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Abstract

We analyze the role of the Allee effect – a positive correlation between popu-
lation density and mean individual fitness – for ecological communities formed
by a large number of species. Our study is performed using the generalized
Lotka-Volterra model with random interactions between species. We obtain
the phase diagram and analyze the nature of the multiple equilibria phase.
Remarkable differences emerge with respect to the logistic growth case, thus
revealing the major role played by the functional response in determining
aggregate behaviors of large ecosystems.
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1 Introduction

In the last decades the field of theoretical ecology has gathered momentum fostered by
an explosion of experimental results and increasingly sophisticated techniques [1–3]. More
structured models have thus been proposed to integrate this plethora of empirical data [4]
and to capture the main features of complex ecosystems. With respect to most pioneering
studies carried out over the past decades, there is now a growing interest in systems
composed by an enormous number of species that interact in myriad ways in very complex
environments. Remarkably, in presence of a large number of interacting components such
models can be rephrased through the prism of theoretical physics using concepts and
methods rooted in statistical mechanics.

One of the most recently studied framework in theoretical ecology is offered by the
mean-field disordered version of the random Lotka-Volterra model describing the evolu-
tion of many randomly interacting species [5–12]. Despite its simple structure, such a
model has been recently proven to be able to reproduce critical behaviors and collective
dynamics from many other ecological setups – which include notably cascade predation,
plant pollinator, resource-consumer models [13] – as well as to be of great interest in
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interdisciplinary research domains such as genetics, epidemiology, evolutionary game the-
ory [14, 15] up to the modelization of complex economies [16, 17]. For our purposes, the
Lotka-Volterra equations offer a useful framework to study the so-called Allee effect, which
is defined through a positive correlation between mean individual fitness (or per-capita
growth rate) and population density over some finite interval as shown in Fig. 1 [18–20].
The Allee effect is called strong if there exists an initial population threshold below which
population decreases, i.e. a species needs a sufficiently large initial population to avoid
extinction. A weak Allee effect corresponds to the case in which no threshold exists but
intraspecific cooperativity leads to an initial increase of the growth rate when population
increases, see Fig. 1.
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Allee threshold

Figure 1: Pictorial representation of a strong Allee effect (in red) associated with a popu-
lation decline at small population density below a finite threshold. The red dot represents
a stable fixed point coinciding with the single species carrying capacity whereas the black
empty dot is an unstable fixed point. In the case of a weak Allee effect (in light orange),
no threshold exists leading to a definitely positive growth rate even at zero density.

The Allee effect, which inherited the name from the famous zoologist Allee, is based
on the observation that in many species undercrowding, and not only competition, con-
tributes to limiting the population growth. The behavioural observations, together with
the original data on water loss and oxygen consumption [21], are used to interpret the
curvilinear growth rate response to density and also to motivate the fact that aggregation
can thrive the dynamics and have positive effects on the survival of a given ecosystem, as
originally observed for land isopods that, if isolated, experience rapid desiccation. Allee
aimed specifically at ascertaining the factors responsible for formation and evolution of an-
imal aggregations, which in turn can contribute to increasing individual survival1. Caused
by exploitation difficulties, social dysfunctions, predator saturation, genetic disease, this
effect has been empirically confirmed in several aquatic, reptilian and mammalian popu-
lations [22, 23]. Furthermore, its undoubted centrality of is also linked to a better under-
standing of mechanisms governing the development of epidemic diseases [24]2 and cancer
cell evolution [25]. Indeed, although the adaptive phenotypic switching between cell mi-
gration and proliferation plays a crucial role in tumors, it remains unclear how a particular

1Originally Allee thought that animals were unconscious of such benefits, for this reason he always
preferred the expression proto-cooperation instead of cooperation.

2Analyzing the relationship between the spread of an infection and a strong Allee effect may indeed be
crucial to predict a catastrophic collapse of the endemic equilibria of a population.
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phenotypic plasticity can affect overall tumor growth.
In the case of microbial ecosystems, species not only compete for common resources

but may also display mutualism as a consequence of metabolic cross-feeding3. Such mu-
tualistic interactions can give rise to a bistable behavior, i.e. two stable fixed points for
the population growth, which turns out to be strictly connected to the existence of an
initial growth rate threshold as a function of the population size. The Allee effect plays
also an important role in spatially extended ecosystems – as it has been observed recently
in a system of two cross-feeding species whose mutualistic strength is modulated by the
inflow of nutrients [27]. When spatial fluctuations are taken into account, the Allee effect
can counteract the genetic drift of a species and give rise to a pushed wave rather than a
pulled wave, which instead would emerge from a simple logistic growth model.

From a more general perspective, our study addresses the question of the role of the
functional response in the behavior of ecosystems formed by a large number of species. Ba-
sic models in population ecology rely on the logistic growth hypothesis. Deterministically,
in the standard logistic model a small population grows exponentially up to saturation to
a steady state value corresponding to its carrying capacity. But what if the form of the
functional response is different? What are the main changes in the properties of the equi-
libria and of the complex dynamics displayed by the ecosystem for more general functional
responses? Our study provides a first study of this general problem.

By using techniques rooted in statistical physics, and in particular in the theory of
disordered systems, we provide a complete analysis of the generalized Lotka Volterra model
for ecological communities formed by species with an Allee functional response. Our
results, obtained for symmetric interactions and finite demographic noise in the species
pool, open the route to a systematic understanding of the role of the functional response in
determining collective movements, chaotic dynamics as well as generic system’s instability
of large ecosystems.

2 The model

In the following we define the model we focus on in this work, which consists in the
generalized Lotka-Volterra equations for ecological communities. We then show a mapping
to an equilibrium statistical physics problem, which is a key ingredient in our approach.

2.1 Disordered Generalized Lotka-Volterra Equations

We shall investigate the Allee effect by the introduction of a cubic one-species potential
Vi(Ni), which essentially modifies the logistic trend in favour of a multiplicative Allee
effect [28]. We consider the following dynamical equations for the evolution of the relative
species abundance Ni at time t, where the index i runs over the total number of species
i = 1, ..., S in the species pool:

dNi

dt
=Ni

{
ρi
[
−3N2

i + 2Ni(Ki +m)−Kim
]
−
∑
j,(j 6=i)

αijNj

}
+ ηi(t) + λi =

dNi

dt
=Ni

−∇NiVi(Ni)−
∑
j,(j 6=i)

αijNj

+ ηi(t) + λi ,

(1)

3It has recently been shown that mutual cross-feeding plays a two-fold role: preventing competitive
exclusion process but also reducing the energetic cost through the possibility of sharing efforts in amino
acid synthesis [26].
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where ρi ≡ ri/Ki denotes the ratio between the single-species growth rate and the car-
rying capacity, and we follow Ito’s convention for the stochastic equation. The addi-
tional parameter λ denotes the immigration that at a first level analysis we assume
to be species-independent, and ηi(t) is a white noise with zero mean and covariance
〈ηi(t)ηj(t′)〉 = 2TNi(t)δijδ(t − t′), T being the amplitude of the noise. Ni(t) is inter-
preted as a relative species abundance of species i at time t, meaning that the population
is actually normalized by the total number of individuals populating the ecosystem in
the absence of any interaction (αij = 0). Therefore, since the amplitude T turns out to
be inversely proportional to the total number of individuals, i.e. T = 1/Nind, one can
tune such a control parameter to properly describe the demographic noise in a continu-
ous setting [29, 30]. The larger the number of individuals the smaller the amplitude of
demographic noise.

N

V
(N

)
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Figure 2: Plot of the Lotka-Volterra one-species potential V (N) = −ρ(KN − N2

2 ) in blue,
and of the modified cubic potential in Eq. (2) in orange and red corresponding to the
growth rates shown in Fig. 1.

We model the forcing term in Eq. (1) through a cubic one-species potential

Vi(Ni) = −ri
(

1− Ni

Ki

)
(Ni −m)Ni (2)

where the threshold value m can be properly tuned to move from a strong (m > 0) to a
weak (−Ki ≤ m ≤ 0) Allee effect. In Fig. (2) we compare the effect of a cubic potential
with the standard Lotka-Volterra model corresponding to a quadratic dependence in Ni.
According to this choice of the potential, the model admits three fixed points, respectively:
i) at N∗i = 0, corresponding to the extinction, ii) at the threshold m; ii) finally, at the
carrying capacity N∗i = Ki. If the parameter m is forced to be positive, the per-capita
growth rate function displays a negative trend for 0 < Ni < m and a positive, increasing
behavior up to the other (stable) fixed point in Ki.

More concretely, the potential (2) allows us to capture the salient phenomena associ-
ated with the Allee effect. Populations with abundance greater than the limit population
size will increase up to their carrying capacity, whereas those with a lower abundance will
decline to extinction (see again Fig. 1). The carrying capacity turns out to be then a sta-
ble fixed point for both strong and weak Allee effects, and the logistic growth. Conversely,
extinction is stable only for the strong Allee case leading to a first difference both with
respect to the weak effect and to a logistic Lotka-Volterra-like behavior. This bistability –
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as already mentioned, closely related to the mutualism of interactions – is essentially deter-
mined by the initial condition. As a consequence, even a small perturbation in the initial
population can be crucial and dramatically affect the behavior of ecosystems characterized
by a strong Allee effect.

Coming back to Eq. (1), the first term on the r.h.s. is then responsible for a self-
regulating mechanism for the species abundances. The second term in parenthesis embeds
the contribution due to the interactions among species. Following [6, 31], the elements of
the matrix αij are i.i.d random variables distributed according to a Gaussian law with
mean and variance respectively:

mean[αij ] = µ/S var[αij ] = σ2/S , (3)

with αij = αji. The phases displayed by this model in the case of a logistic growth rate
were studied in [6, 7, 11]. Here we instead focus on the Allee growth rate. Although we
consider symmetric interactions, some of our results can be extended with a small degree
of asymmetry, as we shall discuss in the Conclusions.

2.2 Dynamics-statics mapping via the Fokker-Planck formalism

Given the dynamics (1), we aim to write the corresponding Fokker-Planck equation for a
generic observable A and to show that in the case of a symmetric interaction matrix αij
it admits an invariant equilibrium-like probability distribution, as it was shown in [7]. We
briefly recap the main steps here to make the interested reader aware of the procedure to
obtain the corresponding Hamiltonian operator.

By using Ito’s rule, the time derivative of a generic observable A can be written as:

d

dt
〈A({Nj})〉 = 〈

∑
i

∂A
∂Ni

dNi

dt
〉+ T 〈

∑
i

∂2A
∂N2

i

N2
i 〉 , (4)

where 〈·〉 stands for the average over the probability distribution P ({Nj}, t), hence over
the thermal noise. We can plug Eq. (1) in the above expression and obtain:

d

dt
〈A({Nj})〉 =

〈∑
i

∂A
∂Ni

−Ni∇NiVi(Ni)−Ni∑
j

αijNj + λ

〉+ T 〈
∑
i

∂2A
∂N2

i

Ni〉 . (5)

For the sake of compactness, we redefine the three terms in parenthesis as F̃ ({Nj}), so
that the equation for the evolution of the average operator A becomes

d

dt
〈A({Nj})〉 =

∫ ∏
i

dNiP ({Nj}, t)

[∑
i

∂A
∂Ni

F̃ ({Nj}) + T
∑
i

∂2A
∂N2

i

Ni

]
, (6)

from which the resulting equation for the evolution of 〈A({Nj})〉 can be easily obtained
just by integrating by parts. In the same spirit, the dynamical equation for the probability
distribution reads

∂P ({Nj}, t)
∂t

=
∑
i

[
− ∂

∂Ni

[
F̃ ({Nj})P ({Nj}, t)

]
+ T

∂2

∂N2
i

[P ({Nj}, t)Ni]

]
(7)

from which we only need to impose the l.h.s to be zero in order to obtain the equilib-
rium probability. Therefore, we ask the invariant probability distribution to be P =
Z−1 exp(−βH), H being the associated energy function and β = 1/T the inverse temper-
ature. The condition for obtaining the quasi-stationary probability distribution implies
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1
P
∂P
∂Ni

= − 1
T
∂H
∂Ni

from which, by integrating over Ni, we can recover the expression for the
Hamiltonian valid in the symmetric case:

H =
∑
i

Vi(Ni) +
∑
i<j

αijNiNj + (T − λ)
∑
i

lnNi . (8)

Therefore, the original dynamical process in Eq. (1) defines the time evolution of an ecosys-
tem with many interacting species whose thermodynamics is described by the Hamiltonian
(8). Note that at variance with the simplest scenario corresponding to the analysis in the
limit T → 0 and λ → 0+, the introduction of a small but finite immigration results in a
qualitative behavioral change. The immigration parameter ensures indeed that no species
will go completely extinct from the ecosystem replacing the concept of indefinite extinction
with a probabilistic argument, i.e. with the probability that at a given time a species is
present or absent.

On a mathematical level, the parameter λ provides a regularization of the probabil-
ity distribution at small Ni once the demographic noise is also taken into account. In
order to see how this comes about, let’s set αij = 0 and specialize our reasoning to the
single-species case. Taking in mind Eq. (2), the stationary distribution turns out to be
P∞(N) ∝ Nλ/T−1 exp

[
1
T

(
−mN +N2(1 +m)−N3

)]
, according to which the effective

potential can be written as Veff(N) = −mN − N2(1 + m) + N3 − (λ − T ) lnN . In the
following we shall consider the case of a small but finite immigration rate, so that a sta-
ble steady state exists in presence of demographic noise. As done in [11], we impose a
hard-core repulsive boundary corresponding to an infinite potential at Nc = 10−2, which
is numerically equivalent to having an immigration rate λ = 10−2 but simpler to handle
analytically.

3 Thermodynamic analysis with demographic noise: intro-
duction to the replica method

As we have shown, the steady state properties of the ecosystem we are considering cor-
respond to the thermodynamics equilibrium properties of a disordered system with the
Hamiltonian (8). We can then take advantage of the replica method [32, 33] developed
in statistical physics of disordered system to carry out our study. The introduction of
replicas allows us to derive the replicated free energy by the identity

−βF = lim
n→0

lnZn

n
. (9)

Operatively, one should compute the quantity on the r.h.s for integer values of the replica
number n, then consider the analytical continuation to real values and eventually take
the limit n → 0. The starting point is the the computation of the replicated partition
function:

Zn =

∫ ∏
i,(ij)

dNa
i dαij exp

−∑
(ij)

(αij − µ/S)2

2σ2/S
− βH({Na

i })

 (10)

where the average over the disorder corresponds to computing the integral over the αijs.
By following usual steps in the physics of disordered systems, see e.g. [7, 11] for very
similar computations, one finds that the free energy can be written as an integral over
order parameters:

F = − 1

βn
ln

∫ ∏
a,(a<b)

dQabdQaadHa e
SA(Qab,Qaa,Ha) . (11)
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where the overlap matrix Qab (with diagonal value Qaa) and the external field Ha are
defined as:

Qab =
1

S

S∑
i=1

Na
i N

b
i , (12)

Ha =
1

S

S∑
i=1

Na
i , (13)

with (a, b) = 1, ..., n. Note that, at the variance with the partition function, the free
energy becomes a self-averaging quantity in the thermodynamic limit, as S →∞, loosing
any dependence on the specific realization of the disorder. Self-averaging holds for the
majority of the properties of the system.

3.1 Mean-Field Replica Symmetric equations

The simplest scenario in the panorama of all possible replica techniques corresponds to
the replica symmetric (RS) computation, which holds as long as the free-energy landscape
is characterized by one single equilibrium. The overlap matrix is thus parametrized by
two values: the self-overlap between replicas inside the same state, qd, and the inter-
state overlap, q0. As for the external field, it is assumed to be uniform ∀a. This Ansatz
translates into the property that any permutation of the replica indices does not affect the
overall matrix structure with:

Qab = q0 if a 6= b

Qaa = qd if a = b

Ha = h ∀a
(14)

To find the expressions for the order parameters we need to solve the integrals for the
first and higher-order moments of the species abundance. In the thermodynamic limit,
we can use the Laplace method and evaluate the integral in Eq. (11) by saddle-point
approximation. We end up with the following self-consistent equations for (qd, q0, h):

qd =

∫
Dz

(∫∞
Nc
dNe−βHRS(q0,qd,h,z)N2∫∞

Nc
dNe−βHRS(q0,qd,h,z)

)
= 〈N2〉 , (15)

q0 =

∫
Dz

(∫∞
Nc
dNe−βHRS(q0,qd,h,z)N∫∞

Nc
dNe−βHRS(q0,qd,h,z)

)2

= 〈N〉2 , (16)

h =

∫
Dz

∫∞
Nc
e−βHRS(q0,qd,h,z)N∫∞

Nc
dNe−βHRS(q0,qd,h,z)

= 〈N〉 . (17)

where the Hamiltonian, used to perform the most internal average, reads:

HRS(q0, qd, h, z) = V (N) +

[
−βρ

2σ2

2
(qd − q0)N2 + (ρµh− zρσ√q0)N

]
. (18)

An auxiliary Gaussian variable z with zero mean and unit variance has been introduced
to decouple replicas and integrate the quenched disorder out (more details about replica
computations can be found in Appendix A). Its introduction results in an additional
linear term that essentially contributes to tilting the potential. This result has a nice
interpretation: the interaction between species leads to the emergence of an effective

8



SciPost Physics Submission

potential for a single species, and hence an effective functional response, which is species
dependent.

By tuning the parameter m appearing in V (N) we can switch from a strong Allee
effect, formally modeled by a double-well potential, to a weak Allee effect, which would
appear more akin to a Lotka-Volterra potential, as shown in Fig. (2). What Eq. (18)
shows is that due to the presence of the Gaussian variable the effective potential for a
single given species can vary and hence change nature. For instance, z can counterbalance
the negative value of m and transform a weak Allee effect into a strong one, resulting in a
double-well potential rather than a single well for a finite fraction of species. Or viceversa
making disappear the two stable fixed points for the species population in favor of a single
one, see Fig. 3.

As we have already discussed in Sec. (2), in order to analyze the limit of small but
finite immigration rate, we introduce a cut-off in the species abundances Nc = 10−2. This
allows for an efficient numerical evaluation of the integrals. These mean-field equations
are solved by the numerical procedure explained below.

Algorithmic protocol

• Initialize qd, q0, h at t=0;

• Solve iteratively the equations for the three order parameters qd, q0, h while increas-
ing β = 1/T with fixed cut-off Nc = 10−2, damping α = 0.1 and precision ε = 10−5.

For instance, ht ← α
∫
Dz

∫∞
Nc

dNe
−βHRS(qt−1

0 ,qt−1
d

,ht−1,z)
N∫∞

Nc
dNe

−βHRS(qt−1
0 ,qt−1

d
,ht−1,z)

+ (1− α)ht−1 .

• The algorithm stops when all the parameters converge, i.e. when the absolute error
between the (t− 1)-value and t-value ≤ ε.

3.2 Generalization to the Full Replica-Symmetry Breaking (FRSB) case

The replica theory establishes that the RS scheme is correct when one single equilibrium
is present. However, due to the disordered interactions the ecosystem may display several
equilibria. In this case, one has to use a more involved replica scheme to analyze the
properties of the system [32]: the n replicas are now divided in n/m1 groups of m1 replicas
where each group of m1 replicas is in turn divided in m1/m2 groups of m2 replicas and so
on. It is then convenient to introduce a piecewise function qi, with i = 1, 2..., k denoting
the number of steps of broken symmetries, and to eventually take the limit k →∞. This
iterative construction repeated infinitely many times gives rise to the so-called replica
symmetry breaking (RSB) formalism in which qi is replaced with a continuous function

q(x) = qi if mi < x < mi+1 (19)

provided the constraint
0 ≤ mi ≤ mi+1 ≤ 1 . (20)

A one-to-one correspondence between the original piecewise function characterized by
a given number of discontinuities k and the parameters q and m can be immediately
established.
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Within this Ansatz, the effective Hamiltonian (for more details, see again Appendix
A) and the free energy become now functionals of q(x), to be eventually optimized w.r.t.

all possible functions q having support in the unit interval, i.e. δF [q]
δq(x) = 0.

3.3 Species dependent fluctuating growth rate and differences between
logistic and Allee cases

As we have explained above, the interaction with other species in the community leads to
an effective potential, hence to an effective growth rate, which is species dependent:

HRS(Ni, zi) = −ρ
2σ2

2
β(qd − q0)N2

i + (ρµh− ziρσ
√
q0)Ni + Vi(Ni) .

The fluctuation due to the interactions between species is encoded in the Gaussian random
variable zi. Its role is to change the amplitude of the linear term in the effective potential.
The minima of the effective potential correspond to the value of the abundance at which
the effective per capita growth rate vanishes, i.e. to fixed points of population dynamics.
The random contribution due to zi can then considerably affect the behavior, in a very
different way for the logistic growth and the Allee functional response. Note that even in
the more complicated Full RSB case one obtains an effective potential of the same form
as the one above [32]. The difference is that the random variable zi is not Gaussian. The
main conclusions that we will discuss below hold also in the Full RSB case.

3.3.1 Lotka-Volterra logistic growth case

In the Lotka-Volterra case the potential is Vi(Ni) = −ρi
(
KiNi −

N2
i

2

)
, where ρi ≡ ri/Ki

denotes the ratio between the single species growth rate and the carrying capacity. In this
framework, the Hamiltonian in the RS approximation reads:

HRS(Ni, zi) =

[
−ρ

2σ2

2
β(qd − q0) +

ρ

2

]
N2
i + (ρµh− ziρσ

√
q0 − ρK)Ni (21)

where we have assumed no species dependence on the parameters ri and Ki. Let us
now study the minima of HRS(Ni, zi), which correspond to the fixed point of population
dynamics in the case of zero demographic noise. Redefining ∆q ≡ ρβ(qd−q0), we eventually
obtain

∂HRS

∂N
= 0 → N∗(z) = max

{
0,
K + zσ

√
q0 − µh

1− σ2∆q

}
, (22)

where z is, as usual, a Gaussian variable with zero mean and unitary variance. Note
that the effective potential HRS(Ni, zi) as a function of Ni ≥ 0 is either a monotonically
increasing function from zero at Ni = 0 or it displays a single minimum: zi tilts the
potential and leads to fluctuations between these two cases. Hence, the resulting equation
for the stable fixed point is that on the r.h.s. above.

Note that if a minimum N∗2 > 0 exists, the fixed point N∗1 = 0 has always to be
discarded because unstable (remember that we always work with a small but finite immi-
gration rate). In our thermodynamic formalism this can be seen by comparing the energy
of N∗1 and N∗2 :

HRS(N∗1 = 0) = 0 ,

HRS(N∗2 > 0) = − (z + ∆)2

2(1− σ2∆q)

(23)
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Figure 3: In the absence of interaction (αij = 0), we compare the basic Lotka-Volterra
potential with a cubic potential (in red). The effect of an external field associated to zi
contribute to tilting the potential and modifying the energy barrier between minima with
kind of a spinodal transition (in brown).

where ∆ = K−µh
σ
√
q0

. The second solution leads to a lower energy and hence has to be

preferred. Therefore, in writing the resulting partition function for the Lotka-Volterra
model with logistic growth, one typically enforces the solution by an Heaviside function
θ(N∗).

3.3.2 Allee effective potential and competition between two stable fixed points

The RS effective potential in the Allee case is not just a quadratic function with a fluctuat-
ing linear term as for the logistic growth. It is instead a cubic potential with a fluctuating
linear term, which gives rises to a richer phenomenology.

HRS(Ni, zi) =Vi(Ni)−
ρ2σ2

2
β(qd − q0)N2

i + (ρµh− ziρσ
√
q0)Ni =

=ρN3
i +N2

i

[
−ρ

2σ2

2
β(qd − q0)− r −mρ

]
+Ni(ρµh− ziρσ

√
q0 +mr) ,

(24)

Given that the quadratic term is negative, depending on the sign of the linear term –
which fluctuates because of zi – one can switch between three situations (see Fig. 3): (i)
one stable fixed point at Ni = 0, (ii) two stable fixed points, one for Ni = 0 and one
for positive abundance, (iii) only one single stable fixed point with positive abundance.
The main difference with the Lotka-Volterra case is that, as shown in red in Fig. (3), for
suitable values of zi, the model supports three fixed points corresponding to N∗ = 0 and

N∗1,2 =

(
ρσ2∆q/2 +mρ

)
±
√

(ρσ2∆q/2 + +mρ)2 − 3ρ
(
ρµh+mr − zρσ√q0

)
3ρ

(25)

If we ask the coefficient of the quadratic term to be much bigger in absolute value
than the linear term, we can expand the square root and rewrite the two non-vanishing
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solutions as

N∗1,2 '
1

3

(
σ2∆q

2
+
r

ρ
+m

)
±
(
σ2∆q

2
+
r

ρ
+m

)1 +
3

2

(zσ
√
q0 − µh−mr/ρ)(

σ2∆q
2 + r

ρ +m
)2

 (26)

where we have neglected the absolute value in the second addend provided that m, r, ρ
are taken with positive sign. In particular, forcing the parameter m to be positive we are
automatically selecting a positive threshold in the population density, hence leading to a
strong Allee effect.

The first solution corresponds to an unstable fixed point for the growth rate (a local
maximum for the effective potential) and would read then:

N∗1 (z) ' −1

2

(zσ
√
q0 − µh−mr/ρ)

σ2∆q
2 + r/ρ+m

(27)

and, since where are interested only in positive abundances, we impose that (zσ
√
q0−µh−

mr/ρ) < 0. To have a well-defined solution, the external field and a threshold parameter
m are supposed to be sufficiently large to compensate the effect of the Gaussian variable
z. The second non-vanishing fixed point, which corresponds to a stable fixed point for the
growth rate (a local minimum for the effective potential), would instead read:

N∗2 (z) '
zσ
√
q0

2
(
σ2∆q

2 + r
ρ +m

) − (µh+mr/ρ)

2
(
σ2∆q

2 + r
ρ +m

) +
2

3

(
σ2∆q

2
+
r

ρ
+m

)
=

=
σ
√
q0

2
(
σ2∆q

2 + r
ρ +m

) (z + ∆) .

(28)

By substituting the solution N∗2 (z) in the Hamiltonian, we would obtain

−βHAllee
RS =

[
βr + βmρ+

βρσ2

2
(ρβ(qd − q0))

] σ
√
q0

2
(
σ2∆q

2 + r/ρ+m
)(z + ∆)

2

+

−βρ

 σ
√
q0

2
(
σ2∆q

2 + r/ρ+m
)(z + ∆)

3

− βρ
(
µh− zσ√q0 +

rm

ρ

) (29)

The major difference with the logistic growth case is that, when the solutions N∗2 (z) and
N∗ = 0 exist, one has to compare their energies to select the one that dominates for
vanishing demographic noise. The latter has zero energy. As a consequence, to favour
the second solution one should have the former with a lower energy, which leads to a
second-order inequality in z + ∆ :(
r

ρ
+m+

σ2∆q

2

)
σ
√
q0(z + ∆)

2
(
σ2∆q

2 + r
ρ +m

) − [
σ
√
q0(z + ∆)

]2
4
(
σ2∆q

2 + r
ρ +m

)2 −
(
µh− zσ√q0 +

rm

ρ

)
≥ 0

(30)
At variance with the simple Lotka-Volterra case with logistic growth, the introduction of a
cubic potential makes the competition between the two fixed points not trivial. Note that
if the coefficient of the linear term, function of the Gaussian variable z and the generalized
external field, is sufficiently large, the second finite solution appears to be sub-leading
compared to the one corresponding to extinction.

12



SciPost Physics Submission

4 Phase diagrams with weak and strong Allee effect

In the following, we obtain the phase diagrams of the model with a cubic potential as in
Eq. (2), random symmetric interactions between species and small but finite demographic
noise. In Fig. (4) we specifically highlight two distinct phases in the presence of demo-
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Figure 4: Phase diagram showing the amplitude of the demographic noise T as a function
of the heterogeneity parameter σ for the strong Allee (µ = 5 and m = 1) on the left and
for the weak Allee effect (µ = 5 and m = −0.5) on the right.

graphic noise and small but non-zero immigration. The two phase diagrams, respectively
for the strong and the weak Allee effect, have been obtained at fixed average interaction
µ since we observed no sensitive dependence on it4. For sufficiently high demographic
noise (corresponding to the high-temperature phase) only a single equilibrium phase is
detectable: the noise is so strong that interactions among species do not play any signifi-
cant role. Conversely, at low demographic noise or highly heterogeneous interactions, such
single equilibrium phase becomes unstable leading to a multiple equilibria regime5. In the
following we will show how this second phase can be mathematically described within a
Full RSB Ansatz in the replica formalism. This aspect has important consequences on
the organization of equilibria, which have the same organization as stable thermodynamic
states in mean-field spin glasses [32].

In the following we will first analyze the transition from the one equilbrium phase
to the multiple equilibria phase. Once the phase diagram is well established down to
vanishing demographic noise, we will then proceed with the analysis of the nature of
low-demographic noise (low-temperature) phase. We will come back to this point later,
precisely in Sec. (4.2.1).

4.1 Transition from the one equilibrium phase to the multiple equilibria
phase: massless modes and diverging susceptibilities

The emergent multiple equilibria phase in the low-demographic noise regime can be un-
derstood using concepts rooted in statistical physics of disordered systems. As we shall
show, the multiple equilibria phase in Fig.(4) is critical and hence associated with strong
correlations among the degrees of freedom, hence leading to diverging response functions.
Our first aim is to obtain the condition for the transition between the two phases. We

4A similar outcome was pointed out also for the Lotka-Volterra model with finite demographic noise [11].
5The orange and red lines in the two diagrams correspond to a vanishing replicon mode of the Hessian

matrix of the free energy, as better explained in the next Section.
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will also obtain a general condition for stability. This will allow us to show later that the
multiple equilibria phase is marginally stable and hence critical.

To analyze correlations and fluctuations, let us consider the three following correlation
functions, which will be useful also in the following:

C1 = 〈NiNj〉2 − 〈Ni〉2 · 〈Nj〉2,
C2 = 〈NiNj〉〈Ni〉〈Nj〉 − 〈Ni〉2 · 〈Nj〉2,
C3 = 〈Ni〉2〈Nj〉2 − 〈Ni〉2 · 〈Nj〉2

(31)

from which we have subtracted the product of the single averages to focus only on the
connected part of the correlation function. From these definitions one can introduce two
special combinations of such correlations, the spin-glass susceptibility and the non-linear
susceptibility, i.e. χSG = C1 − 2C2 + C3 and χNL = C1 − 4C2 + 3C3. However, for our
purposes, we will focus only on the first instance of susceptibility.

In the same spirit, one can also generalize the definition to embed the time-dependence
in the correlator, C(t, t′), and look at fourth-order correlation function corresponding
in jargon to χ4(t, t′). It can be shown that in the single-equilibrium phase, where the
dynamics tends to be stationary after a short transient, this quantity is nothing but the
the spin-glass susceptibility in the long-time limit:

χSG =
1

S〈N2
i 〉c

2

∑
ij

(〈NiNj〉 − 〈Ni〉〈Nj〉)2 , (32)

which is appropriately normalized to the connected part of the self-correlation and the
number of species S [7]. Recalling the definition of the standard susceptibility χij =
〈NiNj〉− 〈Ni〉〈Nj〉, one can immediately figure out the connection in between, i.e. χSG =

χ2
ij . Remarkably, such a definition of susceptibility is strictly linked to the correlations of

the overlap matrix as it can be immediately proven by introducing a replicated effective
field theory. The fluctuations contributing to the spin-glass correlation functions are due
to a special mode of the stability matrix, the so-called replicon mode, whereas those
contributing to the nonlinear correlation function are related to the so-called longitudinal -
anomalous modes. To investigate stability properties of the different phases, we thus
introduce the Hessian matrix of the free energy, which allows us to analyze the harmonic
fluctuations in terms of δQab. Thanks to symmetry group properties in the replica space,
the diagonalization of the stability matrix can be expressed only in terms of three different
sectors. Following [34], we define three eigenvalues: the longitudinal, λL, the anomalous,
λA, and the replicon, λR. Since we are specifically interested in possible Replica Symmetry
Breaking (RSB) effects, we focus on the replicon mode. The detection of a vanishing
replicon mode from the sufficiently high demographic noise (single equilibrium) phase is
related to the appearance of marginal states, which turn out to be extremely relevant also
because of their intimate connection with out-of-equilibrium aging dynamics [35–37].

In the simplest scenario corresponding to the presence of a single equilibrium, the
replicon mode can be eventually written as

λR = (βρσ)2
[
1− (βρσ)2(〈N2〉 − 〈N〉2)2

]
, (33)

where the averaged difference describes the fluctuations between the first and second
moments of the species abundances within one state, namely between the diagonal value
qd and the off-diagonal contribution q0 of the overlap matrix. We refer the interested reader
to Appendix B for a detailed computation. By computing λR for the single equilibrium
phase and by detecting the points in which it vanishes we have obtained the transition
lines shown in Fig.(4). In the following sections we shall investigate the nature of the
multiple equilibria phase.

14



SciPost Physics Submission

4.2 FRSB nature of the multiple equilibria phase.

In the following, we will first establish that the transition to the multiple equilibria phase
is continuous and then prove that the transition is towards a FRSB phase.

4.2.1 Continuous transition and computation of the breaking point

We will analyze the replica symmetry breaking solution corresponding to the multiple
equilibria phase. We will present a method to derive the equation for the breaking point
x∗, i.e. the point where q(x) deviates from the constant profile with q̇(x∗) 6= 0. This
can be done by performing a perturbative expansion close to the critical line (in orange
and red respectively in Fig. 4), a.k.a the de Almeida Thouless (dAT) line in spin glass
literature, which allows us to determine the nature of the emerging transition depending
on whether x∗ satisfies a specific criterion or not. Precisely, if x∗ ∈ [0, 1], the instability
of the RS solution gives rise to a continuous transition towards a RSB phase, which can
either be FRSB or k-RSB with finite k. Conversely, if x∗ /∈ [0, 1], the expansion around the
dAT line turns out to be unphysical: this means that the transition must be anticipated
by a discontinuous RSB transition. Finding out which kind of instability takes place at
the transition is very important to determine the nature of the multiple equilibria phase.

To determine if x∗ ∈ [0, 1] one typically consider the free energy functional f [q(x); qd]
where qd is the diagonal value and q(x) is function of the continuous variable x ∈ [0, 1].
The interested reader will find more details in Appendix C and an extensive proof in [38]
(see also references within).

The standard strategy is to consider the functional derivative of the free energy and
to use the following relations:

d

dx

δf [q(x); qd]

δq(x)
= f (2)[q(x); qd]q̇(x) (34)

d

dx
f (n)[q(x); qd] = f (n+1)[q(x); qd]q̇(x) for n ≥ 2 . (35)

Accordingly, the second derivative of the free energy can be written as

f (2)[q(x); qd]q̇(x) =
1

2

d

dx

∫
dh P (h, x)f ′(x, h)2 =

q̇(x)

2

∫
dhP (h, x)f ′′(x, h)2 . (36)

P (h, x), formally introduced as a Lagrange multiplier, has a deeper physical meaning in the
spin-glass literature encoding the distribution of local magnetic fields within metabasins
at level x according to a hierarchical organization of states. Then, one should consider the
variations of the above expressions in the space of all independent functions.

Therefore, if there exists an interval ∈ [0, 1] above which q̇(x) 6= 0, one can further
simplify the expression

f (2)[q(x); qd] =
1

2

∫
dhP (h, x)f ′′(x, h)2 , (37)

which is equivalent to determining the vanishing value of the replicon mode of the stability
matrix, i.e. the marginal stability condition for the RS solution. The breaking point can
thus be obtained in a straightforward way by the differentiation of the above equation
with respect to x (see again [38]):

x∗ =
dhP (h, x)f ′′′(x, h)2

2
∫
dhP (, hx)f ′′(x, h)3

. (38)

Depending on the obtained value of x∗ along the critical line, two options are possible:
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• if x∗ ∈ [0, 1], a continuous transition to a RSB phase takes place. This can occur
either towards a full RSB or a k-RSB transition with finite k;

• if x∗ 6∈ [0, 1], the perturbative expansion is associated with an unphysical solution.
The only reasonable scenario corresponds to the fact that the transition must be
anticipated by another kind of instability, typically discontinuous in the order pa-
rameter.

Starting from Eq. (38) and rephrasing the free energy in terms of the Ns variables for the
species abundances, the final condition for the breaking point corresponds to computing
the ratio between the third and the second cumulants:

x∗ =

(
〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3

)2

2
(
〈N2〉 − 〈N〉2

)3 (39)

where, as before, the brackets 〈·〉 stand for the average over the species abundance distri-
bution while the upper bar · represents the average over the quenched disorder. In Fig.
(5) we reproduce its trend as a function of noise amplitude for the (weak) Allee effect.
Similar results are obtained for the strong Allee effect. The conclusion of our analysis is
that the multiple equilibria phase is characterized by the first option above, i.e. x∗ ∈ [0, 1]
and hence a continuous transition to a RSB phase. We will show below that it is a FRSB
phase.

In the Appendix we also present an alternative way to derive the breaking point, in
line with the computation performed in [39].

4.2.2 Full RSB phase

To exclude one of the two scenarios that are linked to the case x∗ ∈ [0, 1], we need to go
more in detail and obtain the resulting expression also for the slope. We assume that q(x)
is analytical in the vicinity of the phase transition and consider the following equation

d

dx

∫
dhP (h, x)f ′′(x, h)2 = q̇(x)

[
dhP (h, x)f ′′′(x, h)2 − 2xdhP (h, x)f ′′(x, h)3

]
(40)

We differentiate this Eq. with respect to x to obtain:

d

dx

[∫
dhP (h, x)f ′′′(x, h)2 − 2x

∫
dhP (h, x)f ′′(x, h)3

]
=

q̇(x)

∫
dh P (h, x)Q4(x, h)− 2

∫
dh P (h, x)f ′′(x, h)3

(41)

where Q4(x, h) denotes

Q4(x, h) = f ′′′′(x, h)2 − 12x∗f ′′(x, h)f ′′′(x, h)2 + 6x∗2f ′′(x, h)4 . (42)

From Eq. (41), we eventually derive:

q̇(x) =
2
∫
dhP (h, x)f ′′(x, h)3∫
dhP (h, x)Q4(x, h)

(43)

which, once re-expressed in terms of the relative species abundances, coincides with the
ratio between the second order moment and the quartic cumulant, i.e.:

q̇ =
2
(
〈N2〉 − 〈N〉2

)3
2

[
〈N4〉

2

cum − 12x∗
(
〈N2〉 − 〈N〉2

)(
〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3

)2
+ 6(x∗)2

(
〈N2〉 − 〈N〉2

)4]
(44)
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Figure 5: Breaking point x∗ (left) and inverse slope 1/q̇(x∗) (right) versus temperature T
represented for the weak Allee effect, in red in Fig. 4. The plots are obtained at µ = 5
and m = −0.5. The breaking point is definitely smaller than one, and the slope evaluated
at x∗ remains positive as a signature of a continuous transition to a FullRSB phase.

where we have denoted as 〈N4〉cum the expression for the quartic cumulant. If the value
of the slope at the breaking point x∗ is positive, we can state that the resulting transition
is continuous towards a FRSB phase. In the opposite case, it would be described by a
non-marginal 1RSB solution. We have verified numerically that it is the former case that
is realized both for weak and strong Allee effect. Thus, the multiple equilibria phase that
emerges at low demographic noise is a FRSB one.

In conclusion, contrary to the Lotka-Volterra case with logistic growth, for which we
demonstrated the existence of a 1RSB transition to be eventually replaced by an amor-
phous Gardner phase in the zero-demographic noise limit [11], here we find no evidence of
such a phase. We do not observe any jump in x∗ and the corresponding slope at the break-
ing point keeps a positive-definite sign as a signature of the fact that the first non-trivial
solution implies an infinite number of symmetry breaking. As the demographic noise is
sufficiently low, the RS solution is automatically broken into a FRSB marginal phase. This
shows a major difference between the logistic growth and the Allee cases, which therefore
display very different multiple equilibria phases. Let us discuss below what are the main
features that distinguish them.

4.3 Properties of the multiple equilibria phase

In the case of mean-field glassy systems one can give a precise meaning to the free-energy
landscape. The number of minima, and more generally of critical points of given index,
has been computed and analyzed thoroughly [40–42], and even more rigorously in the last
years [43]. Such works established the existence of two main universality classes, which
are associated with different thermodynamic and dynamical properties:

• Spin-glass models characterized by sub-exponential number of free-energy minima
in the system size. The free-energy barriers are expected to be sub-extensive and
the minima organized in a hierarchical fractal structure [32].

• Structural glass models wherein the number of free-energy minima is exponential
in the system size. At variance with the previous universality class, free-energy
barriers are extensive and typically a low-noise dynamics starting from random initial
conditions remains stuck in high free-energy minima (called threshold states).

In [11] we have proven that it is precisely the second class that characterizes the
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multiple equilibria phase of the Lotka-Volterra model with logistic growth. Here, we show
that for functional responses displaying an Allee effect the ecosystem belong to the first
class of models. In this case, the resulting picture is thus reminiscent of mean-field spin
glasses for which, according to the Parisi solution [44, 45], an infinite number of pure
ultrametric states emerges.

5 Marginal stability and pseudo-gap distribution of the lo-
cal curvatures

In the following we wish to link the marginal stability of the FRSB phase (a general result
in the context of replica theory [32]) to a pseudo-gap distribution of the local curvatures
of the effective potentials for the species. This is the generalization to our case of the
pseudo-gap for instantaneous local field distribution of mean-field spin glasses [32]. We
have found two different kinds of marginal stability conditions in the limit of vanishing
demographic noise. It is known from the replica theory that the FRSB phase is marginal,
which means that the Hessian of the replicated free-energy displays a zero eigenvalue (the
replicon). Thus we naturally expect, and find, a marginality condition akin to the one
of mean-field Ising spin-glasses, e.g. the Sherrington-Kirkpatrick model. However, in the
models of ecosystems we are considering, another marginality condition appears and lead
to an interesting constraint on the fluctuations of the local curvature 1

(V
′′
eff(N∗i ))2

.

N2 N1

Figure 6: Pictorial representation of two interacting double-well potentials joined by a
fictitious spring. Because of the interaction, the minima of the resulting 2-dimensional
potential, as projected on the plane (N1, N2), are located in completely different positions
than the 3-dimensional starting potentials.

5.1 First kind of marginal stability condition: degenerate local equilibria

This marginal stability is due to the effect of the fluctuating field that ends up tilting the
two local minima, in N∗ = 0 and N∗2 (z) > 0. In other words, there may be a fraction of
double-well potentials with energy differences of order 1/β between the two minima and
unit variance. The missing term would be therefore associated with the offset field such
that the two minima sit down exactly at the same height. To derive this contribution, we
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can resort to Eq. (30) in Sec. 3:(
r

ρ
+m+

σ2∆q

2

)
σ
√
q0(z + ∆)

2
(
σ2∆q

2 + r
ρ +m

) − [
σ
√
q0(z + ∆)

]2
4
(
σ2∆q

2 + r
ρ +m

)2 −
(
µh− zσ√q0 +

rm

ρ

)
≥ 0 .

(45)
If the above inequality is satisfied the second minimum N∗2 is preferred according to the
entropy maximization principle, whereas by imposing the above expression to be zero we
are requiring that both minima make the same contribution. Since the second minimum
is precisely

N∗2 (z) =
σ
√
q0

2
(
σ2∆q

2 + r
ρ +m

) (z + ∆) , (46)

we can rewrite the equality condition as(
r +mρ+

σ2ρ∆q

2

)
N∗2 (z)− ρ (N∗2 (z))2 − (ρµh− zρσ√q0 + rm) = 0 . (47)

This contribution comes into play upon considering sufficiently relevant differences between
coupled double-well potentials and is indeed crucial to recover a pseudo-gap distribution
in the limit of zero demographic noise. We won’t give more details since this kind of
marginality is well studied and understood in the context of mean-field spin-glasses [32].
Note that in the logistic Lotka-Volterra model this marginality does not appear at all,
thus revealing an important difference with the models we are considering here.

5.2 Second kind of marginal stability condition: pseudo-gap of the local
curvatures

In the following we will focus on the second kind of instability, which turns out to be more
interesting for biological and ecological reasons as related to local species fluctuations at
zero noise. To this purpose, we neglect the first kind of marginality, i.e. the possibility of
degeneracy between local equilibria for N∗, and take the zero-demographic noise limit in
the expression for the replicon, and find: 6:

λrepl = 1− ρ2σ2

(−∆qρ2σ2 + V ′′i (N∗i ))2 (48)

where V ′′i (N∗i ) is the curvature of the potential associated with the functional response of
species i evaluated at the abundance of that species, which is in turn related to the global
minimum of the effective potential for that species. The overline denotes the average over
the species. This relation is valid for any equilibrium both in the single and multiple
equilibria phase.

By introducing the notation Veff(Ni) for the effective potential for species i, we find
that the curvature of the effective potential evaluated at the global minimum is precisely
−∆qρ2σ2 + V ′′i (N∗i ). Therefore, the stability condition for a given phase (i.e. a positive
replicon eigenvalue) reads:

1− (ρσ)2

∫
dV
′′

eff P (V
′′

eff(N∗))(
V
′′

eff(N∗)
)2 ≥ 0 (49)

where we have introduced the distribution of the V ′′eff(N∗) in a given equilibrium. This
inequality implies that a necessary condition for stability is to have a pseudo-gap in

6A detailed analysis in the limit of zero demographic noise can be found in Appendix E.
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P (V
′′

eff(N∗)) otherwise the integral would diverge and the condition would not be sat-
isfied. More specifically, by assuming that the probability behaves as P (V

′′
eff) ∼ |V ′′eff|α at

small argument, stability implies that α > 1. Marginally stable behavior corresponds to
the choice α = 1 with logarithmic corrections to the power law, which makes the integral
convergent. The value α = 1 implies that the smallest attainable curvature V ′′min is such
that

N

∫ V ′′min

0
P (V ′′min) dV ′′min ∼ O(1)→ V ′′min ∼

1√
N

. (50)

This derivation of the pseudo-gap relies on the expression of the replicon in terms of
the distribution of local curvatures. As done for spin-glasses, one can establish the same
result using general arguments without referring to the replica method. We will now
show how this can be done in two different complementary ways. In Ising models one is
typically interested in identifying the probability distribution of the effective fields in the
zero-temperature phase. The seminal work by Anderson, Palmer and coworkers [46,47] is
indeed based on energy considerations after a spin flip on all the n sites that are subject to
the lowest fields and allows one to claim that P (h) ∼ ha as h → 0, with exponent a ≥ 1.
This argument has been supported by numerical simulations corroborating the hypothesis
of a linear dependence in h at low fields. In the following, we will proceed in a similar way
studying local excitations.

5.3 First argument: dynamical cavity

There are different possible ways to determine the exponent α. In the following we shall
propose two possible directions: the former is inspired by a dynamical cavity approach,
while the second one is based on a Gaussian approximation for dealing with coupled
double-well potentials. Let us start with the equation for the time evolution of the species
abundances:

Ṅi(t) = Ni

−V ′(Ni)−
∑
j 6=i

αijNj + ξi

 . (51)

By plugging a new species k in the ecosystem, this equation becomes:

Ni = Ni\k −
∂Ni

∂ξi
αikNk (52)

where the second contribution represents the product between the diagonal susceptibility
χii and the so-called cavity field. There are then two possibilities: i) either Nk = 0; ii) or
Nk 6= 0. In this second case:

− V ′(Nk)−
∑
i≥1

αkiNi + ξk =

− V ′(Nk)−
∑
i

αkiNi\k +Nk

∑
i

αkiαik
∂Ni

∂ξi
+ ξk ,

(53)

which, once differentiated w.r.t ξk, leads to:

−V ′′(Nk)
∂Nk

∂ξk
+
∂Nk

∂ξk

∑
i

αkiαikχii . (54)

If we consider its average contribution, we also get:〈
∂Nk

∂ξk

〉
=

〈
− 1

V ′′(Nk)−
∑

i αkiαikχii

〉
(55)
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basically meaning that the introduction of a new variable Nk corresponds to a perturbation
on species Ni at a given time t. We nevertheless ask Ni(t) to remain of O(1). Since the
quenched variables fluctuate keeping their variance α2

ik ∼
1
N and the variable Nk must

be always O(1), the cavity field must satisfy the following condition: αikNk ∼ 1√
N

. By

means of a scaling argument we can conclude that

1

V
′′

eff(N∗)

1√
N
∼ O(1) , (56)

which implies a power-law behavior for the effective potential with

V
′′

eff(N∗) ∼ 1√
N

. (57)

As a consequence, the relationship in (50) is satisfied for α ≥ 1.

5.4 Second argument: Gaussian model of coupled potentials

We now follow closely an argument that has been proposed for spin glasses [32]. We assume
that all single-species excitations are stable – which means that all local curvatures are
strictly positive – and ask what is the lowest typical values of the local curvatures that
the ecosystem can display in order to maintain stability when multi-species excitations
are taken into account.

We focus on two coupled potentials and study the resulting stability condition given
by their interaction, as shown in Fig. (6). We assume that since the interaction is very
small the change in the values of the equilibrium abundances N∗i and N∗j can be neglected.
Since we want to study the stability, we consider the energy governing the two interacting
species valid for small fluctuations:

Eij =
1

2
Ni

2V
′′

eff(N∗i ) +
1

2
N∗j

2V
′′

eff(Nj) + αijNiNj (58)

which leads to a Hessian

A =

(
V
′′

eff(N∗i ) αij
αij V

′′
eff(N∗j )

)
(59)

In the same spirit of magnetic systems, if αij < 0 energy tends to decrease only if the
two variables are aligned with Ni ∼ Nj . Conversely, if αij > 0 energy decreases with
Ni ∼ −Nj exactly as it happens for antiferromagnetic systems. Stability requires positive
eigenvalues and hence

V
′′

eff(N∗i )V
′′

eff(N∗j )− α2
ij > 0 . (60)

A distribution P (V
′′

eff) with a pseudogap with exponent α implies that the minimal V
′′

eff

that one can find in the system are of the order N−
1

1+α . Given that αij ∼ 1/
√
N , for α < 1

the couple i, j associated with the two smallest values of V
′′

eff would become necessarily
unstable due to interactions, hence implying that the ecosystem as a whole cannot be
stable if α < 1. Therefore, stability requires α ≥ 1, with the value α = 1 corresponding to
marginal stability. As for spin-glasses, one finds a similar result also considering excitations
of more than two particles.
Note that for the argument above we used the assumption that the changes in the value
of the equilibrium abundances N∗i and N∗j due to the interaction can be neglected. This
is indeed correct as far as α > 1, as it can easily checked. A more detailed argument can
be found in Appendix F.

21



SciPost Physics Submission

6 Summary of the results: Allee versus Logistic Growth
case

In the following, we will briefly recap the main differences we have found in this work
between the behavior of the Lotka-Volterra model with logistic growth and with the Allee
effect.

• Different Phase Diagram In terms of the emerging phase diagram in the two-
dimensional plane (T, σ), the Lotka-Volterra model turns out to be characterized
by three different phases: i) a single equilibrium phase (formally described by a
RS solution); ii) a multiple equilibrium regime (well-defined within a 1RSB Ansatz)
with an exponential number of equilibria in the system size; iii) a marginally stable
Gardner phase. All these regimes have been studied in detail in [11]. The resulting
scenario is completely different in the Allee model, as shown in Fig. (4). In this case,
only two phases take place both for the weak and the strong Allee effect: i) a single
equilibrium phase; ii) a multiple equilibria regime, which is well-defined within a
Full-RSB (FRSB) Ansatz, with no signature of a Gardner phase. Furthermore the
transition between the single and multiple equibria phase is continuous.

• Different Nature of the Multiple Equilibria Phase In the Allee case, the
multiple stable equilibria are the ones characteristic of the FRSB phase: they are not
exponential in number, they are separated by sub-extensive barriers and organized
in a hierarchical way, as equilibrium states of mean-field spin glasses [32]. This is
very different from the logistic growth case in which the number of equilibria is
exponential and the barriers are extensive [11].

• Pseudogap distribution of the local curvatures Another extremely relevant
feature relies on the marginal stability condition as shown in Eq. (48). The Lotka-
Volterra model with logistic growth is rather unique in the sense that its response
function does not depend on N∗, hence the local curvatures do not fluctuate. As soon
as one consider a functional response which is not a linear function, local curvatures
fluctuate. In the multiple equilibria phase their distribution is characterized by a
pseudo-gap which is a smoking-gun signature of marginal phases.

7 Conclusion

In this work, we have studied a disordered mean-field model that specifically allows us to
reproduce the main properties of the so-called Allee effect in theoretical ecology and to
unveil the complex structure of the equilibria in the energy landscape. The Allee effect,
which results in a positive correlation between population density and mean individual
fitness, can occur essentially in two different ways – hence defined as strong Allee effect
and weak Allee effect – depending on whether there exists an initial population threshold
below which the population goes extinct. In its strong variant it turns out to be character-
ized by the appearance of a new stable fixed point at positive abundance competing with
the one in N∗ = 0 corresponding to extinction in the absence of immigration and coloniza-
tion. This underlying bistability has interesting connections with bistable networks and
hysteresis effects in disordered systems. Our outcomes can therefore lead to wide-ranging
applications in population dynamics, genetics, epidemiology up to cancer evolution thanks
also to recent advances in modern engineering and synthetic biology. Maximum entropy
principle [48] can be for instance employed for inferring model parameters – as the Allee
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threshold, which allows one to select one minimum or the other depending on the ini-
tial conditions – from large-scale biological data-set and for reconstructing the optimal
probability distribution compatible with external constraints, i.e. limitation of resources,
multi-level bottom-up structures.

Formally, our work relies on introduction of a cubic potential in the species abundances,
which turns out to be particularly convenient not only to extend well-known predictions
based on the Malthusian principle and logistic function for the mean population growth,
but also to go beyond very recent results obtained for the Lotka-Volterra logistic growth
model in the well-mixed assumption. Notably, we have established the full phase diagram
in the presence of random symmetric interactions between species and finite demographic
noise. By varying the amplitude of the demographic noise together with the heterogeneity
parameter of the interaction matrix, we have highlighted two phases with a different
underlying symmetry. Then, by taking advantage of a perturbative calculation, we have
investigated and distinguished a single equilibrium phase, where the phase space is purely
ergodic, from a multiple equilibria regime, where the symmetry is broken infinitely many
times, thus associated with a rough landscape structure. A main result is that the phase
diagram as well as the nature of the multiple equilibria phase differ substantially from the
ones obtained in the case of logistic growth, thus unveiling the relevance of the species
functional response in determining the aggregate properties of the entire ecosystem.

Experimental studies on microbial populations [49, 50] can bring more power to theo-
retical predictions as well as provide a means to explore new ideas in evolutionary biology.
One might consider a chemostat reactor in which changing the availability and concentra-
tion of nutrients (more nutrients would correspond to more heterogeneous interactions in
our jargon) is responsible to trigger long-lasting modifications in the community composi-
tion. Upon increasing the number of available nutrients, one can extrapolate information
on the mean abundance - averaged over all the samples - as a function of time as well
as the correlation between abundances at two different times. From the analysis of dy-
namical correlation functions the emergence of a bunch of plateaus might be highlighted,
corresponding to dynamical arrest at different timescales, hence to a multi-structured
organization of the equilibria from a landscape perspective.

Furthermore, studies on the so-called alternative stable states and regime shifts are
gaining an increasing popularity, especially in the context of the human gut microbiome
[2, 51] as an effort to explain the enormous variability observed both within and among
gut microbial communities.

Then, in the theoretical framework presented thus far one can wonder what would be
the effect of adding a small asymmetry to the interactions. Theoretical predictions have
been discussed in a close-related model for a purely competitive environment with logistic
growth [11]. In the case of the Allee effect, we expect that the multiple equilibria FRSB
phase is replaced by a chaotic dynamical phase, which corresponds to a slow surfing on
top of the marginally stable states [11,52].

Finally, we have presented a novel prediction in terms of fluctuations of the effective
potential (or effective growth rate) for the single species in a large interacting ecosystem.
Marginality of the multiple equilibria phase leads to a pseudo-gap in the distribution
P (V ′′eff(N∗)) of the local curvatures, a phenomenon that have attracted a lot of attention in
the physics of marginal states of matter [27]. A very interesting direction for future research
would be to experimentally investigate functional responses given by local fluctuations
on the single species (e.g. distinguishing between pulse and press perturbations). A
designed experiment would allow one to extrapolate possible power-law behaviors and
logarithmic corrections in the abundance distributions, exactly as we did in terms of a
suitable effective potential to characterize respectively a stable and a marginally stable
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phase. Quite recently pulse disturbances have been analyzed on phytoplankton blooms
revealing not only the impact on the neighboring species but also the role played in the
heterotrophic and autotrophic supplies to the global carbon cycle [53].
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L’Oréal UNESCO Young Talents France Fellowship.

A Effective Hamiltonian and Replica symmetric ansatz

The resulting action in Eq. (11) reads

A(Qab, Qaa, Ha) = −ρ2σ2β2
∑
a<b

Q2
ab

2
− ρ2σ2β2

∑
a

Q2
aa

4
+ ρµβ

∑
a

H2
a

2
+

1

S

∑
i

lnZi , (61)

where the last piece can be written as a Boltzmann measure in terms of an effective
Hamiltonian

Zi =

∫ ∏
a

dNa
i exp (−βHeff({Na}i)) . (62)

The effective Hamiltonian Heff corresponds to

Heff({Na}i) =− βρ2σ2
∑
a<b

Na
i N

b
iQab − βρ2σ2

∑
a

(Na
i )2Qaa

2
+

+
∑
a

[ρµHaN
a
i + Vi(N

a
i ) + (T − λ) lnNa

i ] ,
(63)

which can be further simplified using some specific approximations.
The simplest scenario in the panorama of all possible replica techniques corresponds to

the replica symmetric (RS) computation, which holds as long as the free-energy landscape
is characterized by one single equilibrium. The overlap matrix is thus parametrized by
two values: the self-overlap between replicas inside the same state, qd, and the inter-
state overlap, q0. As for the external field, it is assumed to be uniform ∀a. This Ansatz
translates into the property that any permutation of the replica indices does not affect the
overall matrix structure.

Qab = q0 if a 6= b

Qaa = qd if a = b

Ha = h ∀a
(64)

Accordingly, the action A in Eq. (61) becomes:

A(qd, q0, h) = −ρ2σ2β2n(n− 1)

4
q2

0 − ρ2σ2β2n

4
q2
d + ρµβ

n

2
h2 +

1

S

∑
i

lnZi (65)
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where the partition function reads

Zi =

∫ +∞

−∞

dzi√
2π
e−z

2
i /2

∫ n∏
a=1

dNa
i e
−β∑

a
HRS(Na

i ,zi)
, (66)

with

−βHRS(Ni) =
β2ρ2σ2

2
q0

(∑
a

Na
i

)2

+
β2ρ2σ2

2
(qd − q0)

∑
a

(Na
i )2 + β

∑
a

(Na
i )2

(
ri +

m

Ki

)
+

−βρµh
∑
a

Na
i − βm

∑
a

Na
i ri − β

ri
Ki

∑
a

(Na
i )3 − β(T − λ) logNa

i .

(67)

At this level, the replica indices are nevertheless still coupled. To rewrite the first term
in the r.h.s in a more convenient way and decouple replicas, we introduce an auxiliary
Gaussian variable zi with zero mean and unit variance. Its introduction results in an
additional linear contribution in Ni that essentially contributes to tilting the potential. In
terms of the RS Hamiltonian we eventually obtain:

HRS(Ni, zi) =Vi(Ni) +

[
−βρ

2σ2

2
(qd − q0)N2

i + (ρµh− ziρσ
√
q0)Ni

]
. (68)

This result has a nice interpretation: the interaction between species leads to the emer-
gence of an effective potential for a single species, and hence an effective functional re-
sponse, which is species dependent. Since in the limit β → ∞, qd → q0, henceforth we
shall use the notation ∆q = βρ(qd − q0).

B Replicon eigenvalue

The fluctuations contributing to the spin-glass correlation functions are due to a special
mode of the stability matrix, the so-called replicon mode, whereas those contributing to the
nonlinear correlation function are related to the so-called longitudinal -anomalous modes.
To investigate stability properties of the different phases, we thus introduce the Hessian
matrix of the free energy, which allows us to analyze the harmonic fluctuations in terms of
δQab. Thanks to symmetry group properties in the replica space, the diagonalization of the
stability matrix can be expressed only in terms of three different sectors. Following [34],
we define three eigenvalues: the longitudinal, λL, the anomalous, λA, and the replicon, λR.
Since we are specifically interested in possible Replica Symmetry Breaking (RSB) effects,
we focus on the replicon mode. By contrast, a zero longitudinal mode can give information
in terms of spinodal points describing how a state opens up along an unstable direction and
originates then a saddle. The detection of a vanishing replicon mode from the sufficiently
high demographic noise (single equilibrium) phase is related to the appearance of marginal
states, which turn out to be extremely relevant also because of their intimate connection
with out-of-equilibrium aging dynamics [35–37].

We consider then the variation of the RS action with respect to the overlap matrix

A(Qab, Qaa, Ha) = −ρ2σ2β2
∑
a<b

Q2
ab

2
− ρ2σ2β2

∑
a

Q2
aa

4
+ ρµβ

∑
a

H2
a

2
+

1

S

∑
i

lnZi , (69)

for which we recall also the expression of the partition function:

Zi =

∫ ∏
a

dNa
i e

[
β2ρ2σ2

2

∑
a<b

QabN
a
i N

b
i +β2ρ2σ2

∑
a

(Na
i )2Qaa

2
−ρβµ∑

a
Na
i H

a−βVi(Na
i )−lnNa

i

]
. (70)
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By differentiating the action with respect to the overlap matrix, we eventually obtain to
the first order:

− ∂A

∂Qab
= β2ρ2σ2Qab − β2ρ2σ2〈NaN b〉 , (71)

and to the second order

Mabcd ≡ −
∂2A

∂Qab∂Qcd
= β2ρ2σ2

[
δ(ab),(cd) − (β2ρ2σ2)〈NaN b, N cNd〉c

]
, (72)

where the subscript 〈·〉c stands for the connected part of the correlator. We can now take
advantage of the underlying symmetry in the replica space and decompose the stability
matrix (72) as follows

Mabcd = Mab,ab

(
δacδbc + δadδbc

2

)
+Mab,ac

(
δac + δbd + δad + δbc

4

)
+Mab,cd (73)

whose projection into the replicon subspace yields

λR = (βρσ)2

[
1− (βρσ)2(Mab,ab − 2Mab,ac +Mab,cd)

]
. (74)

The three contributions appearing in the second term of Eq. (74) can be re-expressed as

Mab,ab − 2Mab,ac +Mab,cd =
[
〈(Na)2(N b)2〉 − 2〈(Na)2N bN c〉+ 〈NaN bN cNd〉

]
. (75)

In the simplest scenario corresponding to the presence of a single equilibrium in the free-
energy landscape, the replicon mode can be eventually written as

λR = (βρσ)2
[
1− (βρσ)2(〈N2〉 − 〈N〉2)2

]
, (76)

where the averaged difference describes the fluctuations between the first and second
moments of the species abundances within one state, namely between the diagonal value
qd and the off-diagonal contribution q0 of the overlap matrix.

C Derivation of the breaking point

In Sec. 4.2.1 we showed the final expression for the breaking point allowing us, together
with the slope q̇(x), to distinguish between a discontinuous and a continuous phase tran-
sition in the order parameter. This provide a crucial information to better investigate
the properties of the equilibria in the free-energy landscape and argue about the resulting
transitions. The computation of these two quantities allows us to avoid a too convoluted
formalism, which would in principle require the stability computation of multiple steps of
replica symmetry breaking. In the following, we will then discuss the main passages to
obtain the expressions for the breaking point and the slope in a very general setting, as
shown in [38].

We start from the expression of the functional derivative of the free energy

δf [q(x); qd]

δq(x)
=

1

2

∫
dh P (h, x)(f ′(h, x))2 . (77)

Taking advantage of the following relationship

d

dx

δf [q(x); qd]

δq(x)
= f (2)[q(x); qd]q̇(x) (78)
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the second derivative of the free energy turns out to be

f (2)[q(x); qd]q̇(x) =
1

2

d

dx

∫
dh P (h, x)f ′(x, h)2 . (79)

Then, according to this second relation:

d

dx
f (n)[q(x); qd] = f (n+1)[q(x); qd]q̇(x) for n ≥ 2 , (80)

the r.h.s of Eq. (79) can be re-expressed as

d

dx

∫
dhP (h, x)f ′(x, h)2 = q̇(x)

∫
dhP (h, x)f ′′(x, h)2 . (81)

Gathering the two expressions together, one obtains

f (2)[q(x); qd]q̇(x) =
q̇(x)

2

∫
dhP (h, x)f ′′(x, h)2 (82)

Therefore, if there exists an interval ∈ [0, 1] above which q̇(x) 6= 0, one can argue that the
variation of the free energy function to the second order is

f (2)[q(x); qd] =
1

2

∫
dhP (h, x)f ′′(x, h)2 , (83)

which is essentially equivalent to determining the vanishing value of the replicon mode of
the stability matrix, i.e. the marginal stability condition for the RS solution. Hence, the
breaking point can be simply obtained by the differentiation of the above equation with
respect to x:

d

dx

∫
dhP (h, x)f ′′(x, h)2 = q̇(x)

[
dhP (h, x)f ′′′(x, h)2 − 2x

∫
dhP (h, x)f ′′(x, h)3

]
(84)

Using again Eqs. (78)-(79), we impose f (3)[q(x); qd] = 0, from which we immediately get∫
dhP (h, x)f ′′′(x, h)2 − 2x

∫
dhP (h, x)(f ′′(x, h))3 = 0 , (85)

hence in terms of the breaking point x∗:

x∗ =
dhP (h, x)f ′′′(x, h)2

2
∫
dhP (, hx)f ′′(x, h)3

. (86)

D Alternative computation of the breaking point by a third-
order perturbative expansion

To study stability properties, we can develop the matrix Qab and the external field ha
around the symmetric solution namely with Qab = qdδab + q0 and ha = h. Note that we
have called q the diagonal value and t the off-diagonal contribution.

Qab = (qd + ρa)δab + q0 + σab ,

ha = h+ la
(87)
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where σaa = 0 and σab = σba. Expanding the free energy according to the definition in
Eq. (87), we obtain to the third order:

f (3) =− 1

6
〈NaNbNc〉c

∑
abc

lalblc +
β

2
〈NaNbN

2
c 〉c
∑
abc

lalbρc −
β2

2
〈NaN

2
bN

2
c 〉c
∑
abc

laρbρc+

+
β3

6
〈N2

aN
2
bN

2
c 〉c
∑
abc

ρaρbρc +
β

2
〈NaNb(NcNd)〉c

∑
ab,c 6=d

lalbσcd+

− β2〈NaN
2
b (NcNd)〉c

∑
ab,c 6=d

laρbσcd +
β3

2
〈N2

aN
2
b (NcNd)〉c

∑
ab,c 6=d

ρaρbσcd+

− β2

2
〈Na(NbNc)(NdNe)〉c

∑
ab 6=c,d6=e

laρbcσde +
β3

2
〈N2

a (NbNc)(NdNe)〉c
∑

ab6=c,d6=e
ρaσbcσde+

+
β3

6
〈(NaNb)(NcNd)(NeNf )〉c

∑
a6=b,c6=d,e 6=f

σabσcdσef .

(88)

where three-point connected correlation functions can be simplied according to

〈ABC〉c ≡ 〈ABC〉 − 〈A〉〈BC〉 − 〈B〉〈AC〉 − 〈C〉〈AB〉+ 2〈A〉〈B〉〈C〉 . (89)

In the following we resume a detailed computation that was similarly done in [39] in the
case of the Random Replicant Model describing the evolution of an ensemble of replicants
that evolve according to random interactions. Using Eq. (89) the third-order contribution
of the free energy can be simplified as a combination of single averages

f (3) =− l3

6

[
〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3

]
+
βl2ρ

2

[
〈N4〉 − 2〈N3〉〈N〉 − 〈N2〉2 + 〈N〉2〈N2〉

]
+

− β2lρ2

2

[
〈N5〉 − 〈N4〉〈N〉 − 2〈N3〉〈N2〉+ 2〈N2〉2〈N〉

]
+

+
β3ρ3

6

[
〈N6〉 − 3〈N4〉〈N2〉+ 2〈N2〉3

]
+

+
βl2

2

[
6〈N3〉〈N〉 − 2〈N2〉2 − 10〈N〉2〈N2〉+ 6〈N〉4 + 4(〈N2〉2 − 〈N〉2 · 〈N2〉)

]∑
6=
σab+

− β2lρ

[
6〈N4〉〈N〉 − 2〈N3〉〈N2〉 − 6〈N〉2〈N3〉 − 4〈N2〉2〈N〉+ 6〈N〉3〈N2〉+

+ 4
(
〈N2〉〈N〉 · 〈N〉2 − 〈N3〉 · 〈N〉2

)]∑
6=
σab+

+
β3ρ2

2

[
6〈N5〉〈N〉 − 2〈N〉2〈N4〉 − 2〈N3〉2 − 8〈N3〉〈N2〉〈N〉+ 6〈N〉2〈N2〉2+

+ 4(〈N2〉2 · 〈N〉2 − 〈N4〉〈N〉2)

]∑
6=
σab+

− 2β2l

[(
〈N3〉〈N2〉 − 〈N2〉2〈N〉+ 2〈N〉3 · 〈N〉2 − 2〈N2〉〈N〉 · 〈N〉2

)∑
6=
σ2
ab+

+
(
〈N2〉〈N3〉+ 2〈N2〉2〈N〉 − 3〈N〉3〈N2〉+ 4〈N〉3 · 〈N〉2 − 4〈N2〉〈N〉 · 〈N〉2

)∑
6=
σabσbc+

(90)
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+
(
〈N〉3〈N2〉 − 〈N〉5 + 〈N〉3 · 〈N〉2 − 〈N2〉〈N〉 · 〈N〉2

)∑
6=
σabσcd

]
+

+ 2β3ρ
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+
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·
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σabσcd

]
+

+
β3

6
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4
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3+

+ 24
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〈N3〉〈N2〉〈N〉 − 2〈N〉2〈N2〉 · 〈N〉2 − 〈N2〉2 · 〈N〉2 + 2〈N〉23

)∑
6=
σ2
abσbc+

+ 8
(
〈N2〉3 − 3〈N〉2〈N2〉 · 〈N〉2 + 2〈N〉23

)∑
6=
σabσbcσca+

+ 6
(
〈N2〉2〈N〉2 − 〈N2〉2 · 〈N〉2 − 2〈N〉4 · 〈N〉2 + 2〈N〉23

)∑
6=
σ2
abσcd+

+ 24
(
〈N2〉2〈N〉2 − 2〈N〉2〈N2〉 · 〈N〉2 − 〈N〉4 · 〈N〉2 + 2〈N〉23

)∑
6=
σabσacσbd+

8
(
〈N〉3〈N3〉 − 3〈N〉2〈N2〉 · 〈N〉2 + 2〈N〉23

)∑
6=
σabσacσad+

+ 12
(
〈N〉4〈N2〉 − 〈N〉2〈N2〉 · 〈N〉2 − 2〈N〉4 · 〈N〉2 + 2〈N〉23

)∑
6=
σabσbcσde+

+
(
〈N〉6 − 3〈N〉4 · 〈N〉2 + 2〈N〉23

)∑
6=
σabσcdσef

]
.

(91)

As the next step, the sum over the σ’s must be expressed in terms of the continuous
function q(x). One typically uses the hypothesis that such σ matrices break the replica
symmetry in a hierarchical way and then looks for the solution q(x) that minimizes the free
energy functional, written as a combination of second-order and third-order contributions
as in Eq. (91). Therefore, by differentiating δF [q]

∂q(x) = 0 with respect to x, one finds precisely

Eq. (39) of the main text, provided q̇(x) 6= 0.

E Marginal stability in the zero demographic noise limit

In the following, we shall derive the marginal stability condition and its behavior in the
vanishing demographic noise limit. The starting point is the analysis of the stability
matrix, namely the second derivatives of the free energy with respect to the overlap matrix
Qab:

− ∂2A

∂Qab∂Qcd
= β2ρ2σ2δ(ab),(cd) − (β2ρ2σ2)2〈NaN b, N cNd〉c (92)
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from which, in the RS Ansatz according to [54–56], the replicon eigenvalue reads

λrepl =Mab,ab − 2Mab,ac +Mab,cd =

=(βρσ)2

{
1− (βρσ)2[〈(Na)2(N b)2〉 − 2〈(Na)2N bN c〉+ 〈NaN bN cNd〉]

}
.

(93)

To prove the instability of the RS solution it is sufficient to show that the second term
in the above expression is either greater than one or divergent under some conditions.
The above expression can be rewritten in a more straightforward way by noticing that
the three correlators correspond to the first and higher-order moments of the abundances
averaged over the conditioned probability distribution. We focus then on the conditioned
probability of the four-replica-index correlator, conditioned to the Gaussian variable z.

〈(Na)2(N b)2〉z =
1

Z(z)4

(∫
dNe

−β
[
−
(
ρ2σ2

2 β(qd−q0)+(r+m/K)
)
N2+(ρµh+mr−zρσ

√
q0)N+ρN3

]
N2

)2

(94)

〈NaN bN cNd〉z =
1

Z(z)4

(∫
dNe

−β
[
−
(
ρ2σ2

2 β(qd−q0)+(r+m/K)
)
N2+(ρµh+mr−zρσ

√
q0)N+ρN3

]
N

)4

(95)

〈(Na)2N bN c〉z =
1

Z(z)4

(∫
dNe

−β
[
−
(
ρ2σ2

2 β(qd−q0)+(r+m/K)
)
N2+(ρµh+mr−zρσ

√
q0)N+ρN3

]
N2

)
·

·
(∫

dNe
−β
[
−
(
ρ2σ2

2 β(qd−q0)+(r+m/K)
)
N2+(ρµh+mr−zρσ

√
q0)N+ρN3

]
N

)2

(96)

The last correlator 〈(Na)2N bN c〉z is a combination of the previous ones: its expression
is slightly more involved but still exactly calculable. For the sake of compactness, in all
the expressions above we have indicated the partition function as

Z(z) =

∫
dNe

−β
[
−
(
ρ2σ2

2
β(qd−q0)+(r+m/K)

)
N2+(ρµh+mr−zρσ√q0)N+ρN3

]
. (97)

In the β → ∞ limit, we can safely expand the term at the exponent around the saddle-
point value N∗, which corresponds to a harmonic approximation in (N−N∗). Accordingly,
the normalization can be rewritten as

Z(z) =

∫
dNθ(N)e−β[N

∗(b−aN∗−cz+(N∗)2ρ)+(b−2aN∗−cz+3(N∗)2ρ)(N−N∗)+(−a+3N∗ρ)(N−N∗)2]

(98)

Then, the average species abundance reads

A(z) =

∫ ∞
0

dNe−β[N
∗(b−aN∗−cz+(N∗)2ρ)+(b−2aN∗−cz+3(N∗)2ρ)(N−N∗)+(−a+3N∗ρ)(N−N∗)2]N ,

(99)
while its second-order moment:

B(z) =

∫ ∞
0

dNe−β[N
∗(b−aN∗−cz+(N∗)2ρ)+(b−2aN∗−cz+3(N∗)2ρ)(N−N∗)+(−a+3N∗ρ)(N−N∗)2]N2 .

(100)
Then, the last correlator can be expressed as a combination of the first two pieces:

C(z) = B(z) ·A(z)2 . (101)
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Gathering all the information on the three correlators together, we end up with the ex-
pression of the replicon to be averaged over the Gaussian variable z[

〈(Na)2(N b)2〉 − 2〈(Na)2N bN c〉+ 〈NaN bN cNd〉
]

=

∫
DzB(z)2 − 2C(z) +A(z)4

Z4

(102)
We have not reported all mathematical steps to avoid making the paper too heavy.

Nonetheless, thanks to the Gaussian form of the integrals, the reader can keep going
in the analysis and show that the replicon expression would diverge irrespective of the
parameters a, b, c, ρ, as β � 1.

E.1 General computation for an arbitrary potential

We aim now at generalizing the aforementioned computation for a generic potential Vi(Ni),
beyond the simple Lotka-Volterra and cubic interaction cases. We thus express the starting
Hamiltonian in the RS Ansatz as:

HRS(Ni, zi) = Vi(Ni)−
ρ2σ2β(qd − q0)

2
N2
i + (ρµh− ziρσ

√
q0)Ni (103)

where for the sake of simplicity we can absorb both contributions of the linear shift in Ni

in a single term z̃ic. By employing a harmonic approximation in (N −N∗), we eventually
end up with:

H̃RS =Vi(Ni)−
ρ2σ2∆q

2
N2
i + z̃cNi ≈

[
cN∗i z̃ −

1

2
∆q(N∗i )2ρ2σ2 + Vi(N

∗
i )

]
+

+
[
cz̃ −∆qN∗i ρ

2σ2 + Vi
′(N∗i )

]
(Ni −N∗i ) +

1

2

[
−∆qρ2σ2 + V

′′
i (N∗i )

]
(Ni −N∗i )2 .

(104)

The partition function becomes then

Z =
1√

β
(
−∆qρ2σ2 + V

′′
i (N∗i )

) ·√π

2
Erfc

β
(
cz̃ + V

′
i (N∗i )−N∗i V

′′
i (N∗i )

)
√

2
(
β(−∆qρ2σ2 + V

′′
i (N∗i ))

)


· e
−β

[
c2z̃2+V ′i (N∗i )(2cz̃−2∆qN∗i ρ

2σ2+V ′i (N∗i ))+2Vi(N
∗
i )

(
∆qρ2σ2−V

′′
i (N∗i )

)
+N∗i (−2cz̃+∆qN∗i ρ

2σ2)V
′′
i (N∗i )

]
2(∆qρ2σ2−V ′′

i
(N∗
i

)) .

(105)

Considering now the asymptotic expansion of the complementary error function in the
β →∞ limit, which can be simplified with the other exponential factor, we can claim that
the only relevant term is the normalization 1/

√
β (−∆qρ2σ2 + V ′′(N∗)). Note again that

the factor ∆q = β(qd−q0) has been introduced to properly deal with O(1) quantities in this
regime. We can focus then on the other terms, which are expressed as conditioned averages
over the auxiliary Gaussian variable of four-replica-index correlators. Then, neglecting
exponentially small factors, we can rewrite the resulting combination, as shown in Eq.
(102), in the following way:

(ρσ)2
[
〈(Na

i )2(N b
i )2〉 − 2〈(Na

i )2N b
iN

c
i 〉+ 〈Na

i N
b
iN

c
iN

d
i 〉
]

=
ρ2σ2

(−∆qρ2σ2 + V ′′i (N∗i ))2 .

(106)
where the overline denotes the average over the species distribution P (N∗). Note that, in
the β →∞ limit, most of the terms cancel out with each other because the error functions
themselves tend to one in this regime.
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In the simplest Lotka-Volterra logistic growth case one immediately recognizes that
this equation implies

ρ2σ2

ρ2 (1− σ2∆q)2 =
σ2

(1− σ2∆q)2
(107)

because the denominator in Eq. (106) is just the curvature of the Hamiltonian H ′′(N∗i ),
in perfect agreement with the results obtained in [7].

F Coupled potentials: Bethe lattice argument

To show that only diagonal terms matter in the resulting formulation, we can for instance
rephrase the model proposed in Eq. (58) on a Bethe lattice, namely on a random graph
with a locally tree-like structure. Eq. (58) should be then generalized for all site on the
lattice.

ji αij

Figure 7: Part of the Bethe lattice connecting sites i and j with coupling αij . The lattice
is assumed to be ideally infinite with all sites equivalent.

Compared to fully connected (FC) models, which are typically simpler to solve, the
Bethe lattice has the advantage of being more akin to realistic finite-dimensional models
because of its finite connectivity. On the other hand, from the point of view of critical
phenomena, a phase transition on the Bethe lattice is mean-field-like: hence, if such a
transition does also exist in the large-connectivity/FC limit, then the critical exponents
should be the same as those of the corresponding continuum field theory. Generically, the
density of eigenvalues λγ can be obtained through

ρ(E) =
1

S

∑
γ

δ(E − λγ) (108)

where S denotes the total number of species, i.e. of sites in the current notation. Its
expression is strictly related to the resolvent matrix G(E)

ρ(E) = lim
ε→0

1

πS
= Tr G(E + iε) (109)

where =(·) is the imaginary part. To define the spectral properties of the Hamiltonian
operator we would need to better investigate the resolvent matrix structure, which is
defined as

Gij(z) =

(
1

H − z1

)
. (110)
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Its diagonal part turns out to be

Gii(z) =
1

Hii − z −
K∑
k=1

K∑
j=1

α2
kjGk,j(z)

, (111)

as it can be proven by means of a perturbative expansion, in the same spirit of the Dyson
equation in diagrammatic theory, or by Random Matrix Theory (RMT) properties, such
as the Schur’s complement formula on inverse matrices [57]. By perturbation theory, one
basically notices that the two contributions at the denominator can be split into a diagonal
part plus a second one written a sum running over all paths in the lattice that connects i
and j, for which site i is excluded. In this light, the last contribution of Eq. (111) can be
further simplified leading to the following expression for the diagonal part of the resolvent

Gii(z) =
1

Hii − z −
K∑
k=1

Gk,k(z)

, (112)

where Gk,k(z) stands for the cavity correlator (or Green function) with αkk = 1. Because
in the large-S limit off-diagonal terms(with k 6= j) are negligible, we can focus only on
diagonal terms. More precisely, on every graph with a tree-like topology, sites k and j
turn out to be directly connected once that i is removed.

For the sake of brevity, we will denote the diagonal element of the resolvent matrix as
G(z), we can also deduce the spectral properties through the computation of the density
ρ(E), see Eq. (109). Hence, the introduction of an infinitesimal field on each Ni will result
in a term δNi, which can be dealt with using the same strategy as in Sec. (5.3). The
energy variation will be then

δE =
1

2

∑
i

δN2
i V

′′
eff(N∗i ) (113)

where, again, we can consider only diagonal terms of the interaction matrix in Eq. (59).
The argument follows precisely as in the main text giving a criterion for marginal stability
in terms of the distribution P (V

′′
eff(N∗)).

G Connections with a disordered instance of two-level sys-
tem (TLS)

In a recent paper [58], a generalization of the Kühn and Horstmann (KH) model combined
with the Gurevich, Parshin and Schober (GPS) three-dimensional lattice version in the
presence of random interactions and a constant external field has been proposed in order
to study zero-temperature vibrational modes of a specifically designed disordered system.
The model is formulated as a collection of anharmonic oscillators subject to a random
distribution p(κ) for the stiffnesses κ, which are taken uniform in the interval [κmin, κmax]
for positive or zero values. In this formulation, the Hamiltonian reads

HKHGPS =
∑
i<j

Jijxixj +
1

2

∑
i

κix
2
i +

1

4!

∑
i

x4
i − h

∑
i

xi (114)

where the couplings Jij are i.i.d variables, Gaussian distributed with zero mean and vari-
ance J2/N . If the lower edge of the stiffness support is strictly positive, the spectral
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density is gapped at small coupling strength leading to a purely convex landscape. Con-
versely, upon increasing the coupling strength, a phase transition takes place according to
which the lower edge of the spectral density touches zero as a signature of marginality.

Specifically in the T → 0 limit, one can define an effective potential veff(x) ≡ x4

4! +
m
2 x

2 − (f + h)x, where f is a random force while m = κ− J2χ, where χ is related to the
correlation functions between different replicas and should be determined self-consistently.

In [58] it has been shown that at small external field the density of states is purely
quadratic D(ω) ∼ ω2 as correctly predicted by mean-field models, and the corresponding
modes are delocalized. On the other hand, upon increasing the external field, a quartic
pseudogap D(ω) ∼ ω4 takes place associated with the appearance of localized modes. The
two regimes are separated by a special point on the critical line in the two-dimensional
plane for the applied magnetic field versus the interaction strength (J, h). The strength J
plays a crucial role because for sufficiently small couplings the spectrum remains gapped
with a twofold scenario for the density of states (either quartic dependence in ω or standard
quadratic trend as observed in most mean-field spin-glass systems). Moreover, if the
minimal stiffness – defining the lower edge of the support of p(κ) – shrinks to zero, the
critical transition line Jc(h) shifts to the left as well allowing only for a RSB phase,
irrespective of the strength J .

H Toy model of coupled oscillators: a field theory approach

To highlight the connection with our model in presence of a cubic potential, we will present
an argument inspired by a system of coupled oscillators subject to a given interacting
potential. We shall then generalize this picture considering an additional quartic-order
contribution which accounts specifically for a double-well potential.

Therefore, we can map the parameters of the KHGPS model – notably the marginal
stability condition for the stiffness – into a weak or strong Allee effect depending on the
selected value of the threshold m and the generalized field. The interplay between the
parameter m and the field is indeed responsible for a different phenomenology associated
with a single or a double-well potential in the species abundances, respectively.

To give a more concrete example, we first consider a system on a linear chain defined
by N identical massive particles (with given mass m) oscillating around their equilibrium
positions and subject to a harmonic potential. The Hamiltonian can be written then as

H =
N∑
n=1

p2
n

2m
+
mω2

2
(qn − qn−1)2 +

mω2
0

2
q2
n (115)

where the second term represents the nearest-neighbor coupling, whereas the last term
simply reproduces the Hooke contribution. According to quantum mechanics formalism,
we can resort to the usual relations for the evolution of positions and momenta:{

q̇n(t) = pn(t)
m

ṗn(t) = mω2 [qn+1(t) + qn−1(t)− 2qn(t)]−mω2
0qn(t)

(116)

In the continuum limit, particles are function of both position and time, therefore by the
introduction of a field:

q̈(x, t) = ω2a2

[
q(x+ a, t)− q(x, t)− (q(x, t)− q(x− a, t))

a2

]
− ω2

0q(x, t) (117)
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which in the limit a→ 0, N →∞ implies:

lim
a→0,N→∞

q̈(x, t)⇒ q̈(x, t)− ω2a2 ∂
2

∂x2
q(x, t) + ω2

0q(x, t) = 0 (118)

If we define ωa ≡ v and set ω0 = 0, we can exactly recover the wave equation in one
dimension with q̈(x, t)− v2∂2/∂x2q(x, t) = 0. For the sake of convenience we nevertheless
choose the rescaling (ω/v)2 = m2, q(x, t) = φ(x) and v = c, which allows us to end up
with a Klein-Gordon equation for bosonic fields. In the covariant formulation, the equation
reads:

∂µ∂
µφ(x) +m2φ(x) = 0 . (119)

from which one can derive the corresponding Klein-Gordon action in a few passages

S [φ] =

∫
d4x

(
−1

2
∂µ∂

µφ− m2

2
φφ

)
(120)

Note that the mass term m2 plays a crucial role as strictly connected to the appearance
of Goldstone modes. Coming back to the model defined in Eq. (114), this would lead to a
condition for the stiffness term k ↔ m2: when the support of k touches zero, an intrinsic
instability emerges as a consequence of a spontaneous symmetry breaking.

H.1 Further analysis of a system of anharmonic oscillators subject to
quartic-order perturbation

In the previous Section, we have briefly discussed how to recover the instability condition
by the analysis of the stiffness distribution and the determination of the vanishing behavior
of the lower edge of their support. In the following, we will show one possible strategy to
go beyond a model of purely harmonic oscillators by means of the introduction of quartic-
order contribution to be eventually treated in perturbation theory. The techniques we
are going to use in the following are standard and based on the computation of the first
corrections to the ground state energy in a quantum mechanical system of anharmonic
oscillators. Following the same hypothesis of [59], in the T → 0 limit we can write the
solution as a problem of decoupled oscillators subject to a given effective potential.

w =

∫
Dq exp

{
−
∫
dτ

(
mq̇2

2
+

1

2
mω2q2 +

λ

4!
q4

)}
(121)

The following notation w[J ]0 stands for the generating function without the quartic term
but in presence of an external force:

w(0)[J ] =

∫
Dq exp

{
−
∫
dτ

(
mq̇2

2
+

1

2
mω2q2 − Jq

)}
(122)

According to this reshuffling, we can obtain a compact expression as a function of cumu-
lants of (δ/δJ)4, based on the following identity:

e−
∫
dτ λ

4!(
δ
δJ )

4

w(0)[J ] =

∫
Dq exp

{
−
∫
dτ
λ

4!
q4

}
e−S

(0)[J ] =

=

∫
Dq exp

{
−
∫
dτ

(
1

2
mq̇2 +

1

2
mω2q2 +

λ

4!
q4 − Jq

)} (123)

from which we can expand the exponential in power series and eventually take J = 0 to
recover the initial expression. To compute Eq. (122), we consider the equation of motion
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in presence of the external source J and suppose to be able to find the classical solution
for q

mq̈(τ) = mω2q(τ)− J(τ) (124)

with q = 0 at the initial time. In a few passages, we can rewrite the expression for w(0)[J ]
as:

w(0)[J ] ∝ Ae−S[J ] (125)

where

S[J ] =

∫
dτ

(
1

2
mq̇2

clas +
1

2
mω2q2

class − Jqclass

)
(126)

Then, we can simply integrate the first term by part, take advantage of the equation of
motion and resort to the Green’s function formalism to write the resulting solution. In this

way, we end up with m
(
d2

dτ2 − ω2
)
G(τ, τ ′) = δ(τ − τ ′) where G(τ, τ ′) can be expressed in

the Fourier space as G(τ, τ ′) ≡ −
∫∞
−∞

dk
2π

1
m(k2+ω2)

eik(τ−τ ′). Accordingly, one can deduce

the first-order correction to w[J ], hence the ground state energy from the evaluation of its
logarithm. One can thus show that the first energetic contribution of a system of decoupled
oscillators, E0 = h̄hω

2 , is actually corrected by a term that is inversely proportional to m2ω2

confirming the divergence of the asymptotic expansion as m2 → 0.
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