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It is demonstrated that the known for a long time transition between the gap and gapless su-
perconducting states in the Abrikosov-Gor’kov theory of superconducting alloy with paramagnetic
impurities is of the Lifshitz type, i.e. of the 2 1

2
order phase transition. We prove that this phase

transition has a topological nature and is characterized by the corresponding change of the topo-
logical invariant, namely the Euler characteristic. We study the stability of such a transition with
respect to the spatial fluctuations of the magnetic impurities critical concentration ns and show that
the requirement for validity of its mean field description is unobtrusive: ∇ (lnns)� ξ−1 (here ξ is
the superconducting coherence length) Finally, we show that, similarly to the Lifshitz point, the 2 1

2
order phase transition should be accompanied by the corresponding singularities, for instance, the
superconducting thermoelectric effect has a giant peak exceeding the normal value of the Seebeck
coefficient by the ratio of the Fermi energy and the superconducting gap. The concept of the experi-
ment for the confirmation of 2 1

2
order topological phase transition is proposed. Obtained theoretical

results can be applied for the explanation of recent experiments with lightwave-driven gapless super-
conductivity, for the new interpretation disorder induced transition s±-s++ states via gapless phase
in multi-band superconductors, and for the better understanding of gapless color superconductivity
in quantum chromodynamics and the string theory.

PACS numbers:

Introduction. - In 1960, two seminal papers were pub-
lished almost simultaneously, which gave rise to new di-
rections in the research fields of superconductivity and
fermiology [1, 3].

In the first paper, Abrikosov and Gor’kov, extending
the BardeenCooperSchrieffer (BCS) theory to the case
of a superconducting alloy containing paramagnetic im-
purities, demonstrated that the original BCS identifica-
tion of the phenomenon of superconductivity with the
presence of the gap in the quasiparticle spectrum is too
limited, and, under some conditions, gapless supercon-
ductivity can exist. According to the Abrikosov-Gor’kov
(AG) theory [1, 2], the transition between gap and gap-
less regimes was governed by the concentration of pair-
breaking impurities and the properties of such supercon-
ducting system were studied in the mean-field approx-
imation. Gapless superconductivity occurs in the very
narrow interval of paramagnetic impurity concentrations
0.912nc < n < nc, where nc is the concentration that
completely suppresses the supercurrent flow. Later, it
was recognized that the gapless regime in a supercon-
ductor can be induced by different mechanisms breaking
the time-reversal symmetry: magnetic field, current [4],
proximity effect [5] and the light [6]. However, the order
of this transition, to the best of our knowledge, was never
discussed.

In the second paper of I.M. Lifshitz [3] the notion of
phase transition of fractional, 2 1

2 , order was introduced.
Also, it was pointed out that by varying some exter-
nal parameter (pressure or concentration of the isovalent
impurities) one can change the number of components
of topological connectivity of the Fermi surface, which

is accompanied, according to the Ehrenfest terminology
[7], by the 2 1

2 order phase transition. Further studies of
these, named today as Lifshitz’s, transitions revealed that
they are accompanied by singularities in various proper-
ties of the system undergoing them [8, 9].

The ideas proposed 60 years ago remain still valid in
modern studies on the stability of current-biased super-
conducting wires (see [10] and references therein), trans-
formations of the complex heavy fermion Fermi surfaces
due to magnetic field effects [11, 12], etc. Moreover, the
concept of a connection between the topological prop-
erties of the different materials exhibiting gapless states
and the occurrence of the exotic Lifshitz transitions was
recently discussed in literature based on very general
topological arguments. Examples are given by Dirac and
Weyl materials, and even more exotic systems (see the
reviews [13, 14]).

In this Letter we aim at framing these concepts into a
unified description and show that the known for a long
time transition between gap and gapless superconducting
states is the topological phase transition of the Lifshitz
type, i.e. of the 2 1

2 order. This will be proved by a
very simple approach, in spirit of the fundamental paper
[3], just analysing the properties of the free energy in a
superconductor containing paramagnetic impurities.

However, while Lifshitz transitions are characterized
by a change in the number of topologically connected
components, it is the Euler-Poincare topological invariant
that changes its value in the transition between the gap
and the gapless phases.

Further, we study the requirements on the homogene-
ity of the paramagnetic impurities concentration, which
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is necessary for the validity of the standard mean field
approximation in the description of the “gap-gapless”
transition used in [1], and we show the stability of the
transition with respect to these fluctuations.

Finally, we argue that such a transition would be ac-
companied by the appearance of singularities in several
properties, in particular an anomalous growth of the ther-
moelectric effect (see [15–18]) close to the critical concen-
tration, which is valuable for the experimental verifica-
tion of the proposed connection.

Free energy and topological phase transition. - We start
from the expression for the free energy close to the tran-
sition between gapless and gap regimes at T = 0 (see
[4, 19]), that is
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∆ is the order parameter (∆ ∈ R) and N(0) = mpF

π2~3 the
density of states at the Fermi level. The parameter

ζ = (τs∆)−1, (2)

with τs the electron spin-flip scattering time due to the
presence of paramagnetic impurities, governs the phase
transition between the gap and gapless states. Namely,
when ζ < 1 the energy gap ∆g in the quasiparticle spec-
trum of a superconductor has a nonzero value, while for
ζ > 1 the gapless state is realized and the energy gap
remains identically equal to zero. At the same time the
order parameter ∆ remains different from zero and the
phenomenon of supercurrent flow occurs. The critical
point ζ = 1 marks the gap and the gapless states. We
remark that the authors of [1] were the first who pointed
out at the importance of making a distinction between
the order parameter ∆ and the energy gap ∆g existing
in the quasiparticles spectrum. To elucidate what is the
order of the topological phase transition, we first studied
the behavior of the free energy (Eq. 1) and its derivatives
over the parameter ζ that drives the transition. It turns
out that the free energy together with its first and second
derivatives remain continuous function at the transition
point ζ = 1. However, the plot of the second derivative
∂2Fs−n/∂ζ

2 unambiguously shows the kink at ζ = 1 (Fig.
1). Moreover, from the expression of the third derivative

∂3Fs−n
∂ζ3

= N (0) ∆2


0, ζ 6 1
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√
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(3)

one can see the characteristic discontinuity with the
square root singularity from the gapless side. The sit-
uation is completely analogous to the Lifshitz 21

2 order

FIG. 1: The second derivative of Eq. (1) or specific heat
capacity. The kink is clearly observed at ζ = 1.

phase transitions in metals. The analogy is also con-
firmed by the quasiparticle density of states (DOS) de-
pendence on the parameter ζ driving transition [4]. In-
deed, for the gap state (ζ < 1,∆g 6= 0)

Ns (ω,ζ <1)=N (0)
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(4)
while in the gapless state (ζ > 1,∆g = 0)
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Eq. (5) shows that the density of states Ns (ω) remains
finite at ω = 0, i.e.

Ns (0) = N (0)

√
ζ + 1

ζ

√
ζ − 1 (6)

and has a typical cusp for 2 1
2 order phase transition at

ζ = 1.

The discovered above in a formal way 21
2 order phase

transition unambiguously requires its topological inter-
pretation. In the case of the Lifshitz transition in a nor-
mal metal the latter is trivial: the topological modifica-
tion of the Fermi surface occurs when the chemical poten-
tial µ reaches a certain critical value µc, where the num-
ber of components of its topological connectivity changes.
At this point the parameter z = µ − µc governing the
transition passes through its zero value [9, 13, 14, 20, 21].
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FIG. 2: Topological evolution of the DOS in the ω-ζ space
from the gap state with ζ < 1 (a) to the gapless state with
ζ > 1 (b) combined with the similar topological behavior of
the Fermi surface in the momentum space (c,d) for the Lifshitz
transition (see detailed explanation in the text). Figure (a)
with ζ < 1 is topologically equivalent to figure (c) with z < 0,
while figure (b) with ζ > 1 is topologically equivalent to figure
(d) with z > 0.

The topological interpretation of the found 2 1
2 order

phase transition can be given studying the modification
of the DOS surface topology in the ω-ζ space by exploit-
ing its general expression [1, 2]

N (ω, ζ) = N (0) ζ−1 Imu, (7)

with u given by

ω

∆
= u

(
1− ζ√

1− u2

)
(8)

Based on Eq. (7) one can find that the surfaces N(ω, ζ)
are topologically dissimilar for ζ < 1 and ζ > 1 cases (see
Fig. 2 a,b). The first case corresponds to the gap state
with the narrowing space between two detached sheets of
the DOS surfaces (Fig. 2 a). The second case character-
izes the gapless state with the gradual degradation of the
DOS curved surface to a plane when ζ →∞ (Fig. 2b).

It is interesting to note that at ζ = 1, when the col-
lapse of the energy gap occurs, the DOS surface acquires
a topological feature known as the cuspidal edge [22].
The latter is the notion of the theory of catastrophes
[23, 24]; it indicates on the occurrence of the catastrophe
phenomenon in the ω-ζ space over the gap-gapless phase
transition, when two sheets of the DOS surfaces begin to
collide with the increasing of ζ.

Therefore, one can conclude that instead of parameter
z that governs the Lifshitz transition and controls the
corresponding transformation of an open Fermi surface
into a closed one (Fig. 2c, d) with the emergence of the
corresponding gap, the driving parameter for the topo-
logical modification under consideration is the value of
ζ.

Likewise the Lifshitz transitions are characterized by
the change in the number of the topologically connected
components, the identification of the topological phase
transition between gap and gapless state can be con-
veniently done by introducing the topological invariant
called Euler (or Euler-Poincar) characteristic χ. In gen-
eral, the Euler characteristic can be calculated based on
the Gauss-Bonnet theorem that establishes the connec-
tion between the Gaussian curvature of a surface and the
value of χ [25]. However, one can perform the polygo-
nization of DOS surfaces and evaluate the Euler charac-
teristic in a simple manner as χ = V −E+F (where V,E,
and F are respectively the numbers of vertices (corners),
edges and faces in the given polyhedron) [26] without
the complicated calculation of a surface integral over the
Gaussian curvature. This approach elucidates that dur-
ing the topological transformation, which takes place at
the point of gap-gapless Abrikosov-Gor’kov phase tran-
sition, the Euler characteristic changes from χ = 2 (gap
state) to χ = 1 (gapless state).

Smearing of the transition due to spacial fluctuations
of the magnetic impurities concentration. - In the case
of the order parameter varying in space, Eq. (1) for the
free energy can be generalized by adding heuristically
the corresponding gradient term, like in the Ginzburg-
Landau theory, that is

F = −N(0)

2
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)2(
dζ
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}
,

where a = 1 − π
2 ζ + 2

3ζ
2 and we recall that ns is the

concentration of magnetic impurities.
Here we already attributed the variation of the value of

order parameter to the spacial inhomogeneity of the para-
magnetic impurities distribution, elucidating the corre-
sponding gradient in the last term of Eq. (9). One
can neglect the impurities concentration fluctuations un-
til the contribution of the “kinetic energy” remains small
in comparison to the superconducting condensation en-
ergy.

Correspondingly, comparing the second term in Eq.
(9) with the first one and using the expression determing
the order parameter ∆ at T = 0 [1, 4]
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we find (see [27]) that the fluctuations of the impurities
concentration remain insignificant until

∇ns
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� 1

ξ
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This evaluation is valid close to the transition point ζ = 1
(indeed, the limit of superconductor without paramag-
netic impurities ζ → 0 does not make sense in such con-
sideration), i.e.

d [lnns(r)]

dr
� 1

ξ
. (12)
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FIG. 3: Thermoelectric coefficient as a function of ζ for dif-
ferent values of τs∆0 for the given dimensionless inverse tem-
perature β∆0 = 50 (up) and for different β∆0 for the fixed
τs∆0 = 2.25 (bottom). For both plots τtr∆0 = 1.

Thermoelectric effect. - It is well known that the Lif-
shitz transition in normal metals is accompanied by a
giant asymmetric peak in the Seebeck coefficient [28–
30]. Despite the opinion prevailing in the early period
of the study of superconductivity concerning the vanish-
ing of all conventional thermoelectric properties, today
we know that a wide variety of interesting thermoelec-
tric effects can exist in superconductors [31]. Among
them is the quantization of the magnetic flux passing
through the loop consisting of two different superconduc-
tors whose junctions are at different temperatures. As

demonstrated in [16] the correction to the integer num-
ber of flux quanta appears to depend on the temperature
difference and thermoelectric coefficients of the supercon-
ductors in their normal state. Hence, one could expect
the giant growth of this effect when one of the ring legs
is close to the gap-gapless transition.

In order to demonstrate this we will calculate the corre-
sponding quasiparticle contribution to the thermoelectric
coefficient following the scheme proposed by Ambegaokar
and Griffin to calculate the corresponding thermal con-
ductivity (see Ref. 2). The thermoelectric coefficient
α relating the quasiparticle current to the temperature
gradient, can be expressed in the form

α = −eN (0) v2
F

4T 2

+∞∫
−∞

ωdω

cosh2
(
βω
2

)×
h (ω,∆, ζ)

Im
{

Ω (ω,∆, ζ) + i
2τtr

+ i
τs

[1− h (ω,∆, ζ)]
} , (13)

where τtr is the transport collision time [1] that enters
in the conductivity of a normal metal, vF is the Fermi
velocity. The functions h (ω,∆, ζ) and Ω (ω,∆, ζ) are
given by

Ω (ω,∆, ζ)

∆
=
√
u2 − 1− iζ, (14)

h (ω,∆, ζ) =
1

2

[
1 +
|u|2 − 1

|u2 − 1|

]
, (15)

where we recall that parameter u is defined by Eq. (8).
At temperatures close to zero (large values of β) the

main contribution to the integral in Eq. (13) comes from
the low frequencies domain ω . β−1. Therefore, one can
expand the parameter u and consequently the functions
Ω (ω, |∆| , ζ) and h (ω, |∆| , ζ) for small values of ω and
obtain the asymptotic behaviour of the thermoelectric
coefficient close to the phase transition for both the gap
and the gapless states. Approaching the transition from
the gap side (ζ → 1−) one finds (see Supplemental Ma-
terial [27]) that the thermoelectric coefficient takes the
form

α =
4
√

2π2

3e

T

∆

σnτs
τs + 2τtr

√
1− ζ 1

3 , (16)

where σn = 2
3N(0)v2

F e
2τtr. Eq. (16) determines the

magnitude of the Seebeck coefficient in the gap state.
Recalling that the value of Seebeck coefficient in the nor-

mal metal is Sn = π2kB
3e

T
EF

one can find that Sg is giant
with respect to the latter by the parameter EF /∆:

Sg =
α

σn
=

25/2τs
τs + 2τtr

(
1− ζ 1

3

) 1
2

(
EF
∆

)
Sn. (17)

When performing the same procedure from the gapless
side of the transition it can be disappointing to find α ≡
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0. Formally this is related to the oddness of the integrand
function over ω (see Ref. [27]) in this region. Yet, the
obtained result does not mean that the thermoelectric
coefficient here turns identically zero: in our expansions
we did not retain terms of the order ω/EF , hence the
thermoelectric effect from the right of transition point
can be comparable to its normal background.

The results of the numerical calculations of the ther-
moelectric coefficient based on Eq. (13) are shown in Fig.
3. For the evaluation of α we used the dependence of the
order parameter modulus as a function of ζ at zero tem-
perature given by Eq. (10) and, for large values of β (i.e.
in the vicinity of T = 0), we assumed the temperature
variation of ∆ to be very weak and approximated by Eq.
(10).

There are several remarkable hallmarks of the found
effect. First of all, the thermoelectric coefficient has a
giant magnitude in the gap region. Second, the peak
is asymmetric, and, third, the peak is shifted from the
transition point into the gap domain (ζ < 1) when the
temperature increases (β decreases). All these features
are characteristic also for the Seebeck signal behaviour
close to the 2 1

2 phase transitions [8] and can be considered
as the smoking gun for the experimental verification of
the proposed phenomenon.

We should note that a similar strong enhancement of
the thermoelectric coefficient by impurities was theoret-
ically predicted in Ref. 32, 33. However, the authors of
Ref. 32, 33 did not relate the giant thermoeffect to the
manifestation of the 2 1

2 phase transition. They specified
that this phenomenon is caused by violation of the sym-
metry between electron-like and hole-like excitations due
to formation of the subgap Andreev bound states in the
vicinity of magnetic impurities [33].

From the experimental point of view the detection of
such a topological phase transition can be performed by
means of placing in magnetic field a ring, one half of
which is a gap superconductor with the concentration
of magnetic impurities close to the transition value and
the other half is an arbitrary superconductor. In this
case, provided superconducting contacts are kept at dif-
ferent but low temperatures, anomaly strong thermoelec-
tric current is induced inside the ring and the measured
magnetic flux should considerably deviate from the inte-
ger values of the magnetic flux quantum Φ0 [17].

Conclusions. - We have demonstrated that the known
for a long time transition between the gap and the gap-
less states of a superconducting alloy with paramagnetic
impurities is the topological phase transition of the 2 1

2 or-
der. We found that the topological invariant in the form
of the Euler characteristic changes from χ = 0 (gap state)
to χ = 1 (gapless state) over the corresponding topolog-
ical transformation. We have shown that the mean-field
approximation used in the Abrikosov-Gor’kov theory [1]
is very stable: fluctuations of the impurities concentra-
tion remain irrelevant in the logarithmic scale. Finally,

such a topological phase transition can be detected by
the giant (by the parameter EF /∆ thermoelectric effect
possessing the characteristic features which would clearly
distinguish it from others. We have proposed an exper-
iment for the detection of such an effect and the subse-
quent confirmation of the 2 1

2 phase transition.

Our theoretical results may help to take a fresh look at
recent experiments with lightwave-driven gapless super-
conductivity [6], for the new interpretation of the theoret-
ically predicted disorder induced transition s±-s++ states
via gapless phase in multi-band superconductors [34, 35]
and can be useful for the understanding gapless color
superconductivity in quantum chromodynamics and the
string theory [36].
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nadzadeh, R. Küchler, S. Hamann, A. Steppke, D. Sun,
M. König, A.P. Mackenzie, K. Kliemt, C. Krellner, and
M. Brando, Cascade of Magnetic-Field-Induced Lifshitz
Transitions in the Ferromagnetic Kondo Lattice Material
YbNi4P2, Phys. Rev. Lett. 119, 126402 (2017).

[12] A. Pourret, S.G. Sharapov, T.D. Matsuda, G. Knebel,
G. Zwicknagl, and A.A. Varlamov, Transport Spec-
troscopy of the Field Induced Cascade of Lifshitz Transi-

https://journals.aps.org/pr/abstract/10.1103/PhysRev.137.A1151
https://journals.aps.org/pr/abstract/10.1103/PhysRev.137.A1151
https://journals.aps.org/pr/abstract/10.1103/PhysRev.137.A1151
http://jetp.ac.ru/cgi-bin/dn/e_011_05_1130.pdf
http://jetp.ac.ru/cgi-bin/dn/e_011_05_1130.pdf
https://journals.aps.org/pr/abstract/10.1103/PhysRev.164.558
https://journals.aps.org/pr/abstract/10.1103/PhysRev.164.558
https://www.nature.com/articles/s41566-019-0470-y
https://www.nature.com/articles/s41566-019-0470-y
https://link.springer.com/article/10.1007/s004070050021
https://link.springer.com/article/10.1007/s004070050021
https://www.tandfonline.com/doi/abs/10.1080/00018738900101132
https://www.tandfonline.com/doi/abs/10.1080/00018738900101132
https://www.tandfonline.com/doi/abs/10.1080/00018738900101132
https://doi.org/10.1016/0370-1573(94)90103-1
https://doi.org/10.1016/0370-1573(94)90103-1
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.014511
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.014511
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.126402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.126402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.126402
https://journals.jps.jp/doi/abs/10.7566/JPSJ.88.104702
https://journals.jps.jp/doi/abs/10.7566/JPSJ.88.104702


6

tions in YbRh2Si2, J. Phys. Soc. Jpn. 88, 104702 (2019).
[13] G.E. Volovik, Exotic Lifshitz transitions in topological

materials, Phys.Usp. 61, 89 (2018).
[14] G.E. Volovik, Topological Lifshitz transitions, Low Temp.

Phys. 43, 47 (2017).
[15] Yu.M. Galperin, V.L. Gurevich, V.I. Kozub, Acoustoelec-

tric and Thermoelectric Effects in Superconductors, Sov.
Phys. JETP Lett. 17, 476 (1973).

[16] Yu.M. Galperin, V.L. Gurevich, V.I. Kozub, Nonlinear
acoustic effects in superconductors, Sov. Phys. JETP 65,
1045 (1974).

[17] N.V. Zavaritskii, Thermoelectric phenomena in supercon-
ductors and thermomechanical circulation effect in a su-
perfluid liquid Pis’ma Zh. Eksp. Teor. Fiz. 20, 223 (1974)
[JETP Lett. 20, 97 (1974)].

[18] V.L. Ginzburg , G.F. Zharkov, A.A. Sobyanin, Thermo-
electric phenomena in superconductors and thermome-
chanical circulation effect in a superfluid liquid

[19] S.Skalski, O. Betbeder-Mattibet, and P.R. Weiss, Proper-
ties of Superconducting Alloys Containing Paramagnetic
Impurities Phys. Rev. 136, A1500, (1964).

[20] Kuang Zhang and G.E. Volovik,Lifshitz transitions via
the type-II Dirac and type-II Weyl points, Pis’ma ZhETF
105, 504 (2017) [JETP Lett. 105, 519 (2017)].

[21] A. A. Varlamov, Y. M. Galperin, S. G. Sharapov, Yuriy
Yerin, Concise guide for electronic topological transitions,
Low Temperature Physics 47, 672 (2021).

[22] V.I. Arnold, Alexander Varchenko, S.M. Gusein-Zade,
Singularities of Differentiable Maps. Volume I: The Clas-
sification of Critical Points Caustics and Wave Fronts,
(Monographs in mathematics ; Vol. 82), Birkhauser
Boston Basel Stuttgart (1985).

[23] V.I. Arnold, Basic Concepts. In: Arnold V.I. (eds) Dy-
namical Systems V. Encyclopaedia of Mathematical Sci-
ences, vol 5., Springer-Verlag Berlin Heidelberg (1994).

[24] Kentaro Saji, Masaaki Umehara, Kotaro Yamada, The
geometry of fronts, Annals of Mathematics 169, 491
(2009).

[25] Manfredo Perdigao do Carmo, Differential geometry of
curves and surfaces. Upper Saddle River, N.J.: Prentice-
Hall (1976)

[26] E.H. Spanier, “Algebraic topology”, McGraw-Hill pp.
156, (1966).

[27] See the Supplemental Material for the detailed derivation
of Eqs. (11), (12) and (16).

[28] V.S. Egorov and A.N. Fedorov, Thermopower of lithium-
magnesium alloys at the 2 1/2 -order transition, Zh.
Eksp. Teor Phys. 85, 1647 (1983) [Sov. Phys. JETP 58,
959 (1983)].

[29] V.G. Vaks, A.V. Trefilov, and S.V. Fomichev, Singular-
ities of resistivity and thermoelectric power of metals in
phase transitions of order 2 1

2
, Th. Eksp. Teor. Fiz. 80,

1613 (1981) [Sov.Phys. JETP 53, 830 (1981)].
[30] A.A. Varlamov and A.V. Pantsulaya, Anomalous kinetic

properties of metals near the Lifshitz topological transi-
tion, Sov. Phys. JETP 62, 1263 (1985).

[31] D.J.Van Harlingen, Thermoelectric effects in the super-
conducting state, Physica B+C 109110, 1710 (1982).

[32] D. F. Digor and L. Z. Kon, Thermoelectric effect in super-
conducting alloys, Theoretical and Mathematical Physics
97, 1137 (1993).

[33] Mikhail S. Kalenkov, Andrei D. Zaikin, and Leonid S.
Kuzmin, Theory of a Large Thermoelectric Effect in Su-
perconductors Doped with Magnetic Impurities, Phys.

Rev. Lett. 109, 147004 (2012).
[34] Victor Barzykin, Magnetic-field-induced gapless state in

multiband superconductors, Phys. Rev. B 79, 134517
(2009).

[35] D. V. Efremov, M. M. Korshunov, O. V. Dolgov, A.
A. Golubov, P. J. Hirschfeld, Disorder-induced transition
between s and s++ states in two-band superconductors,
Phys. Rev. B 84, 180512(R) (2011).

[36] Mark Alford, Jrgen Berges, and Krishna Rajagopal, Gap-
less Color Superconductivity, Phys. Rev. Lett. 84, 598
(2000).

SUPPLEMENTAL MATERIAL FOR
“TOPOLOGICAL PHASE TRANSITION

BETWEEN THE GAP AND THE GAPLESS
SUPERCONDUCTORS”

SPACIAL FLUCTUATIONS OF THE MAGNETIC
IMPURITIES CONCENTRATION

Let us perform its evaluation, for simplicity, from the
“gap side” of the phase transition. The first derivative
in the “kinetic energy” term of Eq. (9) can be easily
obtained by direct differentiation of Eq. (10) in the main
paper: (

d∆

dζ

)
= −π

4
∆. (18)

What concerns the derivative dζ/dns its calculation is
more delicate since ζ = (τs∆)−1. The scattering lifetime
τs is determined by the integral over the solid angle Ω

1

τs
=

[
N(0)

S(S + 1)

(2S + 1)2

∫
|f+ − f−|2 dΩ

]
ns = Ans,

(19)
where ns is the concentration of the magnetic impuri-
ties and f+ and f− are the scattering amplitudes of an
electron with a total angular momentum S + 1/2 and
S − 1/2.

Based on Eq. (19) and the fact that the order param-
eter ∆ depends on ns we obtain

dζ

dns
=
A

∆
− A

∆2

d∆

dns
=
A

∆
− Ans

∆2

d∆

dζ

dζ

dns
. (20)

Taking into account Eq. (18) one finds

dζ

dns
=

1

ns

ζ

1− πζ
4

. (21)

Relating the Cooper pair mass to the coherence length
as ξ2 = 1/(4ma) and returning to Eq. (9) in the main
paper one finds that the kinetic energy term in the gap
domain (ζ < 1) is expressed as

(∇∆)2

4m
=
π2ξ2∆2

16

ζ2

(1− πζ
4 )2

(
∇ns
ns

)2

. (22)
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ASYMPTOTIC EXPRESSIONS FOR THE
THERMOELECTRIC COEFFICIENT

In the vicinity of the zero temperature or for the large
values of β the contribution to the Eq. (13) in the main
paper gives the low order frequencies. Such a restriction
allows to obtain several useful asymptotics for the ther-
moelectric coefficients from the gap and the gapless side
of the phase transition. The starting point is the approx-
imated expression for the parameter u in the case of the
small ω.

Gap state

For the gap regime, where ζ < 1 we have

ω −∆g

∆
= −3

2
ζ−

2
3

(
1− ζ 2

3

) 1
2

(u− u0)
2
, (23)

where

∆g

∆
=
(

1− ζ 2
3

) 3
2

, (24)

and

u0 =
(

1− ζ 2
3

) 1
2

. (25)

Substitution of Eqs. (24)-(25) into Eq. (23) yields an
equation for u with the solution for ∆g = 0, i.e. when
ζ → 1

u =

√
1− ζ 2

3 ± 1

3

√
6ζ

2
3

[(
1− ζ 2

3

) 3
2 − ω

∆

]
(

1− ζ 2
3

) 1
4

≈
√

2
(

1− ζ 1
3

)
± 1

3
i

√
6

[
ω
∆ − 2

√
2
(

1− ζ 1
3

) 3
2

]
2

1
4

(
1− ζ 1

3

) 1
4

(26)

Based on Eqs. (26) for the parameter u one can write
the expression for functions Ω (ω,∆, ζ) and h (ω,∆, ζ)
that are entered in Eq. (13) in the main paper for the
thermoelectric coefficient in the main text. Introducing

a new parameter z =

√
1− ζ 1

3 near the the phase tran-
sition we have

Ω (ω,∆, ζ)

∆
=

√
2z2 +

√
2w

3z
− 1 + i

2

3
2

1
4

√
6zw − i, (27)

and

h (ω,∆, ζ) =
1

2

1 +
2z2 +

√
2w

3z − 1√(
2z2 +

√
2w

3z − 1
)2

+ 8
√

2
3 zw

 ,
(28)

where w = ω
∆ − 2

√
2z3 and for the extraction of the

square root of a complex number in Eq. (27) the well-
known formula is applied

√
a+ ib = ±

√√
a2 + b2 + a

2
± i sgn b

√√
a2 + b2 − a

2
.

(29)
Using Eq. (27) and (28) one can expand in series for

small ω the part of the integrand in Eq. (13) in the main
paper

h (ω,∆, ζ)

Im
{

Ω (ω,∆, ζ) + i
2τtr

+ i
τs

(1− h (ω,∆, ζ))
} ≈

Υ0 (ζ, τtr, τs) + Υ1 (ζ, τtr, τs)
ω

∆

(30)

where Υ0 (ζ, τtr, τs) and Υ1 (ζ, τtr, τs) are some function
that we do not present explicitly due to their very cum-
bersome expressions. However, one can also perform the
expansion in series of this function for z = 0 or (ζ = 1)
to simplify further analytical calculations

Υ1 (ζ, τtr, τs) ≈
4
√

2

3

τsτtr
τs + 2τtr

z. (31)

Therefore, combining Eqs. (30) and (31) finally we
obtain asymptotic expression for the thermoelectric co-
efficient close to the phase transition from the gap side

α =
8
√

2

3

eN (0)Tv2
F

∆

τsτtr
τs + 2τtr

z

+∞∫
−∞

ω2dω

cosh2
(
ω
2T

) =

4
√

2π2

9

eN (0)Tv2
F

∆

τsτtr
τs + 2τtr

z =

4
√

2π2

9

eN (0)Tv2
F

∆

τsτtr
τs + 2τtr

√
1− ζ 1

3

(32)

Gapless state

In the case of the gapless regime, where ζ > 1 the
expansion of u is given by

u = i
√
ζ2 − 1 + ζ2

(
ζ2 − 1

)−1 ω

∆
+ ... (33)

This allows to obtain in the same way the expression
for functions Ω (ω,∆, ζ) and h (ω,∆, ζ) that are entered
in Eq. (13) in the main paper for the thermoelectric co-
efficient in the main text. As in the previous case intro-
ducing a new parameter z =

√
ζ − 1 near the the phase

transition one can write

Ω (ω,∆, ζ)

∆
=

√
2z +

1

4

1

z2

ω2

∆2
− 1 + i

√
2√
z

ω

∆
− i, (34)
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and

h (ω,∆, ζ) =
1

2

1 +
2z + 1

4z2
ω2

∆2 − 1√√(
2z + 1

4
1
z2

ω2

∆2 − 1
)2

+ 2
z
ω2

∆2

 ,
(35)

Based on Eq. (34) and (35) we expand in series for
small ω the part of the integrand in Eq. (13) in the main
paper

h (ω,∆, ζ)

Im
{

Ω (ω,∆, ζ) + i
2τtr

+ i
τs

(1− h (ω, |ψ| , ζ))
} ≈

Θ0 (ζ, τtr, τs) + Θ1 (ζ, τtr, τs)
ω2

∆2
.

(36)

Due to long expressions for functions Θ0 (ζ, τtr, τs) and
Θ1 (ζ, τtr, τs) we do not provide them in an explicit form.
Nevertheless, since the expansion in series given by Eq.
(36) contains only the even degree of ω it is easy to under-
stand that the integrand in Eq. (13) in the main paper
is the odd function of ω and, hence, the integral is equal
to zero.
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