinite system is cut into two disconnected semi-infinite subsystems with j ≤ −1 (left side, L)145

and j ≥ 1 (right side, R), see Fig. 1. Using Dyson equation the local GF components of the cut146

subsystem follow as [13]147

Ĝ j j = Ĝ(0)j j − Ĝ(0)j0

�

Ĝ(0)00

�−1
Ĝ(0)0 j , (7)

where Ĝ(0) are the unperturbed bulk GF and Ĝ are the semi-infinite perturbed GF. Following148

Eq. (7), the bGF for the left and right semi-infinite systems are respectively given by149

ĜL(k‖,ω) = Ĝ1̄1̄(k‖,ω), ĜR(k‖,ω) = Ĝ11(k‖,ω), (8)

where the over-line in the local indices in the bGF means negative sites. Using this bGF we150

can compute the spectral properties of open (semi-infinite or finite) systems encoded in the151

spectral densities and the local density of states respectively152

ρL,R(k‖,ω) =
1
π
ℑ tr

�

ĜL,R(k‖,ω)
	

, 〈ρL,R(ω)〉=
∫

dk‖
Ωk‖

ρL,R(k‖,ω), (9)

where Ωk‖ = 2π/L‖ accounts for the limits of integration.153

3 Faddeev-LeVerrier algorithm154

We first summarize FLA for a generic complex matrix. Let Â be a N × N matrix with char-155

acteristic polynomial P(ω) = det[ωÎ − Â] =
∑n

k=0 C̄kω
k. The trivial coefficients are C̄n = 1156

and C̄0 = (−1)n det Â, also simple is the term C̄n−1 = −tr{Â}. The other coefficients can be157

calculated using the Faddeev-LeVerrier algorithm [24–28] as158

ˆ̄Mk = Â ˆ̄Mk−1 + C̄n−k+1Î, C̄n−k = −
1
k

tr
¦

Â ˆ̄Mk

©

, (10)

where ˆ̄Mk is an auxiliary matrix such that ˆ̄M0 = 0. Remarkably the matrices ˆ̄Mk allow us to159

obtain the adjugate matrix of [ωÎ− Â] as a polynomial160

adj
�

ωÎ− Â
�

=
n
∑

k=0

ωk ˆ̄Mn−k, (11)
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Figure 2: Complete algorithm workflow to compute the bGF using the FLA where
the main input is the polynomial decomposition of the Hamiltonian for a given set of
momenta k‖ and frequencies ω.

which, given that ˆ̄M0 = 0̂, the adjugate matrix M̂(ω) has N − 1 order in ω.161

In our case Â ≡ Ĥ(z) is a polynomial complex matrix and it can also be expanded as a162

polynomial in z as163

Ĥ(z) =
2m+1
∑

i=1

Ĥiz
i−(m+1) = Ĥ1z−m + · · ·+ Ĥm+1 + · · ·+ Ĥ2m+1zm. (12)

In some simple cases where rg(Ĥ2m+1) = N we get the highest order polynomial decom-164

position for the Hamiltonian and m = nnN where nn is equal to the number of neighbours in165

the tight-binding model, but in general m≤ nnN .166

We are interested in expressing C̄k and ˆ̄Mk as two-variable polynomials in ω and z using167

two variable FLA [35–37] to compute the complex integral. Still we have C̄n = 1 and ˆ̄M1 = Î.168

Then,169

C̄n−1(z) = −tr
�

Ĥ(z)
	

=
2m+1
∑

i=1

C̄n−1,iz
i−(m+1). (13)

For example, the next coefficients are170

ˆ̄M2(z) = Ĥ(z)+C̄n−1Î=
2m+1
∑

i=1

ˆ̄M2,iz
i−(m+1), C̄n−2(z) = −

1
2

tr
¦

Ĥ(z) ˆ̄M2(z)
©

=
4m+1
∑

i=1

C̄n−2,iz
i−(2m+1).

(14)
In this way we could get171

ˆ̄Mk(z) =
2m(k−1)+1
∑

i=1

ˆ̄Mk,iz
i−(m(k−1)+1), C̄n−k(z) =

2mk+1
∑

i=i

C̄n−k,iz
i−(mk+1), (15)

and deduce an explicit decomposition of adj[ωÎ − Ĥ(k‖, z)] in z from which we can extract172

the zero poles of the adjugate matrix z−m′ as in Eq. (5). In simple cases where m = nnN , it is173

straightforward to see that m′ = N − 1.174

6
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In Fig. 2 we expose the general structure of the complete algorithm to compute the bGF175

given, as an input, the polynomial decomposition of the Hamiltonian particularized at any176

k‖. Using FLA we obtain the auxiliary matrix to compute the adjugate of the secular equation177

ˆ̄M(k‖) and the coefficients of the characteristic polynomial C̄(k‖), see Appendix B. From C̄(k‖)178

we can compute the characteristic polynomial P(k‖,ω) for any desired frequency and solve it179

to obtain the roots zn(k‖,ω).180

Both zn(k‖,ω) and ˆ̄M(k‖) are the key ingredients to compute the unperturbed GFs in real181

space using Eq. (6) and taking as poles the roots that satisfy that |zn(k‖,ω)|> 1. The order of182

the zero poles m and m′ are totally determined by the polynomial decomposition in z of C̄(k‖)183

and ˆ̄M(k‖) respectively. Finally, we use Dyson equation to compute the bGFs of the system184

from the unperturbed ones.185

4 Tight-binding models186

In order to illustrate our method in a transparent self-explanatory way we take the example187

of common, well-known 2D topological Hamiltonians to compute the bGF explicitly. First, we188

start with the fully analytical 2 × 2 Chern insulator model [30] hosting chiral edge states to189

easily follow the FLA step by step. Later we consider more intricate examples where we have190

to partially or totally take advantage of the computational power of the FLA. These models191

include the 2D Kitaev model [31] for a topological superconductor showing Majorana edge192

modes and the 2D Checkerboard model which hosts topological flat bands with chiral edge193

states [32]. All these examples are relevant models for the study of topological matter in 2D194

and thus we exhibit the spectral density and the LDOS for an open boundary semi-infinite195

system to make explicit their topological edge properties. In Fig. 3 a) we show the Brillouin196

zone (BZ) for all of these different lattice models.197

4.1 Chern insulator198

We first illustrate the FLA with the well-known 2 × 2 Chern insulator Hamiltonian [30] in a199

square lattice described by200

Ĥ(k) = (M − cos ky − cos kx)σz + sin kxσx + sin kyσy , (16)

where σµ with µ= x , y, z are the Pauli matrices and M is the mass term.201

We FT along kx = k⊥ thereby we made the analytic continuation z = eikx . We can now202

obtain the polynomial expansion of the Hamiltonian in z following Eq. (12) where203

Ĥ1 = Ĥ†
3 = (iσx −σz)/2, Ĥ2 = (M − cos ky)σz + sin kyσy . (17)

We then compute the trivial C̄n coefficients that define the characteristic polynomial in204

frequencies (ω)205

C̄2 = 1, C̄1 = 0, C̄0 = (M − cos ky)(z + z−1)− [M2 + 2(1−M cos ky)], (18)

consequently, their explicit decomposition in the z polynomial206

C̄02 = C̄∗04 = (M − cos ky), C̄03 = −[M2 + 2(1−M cos ky)]. (19)

Due to the aforementioned relation, as rg(Ĥ2m+1) < N , then m < nnN and for that we207

have a reduced degree of the characteristic polynomial obeying C̄01 = C̄05 = 0. Nevertheless,208

we have used the indexation of the polynomial in z as the maximum degree polynomial for209

7
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Figure 3: Brillouin zone for the square lattice models and real space representation of
the Checkerboard lattice model. a) Square (white) and rectangular (grey shaded) BZ
showing the high symmetry points in each one. The over-line in the high symmetry
points denotes that they belong to the folded rectangular BZ in the ky−direction. b)
Checkerboard lattice. Red and blue dots indicate the sublattice sites. The magenta
arrow, black dashed (solid) line and yellow dashed line accounts for the nn hopping t,
the nnn hopping t ′1 (t

′
2) and the nnnn hopping t ′′ respectively. The arrow direction

shows the sign of the accumulated phase φ in the nn hopping terms. The shaded
green region in b) corresponds to the doubling of the original primitive cell which
produces the folding of the square BZ into a rectangular one as indicated in panel a).

the sake of generalization of the method, similarly to the criteria taken in the pseudocode210

formulation in Appendix B.211

Then, the characteristic polynomial takes the form212

P(ω) = (M − cos ky)(z + z−1) +ω2 −M2 − 2(1−M cos ky), (20)

where cm = C̄04 and the non-trivial contributions to ˆ̄M matrix are defined by213

ˆ̄M21 = Ĥ1 + c11Î= Ĥ1, ˆ̄M22 = Ĥ2 + c12Î= Ĥ2, ˆ̄M23 = Ĥ3 + c13Î= Ĥ3. (21)

Finally, the integral by residues for the bulk GF takes the form214

Ĝ j j′(ky ,ω) = −
z j− j′

−

z−

�

−(1+ z2
−) +αz− i(1− z2

−)− βz−
i(1− z2

−) + βz− (1+ z2
−)−αz−

�

2(M − cos ky)(z− − z+)
, (22)

where α = 2(M +ω − cos ky), β = i2 sin ky and we have regularized the zeros of the ad-215

jugate matrix adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that m = m′ = 1. Fur-216

thermore, we solve the trivial roots for P(ω) in Eq. (20), z± = (−b ±
p

b2 − 4)/2 where217

b = [ω2 − M2 − 2(1 − M cos ky)]/(M − cos ky) defining |z−| > 1 and |z+| < 1. Once the218

bulk GF in real space has been constructed we use Eq. (8) to obtain the corresponding bGFs.219

In Fig. 4 we illustrate the open boundary spectral density for the topological phase of the Chern220

insulator exhibiting chiral edge states obtained using FLA. For comparison we also show the221

bands obtained using exact finite size Hamiltonian diagonalization, see Appendix A. As can be222

observed, while two chiral edge states are present in the finite system calculation, only one223

appears in the bGF calculation as expected for a semi-infinite system.224

8
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Figure 4: Open boundary characterization for the Chern Insulator model showing
chiral edge states under the effect of the mass term M → 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows 2 chiral edge states each one associated to a different boundary. b)
Spectral density for a right boundary in the semi-infinite limit obtained from the bGF
calculation. c) Integrated LDOS where straight (dot-dashed) line represents bulk
(right boundary) LDOS.

4.2 2D Kitaev square lattice225

Now we apply FLA to obtain the characteristic polynomial of the 2 × 2 Kitaev square lattice226

model [31] and solve it computationally, in this way we can then obtain the bGF in a semi-227

analytic manner. The model Hamiltonian is given by228

Ĥ(k) = (µ− cos ky − cos kx)σz −∆(sin kx + sin ky)σy , (23)

where µ is the chemical potential and ∆ is the pairing potential.229

Again, the FT along kx = k⊥ is obtained using the analytic continuation z = eikx . The230

polynomial expansion of the Hamiltonian in z takes the expression231

Ĥ1 = Ĥ†
3 = (−σz − i∆σy)/2, Ĥ2 = (µ− cos ky)σz +−∆ sin kyσy . (24)

We next compute the C̄n coefficients that define the characteristic polynomial in powers of232

ω and z233

C̄2 = 1, C̄1 = 0, C̄01 = C̄∗05 = (∆
2 − 1)/4, C̄02 = C̄∗04 = (µ− cos ky)− i∆2 sin ky ,

C̄03 =
(∆2 − 1)

2
cos2ky + 2µ cos ky − (1+∆2 +µ2), (25)

where cm = C̄05 and finally the non-trivial contributions to the ˆ̄M matrix are defined as234

ˆ̄M21 = Ĥ1, ˆ̄M22 = Ĥ2, ˆ̄M23 = Ĥ3. (26)

9
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Figure 5: Open boundary characterization for the 2D Kitaev model showing Majorana
flat band edge modes in the topological phase ∆= 1 and µ= 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows flat bands at both ends of the system. b) Spectral density for a right
boundary in the semi-infinite limit obtained from the bGF calculation. c) Integrated
LDOS where straight (dot-dashed) line represents bulk (right boundary) LDOS.

We regularize the zeros of the adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that235

m= 2 and m′ = 1. The integral by residues for the bulk GF takes the form236

Ĝ j j′(ky ,ω) = −2z j− j′

4

�

−(1+ z2
4) +αz4 −∆[(1− z2

4)− βz4]
∆[(1− z2

4)− βz4] (1+ z2
4)−αz4

�

(∆2 − 1)
�

z4 − z1

� �

z4 − z2

� �

z4 − z3

� + (z4←→ z3), (27)

where α = 2(µ+ω− cos ky), β = i2 sin ky and |z4|, |z3| > 1, thus |z2|, |z1| < 1. We omit the237

explicit analytical expression of the roots of the characteristic 4th degree polynomial due to238

their extension. As mentioned before, for this example it is convenient to obtain the roots com-239

putationally. In Fig. 5 we show typical results for the open boundary LDOS in the topological240

phase of the 2D Kitaev model showing Majorana flat band edge modes. Again, the comparison241

with the finite size diagonalization shows good agreement.242

4.3 Flat band Checkerboard lattice243

Finally we consider the 2 × 2 Checkerboard lattice model [32] which hosts topological flat244

bands and is defined by the Hamiltonian245

Ĥ(k) = Ω0(k)Î+Ω1(k)σx +Ω2(k)σy +Ω3(k)σz , (28)

10
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Figure 6: Open boundary characterization for the Checkerboard lattice model show-
ing topological flat band atω/t = 2 with a chiral edge mode in the topological phase
φ = −π/4, t ′1 = −t ′2 = t/(2+

p
2) and t ′′ = −t/(2+ 2

p
2). a) Electronic bands ob-

tained by exact diagonalization of a finite size system with Nsi tes = 20 sites with the
unit cell doubled. The spectrum shows 2 chiral edge states each one associated to a
different boundary. b) Spectral density for a right boundary in the semi-infinite limit
obtained from the bGF calculation. c) Integrated LDOS where straight (dot-dashed)
line represents bulk (right boundary) LDOS.

where246

Ω0(k) =(t
′
1 + t ′2)(cos kx + cos ky) + 4t ′′ cos kx cos ky , Ω1(k) = 4t cosφ cos

kx

2
cos

ky

2
,

Ω2(k) = 4t sinφ sin
kx

2
sin

ky

2
, Ω3(k) = (t

′
1 − t ′2)(cos kx − cos ky). (29)

The system is thus characterized by nn hopping t, nnn hopping t ′1, t ′2 and nnnn hopping247

t ′′ terms, also the nn terms accumulate a phase φ pointed out in Fig. 3 b).248

This model is an exemplification of a typical obstacle to tackle with our algorithm due to the249

sublattice degree of freedom. Due to that, the Hamiltonian includes lattice spacing fractions,250

hence if we try to FT with the analytic continuation z = eik⊥L⊥/2 instead of having a complex251

integral over the closed unit circle we arrive to an open arc integral in the complex plane, so252

we cannot apply the residue theorem to solve it. This kind of problems may also appear in253

Bravais lattices with non-orthogonal lattice vectors (e.g. the triangular lattice).254

To circumvent this kind of obstacles we proceed to double the unit cell to obtain a new255

lattice with orthogonal lattice vectors and integer powers of z = eik⊥L⊥ . The drawbacks of256

doubling the unit cell are that we are now working in a folded BZ and we have doubled the257

Hamiltonian degrees of freedom. Consequently the Hamiltonian in the new unit cell expressed258

in the basis Ψk = (ψA1,k,ψB2,k,ψA3,k,ψB4,k)T takes the form259

Ĥ(k) =
�

Â B̂
B̂† Â

�

, (30)
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with260

Â=

�

δ2 β−
β∗− δ1

�

, B̂ =

�

α1(1+ eiky ) eikyβ∗+
β+ α2(1+ eiky )

�

, (31)

where β± = e±i(kx±φ) + e−iφ , αµ = (t ′µ + 2t ′′ cos kx) and δµ = 2t ′µ cos kx with µ= 1,2.261

In Fig. 3 b) we show the unit cell doubling in the y−direction for the Checkerboard lattice262

problem leading to a folded BZ along the ky−direction. To avoid foldings in the spectral263

densities we have made the analytic continuation in z = eiky with ky = k⊥, in this way we264

have the explicit momenta dependence of the Hamiltonian in the unfolded BZ coordinate265

kx = k‖. The polynomial expansion of the Hamiltonian in z adopts the expression266

Ĥ1 = Ĥ†
3 =







0 0 0 0
0 0 0 0
α1 0 0 0
β+ α2 0 0






, Ĥ2 =







δ2 β− α1 0
β∗− δ1 β+ α2
α1 β∗+ δ2 β−
0 α2 β∗− δ1






. (32)

Due to the cell doubling we have a characteristic off-diagonal representation of the z de-267

pendent terms of the Hamiltonian which induces that rg(Ĥ2m+1) < N , then again we have a268

degree reduction of the characteristic polynomial. We now could obtain analytically the C̄n co-269

efficients that define the characteristic polynomial but we omitted them due to their extension.270

These coefficients along with the adjugate matrix M̂(k‖, z,ω) can be obtained computationally271

in a straightforward way using Eq. (14), see Appendix B.272

In Fig. 6 we show results for the open boundary LDOS for the topological phase of the273

Checkerboard lattice model exhibiting topological flat bands and chiral edge states. Again,274

the comparison with the bands obtained by direct diagonalization gives excellent agreement,275

except for the doubling of the edge states.276

5 Comparison with recursive approaches277

As mentioned before, the recursive GF method is a well established tool to compute bGFs.278

Below we briefly describe the recursive method taking advantage of the Hamiltonian decom-279

position into two perpendicular directions already introduced for FLA. We define the recursive280

method to compute the bGF at a dimensionless n-site as281

�

Ĝ rc
R (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣR(n),

�

Ĝ rc
L (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣL(n), (33)

where Ĥ0(k‖) is the local contribution defined in each iteration step and the recursive expres-282

sion of the self-energy takes the form283

ΣR(n) = T̂LR

�

Ĝ rc
R (n− 1)

�−1
T̂ †

LR, ΣL(n) = T̂ †
LR

�

Ĝ rc
L (n− 1)

�−1
T̂LR. (34)

As can be observed, the self-energy at a given n-site couples this site with the previous one284

where n goes from n= 1 to n= Ni t with Ni t is the number of recursive steps. The self-energy285

at the first site ΣL/R(n = 1) can be defined to simulate the coupling to a doped continuum of286

the same material for better convergence.287

From the polynomial decomposition of the Hamiltonian in Eq. (12) we can define the288
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Figure 7: Open right boundary spectral density at k‖ = Γ for the Checkerboard lat-
tice model with η = 0.02 and the rest of parameters are the same as in Fig. 6. Solid
lines represents the spectral density obtained by recursive GF for different number of
recursive steps Ni t = 5,10, 50. Dashed red line is obtained using FLA. Main figure:
top continuum valence bands contribution to the spectral density showing the dis-
cretization effect of the recursive method. Inset: All the contributions to the spectral
density including the flat band at ω/t = 2 and the topological chiral edge state at
ω/t ≈ 1.5

relevant matrices for the recursive method as289

Ĥ0 =















Ĥm+1 Ĥm Ĥm−1 · · · Ĥ2

Ĥ†
m Ĥm+1 Ĥm · · · Ĥ3

Ĥ†
m−1 Ĥ†

m Ĥm+1 · · · Ĥ4
...

...
...

. . .
...

Ĥ†
2 Ĥ†

3 Ĥ†
4 · · · Ĥm+1















, T̂LR =















Ĥ†
1 Ĥ†

2 Ĥ†
3 · · · Ĥ†

m
0̂ Ĥ†

1 Ĥ†
2 · · · Ĥ†

m−1
0̂ 0̂ Ĥ†

1 · · · Ĥ†
m−2

...
...

...
. . .

...
0̂ 0̂ 0̂ · · · Ĥ†

1















. (35)

Notice that the dimension of the recursive method goes as Nr = Nnn so for the usual nn290

case satisfies Nr = N and Ĥ0 = Ĥ2, T̂LR = Ĥ†
1.291

In Fig. 7 we illustrate the convergence of the continuum spectrum within the recursive GF292

method for the Checkerboard model at k‖ = Γ with parameters as in Fig. 6 for several number293

of iterations compared to bGF obtained using FLA. While the recursive approach accounts well294

for discrete states, as boundary states, with few iterations, the number of recursive steps have295

to be greatly increased to properly converge the continuum spectrum into the semi-infinite296

limit [33]. In contrast, FLA provides an accurate description of both surface modes and con-297

tinuum spectra without further computational effort. It is worth mentioning that the recursive298

method for all the lattice models in this publication takes from twice to four times more com-299

puting time than FLA for the same number of points in the spectral density and Ni t = 100,300

for which, as shown in Fig. 7, the recursive calculation has not yet converged to a smooth301
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continuum spectrum.302

In order to compare the computational complexity of our technique one should have in303

mind that our method could be implemented in a partially analytical way, in the sense that304

we can provide an analytical expression for the characteristic polynomial for each of the cases305

that we study. The computational complexity is then limited to the evaluation of the roots306

of this polynomial which scales roughly as O(M2 log M), where M = 2m is the degree of the307

polynomial and the maximum degree possible is M = 2m= 2nnN (e.g., in a typical TB model308

up to nn, M = 2N and for that its complexity goes as ∼ O(8N2 log N)). On the contrary, the309

well-established recursive GF technique has O(N3
r Ni t) complexity [33,38], where Ni t typically310

� 1 is the number of iterations required for convergence in a desired energy precision η and311

the term N3
r is due to matrix inversions where the recursive matrix dimension Nr = Nnn grows312

with the number of neighbours.313

For larger matrix dimensions or higher degree polynomials that the ones analyzed in this314

paper, FLA might suffer from numerical instability in the computation of the polynomial co-315

efficients due to accumulated errors in the trace in Eq. (10) and from the recursive nature of316

the successive polynomial coefficients [39,40]. However in Ref. [29] FLA was used to obtain317

the bGF of TB Hamiltonians that cannot be solved using symbolic approaches due to matrix318

dimension (e.g., N = 12 Hilbert space dimension). So, despite the potential instability of the319

method, it still can be used to efficiently solve the bGF problem of TB Hamiltonians beyond320

analytical approaches, at least for moderate dimensions.321

6 Conclusions and outlook322

In this work we have extended the boundary Green function method developed in Refs. [22,29]323

to 2D lattices with hopping elements between arbitrary distant neighbors and solved the semi-324

analytical obstructions to compute the bGF for large systems, non-orthogonal lattice vectors325

or Hamiltonians with terms with momentum fractions. This was made by implementing the326

Faddeev-LeVerrier algorithm to compute the characteristic polynomial and the adjugate matrix,327

the building blocks to compute the bGF. As an illustration of the method we have analyzed328

the spectral properties of different topological 2D Hamiltonians showing the appearance of329

topological states.330

With FLA we can compute the bGF for any TB model with a well-known algorithm and331

a simple implementation which provides the coefficients of the characteristic polynomial but332

also the adjugate matrix in the same process. Furthermore, FLA can be extended to obtain the333

generalized inverses of multiple-variable polynomials or particularly, two-variable polynomials334

[35–37].335

In Ref. [41,42] it is claimed that the classical Faddeev-LeVerrier algorithm for polynomial336

matrices in one variable has O(N3N) computational complexity and it avoids any division by337

a matrix entry, which it is desirable from the convergence perspective in contrast to recursive338

approaches. Although the classical FLA is not the most efficient algorithm from the point of339

view of complexity (e.g. Berkowitz algorithm [43] is faster), it is a rather simple and general340

way to solve the inverse of a polynomial matrix problem. Despite the recursive nature of FLA,341

it can be easily modified to carry out the N matrix multiplications in parallel [40,41,44–46].342

As an outlook, the FLA method can be combined with interpolation approaches [42,47,48]343

to improve the stability of the algorithm when computing the bGF of TB systems with a large344

number of degrees of freedom and neighbours. In addition, we foresee the application of the345

method to study higher order topological insulators [49] which requires projection onto the346

intersection of two or more edge surfaces.347
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A Exact Hamiltonian diagonalization353

From the matrices that define the recursive method in Eq. (35) we can also describe the total354

Hamiltonian for a finite system to compute an exact diagonalization and obtain the edge state355

spectrum.356

ĤTOT =















Ĥ0 T̂LR 0̂ · · · 0̂
T̂ †

LR Ĥ0 T̂LR · · · 0̂
0̂ T̂ †

LR Ĥ0 · · · 0̂
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · Ĥ0















, (36)

where the main diagonal has Nsi tes block elements and total dimension Nd = Nsi tesNnn so for357

the usual nn case satisfies Nd = Nsi tesN and Ĥ0 = Ĥ2, T̂LR = Ĥ†
1.358

B Faddeev-LeVerrier algorithm359

We include here a simple pseudocode description of the classic FLA [24–28] to obtain the360

coefficients of the characteristic polynomial C̄ and the polynomial description of the adjugate361

matrix ˆ̄M of the secular equation [ωÎ− Ĥ] from a constant matrix (Algorithm 1).362

Algorithm 1 Classic Faddeev-LeVerrier algorithm

Input: Ĥ ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1 = −tr{Ĥ}
3: while k ≤ n do
4: ˆ̄Mk← Ĥ ˆ̄Mk−1 + C̄n−k+1Î
5: C̄n−k←−

1
k tr{Ĥ ˆ̄Mk}

6: k← k+ 1
7: end while

We also describe the modified FLA for two variable polynomials in (ω, z) where the matrix363

itself Ĥ(z) is a polynomial matrix [35–37] given as an entry the polynomial decomposition in364

z of the Hamiltonian as in Eq. (12) (Algorithm 2).365
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Algorithm 2 Two-variable Faddeev-LeVerrier algorithm

Input: Ĥ1, Ĥ2, . . . , Ĥ2m+1 ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1,1 = −tr{Ĥ1}, C̄n−1,2 = −tr{Ĥ2}, . . . ,

C̄n−1,2m+1 = −tr{Ĥ2m+1}
3: while k ≤ n do
4: for i← 1 : 2m(k− 1) + 1 do
5: if i ≤ 2m(k− 2) + 1 then
6: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ1

ˆ̄Mk−1,i
7: end if
8: if i ≥ 2 and i ≤ 2m(k− 2) + 2 then
9: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2

ˆ̄Mk−1,i
10: end if
11: ...
12: if i ≥ 2m+ 1 and i ≤ 2m(k− 2) + 2m+ 1 then
13: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2m+1

ˆ̄Mk−1,i
14: end if
15: ˆ̄Mk,i ← ˆ̄Mk,i + C̄n−k+1Î
16: end for
17: for i← 1 : 2mk+ 1 do
18: if i ≤ 2m(k− 1) + 1 then
19: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ1

ˆ̄Mk,1}
20: end if
21: if i ≥ 2 and i ≤ 2m(k− 1) + 2 then
22: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2

ˆ̄Mk,i}
23: end if
24: ...
25: if i ≥ 2m+ 1 and i ≤ 2m(k− 1) + 2m+ 1 then
26: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2m+1

ˆ̄Mk,i}
27: end if
28: end for
29: k← k+ 1
30: end while
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