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Abstract1

Since the breakthrough of twistronics a plethora of topological phenomena in correlated2

systems has appeared. These devices can be typically analyzed in terms of lattice mod-3

els using Green’s function techniques. In this work we introduce a general method to4

obtain the boundary Green’s function of such models taking advantage of the numeri-5

cal Faddeev-LeVerrier algorithm to circumvent some analytical constraints of previous6

works. We illustrate our formalism analyzing the edge features of a Chern insulator, the7

Kitaev square lattice model for a topological superconductor and the Checkerboard lat-8

tice hosting topological flat bands. The efficiency and accuracy of the method is demon-9

strated by comparison to standard recursive Green’s function calculations and direct10

diagonalizations.11
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Figure 1: Cylindrical geometry obtained by applying periodic boundary conditions
(PBC) along the direction parallel to the boundary in a 2D plane, where x⊥ denotes
a coordinate in the perpendicular direction measured in units of the lattice constant.
In this geometry there is a well defined momentum k‖ and the open boundaries at
x⊥ = ±1 (magenta lines) are obtained by adding a localized impurity line with an
amplitude ε→∞ (black line) at x⊥ = 0. The impurity line breaks the translational
symmetry in the x⊥−direction and opens two boundaries in the bulk infinite system.

1 Introduction28

In recent years, due to the appearance of twistronics [1,2] and specially since the discovery of29

the special properties of twisted bilayer graphene at the magic angle [3,4], there is a renewed30

interest in 2D topological materials exhibiting different phases of matter (e.g. superconductiv-31

ity, magnetism, nematicity, etc). In these systems new phenomena arise from the combination32

of strong interactions and topology.33

These circumstances claim for a flexible unified theoretical framework going beyond ide-34

alized minimal models to account for interactions, strongly correlated behaviour, spatial inho-35

mogeneities or hybrid devices Several techniques have been developed to analyze open bound-36

aries, like exact Hamiltonian diagonalization of finite systems, wave matching in finite scatter-37

ing regions [5], some analytical techniques to derive effective boundary Hamiltonians [6] or38

the complementary approaches provided by T -matrix and Green’s functions formalisms [7–9].39

Nevertheless, methods based in exact diagonalization of microscopic Hamiltonians may re-40

quire huge computational capabilities with information on several model parameters and gen-41

erally, they provide only numerical results with, in some cases, little or no insight in the un-42

dergoing physics. For these reasons we are interested in theoretical mesoscopic descriptions43

of intermediate complexity which could give us access not only to discrete surface modes but44

also to a well defined continuum of excitations.45

In this work we focus on the boundary Green’s function (bGF) method, which is specifi-46

cally suited to obtain transport properties in heterostructures based on non-equilibrium Green’s47

function techniques [10–15]. The bGFs encode information on the local spectral properties48

of semi-infinite regions. In addition to transport, such information is of special interest, for49

instance, in the case of topological phases where the boundary local density of states (LDOS)s50

can reveal the presence of edge states or other type of localized excitations, thus it is possible to51

check out the bulk-boundary correspondence of topological phases and computing topological52

invariants [16, 17]. Furthermore, Green’s function formalism allows to incorporate in a nat-53
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ural way electron-phonon and/or electron-electron interaction effects for example by means54

of diagrammatic techniques [18]. Even more, from bGFs it is possible to deduce effective55

Hamiltonians including all of these effects and obtain their topological properties [19–21].56

Here we extend and extrapolate the bGF approach developed in Refs. [13,22,23] from 1D57

nearest-neighbour (nn) Hamiltonians to generalized d-dimensional systems with an arbitrary58

number of degrees of freedom and neighbours. This method performs the Fourier transform59

(FT) into real space needed to compute the bGF (see Fig. 1) by the analytic continuation of60

the momenta into the complex plane followed by residue integration. This approach exhibits61

better convergence performance compared to recursive approaches [24, 25] for which pre-62

cision is linked to the number of iterations [23]. However, previous implementations of the63

method required analytical expressions for the key building blocks of the formalism such as the64

characteristic polynomial. A typical symbolic Laplace expansion to evaluate the characteristic65

polynomial is highly inefficient for generalized problems with potentially enormous memory66

demand and computational complexity of O(N !) [26] where N is the total Hamiltonian di-67

mension. In addition, the other main building block of the method, the adjugate matrix, has68

to be obtained with a separate routine.69

In the present work we complement the method of Refs. [13,22,23]with a straightforward70

computational approach using the Faddeev-LeVerrier algorithm (FLA) [27–31] that sorts out71

diverse disadvantages of the semi-analytical calculations. The FLA requires a low computa-72

tional cost to construct not only the characteristic polynomial but also the adjugate matrix in73

the same process and for the same price which are, as mentioned before, the main building74

blocks to obtain the bGF using the residue integration method. This algorithm is not only75

useful for large dimensions but it is also convenient for smaller problems due to its simple im-76

plementation. In addition it does not rely in huge analytical expressions for the characteristic77

polynomial which arise for N ≥ 3, thus avoiding possible algebra errors without relevant time78

consuming drawbacks.79

Furthermore, the semi-analytical approach used in Refs. [13,22,23] suffer from rigidity in80

the definition of the GF as any new terms that might be inserted in the Hamiltonian impose81

a redefinition and consequently, all the analytical coefficients of the characteristic polynomial82

have to be re-obtained from scratch by time consuming symbolic algorithms. In contrast, the83

only analytical entry for the FLA is the polynomial decomposition of the Hamiltonian in the84

analytic continuation variable of the momentum perpendicular to the boundary z = eik⊥L⊥ .85

This is a simpler and flexible analytical requirement that can be computed without any upper86

end limit in the number of degrees of freedom of the system.87

The rest of the paper is organized as follows: in Sec. 2, we describe the computation88

of the Green’s function formalism taking advantage of the residue theorem introduced in89

Refs. [23, 32]. We then use Dyson’s equation to open a boundary in the bulk system with90

an infinity impurity perturbation. Sec. 3, we describe our method based on FLA to compute91

the boundary Green’s functions with barely no analytical demands to operate. In Sec. 4, we use92

some relevant model Hamiltonians for 2D topological systems as examples to compute steadily93

the FLA, first in a purely analytic problem to then jump into purely computational approaches.94

These models include the 2D Chern insulator [33], the 2D Kitaev topological superconduc-95

tor [34] and the Checkerboard lattice hosting topological flat bands [35]. Furthermore, we96

study the spectral properties at edges of such 2D models exhibiting topological features like97

chiral edge states. Sec. 5 includes a study of the convergence of the spectral density of the98

semi-infinite translational invariant Checkerboard lattice model comparing the recursive GF99

technique with the bGF obtained via FLA.100

We finally summarize the main results with some conclusions in Sec. 6. Technical details101

like the finite system diagonalization or an explicit FLA pseudocode are included in the ap-102

pendices. Throughout, we use units with nn hopping amplitude t = 1 and lattice parameter103
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a = 1.104

2 bGF method for 2D lattice models105

To obtain the bGF we start from a d-dimensional bulk infinite system and introduce local106

perturbations with the characteristic profile that defines the boundary. As these local pertur-107

bations or impurity surface amplitude tends to infinity we are left with two (d−1)-dimensional108

open surfaces [7, 8] e.g. two boundary lines in a 2D system induced by an impurity line, see109

Fig. 1. The bGF is obtained using the Dyson equations associated to the local surface impurity110

potential which breaks translational symmetry albeit the momenta in the direction parallel to111

the impurity surface are conserved and thus well defined.112

The starting GF must be explicitly dependent on the local coordinate associated to the113

perpendicular direction to the boundary. In order to get these real space GFs, starting from114

N×N tight-binding Hamiltonians in momentum space Ĥ(k), we have to compute the FT of the115

bulk GF in the direction perpendicular to the boundary. For this purpose, we decompose the116

momenta into parallel and perpendicular components k = (k‖, k⊥) relative to the boundary117

direction (in higher dimensional models the parallel momentum component would be itself118

a vector k‖). The bulk Hamiltonian periodicity in both directions is set by (L‖, L⊥), such that119

Ĥ(k+ 2πu⊥/L⊥) = Ĥ(k), where u⊥ is the unitary vector in the perpendicular direction. As120

to compute the FT we need orthogonal lattice vectors, in some cases like the triangular lattice121

we have to double the primitive cell. Using this periodicity, the Hamiltonian can be expanded122

in a Fourier series, Ĥ(k) =
∑

n V̂n(k‖)eink⊥L⊥ , where n covers the number of neighbours, and123

Hermiticity implies V̂−n = V̂†
n. Then, the advanced bulk GF is defined as124

ĜA(k,ω) =
�

(ω− iη)Î− Ĥ(k)
�−1

, (1)

whereη is a small broadening parameter that ensures the convergence of its analytic properties125

[36] (e.g. to compute the spectral densities and integrated quantities). This parameter is126

specially needed in the case of recursive methods where the spectrum is approximated by a127

finite set of poles. In this work we set η= 2∆ω/nω, where ∆ω is the energy window that we128

are studying and nω is the number of points that we are computing within that window. The129

N × N matrix structure is indicated by the hat notation.130

Fourier transforming along the perpendicular direction, the GF components are given by131

ĜA
j j′(k‖,ω) =

L⊥
2π

π/L⊥
∫

−π/L⊥

dk⊥ei( j− j′)k⊥L⊥ ĜA(k‖, k⊥,ω), (2)

where j and j′ are lattice site indices in the x⊥−direction. By the identification z = eik⊥L⊥ , this132

integral is converted into a complex contour integral,133

ĜA
j j′(k‖,ω) =

1
2πi

∮

|z|=1

dz
z

z j− j′ ĜA(k‖, z,ω). (3)

Further simplification can be obtained by introducing the roots zn(k‖,ω) of the character-134

istic polynomial in the z−complex plane,135

P(k‖, z,ω) = det
�

ωÎ− Ĥ(k‖, z)
�

=
cm

zm

2m
∏

n=1

�

z − zn(k‖,ω)
�

, (4)
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where m is the highest order of the characteristic polynomial and cm is the highest order136

coefficient. In terms of these roots the contour integral in Eq. (3) can be written as a sum over137

the residues of all roots inside the unit circle in the complex plane138

ĜA
j j′(k‖,ω) =

∑′

|zn|<1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

, (5)

where q = j − j′ +m−m′ − 1 and z−m′ M̂(k‖, z,ω) is the adjugate matrix of [ωÎ− Ĥ(k‖, z)]139

where all the poles at zero were taken out of M̂ as a common factor in z−m′ . Finally,
∑′

means140

that if q < 0 then we include zn = 0 as a pole in the sum of residues (e.g., in the non local GF141

components with j′ > j). Consequently when q < −1 higher order poles at zero appear in the142

sum of residues. To simplify these situations we can take advantage of the residue theorem to143

avoid these poles and compute the integral as144

ĜA
j j′(k‖,ω) = −

∑

|zn|>1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

. (6)

To simplify the notation, we omit the superscript ‘A’ denoting advanced GFs from now145

on. Given the real-space components of the bulk GF in Eq. (5), we next extend the method of146

Refs. [11,13,37] to derive the bGF characterizing a semi-infinite nearest-neighbour 2D systems.147

To this effect, we add an impurity potential line ε localized at the frontier region. Taking the148

limit ε → ∞ the infinite system is cut into two disconnected semi-infinite subsystems with149

j ≤ −1 (left side, L) and j ≥ 1 (right side, R), see Fig. 1. Using Dyson equation the local GF150

components of the cut subsystem follow as [13]151

Ĝ j j = Ĝ(0)j j − Ĝ(0)j0

�

Ĝ(0)00

�−1
Ĝ(0)0 j , (7)

where Ĝ(0) are the unperturbed bulk GF and Ĝ are the semi-infinite perturbed GF. Following152

Eq. (7), the bGF for the left and right semi-infinite systems are respectively given by153

ĜL(k‖,ω) = Ĝ1̄1̄(k‖,ω), ĜR(k‖,ω) = Ĝ11(k‖,ω), (8)

where the over-line in the local indices in the bGF means negative sites. In order to extend the154

method to the case of interactions to an arbitrary number of neighbours we need to include155

as many impurity surfaces as the number of neighbours in order to completely disconnect156

two semi-infinite regions. In an equivalent fashion we could obtain a new Dyson equation157

to compute the bGF of the system. Another possibility would be to define a supercell that158

transforms the Hamiltonian into a nearest-neighbour one with respect to this supercell and159

compute the bGF applying Eq. (8). Using this bGF we can compute the spectral properties of160

open (semi-infinite or finite) systems encoded in the spectral densities and the local density of161

states respectively162

ρL,R(k‖,ω) =
1
π
ℑ tr

�

ĜL,R(k‖,ω)
	

, 〈ρL,R(ω)〉=
∫

dk‖
Ωk‖

ρL,R(k‖,ω), (9)

where Ωk‖ = 2π/L‖ accounts for the limits of integration.163

3 Faddeev-LeVerrier algorithm164

We first summarize FLA for a generic complex matrix. Let Â be a N × N matrix with char-165

acteristic polynomial P(ω) = det[ωÎ − Â] =
∑n

k=0 C̄kω
k. The trivial coefficients are C̄n = 1166
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Figure 2: Complete algorithm workflow to compute the bGF using the FLA where
the main input is the polynomial decomposition of the Hamiltonian for a given set of
momenta k‖ and frequencies ω.

and C̄0 = (−1)n det Â, also simple is the term C̄n−1 = −tr{Â}. The other coefficients can be167

calculated using the Faddeev-LeVerrier algorithm [27–31] as168

ˆ̄Mk = Â ˆ̄Mk−1 + C̄n−k+1Î, C̄n−k = −
1
k

tr
¦

Â ˆ̄Mk

©

, (10)

where ˆ̄Mk is an auxiliary matrix such that ˆ̄M0 = 0. Remarkably the matrices ˆ̄Mk allow us to169

obtain the adjugate matrix of [ωÎ− Â] as a polynomial170

adj
�

ωÎ− Â
�

=
n
∑

k=0

ωk ˆ̄Mn−k, (11)

which, given that ˆ̄M0 = 0̂, the adjugate matrix M̂(ω) has N − 1 order in ω.171

In our case Â ≡ Ĥ(z) is a polynomial complex matrix and it can also be expanded as a172

polynomial in z as173

Ĥ(z) =
2m+1
∑

i=1

Ĥiz
i−(m+1) = Ĥ1z−m + · · ·+ Ĥm+1 + · · ·+ Ĥ2m+1zm. (12)

In some simple cases where rg(Ĥ2m+1) = N we get the highest order polynomial decom-174

position for the Hamiltonian and m = nnN where nn is equal to the number of neighbours in175

the tight-binding model, but in general m≤ nnN .176

We are interested in expressing C̄k and ˆ̄Mk as two-variable polynomials in ω and z using177

two variable FLA [38–40] to compute the complex integral. Still we have C̄n = 1 and ˆ̄M1 = Î.178

Then,179

C̄n−1(z) = −tr
�

Ĥ(z)
	

=
2m+1
∑

i=1

C̄n−1,iz
i−(m+1). (13)

For example, the next coefficients are180

ˆ̄M2(z) = Ĥ(z)+C̄n−1Î=
2m+1
∑

i=1

ˆ̄M2,iz
i−(m+1), C̄n−2(z) = −

1
2

tr
¦

Ĥ(z) ˆ̄M2(z)
©

=
4m+1
∑

i=1

C̄n−2,iz
i−(2m+1).

(14)
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In this way we could get181

ˆ̄Mk(z) =
2m(k−1)+1
∑

i=1

ˆ̄Mk,iz
i−(m(k−1)+1), C̄n−k(z) =

2mk+1
∑

i=i

C̄n−k,iz
i−(mk+1), (15)

and deduce an explicit decomposition of adj[ωÎ − Ĥ(k‖, z)] in z from which we can extract182

the zero poles of the adjugate matrix z−m′ as in Eq. (5). In simple cases where m = nnN , it is183

straightforward to see that m′ = N − 1.184

In Fig. 2 we expose the general structure of the complete algorithm to compute the bGF185

given, as an input, the polynomial decomposition of the Hamiltonian particularized at any186

k‖. Using FLA we obtain the auxiliary matrix to compute the adjugate of the secular equation187

ˆ̄M(k‖) and the coefficients of the characteristic polynomial C̄(k‖), see Appendix B. From C̄(k‖)188

we can compute the characteristic polynomial P(k‖,ω) for any desired frequency and solve it189

to obtain the roots zn(k‖,ω).190

Both zn(k‖,ω) and ˆ̄M(k‖) are the key ingredients to compute the unperturbed GFs in real191

space using Eq. (6) and taking as poles the roots that satisfy that |zn(k‖,ω)|> 1. The order of192

the zero poles m and m′ are totally determined by the polynomial decomposition in z of C̄(k‖)193

and ˆ̄M(k‖) respectively. Finally, we use Dyson equation to compute the bGFs of the system194

from the unperturbed ones.195

4 Tight-binding models196

In order to illustrate our method in a transparent self-explanatory way we take the example197

of common, well-known 2D topological Hamiltonians to compute the bGF explicitly. First, we198

start with the fully analytical 2 × 2 Chern insulator model [33] hosting chiral edge states to199

easily follow the FLA step by step. Later we consider more intricate examples where we have200

to partially or totally take advantage of the computational power of the FLA. These models201

include the 2D Kitaev model [34] for a topological superconductor showing Majorana edge202

modes and the 2D Checkerboard model which hosts topological flat bands with chiral edge203

states [35]. All these examples are relevant models for the study of topological matter in 2D204

and thus we exhibit the spectral density and the LDOS for an open boundary semi-infinite205

system to make explicit their topological edge properties. In Fig. 3 a) we show the Brillouin206

zone (BZ) for all of these different lattice models.207

4.1 Chern insulator208

We first illustrate the FLA with the well-known 2 × 2 Chern insulator Hamiltonian [33] in a209

square lattice described by210

Ĥ(k) = (M − cos ky − cos kx)σz + sin kxσx + sin kyσy , (16)

where σµ with µ= x , y, z are the Pauli matrices and M is the mass term.211

We FT along kx = k⊥ thereby we made the analytic continuation z = eikx . We can now212

obtain the polynomial expansion of the Hamiltonian in z following Eq. (12) where213

Ĥ1 = Ĥ†
3 = (iσx −σz)/2, Ĥ2 = (M − cos ky)σz + sin kyσy . (17)

We then compute the trivial C̄n coefficients that define the characteristic polynomial in214

frequencies (ω)215

C̄2 = 1, C̄1 = 0, C̄0 = (M − cos ky)(z + z−1)− [M2 + 2(1−M cos ky)], (18)
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Figure 3: Brillouin zone for the square lattice models and real space representation of
the Checkerboard lattice model. a) Square (white) and rectangular (grey shaded) BZ
showing the high symmetry points in each one. The over-line in the high symmetry
points denotes that they belong to the folded rectangular BZ in the ky−direction. b)
Checkerboard lattice. Red and blue dots indicate the sublattice sites. The magenta
arrow, black dashed (solid) line and yellow dashed line accounts for the nn hopping t,
the nnn hopping t ′1 (t

′
2) and the nnnn hopping t ′′ respectively. The arrow direction

shows the sign of the accumulated phase φ in the nn hopping terms. The shaded
green region in b) corresponds to the doubling of the original primitive cell which
produces the folding of the square BZ into a rectangular one as indicated in panel a).

consequently, their explicit decomposition in the z polynomial216

C̄02 = C̄∗04 = (M − cos ky), C̄03 = −[M2 + 2(1−M cos ky)]. (19)

Due to the aforementioned relation, as rg(Ĥ2m+1) < N , then m < nnN and for that we217

have a reduced degree of the characteristic polynomial obeying C̄01 = C̄05 = 0. Nevertheless,218

we have used the indexation of the polynomial in z as the maximum degree polynomial for219

the sake of generalization of the method, similarly to the criteria taken in the pseudocode220

formulation in Appendix B.221

Then, the characteristic polynomial takes the form222

P(ω) = (M − cos ky)(z + z−1) +ω2 −M2 − 2(1−M cos ky), (20)

where cm = C̄04 and the non-trivial contributions to ˆ̄M matrix are defined by223

ˆ̄M21 = Ĥ1 + c11Î= Ĥ1, ˆ̄M22 = Ĥ2 + c12Î= Ĥ2, ˆ̄M23 = Ĥ3 + c13Î= Ĥ3. (21)

Finally, the integral by residues for the bulk GF takes the form224

Ĝ j j′(ky ,ω) = −
z j− j′

−

z−

�

−(1+ z2
−) +αz− i(1− z2

−)− βz−
i(1− z2

−) + βz− (1+ z2
−)−αz−

�

2(M − cos ky)(z− − z+)
, (22)

where α = 2(M +ω − cos ky), β = i2 sin ky and we have regularized the zeros of the ad-225

jugate matrix adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that m = m′ = 1. Fur-226

thermore, we solve the trivial roots for P(ω) in Eq. (20), z± = (−b ±
p

b2 − 4)/2 where227

8
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Figure 4: Open boundary characterization for the Chern Insulator model showing
chiral edge states under the effect of the mass term M → 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows 2 chiral edge states each one associated to a different boundary. b)
Spectral density for a right boundary in the semi-infinite limit obtained from the bGF
calculation. c) Integrated LDOS where straight (dot-dashed) line represents bulk
(right boundary) LDOS.

b = [ω2 − M2 − 2(1 − M cos ky)]/(M − cos ky) defining |z−| > 1 and |z+| < 1. Once the228

bulk GF in real space has been constructed we use Eq. (8) to obtain the corresponding bGFs.229

In Fig. 4 we illustrate the open boundary spectral density for the topological phase of the Chern230

insulator exhibiting chiral edge states obtained using FLA. For comparison we also show the231

bands obtained using exact finite size Hamiltonian diagonalization, see Appendix A. As can be232

observed, while two chiral edge states are present in the finite system calculation, only one233

appears in the bGF calculation as expected for a semi-infinite system.234

4.2 2D Kitaev square lattice235

Now we apply FLA to obtain the characteristic polynomial of the 2 × 2 Kitaev square lattice236

model [34] and solve it computationally, in this way we can then obtain the bGF in a semi-237

analytic manner. The model Hamiltonian is given by238

Ĥ(k) = (µ− cos ky − cos kx)σz −∆(sin kx + sin ky)σy , (23)

where µ is the chemical potential and ∆ is the pairing potential.239

Again, the FT along kx = k⊥ is obtained using the analytic continuation z = eikx . The240

polynomial expansion of the Hamiltonian in z takes the expression241

Ĥ1 = Ĥ†
3 = (−σz − i∆σy)/2, Ĥ2 = (µ− cos ky)σz +−∆ sin kyσy . (24)

We next compute the C̄n coefficients that define the characteristic polynomial in powers of242

9
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Figure 5: Open boundary characterization for the 2D Kitaev model showing Majorana
flat band edge modes in the topological phase ∆= 1 and µ= 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows flat bands at both ends of the system. b) Spectral density for a right
boundary in the semi-infinite limit obtained from the bGF calculation. c) Integrated
LDOS where straight (dot-dashed) line represents bulk (right boundary) LDOS.

ω and z243

C̄2 = 1, C̄1 = 0, C̄01 = C̄∗05 = (∆
2 − 1)/4, C̄02 = C̄∗04 = (µ− cos ky)− i∆2 sin ky ,

C̄03 =
(∆2 − 1)

2
cos2ky + 2µ cos ky − (1+∆2 +µ2), (25)

where cm = C̄05 and finally the non-trivial contributions to the ˆ̄M matrix are defined as244

ˆ̄M21 = Ĥ1, ˆ̄M22 = Ĥ2, ˆ̄M23 = Ĥ3. (26)

We regularize the zeros of the adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that245

m= 2 and m′ = 1. The integral by residues for the bulk GF takes the form246

Ĝ j j′(ky ,ω) = −2z j− j′

4

�

−(1+ z2
4) +αz4 −∆[(1− z2

4)− βz4]
∆[(1− z2

4)− βz4] (1+ z2
4)−αz4

�

(∆2 − 1)
�

z4 − z1

� �

z4 − z2

� �

z4 − z3

� + (z4←→ z3), (27)

where α = 2(µ+ω− cos ky), β = i2 sin ky and |z4|, |z3| > 1, thus |z2|, |z1| < 1. We omit the247

explicit analytical expression of the roots of the characteristic 4th degree polynomial due to248

their extension. As mentioned before, for this example it is convenient to obtain the roots com-249

putationally. In Fig. 5 we show typical results for the open boundary LDOS in the topological250

phase of the 2D Kitaev model showing Majorana flat band edge modes. Again, the comparison251

with the finite size diagonalization shows good agreement.252
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Figure 6: Open boundary characterization for the Checkerboard lattice model show-
ing topological flat band atω/t = 2 with a chiral edge mode in the topological phase
φ = −π/4, t ′1 = −t ′2 = t/(2+

p
2) and t ′′ = −t/(2+ 2

p
2). a) Electronic bands ob-

tained by exact diagonalization of a finite size system with Nsi tes = 20 sites with the
unit cell doubled. The spectrum shows 2 chiral edge states each one associated to a
different boundary. b) Spectral density for a right boundary in the semi-infinite limit
obtained from the bGF calculation. c) Integrated LDOS where straight (dot-dashed)
line represents bulk (right boundary) LDOS.

4.3 Flat band Checkerboard lattice253

Finally we consider the 2 × 2 Checkerboard lattice model [35] which hosts topological flat254

bands and is defined by the Hamiltonian255

Ĥ(k) = Ω0(k)Î+Ω1(k)σx +Ω2(k)σy +Ω3(k)σz , (28)

where256

Ω0(k) =(t
′
1 + t ′2)(cos kx + cos ky) + 4t ′′ cos kx cos ky , Ω1(k) = 4t cosφ cos

kx

2
cos

ky

2
,

Ω2(k) = 4t sinφ sin
kx

2
sin

ky

2
, Ω3(k) = (t

′
1 − t ′2)(cos kx − cos ky). (29)

The system is thus characterized by nn hopping t, nnn hopping t ′1, t ′2 and nnnn hopping257

t ′′ terms, also the nn terms accumulate a phase φ pointed out in Fig. 3 b).258

This model is an exemplification of a typical obstacle to tackle with our algorithm due to the259

sublattice degree of freedom. Due to that, the Hamiltonian includes lattice spacing fractions,260

hence if we try to FT with the analytic continuation z = eik⊥L⊥/2 instead of having a complex261

integral over the closed unit circle we arrive to an open arc integral in the complex plane, so262

we cannot apply the residue theorem to solve it. This kind of problems may also appear in263

Bravais lattices with non-orthogonal lattice vectors (e.g. the triangular lattice).264
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To circumvent this kind of obstacles we proceed to double the unit cell to obtain a new265

lattice with orthogonal lattice vectors and integer powers of z = eik⊥L⊥ . The drawbacks of266

doubling the unit cell are that we are now working in a folded BZ and we have doubled the267

Hamiltonian degrees of freedom. Consequently the Hamiltonian in the new unit cell expressed268

in the basis Ψk = (ψA1,k,ψB2,k,ψA3,k,ψB4,k)T takes the form269

Ĥ(k) =
�

Â B̂
B̂† Â

�

, (30)

with270

Â=

�

δ2 β−
β∗− δ1

�

, B̂ =

�

α1(1+ eiky ) eikyβ∗+
β+ α2(1+ eiky )

�

, (31)

where β± = e±i(kx±φ) + e−iφ , αµ = (t ′µ + 2t ′′ cos kx) and δµ = 2t ′µ cos kx with µ= 1,2.271

In Fig. 3 b) we show the unit cell doubling in the y−direction for the Checkerboard lattice272

problem leading to a folded BZ along the ky−direction. To avoid foldings in the spectral273

densities we have made the analytic continuation in z = eiky with ky = k⊥, in this way we274

have the explicit momenta dependence of the Hamiltonian in the unfolded BZ coordinate275

kx = k‖. The polynomial expansion of the Hamiltonian in z adopts the expression276

Ĥ1 = Ĥ†
3 =







0 0 0 0
0 0 0 0
α1 0 0 0
β+ α2 0 0






, Ĥ2 =







δ2 β− α1 0
β∗− δ1 β+ α2
α1 β∗+ δ2 β−
0 α2 β∗− δ1






. (32)

Due to the cell doubling we have a characteristic off-diagonal representation of the z de-277

pendent terms of the Hamiltonian which induces that rg(Ĥ2m+1) < N , then again we have a278

degree reduction of the characteristic polynomial. We now could obtain analytically the C̄n co-279

efficients that define the characteristic polynomial but we omitted them due to their extension.280

These coefficients along with the adjugate matrix M̂(k‖, z,ω) can be obtained computationally281

in a straightforward way using Eq. (14), see Appendix B.282

In Fig. 6 we show results for the open boundary LDOS for the topological phase of the283

Checkerboard lattice model exhibiting topological flat bands and chiral edge states. Again,284

the comparison with the bands obtained by direct diagonalization gives excellent agreement,285

except for the doubling of the edge states.286

5 Comparison with recursive approaches287

As mentioned before, the recursive GF method is a well established tool to compute bGFs.288

Below we briefly describe the recursive method taking advantage of the Hamiltonian decom-289

position into two perpendicular directions already introduced for FLA. We define the recursive290

method to compute the bGF at a dimensionless n-site as291

�

Ĝ rc
R (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣR(n),

�

Ĝ rc
L (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣL(n), (33)

where Ĥ0(k‖) is the local contribution defined in each iteration step and the recursive expres-292

sion of the self-energy takes the form293

ΣR(n) = T̂LR

�

Ĝ rc
R (n− 1)

�−1
T̂ †

LR, ΣL(n) = T̂ †
LR

�

Ĝ rc
L (n− 1)

�−1
T̂LR. (34)

As can be observed, the self-energy at a given n-site couples this site with the previous one294

where n goes from n= 1 to n= Ni t with Ni t is the number of recursive steps. The self-energy295
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Figure 7: Open right boundary spectral density at k‖ = Γ for the Checkerboard lat-
tice model with η = 0.02 and the rest of parameters are the same as in Fig. 6. Solid
lines represents the spectral density obtained by recursive GF for different number of
recursive steps Ni t = 5,10, 50. Dashed red line is obtained using FLA. Main figure:
top continuum valence bands contribution to the spectral density showing the dis-
cretization effect of the recursive method. Inset: All the contributions to the spectral
density including the flat band at ω/t = 2 and the topological chiral edge state at
ω/t ≈ 1.5

at the first site ΣL/R(n = 1) can be defined to simulate the coupling to a doped continuum of296

the same material for better convergence.297

From the polynomial decomposition of the Hamiltonian in Eq. (12) we can define the298

relevant matrices for the recursive method as299

Ĥ0 =















Ĥm+1 Ĥm Ĥm−1 · · · Ĥ2

Ĥ†
m Ĥm+1 Ĥm · · · Ĥ3

Ĥ†
m−1 Ĥ†

m Ĥm+1 · · · Ĥ4
...

...
...

. . .
...

Ĥ†
2 Ĥ†

3 Ĥ†
4 · · · Ĥm+1















, T̂LR =















Ĥ†
1 Ĥ†

2 Ĥ†
3 · · · Ĥ†

m
0̂ Ĥ†

1 Ĥ†
2 · · · Ĥ†

m−1
0̂ 0̂ Ĥ†

1 · · · Ĥ†
m−2

...
...

...
. . .

...
0̂ 0̂ 0̂ · · · Ĥ†

1















. (35)

Notice that the dimension of the recursive method goes as Nr = Nnn so for the usual nn300

case satisfies Nr = N and Ĥ0 = Ĥ2, T̂LR = Ĥ†
1.301

In Fig. 7 we illustrate the convergence of the continuum spectrum within the recursive GF302

method for the Checkerboard model at k‖ = Γ with parameters as in Fig. 6 for several number303

of iterations compared to bGF obtained using FLA. While the recursive approach accounts well304

for discrete states, as boundary states, with few iterations, the number of recursive steps have305

to be greatly increased to properly converge the continuum spectrum into the semi-infinite306

limit [36]. In contrast, FLA provides an accurate description of both surface modes and con-307

tinuum spectra without further computational effort. It is worth mentioning that the recursive308

13



SciPost Physics Submission

method for all the lattice models in this publication takes from twice to four times more com-309

puting time than FLA for the same number of points in the spectral density and Ni t = 100,310

for which, as shown in Fig. 7, the recursive calculation has not yet converged to a smooth311

continuum spectrum.312

In order to compare the computational complexity of our technique one should have in313

mind that our method could be implemented in a partially analytical way, in the sense that314

we can provide an analytical expression for the characteristic polynomial for each of the cases315

that we study. The computational complexity is then limited to the evaluation of the roots316

of this polynomial which scales roughly as O(M2 log M), where M = 2m is the degree of the317

polynomial and the maximum degree possible is M = 2m= 2nnN (e.g., in a typical TB model318

up to nn, M = 2N and for that its complexity goes as ∼ O(8N2 log N)). On the contrary, the319

well-established recursive GF technique has O(N3
r Ni t) complexity [36,41], where Ni t typically320

� 1 is the number of iterations required for convergence in a desired energy precision η and321

the term N3
r is due to matrix inversions where the recursive matrix dimension Nr = Nnn grows322

with the number of neighbours.323

For larger matrix dimensions or higher degree polynomials that the ones analyzed in this324

paper, FLA might suffer from numerical instability in the computation of the polynomial co-325

efficients due to accumulated errors in the trace in Eq. (10) and from the recursive nature of326

the successive polynomial coefficients [42,43]. However in Ref. [32] FLA was used to obtain327

the bGF of TB Hamiltonians that cannot be solved using symbolic approaches due to matrix328

dimension (e.g., N = 12 Hilbert space dimension). So, despite the potential instability of the329

method, it still can be used to efficiently solve the bGF problem of TB Hamiltonians beyond330

analytical approaches, at least for moderate dimensions.331

6 Conclusions and outlook332

In this work we have extended the boundary Green function method developed in Refs. [23,32]333

to 2D lattices with hopping elements between arbitrary distant neighbors and solved the semi-334

analytical obstructions to compute the bGF for large systems, non-orthogonal lattice vectors335

or Hamiltonians with terms with momentum fractions. This was made by implementing the336

Faddeev-LeVerrier algorithm to compute the characteristic polynomial and the adjugate matrix,337

the building blocks to compute the bGF. As an illustration of the method we have analyzed338

the spectral properties of different topological 2D Hamiltonians showing the appearance of339

topological states.340

With FLA we can compute the bGF for any TB model with a well-known algorithm and341

a simple implementation which provides the coefficients of the characteristic polynomial but342

also the adjugate matrix in the same process. Furthermore, FLA can be extended to obtain the343

generalized inverses of multiple-variable polynomials or particularly, two-variable polynomials344

[38–40].345

In Ref. [44,45] it is claimed that the classical Faddeev-LeVerrier algorithm for polynomial346

matrices in one variable has O(N3N) computational complexity and it avoids any division by347

a matrix entry, which it is desirable from the convergence perspective in contrast to recursive348

approaches. Although the classical FLA is not the most efficient algorithm from the point of349

view of complexity (e.g. Berkowitz algorithm [46] is faster), it is a rather simple and general350

way to solve the inverse of a polynomial matrix problem. Despite the recursive nature of FLA,351

it can be easily modified to carry out the N matrix multiplications in parallel [43,44,47,48].352

As an outlook, the FLA method can be combined with interpolation approaches [45,49,50]353

to improve the stability of the algorithm when computing the bGF of TB systems with a large354

number of degrees of freedom and neighbours. Furthermore, this method and the recursive355
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methods could be combined to describe systems with regions with broken translational sym-356

metry like two semi-infinite translational invariant regions coupled by a disordered region. In357

addition, we foresee the application of the method to study higher order topological insula-358

tors [51] which requires projection onto the intersection of two or more edge surfaces.359
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A Exact Hamiltonian diagonalization365

From the matrices that define the recursive method in Eq. (35) we can also describe the total366

Hamiltonian for a finite system to compute an exact diagonalization and obtain the edge state367

spectrum.368

ĤTOT =















Ĥ0 T̂LR 0̂ · · · 0̂
T̂ †

LR Ĥ0 T̂LR · · · 0̂
0̂ T̂ †

LR Ĥ0 · · · 0̂
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · Ĥ0















, (36)

where the main diagonal has Nsi tes block elements and total dimension Nd = Nsi tesNnn so for369

the usual nn case satisfies Nd = Nsi tesN and Ĥ0 = Ĥ2, T̂LR = Ĥ†
1.370

B Faddeev-LeVerrier algorithm371

We include here a simple pseudocode description of the classic FLA [27–31] to obtain the372

coefficients of the characteristic polynomial C̄ and the polynomial description of the adjugate373

matrix ˆ̄M of the secular equation [ωÎ− Ĥ] from a constant matrix (Algorithm 1).374

Algorithm 1 Classic Faddeev-LeVerrier algorithm

Input: Ĥ ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1 = −tr{Ĥ}
3: while k ≤ n do
4: ˆ̄Mk← Ĥ ˆ̄Mk−1 + C̄n−k+1Î
5: C̄n−k←−

1
k tr{Ĥ ˆ̄Mk}

6: k← k+ 1
7: end while

We also describe the modified FLA for two variable polynomials in (ω, z) where the matrix375

itself Ĥ(z) is a polynomial matrix [38–40] given as an entry the polynomial decomposition in376

z of the Hamiltonian as in Eq. (12) (Algorithm 2).377
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Algorithm 2 Two-variable Faddeev-LeVerrier algorithm

Input: Ĥ1, Ĥ2, . . . , Ĥ2m+1 ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1,1 = −tr{Ĥ1}, C̄n−1,2 = −tr{Ĥ2}, . . . ,

C̄n−1,2m+1 = −tr{Ĥ2m+1}
3: while k ≤ n do
4: for i← 1 : 2m(k− 1) + 1 do
5: if i ≤ 2m(k− 2) + 1 then
6: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ1

ˆ̄Mk−1,i
7: end if
8: if i ≥ 2 and i ≤ 2m(k− 2) + 2 then
9: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2

ˆ̄Mk−1,i
10: end if
11: ...
12: if i ≥ 2m+ 1 and i ≤ 2m(k− 2) + 2m+ 1 then
13: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2m+1

ˆ̄Mk−1,i
14: end if
15: ˆ̄Mk,i ← ˆ̄Mk,i + C̄n−k+1Î
16: end for
17: for i← 1 : 2mk+ 1 do
18: if i ≤ 2m(k− 1) + 1 then
19: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ1

ˆ̄Mk,1}
20: end if
21: if i ≥ 2 and i ≤ 2m(k− 1) + 2 then
22: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2

ˆ̄Mk,i}
23: end if
24: ...
25: if i ≥ 2m+ 1 and i ≤ 2m(k− 1) + 2m+ 1 then
26: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2m+1

ˆ̄Mk,i}
27: end if
28: end for
29: k← k+ 1
30: end while
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