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Abstract: In this paper, we study the implications of bulk locality on the celestial ampli-

tude. In the context of the four-point amplitude, the fact that the bulk S-matrix factorizes

locally in poles of Mandelstam variables is reflected in the imaginary part of the celestial

amplitude. In particular, on the positive real axes in the complex plane of the boost weight,

the imaginary part of the celestial amplitude can be given as a positive expansion on the

Poincaré partial waves, which are nothing but the projection of flat-space spinning poly-

nomials onto the celestial sphere. Furthermore, we derive the celestial dispersion relation,

which relates the imaginary part to the residue of the celestial amplitude for negative even

integer boost weight. The latter is precisely the projection of low energy EFT coefficients

onto the celestial sphere. We demonstrate these properties explicitly on the open and

closed string celestial amplitudes. Finally, we give an explicit expansion of the Poincaré

partial waves in terms of 2D conformal partial waves.
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1 Introduction

In recent years, there has been steady progress on understanding the 2D holographic

description of 4D flat-space scattering amplitudes [1–21] introduced by the pioneering

work [1, 4], where one replaces the asymptotic state of the scattering amplitudes with

boost eigenstates. In particular, the action of the Lorentz group SL(2,C) on the kine-

matic data is recast into the Möbius transform on the celestial sphere, and the scattering

amplitude is reinterpreted as a correlation function for some two-dimensional conformal

field theory (CFT), termed the celestial amplitude. For amplitudes of massless external

particles, this change of basis is implemented by a Mellin transform and the quantum num-

bers of the primary operator (h, h̄) is related to the helicity (`) of the external particle as

` = h− h̄, while the dimension ∆ = h+ h̄ is in-principle unconstrained.1

As the celestial amplitudes (denoted as Ãn for n states) are defined on boost eigen-

states, which superpose all energies, the usual Wilsonian decoupling of UV/IR physics no

long applies and is only well-defined for theories equipped with a UV completion. This com-

bined with the lack of local observables in quantum gravity, makes the celestial amplitude

the prime arena to study general properties of consistent quantum gravity theories [21].

Motivated by this, it will be desirable to derive the general set of consistency conditions

for Ã.

The analytic properties of flat-space amplitude is an intensely studied subject and is

relatively well-understood within the realm of perturbation theory. Thus, the “projection”

of these properties onto the celestial sphere should serve as the primary constraint. For

massless amplitudes, one of the simplest universal behaviors are the soft limits. However,

due to the superposition of all energies, for Ãn the fate of soft theorems were unclear.

The first progress toward elucidating the image of flat-space soft theorems were taken

in [14, 15, 22], where the limit was realized in the limit where the conformal dimensions

are taken to 1. More precisely, these “conformal soft limits” of the celestial amplitudes

lead to various conformal Ward identities associated with the holomorphic currents that

generate the Kac-Moody symmetry in gauge theory [15], or the BMS supertranslation and

the Virasoro symmetries in gravity [16, 19]. The conformal soft theorems then constrain

the leading operator product expansion (OPE) coefficients in the celestial CFT [18].

On the other hand, the actions of the Poincaré symmetry on the celestial sphere are

explicitly worked out in [12], and their constraints on the four and lower point celestial

amplitudes are investigated in detailed in [17]. As a consequence a new set of expansion

basis for Ã4, the Poincaré (relativistic) partial waves, was proposed in [20] analogous to

the conformal partial wave expansion of four-point functions in CFT.

The above progresses focuses on the various symmetry properties of the celestial am-

plitudes and the constraints followed from them. An obvious gap is the role of flat-space

factorization, which encodes locality, through where singularity might occur, and unitary

that governs the residue or discontinuity across the singularity. Indeed it is often the

case that these considerations alone are sufficient to completely determine the flat-space

1Completeness relation of the conformal partial waves requires ∆ = 1 + iR.
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amplitude. In view of this one would like to ask:

How does the bulk-locality reflect on celestial amplitudes?

Limit analysis was done for three-dimensional scalar exchange [6], as well as four-dimensional

massive external legs [2]. In this paper, we aim to address this question in general for the

four-point massless celestial amplitudes.

Poincaré invariance fixes the form of Ã4 up to a function that depends only on the

real conformal cross ratio z = z̄ = z12z34
z13z24

, the total conformal dimension (boost weight)

β = ∆1 + ∆2 + ∆3 + ∆4 − 4, and the helicities `i, for i = 1, · · · , 4 of the external particles

[12, 17]. The resulting function Ψ(β, `i, z) is related to the scattering amplitude in the

plane wave basis by a Mellin transform

Ψ(β, `i, z) ∝
∫ ∞

0
dω ωβ−1T`i (s, t) , (1.1)

where ω is the center of mass energy and T`i (s, t) is the flat-space amplitude stripped off

the momentum conservation delta function and a kinematic phase. For fixed {`i} the we

have a function of two variables (β, z), replacing the flat-space parameterization (s, t). It

was argued in [21] that the function is analytic in β except for integer values on the real

axes. The poles for β = −2Z+ are controlled by the Wilson coefficients of the low energy

EFT with the degree of the poles determined by the IR running. For β = 2Z+, these

encodes the polynomial suppression of the UV amplitude. For theories of quantum gravity

that latter singularities are expected to be absent due to black hole productions.

Note that while the four-point celestial amplitude is defined on the equator of the ce-

lestial sphere, its not a continuous function across the entire circle. Using the usual SL(2,C)

to fix three points to (0, 1,∞), the equator is divided into three regions corresponding to

s, t, u-channel kinematics respectively. Each channel is named after the positive Mandel-

stam variable, while the remaining two are negative in the physical region. Schematically,

we have:
0

1∞

Ψ12↔34

Ψ14↔23 Ψ13↔24

where the superscript on Ψ denotes the physical channel. Importantly, due to the β depen-

dence of the Mellin transform, there are non-trivial monodromies across the three branch

points (0, 1,∞), even for β = 2Z. Thus, the three functions are in fact distinct and are

not analytically connected, as first observed in the context of three-dimensions [6]. We will

first demonstrate that due to bulk factorization, each function will acquire an imaginary

piece reflecting the presence of thresholds in the physical channel, i.e. the channel with

positive center of mass energy. In particular, the imaginary part of the celestial amplitude
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can be computed by extending the original Mellin integration to a fan-like contour that

enclosed the positive real axis:

I ′2

I2

I ′3

The contour integral captures the poles and discontinuities of the amplitude which can

be expanded in the basis of orthogonal polynomials, Legendre polynomials for external

scalars and Jacobi polynomials for gauge boson or graviton amplitudes. The projection of

these polynomials onto the celestial sphere are then nothing but the Poincaré partial waves

Φm,J(β, `i, z) of mass m and spin J introduced in [20]. Thus, factorization singularities of

the flat-space amplitude, in the physical channel, is projected into the imaginary part of

the celestial amplitude and given by a sum of Poincaré partial waves, schematically,

Im Ψ(β, `i, z) =
∑
a

paΦma,Ja(β, `i, z) . (1.2)

If the external states are organized such that for the physical threshold corresponds to

a, b→ b, a process, then we further have pa > 0, a reflection of unitarity.

Recently, it was shown that the EFT coefficients are constrained through dispersion

relations in a fashion that reflects an underlying positive geometry, the EFThedron [23].

Since as previously mentioned, for Ã4 the poles on the negative β axes encodes the EFT

coefficients, these must be expressible as some form of dispersion relation. However, while

the usual flat-space dispersion relation involves imaginary pieces arising from thresholds in

distinct channels, for the celestial amplitude the imaginary part at any point on the equator

is given by thresholds in one channel along. To this end we analytic continue the celestial

amplitudes outside their physical defining regions to the “unphysical” regions. This allows

us to establish the celestial dispersion relation, given as:

π

2
Res
β→−2n

[
Ψ12↔34(β, z)

]
= Im

[
Ψ12↔34(β, z) + (−1)nΨ13↔24(β, z)

] ∣∣∣
β→−2n

(z ≥ 1) ,

(1.3)

where we’ve given the form in the region z ≥ 1. Note that the RHS contains the imaginary

part of both s and u-channel functions, where each can be defined in terms of the fan-like

contour integral. We’ve explicitly verified these results for massive scalar exchange, as well

as open and closed string amplitudes.

This paper is organized as follows. Section 2 reviews the kinematics of the four-point

massless celestial amplitudes and the UV/IR behaviors onward. Section 3 computes explic-

itly the imaginary parts of the four-point massless celestial amplitudes, show their positive
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expansion in terms of the Poincaré partial waves, and check the crossing symmetry. Sec-

tion 4 studies the example of the imaginary part of the open and closed string celestial

amplitudes. Section 5 discusses the analytic continuation of the celestial amplitudes. Sec-

tion 6 derives the celestial dispersion relation and verifies it for the example of the open

and closed string amplitudes. Section 7 ends with a summary, further comments and fu-

ture directions. Appendix A derives the general form of helicity amplitudes that satisfy

the constraints from the Lorentz symmetry and momentum conservation. Appendix B re-

views the action of the Poincaré generators on a massless single particle state. Appendix D

expands the celestial amplitude and the Poincaré partial waves in terms of the conformal

partial waves. Appendix E computes the three-point structure constant that shows up in

the conformal partial wave expansion.

2 Review of the four-point celestial amplitude

In this section, we review general properties of the four-point celestial amplitude. We

will focus on massless amplitudes A, where the momenta are given as pi = εiωiq
µ
i , with

ε = ± denoting whether the particle is outgoing or incoming, and the null vector qµ is

parametrized by

qµi = (1 + |zi|2, 2Re(zi), 2Im(zi), 1− |zi|2) . (2.1)

Later on, zi will be the complex stereographic coordinate on the celestial sphere. Thus the

amplitude A instead of being a function of four momenta, is now a function of (ωi, zi). The

celestial amplitude is then simply the Mellin transform of helicity amplitudes:

Ã∆i,`i(zi, z̄i) =
( n∏
i=1

∫ ∞
0

dωiω
∆i−1
i

)
A`i(ωi, zi) , (2.2)

where `i is the helicity of each leg.

2.1 Space-time to Celestial sphere “kinematics”

Let us consider in detail the transformation of flat-space scattering amplitudes to the

celestial sphere. Since we will be interested in helicity amplitudes, it is natural to embed

(ωi, zi) in the spinor variables εiωiq
µ
i (σµ) = λiλ̃i, where:

λi = εi
√

2ωi

(
1

zi

)
, λ̃i =

√
2ωi

(
1

z̄i

)
. (2.3)

The map is of course not unique, as any U(1) rotation λ→ eiθλ and λ̃→ e−iθλ̃ preserves

the same null vector. The fact that the first component of λ (λ̃) is real, correspond to a

specific choice of frame. In this “canonical frame”, the Lorentz invariant spinor brackets

take the form:

〈ij〉 = εabλj,aλi,b = 2εiεj
√
ωiωj(zi−zj), [ij] = εȧḃλ̃j,ȧλ̃i,ḃ = 2

√
ωiωj(z̄i−z̄j) . (2.4)
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Similarly the Mandelstam variable sij = 〈ij〉[ji] is related to the distance |zij | on the

celestial sphere by

sij = −(pi + pj)
2 = −2pi · pj = 4εiεjωiωj |zij |2 . (2.5)

One can straight forwardly see that the SL(2,C) Lorentz transformation acting on the

spinors translate to the Möbius transformation acting on the complex plane z []:(
a b

c d

)
λ = eiθλ′, z′ =

c+ dz

a+ bz
, ω′ = ω|a+ bz|2, eiθ =

a+ bz

|a+ bz|
. (2.6)

Importantly, while the spinor products are Lorentz invariants, when considered in terms

of the celestial coordinates they acquire a “little group” phase under SL(2,C):

〈ij〉′ = 2εiεj

√
ω′iω

′
j(z
′
i−z′j)=2e−iθie−iθj εiεj

√
ωiωj(zi−zj) ,

[ij]′ = 2
√
ω′iω

′
j(z̄
′
i−z̄′j)=2eiθieiθj

√
ωiωj(z̄i−z̄j) .

(2.7)

The origin of the extra phase is simple: as seen in eq.(2.3) an arbitrary SL(2,C) transforma-

tion will rotate the spinors out of the canonical frame. Thus one requires a “compensating

transformation” to restore it back. Since the amplitude transforms covariantly under little

group transformations, manifested as helicity weights for each leg, one immediately deduce

that the amplitude transform under SL(2,C) as:

A`i(ω
′
i, z
′
i, z̄
′
i) =

(∏
j

e2`jθj
)
A`i(ωi, zi, z̄i) . (2.8)

The Mellin-transform in eq.(2.2) can then be viewed as changing from plane wave basis,

to the conformal primary basis (or boost) [1, 4]. As a result under SL(2,C) transformation

Ã∆i,Ji transforms as:

Ã∆i,`i(z
′
i, z̄
′
i) =

(∏
j

(a+bzj)
∆j+`j (ā+b̄z̄j)

∆j−`j
)
Ã∆i,`j (zi, z̄i) . (2.9)

Thus the n-point celestial amplitude Ã transforms like a n-point conformal correlator in

two-dimensional conformal field theory

〈Oh1,h̄1
(z1, z̄1) . . . Ohn,h̄n(zn, z̄n)〉 , (2.10)

where the left-moving and right-moving conformal dimensions hi and h̄i are

hi + h̄i = ∆i, hi − h̄i = `i . (2.11)

The variables ∆i in the Mellin transform (2.2) and the helicities `i become the total scaling

dimensions and spins.

In this paper, our main focus is on the 4-point amplitude. SL(2,C) conformal symmetry

constrains the amplitude to the form

Ã∆i,`i(zi, z̄i) =

(
z14
z13

)h3−h4
(
z24
z14

)h1−h2
(
z̄14
z̄13

)h̄3−h̄4
(
z̄24
z̄14

)h̄1−h̄2

zh1+h2
12 zh3+h4

34 z̄h̄1+h̄2
12 z̄h̄3+h̄4

34

f∆i,`i(z, z̄) , (2.12)
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where the cross ratios z and z̄ and coordinate differences zij , z̄ij are

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24
, zij = zi − zj , z̄ij = z̄i − z̄j . (2.13)

Translation invariance, or momentum conservation, further constrain the dependence on

the cross-ratio [12, 17],

f∆i,`i(z, z̄) = (z − 1)
∆1−∆2−∆3+∆4

2 δ(iz − iz̄)Ψ(∆, `i, z) (2.14)

where ∆ =
∑

i ∆i. Due to the delta function δ(iz − iz̄), the celestial amplitude to be

supported on the equator of the celestial sphere.

One can also derive (2.12) and (2.14) directly from the Mellin integral representation

(2.2). First, as show in Appendix A by utilizing the momentum conservation and the

SL(2,C) symmetry, the four-point helicity amplitude take the form as

A`i(ωi, zi) = δ(4)(p1 + p2 + p3 + p4)

(
z14z̄13
z̄14z13

) `3−`4
2
(
z24z̄14
z̄24z14

) `1−`2
2

(
z12
z̄12

) `1+`2
2
(
z34
z̄34

) `3+`4
2

T`i(s, t) , (2.15)

where s ≡ s12, t = s14, and u = s13 are the Mandelstam variables. The momentum

conservation written in terms of the energies ωi and the celestial sphere coordinates zi and

z̄i as

δ

(
4∑
i=1

εiωiqi

)
=

8

Λ2|ω4|
δ(iz−iz̄)δ

(
ω1+ε1ε4

Λ2ω4

z

)
δ
(
ω2+ε2ε4

Λ2ω4

z(z−1)

)
δ
(
ω3+ε3ε4

Λ2ω4

1− z

)
,

(2.16)

where we have used the SL(2,C) transformation to fix the coordinates zi to

z1 = 0, z2 = z, z3 = 1, z4 = Λ� 1 , (2.17)

In this conformal frame, the celestial scalar amplitude becomes

Ã∆i,`i(zi, z̄i) = 8Λ−2∆4 |z − 1|
1
2

(∆1−∆2−∆3+∆4)|z|−∆1−∆2δ(iz−iz̄)
× θ(−ε1ε4z)θ(ε2ε4z(1−z))θ(ε3ε4(z−1))

× z2|z − 1|2−
∆
2

∫ ∞
0

dω̃4 ω̃
∆−5
4 T`i

( 4ω̃2
4

z−1
,−4ω̃2

4

z

)
,

(2.18)

where ω̃4 = Λ−2ω4. Note that in the conformal frame (2.17) the z-dependent factor in

front of T (s, t) in (2.15) reduces to 1 by the delta functions. The Heaviside theta functions

are there to ensuring the delta functions having support in the integration domain of ωi.

Indeed (2.18) reduces to (2.12) and (2.14) in the conformal frame (2.17) where one reads

off Ψ(∆, `i, z) as

Ψ(∆, `i, z) = θ(−ε1ε4z)θ(ε2ε4z(1−z))θ(ε3ε4(z−1))

× z2|z − 1|2−
∆
2

∫ ∞
0

dω̃4 ω̃
∆−5
4 T`i

( 4ω̃2
4

z − 1
,−4ω̃2

4

z

)
.

(2.19)
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kinematics 12↔ 34 13↔ 24 14↔ 23

physical region
z ≥ 1 1 ≥ z ≥ 0 0 ≥ z

s ≥ 0 ≥ u, t u ≥ 0 ≥ s, t t ≥ 0 ≥ s, u
ω 2ω̃4√

z−1
2ω̃4√
z(1−z)

2ω̃4√
−z

(s, u, t) (ω2,−1
zω

2,− (z−1)
z ω2) (−zω2, ω2,−(1− z)ω2) (− (−z)

1−z ω
2,− 1

1−zω
2, ω2)

Table 1. The physical regions, center of mass energy ω and Mandelstam variables in the three

different kinematics.

Now due to the step functions, depending on the choice of incoming legs the cross-

ratio z is constrained to different regions. Consider three distinct kinematic configuration

distinguished by the incoming state being in s, u or t-channel,

12↔ 34 : ε1 = ε2 = −ε3 = −ε4 ,
13↔ 24 : ε1 = ε3 = −ε2 = −ε4 ,
14↔ 23 : ε1 = ε4 = −ε2 = −ε3 .

(2.20)

The Heaviside theta functions in (2.19) will constrain the celestial amplitudes with the

three different kinematics to have supports on three separate intervals on the equator of

the celestial sphere,

12↔ 34 : z ≥ 1 , 13↔ 24 : 0 ≤ z ≤ 1 , 14↔ 23 : z ≤ 0 . (2.21)

It would be convenient to use the center of mass energy ω as the integration variable. We

apply the changes of variables in the three different kinematics as

12↔ 34 : ω2 =
4ω̃2

4

z − 1
, 13↔ 24 : ω2 =

4ω̃2
4

z(1− z)
, 14↔ 23 : ω2 =

4ω̃2
4

(−z)
. (2.22)

The physical regions, changes of variables, and the corresponding parametrizations of the

Mandelstam variables are summarized in Table 1. Note that we can also identify z =
2

1− cos θ , where θ is the scattering angle and the limit z → ∞ corresponds to the forward

limit.

The celestial amplitude (2.19) in these three kinematics are then defined as:

Ψ12↔34(∆, `i, z) =
1

2∆−7
z2

∫ ∞
0

dω ω∆−5T`i

(
ω2,−(z−1)

z
ω2

)
(z ≥ 1) ,

Ψ13↔24(∆, `i, z) =
1

2∆−7
z

∆
2

∫ ∞
0

dω ω∆−5T`i
(
−zω2, (z−1)ω2

)
(1 ≥ z ≥ 0) ,

Ψ14↔23(∆, `i, z) =
1

2∆−7
(−z)

∆
2 (1−z)2−∆

2

∫ ∞
0

dω ω∆−5T`i

(
z

1−z
ω2, ω2

)
(0 ≥ z) .

(2.23)

We stress that the celestial amplitude is not given by a single function Ψ(∆, z) defined on

the equator. Rather, there are three separate functions Ψ12↔34, Ψ13↔24 and Ψ14↔23 that

tile the equator.
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In short, the function Ψij↔kl(∆, `i, z) will be related to the amplitude via

Ψij↔kl(β, `i, z) = Bij↔kl(z)

∫ ∞
0

dω ωβ−1T ij↔kl`i
(ω, z) , (2.24)

where using the notation of [21] we introduce β = ∆−4. Bij↔kl(z) denotes the prefactors

in front of the integrals in (2.23), and T ij↔kl`i
(ω, z) equals to T`i(s, t) with the parameteri-

zations given in Table 1.

2.2 Implications of UV/IR behavior of T (ω, z)

As stressed in [21], the analytic property of the celestial amplitude in complex β plane

reflects the UV and IR properties of T (ω, z). Since we will be performing a Mellin transform

with respect to the center of mass energy ω, special attention will be paid to the region

ω → 0 and ∞ for which the integral might diverge. In limit ω → 0, we probe the IR limit

of T (ω, z). Suppressing the massless logs for now, the amplitude takes the form

T (ω, z)|ω→0 = Tmassless(ω, z) +

∞∑
p=0

gp(z)ω
2p . (2.25)

In s-kinematics, where 1 ≥ z, gp(z) are polynomial functions of at most degree 2p in 1−z
z

reflecting the presence of contact interactions, i.e. higher dimension operators in the EFT

description. The function Tmassless(ω, z) summarizes the contribution from the massless

particle exchange, which contain poles in 1−z
z and is of degree ω0 or ω2 for photon and

graviton exchange respectively. Thus we see that the low energy amplitude is essentially a

polynomial expansion in ω2. These generate single poles in β since

Ψ(β, z) ∼
∫ Λ

0
dω ωβ−1(ω2p)+ · · · = Λβ+2p

β+2p
+ · · · , (2.26)

where we only consider the part of the integral where ω ∈ [0,Λ]. Thus we see that Ψ(β, z)

will have simple poles at β = 0,−2,−4, · · · . When the massless loops are involved, the

simple poles are then promoted to higher degree as discuseed in [21].

We now turn to the opposite limit, where ω → ∞ corresponding to fixed angle hard

scattering,

s→ +∞ with
s

t
=

z

1− z
fixed. (2.27)

We will exam two asymptotic behaviors of T (s, t) in this limit,

T (ω, z) ∼

{
gp(z)ω

2p+gp−1(z)ω2p−2+ · · · power law,

e−ω
2f(z) exponential decay.

(2.28)

As discussed in [21], the second scenario is expected for amplitudes in gravitational the-

ories due to black hole production. Indeed this is the case for string theory, which we

will discuss in detail later on. In such case Ψ(β, z) is convergent for Re[β] > 0. For

the power law, following similar analysis as the IR region we again arrive at poles for
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β = −2p,−2p+2,−2p+4, · · · . Now we would like to have a celestial amplitude that is

meromorphic in β, thus having a region of convergence. From the previous IR analysis, we

see that Ψ(β, z) will have poles at Re[β] ≤ 0, this suggest that we must have p < 0 such

that there is a convergent region 0 < Re[β] < −p.2

2.3 Example: The massive scalar exchange

As a simple example for the above analysis, consider a massless scalar φ coupled to a

massive scalar X via a cubic coupling gφ2X. The tree level 4-point scattering amplitude is

T (s, t) = −g2

(
1

s−m2 + iε
+

1

u−m2 + iε
+

1

t−m2 + iε

)
. (2.30)

The Mellin integral (2.24) converges when β is bounded by

0 ≤ β ≤ 2 . (2.31)

Indeed for the 12↔ 34 kinematics, by rewriting Ψ12↔34(β, z) as integrating from ω = −∞
to ω =∞,

Ψ12↔34(β, z) =
23−βz2

(1− eiπβ)

∫ ∞
−∞

dω ωβ−1T

(
ω2,−(z − 1)

z
ω2

)
(2.32)

we can close the contour upward and pick up the residues giving,

Ψ12↔34
scalar (β, z) =

πg2

sin πβ
2

(m
2

)β−2
z2

[
e

1
2
πiβ + z

β
2 +

(
z

z − 1

)β
2

]
(z ≥ 1) . (2.33)

Note that indeed starting from β = 2, one has simple poles at β = 2, 4, 6, · · · , reflecting

the divergence in UV. Similarly, below β = 0, one has simple poles at β = 0,−4,−6, · · · ,
reflecting the EFT coefficients. The absence of β = −2 is due to the corresponding EFT

operator vanishes on-shell, s+t+u = 0.

Importantly, there is a non-trivial imaginary part,3

Im Ψ12↔34
scalar (β, z) = πg2

(m
2

)β−2
z2 = 23−βπz2g2Resω=m

[
ωβ−1T (ω, z)

]
, (2.34)

which is non-zero for any value of β. Furthermore for s-channel kinematics, only the

physical threshold in the s-channel propagator contributes to imaginary part, while the

t, u diagram only contribute to the real part. Thus we see that the imaginary part of the

celestial amplitude encodes the information of bulk factorization. This will be the focus of

the next section.

2Indeed for p = 0 such as λφ4 theory, the function Ψ(β, z) cease to be meromorphic:∫ ∞
0

dω

ω
ωiε =

∫ ∞
−∞

dx eiεx = δ(iε) . (2.29)

3Here and throughout this paper, we assume that β is real when taking the imaginary part of Ψ(β, z).
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3 The imaginary part of the celestial amplitude

Here we would like to pose the following question: given a celestial amplitude Ψ(β, z),

what are the properties that reflect its origin as a local flat-space scattering amplitude.

Already in the massive scalar case we’ve seen that for the s-channel kinematics, the fact

that a massive scalar was being exchanged is reflected in the imaginary part of the celestial

amplitude. In this section we will systematically study this property.

3.1 Bulk-locality to the imaginary part of Ψ(β, z)

The imaginary part of the amplitude is deeply rooted in causality, where the time ordered

two point function introduces the iε prescription for the Feynman propagator. Indeed this

is the origin of the imaginary piece of the scalar exchange Ψ12↔34(β, z), appearing in the

s-channel where the internal particle can be interpreted as on-shell and moving forward

in time. Thus to capture the imaginary piece, it will be useful to consider the Mellin

transform as a contour integral on the complex ω-plane.

Let us focus on the 12↔ 34 kinematics. From previous discussions, we have seen that

for Ψ12↔34(β, z) to be a meromorphic function, T 12↔34(ω, z) must vanish as ω → ±∞, i.e.

T 12↔34(ω, z) behavior asymptotically as (2.28) for p < 0. In general, such an asymptotic

behavior does not hold when ω approaches complex infinity, i.e. ω →∞× eiθ for θ 6= 0 , π.

We will assume that the asymptotic behaviors in (2.28), which is defined for real ω,

can be extended for a small range of argω,

argω ∈
(
− θ12↔34

c , θ12↔34
c

)
∪
(
π − θ12↔34

c , π + θ12↔34
c

)
, (3.1)

with a finite angle θ12↔34
c that in general depends on z. As we will see, in the case of

open and closed string amplitudes, θcs are in general finite and non-vanishing. Let us

exam the analytic structure of the amplitude T 12↔34(ω, z) on the complex ω-plane. By

the bulk-locality, the exchange of single-particle states (of masses mi) leads to s-channel

poles located slight below or above the real axes (at ω = ±mi ± iε) due to Feynman iε.

At the loop level, the exchange of multi-particle states lead to branch cuts located slight

below or above the real axes. The crossing images of the s-channel poles are the t- and

u-channel poles (at ω = ±i
√

z
z−1mi and ω = ±i

√
zmi). The poles and branch cuts are

shown schematically in figure 1. There could be other branch cuts away from the real

and the imaginary axes, which do not correspond to the exchange of multi-particle states.4

They are not depicted in the figures, as they would not play a role in our later computation.

Finally, the branch cut of the ωβ−1 is chosen to be along the negative real axis, and is also

not depicted in the figures.

Consider the fan-like contour displayed in the left of figure 1, with an angle less than

θc. As the infinity part I3 vanishes, the absence of poles in the contour imply

Ψ(β, z) = B(z)

∫
I1

dω ωβ−1T (ω, z) = −B(z)

∫
I2

dω ωβ−1T (ω, z) . (3.2)

4The branch points of such branch cuts are called the anomalous thresholds.
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ω-plane

I1

I2
I3

ω-plane

I ′2

I2

I ′3

Figure 1. The analytic structure of the amplitude T (ω, z) on the complex ω plane. The branch

cuts associated to the anomalous thresholds are not depicted in the figure, since they are away from

the real ω axes, and would not contribute the the contour integrals when the angle between the I2
and −I ′2 segments of the contour is small enough.

Now extend the contour symmetrically to the lower half plane, as shown in the right of

figure 1. The new contour will then pick up the residue from the iε prescription of the

propagators. Note that since I ′2 is just the reflection of I2 along the real axes, the two

simply have the opposite sign for the real part:∫
I′2

dω ωβ−1T (ω, z) = −
[ ∫

I2

dω ωβ−1T (ω, z)
]∗
. (3.3)

Furthermore, since the iε poles are away from the contour I ′2, and we are free to take the

ε→ 0 limit, for which the amplitude T (ω, z) is a real function of ω, i.e.

T (ω, z)∗ = T (ω∗, z) . (3.4)

Again since the integration along I ′3 vanishes, the imaginary part of Ψ(β, z) is now simply

given by the poles and branch cuts from the iε prescription

Im Ψ(β, z) = − 1

2i
B(z)

∫
I2+I′2

dω ωβ−1T (ω, z)

= −B(z)

{
π
∑
i

Res
ω→mi

[
ωβ−1T (ω, z)

]
+

∫ ∞
M

dω ωβ−1 Disc [T (ω, z)]

}
,

(3.5)

where mi are the position of the factorization poles, and M is the branch point of the

branch cuts, which is present due to loop effects.5

In summary, we find that the imaginary part of the celestial amplitude is simply

governed by the residue or (massive) discontinuity of the scattering amplitude. For s-

channel kinematics, we find that Im[Ψ] is given by the projection of the s-channel residue

or discontinuity onto the celestial sphere as in eq.(3.5).

5If the convergent angle θ0 is great than π
2

(e.g. massive scalar exchange amplitude), one might worry

that there will be poles coming from other channel contributing to the imaginary part in (3.5). In fact,

because other channel poles are lying on the pure imaginary axis, and they are coming in pair. One can

easily verify total residue sum is 0 in the RHS contour of fig. 1. Thus the result is not changed even if the

θ0 > π/2 is bigger than π/2
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3.2 Positivity in Im[Ψ(β, z)]

If the external states are arranged as a, b→ b, a, where (a, b) represents potentially distinct

species, the residue and the discontinuity are positively expandable on Legendre polyno-

mials for scalars and Jacobi polynomials for spinning states [23]. Thus the imaginary part

of the celestial amplitude must be positively expanded on the Mellin-transform of these

orthogonal polynomials.

At the tree-level, the imaginary part of the celestial amplitude only picks up the poles

corresponding to the factorization channels. The associated residues in the three kinematic

regimes are

12→ 34 : Resω=m

[
ωβ−1m

2JPJ(u−t
m2 )

ω2 −m2

]
=
mβ−2+2J

2
· PJ

(
z − 2

z

)
,

13→ 24 : Resω=m

[
ωβ−1m

2JPJ( s−t
m2 )

ω2 −m2

]
=
mβ−2+2J

2
· PJ(1− 2z),

14→ 23 : Resω=m

[
ωβ−1m

2JPJ(u−s
m2 )

ω2 −m2

]
=
mβ−2+2J

2
· PJ

(z + 1

z − 1

)
.

(3.6)

Note that we have written the argument of the Legendre polynomials in terms or Mandel-

stam invariants in such a way that manifest the exchange symmetry in each channel. Thus

from (3.5) the imaginary part of the scalar celestial amplitude must be positively expanded

on the following basis

Im Ψ12↔34(β, z) = πz2
∑
i∈I

piPJi

(
z − 2

z

)
(z ≥ 1) ,

Im Ψ13↔24(β, z) = πz
β
2

+2
∑
i∈I

piPJi(1− 2z) (1 ≥ z ≥ 0) ,

Im Ψ14↔23(β, z) = π(−z)
β
2

+2(1− z)−
β
2

∑
i∈I

piPJi

(
z + 1

z − 1

)
(0 ≥ z) ,

(3.7)

where pi = g2
i

(
mi
2

)β−3
m2Ji+1
i .

Extension to spinning external states is straight forward. On the factorization pole,

the residue polynomial is now:

T`i(s, t)|s→m2 = −
m2JdJ`34,`12

(
arccos(u−t

m2 )
)

s−m2 + iε
, (3.8)

where `ij±kl = (`i − `j) ± (`k − `l), and dJ`34,`12
(φ) is the Wigner (small) d-matrix which

can be conveniently given in Jacobi polynomials,

dJ`34,`12
(φ) = BJ

12;34

(
sin

φ

2

)`12−34
(

cos
φ

2

)`12+34

J `12−34,`12+34

J−`12
(cosφ), (3.9)

where J α,βn is the Jacobi polynomial and the constant BJ
i1i2;i3i4

≡
√

(J+`i1i2 )!(J−`i1i2 )!

(Ji+`i3i4 )!(J−`i3i4 )! . This

gives the following representation of the imaginary part Im [Ψ(β, z)] in the three different
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regions (2.21) on the equator:

Im Ψ12↔34(β, z) =
∑
i

pi12;34 z2−`12(z − 1)
`12−34

2 J `12+34,`12−34

Ji−`12

(z − 2

z

)
(z ≥ 1) ,

Im Ψ13↔24(β, z) =
∑
i

pi13;24 z
β+`13+24

2
+2(1− z)

`13−24
2 J `13+24,`13−24

Ji−`13
(1− 2z) (1 ≥ z ≥ 0) ,

Im Ψ14↔23(β, z) =
∑
i

pi14;23
(−z)

β+`14+23
2

+2

(1− z)
β
2

+`23

J `14+23,`14−23

Ji−`23

(
z + 1

z − 1

)
(0 ≥ z) ,

(3.10)

where pi12;34 = πgi
(
m
2

)β−3
m2Ji+1
i BJi

12;34 > 0. Indeed setting `i = 0 in (3.10) one recovers

the scalar basis in (3.7). The coefficient gi becomes positive if the external states are

arranged as `3 = −`2 and `4 = −`1, i.e. such that the configuration corresponds to forward

scattering.

Thus for each kinematics, Im Ψ has a positive expansion on the basis in eq.(3.10).

Note that the fact that the Wigner d-matrix serves as an expansion basis for the flat-space

amplitude is a reflection of factorization and Poincaré symmetry. Since the basis functions

in eq.(3.10) is simply the projection of the Wigner d-matrix, they must be intimately tied

to the “image” of Poincaré symmetry on the celestial sphere. Indeed, in the following, we

will find that these are precisely the Poincaré partial waves introduced in [20].

3.3 Poincaré partial wave expansion

Let us first review the Poincaré partial waves introduced in [20], focusing on the celestial

amplitude in the 12↔ 34 kinematics. It can be written as a inner product between the in

and out states

Ã12↔34
∆i,`i

(zi, z̄i) = 〈∆3, z3, z̄3, `3,∆4, z4, z̄4, `4|∆1, z1, z̄1, `1,∆2, z2, z̄2, `2〉 . (3.11)

The Hilbert space can be decomposed into irreducible unitary representations of the Poincaré

algebra. According to Wigner’s classification, they are the massive representations labeled

by the mass m and spin J , and the massless representations labeled by the helicity `.

Consider the projectors

Pm,J =
1

2J + 1

J∑
J3=−J

|m,J, J3〉〈m,J, J3| ,

P` =
1

2

∑
ε=±
|ε`〉〈ε`| ,

(3.12)

which project onto a single massive or massless representation. The projectors Pm,J and

P` commute with the Poincaré generators Pµ and Mµν , i.e.

[Pµ,Pm,J ] = 0 = [Mµν ,Pm,J ] , (3.13)
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and similarly for the massless projector P`. The massive and massless Poincaré partial

waves are defined by inserting the projectors into the inner product (3.11),

Ã12↔34
∆i,`i;m,J

(zi, z̄i) = 〈∆3, z3, z̄3, `3,∆4, z4, z̄4, `4|Pm,J |∆1, z1, z̄1, `1,∆2, z2, z̄1, `2〉 ,
Ã12↔34

∆i,`i;`
(zi, z̄i) = 〈∆3, z3, z̄3, `3,∆4, z4, z̄4, `4|P`|∆1, z1, z̄1, `1,∆2, z2, z̄1, `2〉 .

(3.14)

The translation and Lorentz generators Pµ and Mµν act on the massless single parti-

cle states as differential operators Pµ and Mµν given explicitly in [12], which we list in

Appendix B. By (3.13), the Poincaré partial waves satisfy the constraints

(Pµ1 + Pµ2 − P
µ
3 − P

µ
4 )Ã12↔34

∆i,`i;m,J
(zi, z̄i) = 0 ,

(Mµν
1 +Mµν

2 +Mµν
3 +Mµν

4 )Ã12↔34
∆i,`i;m,J

(zi, z̄i) = 0 ,
(3.15)

and similar for the massless Poincaré partial waves. Since the above constraints are the

same constraints used in [17] to derive the form in (2.12) and (2.14) of the celestial ampli-

tude, the Poincaré partial waves should also take the form as (2.12) and (2.14).

Beside (3.15), the Poincaré partial waves satisfy additional differential equations given

by the Casimir operators of the Poincaré algebra. The Poincaré algebra has a quadratic

and a quartic Casimir operators

PµP
µ , WµW

µ , (3.16)

where Wµ = 1
2ε
µνρσMνρPσ is the Pauli-Lubanski pseudo-vector. The two Casimir operators

have eigenvalues −m2 and m2J(J +1) when acting on a state with mass m and spin J , i.e.

PµP
µ |m,J, J3〉 = −m2 |m,J, J3〉 ,

WµW
µ |m,J, J3〉 = m2J(J + 1) |m,J, J3〉 .

(3.17)

By inserting the Casimir operator PµPµ into the inner product form of the Poincaré par-

tial wave Ã12↔34
∆i,`i;m,J

(zi, z̄i), and using the formulae (B.1) and (B.3), one find a differential

equation

(P1 + P2)µ(P1 + P2)µÃ12↔34
∆i,`i;m,J

(zi, z̄i)

= 〈∆3, z3, z̄3, `3,∆4, z4, z̄4, `4|Pm,JPµPµ|∆1, z1, z̄1, `1,∆2, z2, z̄1, `2〉
= −m2Ã12↔34

∆i,`i;m,J
(zi, z̄i) .

(3.18)

Similarly, the Casimir operator WµWµ leads to another differential equation

(W1 +W2)µ(W1 +W2)µÃ12↔34
∆i,`i;m,J

(zi, z̄i) = m2J(J + 1)Ã12↔34
∆i,`i;m,J

(zi, z̄i) , (3.19)

where Wµ = 1
2ε
µνρσMνρPσ. Factoring out some conformal factors similar to (2.12) and

(2.14) as

Ã12↔34
∆i,`i;m,J

(zi, z̄i) =

(
z14
z13

)h3−h4
(
z24
z14

)h1−h2
(
z̄14
z̄13

)h̄3−h̄4
(
z̄24
z̄14

)h̄1−h̄2

zh1+h2
12 zh3+h4

34 z̄h̄1+h̄2
12 z̄h̄3+h̄4

34

× (z − 1)
∆1−∆2−∆3+∆4

2 δ(iz − iz̄)Φ12↔34
m,J (∆, `i, z) ,

(3.20)
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(3.18) reduces to the differential equation on the total dimension ∆ and the cross ratio z

− 4e2∂∆Φ12↔34
m,J (∆, `i, z) = −m2Φ12↔34

m,J (∆, `i, z) . (3.21)

Similarly, (3.19) gives the differential equation[
(1

4`
2
12+34 − 4)z2 + (10− `12`34)z − 6

z − 1
+ (3z − 4)z∂ − (z − 1)z2∂2

]
Φ12↔34
m,J (∆, `i, z)

= J(J + 1)Φ12↔34
m,J (∆, `i, z) .

(3.22)

Let us briefly comment on the Casimir equations for the massless Poincaré partial waves.

By the same derivation, we find the Casimir operator PµPµ gives the differential equation

(3.21) with m2 = 0. However, the differential operator on the right hand side of (3.21) is

invertible. Hence, the massless Poincaré partial waves should be zero identically.

One could repeat the above analysis for the celestial amplitude in the 13 ↔ 24 and

14 ↔ 23 kinematics, and derive the corresponding differential equations for the Poincaré

partial waves Φ13↔24
m,J (∆, `i, z) and Φ14↔23

m,J (∆, `i, z). The solutions to the Casimir equations

in the three kinematics (2.21) are (again β = ∆− 4)

Φ`i
m,J(β, z) =

(m
2

)β√(2J+1)

m


BJ

12,34z
2−`12(z−1)

`12−34
2 J `12+34,`12−34

J−`12

(
z−2
z

)
(z ≥ 1) ,

BJ
13,24z

β+`13+24
2

+2(1−z)
`13−24

2 J `13+24,`13−24

s−`13
(1−2z) (1 ≥ z ≥ 0) ,

BJ
14,23

(−z)
β+`14+23

2 +2

(1−z)
β
2 +`23

J `14+23,`14−23

J−`23

(
z+1
z−1

)
(0 ≥ z) .

(3.23)

One see exactly that the Poincaré partial waves (3.23) are identical to the expansion basis

in (3.10) in each kinematics threshold up to normalization factors.

Thus combining everything, we conclude that the imaginary part of the celestial am-

plitude has a positive expansion on the massive Poincaré partial wave, namely,

Im Ψ>Λ(β, `i, z) =
∑
a

paΦma,Ja(β, `i, z), pa > 0 . (3.24)

Note that since the Jacobi polynomials are orthogonal polynomials, the Poincaré partial

waves also satisfy orthogonality relations [20], and the coefficients pa are unique. The

generalization to supersymmetric theories is straightforward. Once again the expansion

polynomial is given by the projection of the susyspinning polynomials on to the celestial

sphere. These polynomials are again Jacobi polynomials, but with the helicities indicating

that of the highest weighted state in a susy multiplet. For details see [24].

Crossing symmetry: Let us consider the implications of crossing symmetry on the ce-

lestial amplitude. For a crossing symmetric amplitude, we would expect the three kinematic

region of the celestial amplitude to be related to each other. Indeed, we have:
s↔ u Ψ13↔24(β, z) = z

β
2

+4 Ψ12↔34(β, 1
z ) (1 ≥ z ≥ 0) ,

s↔ t Ψ12↔34(β, z) =
(

z
1−z

)β
2

+2
Ψ14↔23(β, 1− z) (z ≥ 1) ,

u↔ t Ψ13↔24(β, z) = (z − 1)2Ψ14↔23(β, z
z−1) (1 ≥ z ≥ 0) .

(3.25)
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for the celestial amplitude of any permutation invariant theory. Furthermore, since the

residue of each channel must respect the exchange symmetry of the legs on one side of

the factorization, this implies that the imaginary part of Ψ(β, z) must further satisfy the

following “self-dual” like identities:
Im Ψ13↔24(β, z) =

(
z

1−z

)2
Im Ψ13↔24(β, 1− z) (1 ≥ z ≥ 0) ,

Im Ψ14↔23(β, z) = (−1)
β
2 z

3β
2

+4Im Ψ14↔23(β, 1
z ) (0 ≥ z) ,

Im Ψ12↔34(β, z) = (z − 1)2Im Ψ12↔34
(
β, z

z−1

)
(z ≥ 1) .

(3.26)

It is straightforward to verify that the Poincaré partial waves in (3.23) respect the crossing

equations (3.25) and (3.26).6

4 Open and closed string celestial amplitudes

We have already seen how the imaginary part of the celestial amplitude encodes the infor-

mation of poles and branch cuts on complex ω plane. Furthermore, as discussed in Section

5, the integrand can be analytic continued to other unphysical z domains. However, the

UV convergence of the integral relies on certain regions of ω plane. In this section, we will

first use type-I and II superstring amplitudes:7

type-I :
Γ[−s]Γ[−t]

Γ[1+u]
, type-II :

Γ[−s]Γ[−t]Γ[−u]

Γ[1+s]Γ[1+u]Γ[1+t]
, (4.1)

as examples to determine the convergent regions on ω plane for all z dependance. As

indicated in Figure 2, they are in general z-dependent for open strings while enjoys z-

independent for closed strings. Then we will discuss how bulk-locality encoded in the

imaginary part of tree-level celestial string amplitude in physical z domains. Finally, when

we discuss the celestial dispersion relation in Section 6 we will verify those relations with

celestial string amplitudes in Section 6.1.

4.1 Convergent regions in string theory

As is widely known, in the fixed-angle scatterings, string amplitudes are expected to decay

exponentially at large real ω. However, the suppression is in general not true in the whole

complex ω plane. Therefore in this sub-section we will study this problem for open and

closed string amplitudes. Writing ω = reiθ, the r → ∞ limit of string amplitudes behave

as:

T (r2e2iθ, z) ∼ exp
[
g(θ, z)r2 +O(log r)

]
. (4.2)

Hence, for given z, the amplitude is suppressed in the limit r →∞ when

Re [g(θ, z)] < 0 , (4.3)

6Note that eq.(3.25) only holds for scalar blocks of even spin. For odd spins there will be an additional

sign as expected.
7Here we have neglected the F 4 and R4 pre-factor for simplicity. Their effect can be incorporated

straightforwardly.
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Figure 2. The angle θc for the open string amplitude in the 12↔ 34 kinematics as a function of z.

which, as one will see, gives the convergent region

θ ∈ (−θc, θc) ∪ (π − θc, π + θc) , (4.4)

where the angle θc is the root of Re[g(θ, z)] = 0 when θ ∈ (0, π2 ). Let us consider the open

and closed string separately,

• Open string

The gluon amplitude in the type-I superstring theory is

Topen(s, u) =
Γ(−s)Γ(−t)
Γ(1− s− t)

. (4.5)

In the 12→ 34 kinematic region (z > 1), and restricting to θ ∈ (0, π2 ), we have

g(θ, z) = e2iθ [(z−1)(log(z − 1)+iπ)−z log(z)]

z
. (4.6)

The inequality (4.3) gives the following equation for the angle θc,

cot(2θc) =
π(1− z)

z log z − (z − 1) log(z − 1)
. (4.7)

The angle θc as a function of z is plotted in figure 2. One can see that starting from

z = 1, the angle θc is gradually increasing from π
4 to π

2 as z →∞.

Also one can perform the same analysis for general angle θ ∈ (−π, π), and find that

the convergent regions in the other quadrants are also specified by the same angle θc
and given by (4.4). One can further repeat the same analysis for the other kinematics

13↔ 24 and 14↔ 23. The results are summarized in Table 2.

θ12↔34
c (z) (z ≥ 1) θ13↔24

c (z) (1 ≥ z ≥ 0) θ14↔23
c (z) (0 ≥ z)

1
2 cot−1

[
π(1−z)

z log z−(z−1) log(z−1)

]
π
4

1
2 cot−1

[
πz

(1−z) log(1−z)+z log(−z)

]
Table 2. Characteristic angles in open string.
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• Closed string

The graviton amplitude in the type-II superstring is

Tclosed(s, u) =
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
(4.8)

It turns out that the large r behavior of the closed string amplitude is much simpler

than the open string case. In the 12↔ 34 kinematic region (z ≥ 1), we find

g(θ, z) = 2e2iθ (z − 1) log(z − 1)− z log z

z
, (0 < θ < π/2) . (4.9)

The condition for the real part to be negative is

cos(2θ) > 0⇒ 0 < θ <
π

4
. (4.10)

We can repeat the same analysis for general angle θ ∈ (−π, π) and for the other

kinematics 13 ↔ 24 and 14 ↔ 23. The convergent regions for all cases are given by

(4.4) with the angle θc equals to π
4 .

4.2 Im Ψ(β, z) in string theory

Taking β ∈ R, from (3.5), Im Ψ(β, z) is given as a sum of the residues of the poles (and

also an integral of the discontinuity) near the positive real axis. For both open and closed

string amplitudes, the poles near the positive real axis are located at ω =
√
n for n ∈ Z>0,

and we have

Im Ψ(β, z) = −πB(z)
∞∑
n=1

(
√
n)β−1 Res

ωn=
√
n

[
T (ωn, z)

]
(β > β∗) (4.11)

In the following, we will verify this formula by directly comparing the truncated sum with

the numerical result of the Mellin integration:

• Open String

The massive poles of the open string amplitude (4.5) are located at s, t = 1, 2, . . . , n.

And the corresponding residues for s-channel are,

Ress=n[Topen(s, t)] =

∏n−1
k=1(t+ k)

n!
. (4.12)

The residues of the t-channel poles are given by exchanging s with t. Now we can

compute ImΨ(β, z). In 12→ 34 kinematic region, using eq.(3.5), the imaginary part

will only receive contribution from s-channel massive poles located on the positive-ω

axis at ωn =
√
n with the residue

Res
ω=
√
n

[
T 12→34

open

(
ω2,−1

z
ω2
)]

=

[
n
(

1
z − 1

)
+ 1
]
n−1

2
√
nn!

. (4.13)

– 19 –



Thus, the imaginary part of the open string celestial amplitude is

Im Ψ12↔34
open (β, z) = −πB12→34(z)

∞∑
n=1

(
√
n)β−1 Res

ω=
√
n

[
T 12→34

open

(
ω2,−1

z
ω2
)]

= −π23−βz2
∞∑
n=1

(
√
n)β−2

[
n
(

1
z − 1

)
+ 1
]
n−1

2n!
(z > 1) , (4.14)

One can perform the same computation for 14→ 23, the result is,

Im Ψ14↔23
open (β, z) = −πB14→23(z)

∞∑
n=1

(
√
n)β−1 Res

ω=
√
n

[
T 14→23

open

( z

1− z
ω2,− 1

z − 1
ω2
)]

= −π23−β(−z)
β
2

+2(1− z)−
β
2

∞∑
n=1

(
√
n)β−2

(
nz

1−z + 1
)
n−1

2n!
(z < 0) .

(4.15)

Note that Im Ψ13↔24
open (β, z) = 0 because the open string amplitude Topen(s, t) has no

u-channel pole. The comparison of the truncated sum of eq.(4.14) with the result

from the numerical Mellin integral (2.24) is given in Figure 3. One can see that

Im Ψ12↔34
open (β, z) diverges in the limits z →∞ and z → 1. The divergent at z →∞ is

due to the overall prefactor B12→34(z) = πz2, while the divergent at z → 1 is due to

the non-convergence of the residue sum reflecting the massless 1/t singularity in that

limit. Note that the divergence occurs for positive β. For negative β the imaginary

part is finite as we will see in Section 6.2.

10 20 30 40 50
z

-1.0

-0.5

0.5

ImΨopen
12→34 (β,z)

z2

β=5

Numerical

Nmax=10

Nmax=30

Nmax=50

1.02 1.04 1.06 1.08 1.10
z

-70

-60

-50

-40

-30

-20

-10

Im[Ψopen
12→34(β,z)]

β=5

Numerical

Nmax=10

Nmax=30

Nmax=50

Figure 3. Here we present the comparison of numerical evaluation of Mellin integral and residue

sum formula eq.(4.14) for the imaginary part of celestial open string amplitude. LHS and RHS

shows the behavior of Im Ψ12↔24
open (β, z) in z →∞ and z → 1

• Closed String

In the closed string case, the residues at s = 1, 2, . . . n are

Ress=n[Tclosed(s, t)] =

∏n−1
k=1(t+ k)2

(n!)2
(4.16)
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Again, let us focus on the 12↔ 34 kinematics and the region z ≥ 1. Using eq.(3.5),

the residue of the pole at ω =
√
n is

Res
ω=
√
n

[
Tclosed(ω2,

1− z
z

ω2)
]

=

[(
1 + 1−z

z n
)
n−1

]2

2
√
nn(n!)2

. (4.17)

Thus, the imaginary part of the massive contribution is given by

Im Ψ12↔34
closed (β, z) = −π23−βz2

∞∑
n=1

(
√
n)β−2

2

([
n
(

1
z − 1

)
+ 1
]
n−1

n!

)2

(4.18)

The comparison with result from the numerical integral is given in figure 4. Similar

with the open string, the divergences in the z → 1 and z →∞ limits are implied by

the massless t, u poles.

Using the crossing symmetry, we find the closed string celestial amplitudes for the

other two kinematics

Im Ψ13↔24
closed (β, z) = −π23−βz

β
2

+2
∞∑
n=1

(
√
n)β−2

2


(

n
z−1 + 1

)
n−1

n!


2

,

Im Ψ14↔23
closed (β, z) = −π23−β(−z)

β
2

+2(1− z)−
β
2

∞∑
n=1

(
√
n)β−2

2


(
nz

1−z + 1
)
n−1

n!


2

.

(4.19)
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Figure 4. Here we present the comparison of numerical evaluation of Mellin integral and residue

sum formula eq.(4.18) for the imaginary part of celestial closed string amplitude. LHS and RHS

shows the behavior of Im Ψ12↔24
closed (β, z) in z →∞ and z → 1

5 Analytic continuation in z

As reviewed in sec.2, the celestial four-point amplitude consists of three different functions

defined in three distinct regions on the real circle of the complex sphere. One can ask if the

– 21 –



three functions can be analytically connected to each other. Consider the simple massive

scalar exchange example, and compare eq.(2.33) with

Ψ13↔24(β, z) =
πg2

sin πβ
2

(m
2

)β−2
z2
[
1+e

1
2
πiβz

β
2 +(z(1− z))

β
2

]
(1 ≥ z ≥ 0) ,

Ψ14↔23(β, z) =
πg2

sin πβ
2

(m
2

)β−2
z2

[
1+ (−z)

β
2 + e

1
2
πiβ

(
−z

1− z

)β
2

]
(0 ≥ z) .

(5.1)

It is straight forward to see that the functions cannot be analytically related.

There are, however, reasons we might want to consider the analytic continuation of

a celestial amplitude from the physical region as specified in Table 1 to the unphysical

ones. Recall that the presence of bulk factorization is imprinted in the imaginary part of of

celestial sphere, where in each kinematic region only the channel with the physical threshold

is projected. Thus for fixed z, to access the information of all factorization channels through

the imaginary part, we will need to analytic continue Ψ of other kinematic configurations

to their unphysical regions. Such analytic continuation will be important when we consider

dispersion relations for the celestial amplitude in Section 6.

5.1 The scalar example

Before turning to the general analysis, we will use the massive scalar exchange example to

illustrate the last point. To continue Ψ12↔34
scalar (β, z) outside the physical region z > 1, we

need to be careful about potential monodromies as we continue across the boundaries at

z = 1 and z = ∞. Continuing across z = 1 by z − 1 → e−πi(1 − z) and across z = ∞ by

z → eπi(−z), we obtain

Ψ12↔34
scalar (β, z) =

πg2

sin πβ
2

(m
2

)β−2
z2

e
1
2
πiβ + z

β
2 + e

1
2
πiβ
(

z
1−z

)β
2

(1 > z > 0) ,

e
1
2
πiβ + e

1
2
πiβ(−z)

β
2 +

(
z
z−1

)β
2

(0 > z) .

(5.2)

The imaginary part of Ψ12↔34
scalar (β, z) in the new (unphysical) regions are

Im Ψ12↔34
scalar (β, z) = πg2

(m
2

)β−2
z2

1 +
(

z
1−z

)β
2

(1 > z > 0) ,

1 + (−z)
β
2 (0 > z) ,

= 23−βπz2g2


Res

ω→m,
√

z
1−zm

[
ωβ−1T 12↔34

scalar (ω, z)
]

(1 > z > 0) ,

Res
ω→m,

√
−zm

[
ωβ−1T 12↔34

scalar (ω, z)
]

(0 > z) .

(5.3)

We see that the analytically continued result receives contribution from the s- and t-channel

poles in 1 > z > 0 (the “u”-region), and s- and u-channel poles in 0 > z (the “t”-region).

Note that the analytic continuation prescription here is uniquely fixed by demanding that

the analytic continued amplitudes match irrespective of which physical region it originated
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from. More precisely,

Ψ13↔24
scalar (β, z) ∝ Ψ14↔23

scalar (β, z) (z > 1) ,

Ψ14↔23
scalar (β, z) ∝ Ψ12↔34

scalar (β, z) (1 > z > 0) ,

Ψ12↔34
scalar (β, z) ∝ Ψ13↔24

scalar (β, z) (0 > z) ,

(5.4)

where the proportionality coefficients being z-independent phases. Explicit comparison

fixes the phase to be (1, e−
1
2
iπβ, e

1
2
iπβ) respectively.

5.2 General analysis

Having gone through the scalar exercise, we are now ready to consider the continuation

for general amplitudes. At the level of the integrand, the analytic continuation on z

corresponds to the analytic continuation on the Mandelstam variables from the physical to

the “unphysical” kinematic regions, as shown in Table 3:

12↔ 34 13↔ 24 14↔ 23

z > 1 s > 0 > u, t u, t > 0 > s u, t > 0 > s

1 > z > 0 s, t > 0 > u u > 0 > s, t s, t > 0 > u

0 > z s, u > 0 > t s, u > 0 > t t > 0 > s, u

Table 3. The physical and “unphysical” kinematic regions.

The physical regions are those that have only one positive Mandelstam, sitting on the

diagonal entries. Take Ψ12↔34 as an example. The analytic continuation to unphysical

regions in z, say 0 > z, leads to an unphysical kinematic setup (s, u > 0 > t) and is distinct

from Ψ14↔23 originated from the physical setup t > 0 > s, u. Thus it is natural that the

three distinct functions on the equator cannot be analytically continued to each other.

On the other hand, continuing Ψ13↔24 and Ψ14↔23 to their common unphysical region, i.e.

z > 1, do yield the same Mandelstam region (u, t > 0 > s) and it is natural to identify their

analytic continuation. Thus we impose the following conditions on the analytic continued

celestial amplitudes

Ψ13↔24(β, z) = Ψ14↔23(β, z) (z > 1) ,

Ψ14↔23(β, z) = e−
1
2
iπβΨ12↔34(β, z) (1 > z > 0) ,

Ψ12↔34(β, z) = e
1
2
iπβΨ13↔24(β, z) (0 > z) ,

(5.5)

where the phases e±
1
2
iπβ are due to analytic continuing the prefactor B(β, z) in (2.24).

Indeed these conditions are satisfied by the massive scalar exchange.

Note that to analytic continue, we need to ensure that the celestial amplitude exists

along the path of continuation. More precisely, the celestial amplitude Ψ(β, z) given by

the integral of the flat-space amplitude T (ω, z) must be convergent along the path. As an

example, consider continuing Ψ12↔34 from its physical region z > 1 to 1 > z > 0. More
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explicitly, our path of continuation is given by

P1 : from any z > 1 to z = 1 + ε ,

P2 : z = 1 + εe−iφ for φ from 0 to π ,

P3 : from z = 1− ε to any z ∈ (0, 1) ,

(5.6)

where ε > 0 is a small number. Previously in Section 3.1, we’ve discussed that the existence

of the celestial amplitude requires T 12↔34(ω, z) to vanish as ω →∞ in the physical region

z > 1. We have further assumed that the convergence property of T 12↔34(ω, z) can be

extended onto the complex ω plane with a finite range of argument, i.e. T 12↔34(ω, z)→ 0

as |ω| → ∞ with the argument

argω ∈ Θ12↔34(z) ≡
(
− θ12↔34

c (z), θ12↔34
c (z)

)
∪
(
π − θ12↔34

c (z), π + θ12↔34
c (z)

)
for z > 1 ,

(5.7)

where we have emphasized the z dependence by writing θ12↔34
c (z). Now, let us consider

the region 1 > z > 0. Using the identity T 12↔34(ω, z) = T 13↔24( iω√
z
, z), we find that

T 12↔34(ω, z) vanishes as |ω| → ∞ with the argument

argω ∈ Θ12↔34(z) ≡
(π

2
− θ13↔24

c (z),
π

2
+ θ13↔24

c (z)
)

∪
(
− π

2
− θ13↔24

c (z),−π
2

+ θ13↔24
c (z)

)
for 1 > z > 0 .

(5.8)

In general, the region (5.8) does not contain the angle argω = 0. Hence, we need to deform

the integration contour continuously along the way of the analytic continuation P2 in (5.6).

For such continuous contour deformation to exist, the convergent region Θ(z) should exist

and continuously move from (5.7) to (5.8) when going along the path P2. This is illustrated

in figure 5, where the region Θ(z) for z > 1 (1 > z > 0) is drawn as the blue (pink) region.

For the massive scalar exchange the amplitude is convergent for all argω ∈ [0, 2π), and

one do not need to deform the integration contour. For string theory amplitudes, the blue

region (Θ12↔34(z) for z > 1) is computed in sec.4 and the pink region (Θ12↔34(z) for

1 > z > 0) can be obtained by the formula (5.8) using the θ13↔24
c given in Table 2. As

we will see in sec.C the convergent region Θ(z) deforms continuously from the blue to the

pink regions when going along the path P2.

With this understanding, we can now carry out the analytic continuation. Begin with

Ψ12↔34 in the physical region z > 1 defined by the Mellin integral (2.24), which is an

integral along the contour I1 in figure 5. When going along the path (5.6), the integration

contour should deform accordingly, such that it is always inside the corresponding angular

region Θ(z). When arriving the destination z ∈ (0, 1), the integration contour becomes

−I2 in figure 5. Finally, under the analytic continuation, the t-channel poles (represented

by the red dots in figure 5) are rotated from the imaginary axis to the real axis, while the

s- and u-channel poles (represented by the black and blue dots in figure 5) remain near the

real and the imaginary axes, respectively.

Now, let us consider the imaginary part of the celestial amplitude Im Ψ12↔34(β, z)

after analytically continuing to 1 > z > 0. Similar to the discussion in Section 3.1, it can
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I1

I2

I ′2

Figure 5. The blue (pink) regions is the convergent angular region Θ(z) for z = 1 + ε > 1

(z = 1 − ε < 1). The black, blue or red dot is a representative for the s-, t- or u-channel poles at

ω = ±m, ω = ±i
√

z
z−1mi or ω = ±i

√
zmi, respectively.

be computed by the integral along the contour I2 + I ′2 as shown in figure 5. However, in

this case, we cannot close the contour by adding the I ′3 piece as in figure 1, because the I ′3
contour extends outside the pink angular region, and the contour integral diverges. When

applied to the case of the massive scalar exchange amplitude studied in Section 2.3, we

have a better asymptotic property that

Θ(z) = [0, 2π) ∀z ∈ C . (5.9)

In such case, Im Ψ12↔34(β, z) in the region 1 > z > 0 can also be computed by the fan-like

contour I2 +I ′2 +I ′3, which picks up the residues and discontinuities of the poles and branch

cuts inside the contour. The result is

Im Ψ12↔34
>Λ (β, z)

= −B12↔34(z)π
∑
i

Res
ω→mi,

√
z

1−zmi

[
ωβ−1T 12↔34(ω, z)

]
+

(∫ ∞
M

+

∫ ∞
√

z
1−zM

)
dω ωβ−1 Disc

[
T 12↔34(ω, z)

]
(1 > z > 0) .

(5.10)

We see that the imaginary part of (5.2) indeed agrees with the formula (5.10).

6 Celestial dispersion relation

The analyticity properties of a scattering amplitude T (s, t) can be summarized by disper-

sion relations. When the Mandelstam variable u = u0 is fixed with the absolute value

|u0| smaller than the multi-particle production threshold M , the dispersion relation for the
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scattering amplitude reads8

T (s, t) = −
∑
i

g2
i

s−m2
i

−
∑
i

g2
i

t−m2
i

+
1

π

∫ ∞
M2

ds′
Discs [T (s′, t)]

s′ − s
+

1

π

∫ ∞
M2

dt′
Disct [T (s, t′)]

t′ − t
,

(6.1)

where the discontinuity Discs[T (s, t)] is defined by

Discs[T (s, t)] =
1

2i
(T (s+ iε, t)− T (s− iε, t)) , (6.2)

and similarly for Disct[T (s, t)]. By unitarity, they are positively expandable on appropriate

orthogonal polynomials. Along the line of S-matrix bootstrap, the dispersion relations

have been used recently to constrain the EFT coefficients – the expansion coefficients of

the amplitude T (s, t) at s = u = t = 0 [23, 25–28].

On the celestial sphere, on one hand, as we have seen in Section 3, the poles and

discontinuities that appear on the right hand side of the dispersion relation (6.1) contribute

to the imaginary part of the celestial amplitude. On the other hand, as elucidated in [21]

and also discussed in Section 2.2, the EFT coefficients show up as the residues of the poles

in the celestial amplitude on the complex β-plane at negative even integers. Therefore, it

is natural to expect a relation between the residues of the poles at β = −2n for n ∈ Z≤0

and the imaginary part of the celestial amplitude, given by the projection of the dispersion

relation (6.1) on the celestial sphere. However, the dispersion relation (6.1) cannot be

directly translated to the celestial sphere by the Mellin transform (2.24), since for generic

z, the ω-integral extends to the region where all the Mandelstam variables are large and

the dispersion relation (6.1) does not hold. Keeping u = u0 fixed and finite corresponds to

the OPE limit (colinear limit) of the celestial amplitude, for example, the z →∞ limit in

the 12↔ 34 kinematics.

From the celestial amplitude of the massive scalar exchange (2.33), we observe the

following relation between the residues of the poles at negative even integer β and the

imaginary part of the celestial amplitude

π

2
Res
β→−2n

[
Ψ12↔34

scalar (β, z)
]

= Im
[
Ψ12↔34

scalar (β, z) + (−1)nΨ13↔24
scalar (β, z)

] ∣∣∣
β→−2n

(z ≥ 1) ,

(6.3)

and similar relations in the other regions. Importantly, the celestial amplitude Ψ13↔24
scalar (−2n, z)

on the right hand side is given by the analytic continuation from the physical defin-

ing region 1 > z > 0 to the region z > 1, as discussed in Section 5.1. Note that

we could have chosen the analytic continuation of Ψ14↔23
scalar instead, since from eq.(5.5),

Ψ13↔24
scalar (β, z) = Ψ14↔23

scalar (β, z) when z ≥ 1.

8We assume the asymptotic behavior of the amplitude as T (s,−s − u0) → 0 when |s| → ∞. For

amplitudes with worse asymptotic behavior like T (s,−s − u0) → |s|N when |s| → ∞, similar dispersion

relations can be written down with N unknown coefficients known as subtraction constants.

– 26 –



More general celestial amplitudes satisfy a similar celestial dispersion relation,

π

2
Res
β→−2n

[
Ψ12↔34(β, z)

]
= Im

[
Ψ12↔34(β, z) + (−1)nΨ13↔24(β, z)

] ∣∣∣
β→−2n

(z ≥ 1) .

(6.4)

In the above, we take n ≥ 1 if gravity is non-dynamical and n > 1 when graviton exchange

are involved. The celestial amplitude Ψ13↔24(−2n, z) on the right hand side of (6.4) is

given by the analytic continuation from the physical region 1 ≥ z ≥ 0 to the region z ≥ 1,

as discussed in Section 5.

Let us now derive (6.4). First we note that the original Mellin integral (2.24) can be

written as a contour integral along the negative real axes:

Ψ12↔34(β, z) =
1

2i
csc(πβ)B12↔34(z)

∮
C(−∞,0]

dω ωβ−1T 12↔34(ω, z) , (6.5)

where the contour C(−∞,0] is a thin counterclockwise contour along the negative real axes

that picks up the discontinuity across the branch cut associated with the ωβ−1 factor, as

shown in the left of figure 6. Note that we’ve used iε to push the cuts associated with T

on to the complex ω plane. This identity can be understood by noting that

Disc[ωβ−1] =
1

2i

[
(|ω|eiπ)β−1 − (|ω|e−iπ)β−1

]
= − sin(πβ)|ω|β−1 when ω ∈ (−∞, 0] .

(6.6)

via. change of variable, we recover the original Mellin integral. This formula makes the

pole structure of the celestial amplitude manifest as the csc(πβ) pre-factor, and the contour

integral along C(−∞,0] converges on the entire β-plane. With this formula, the celestial

amplitude Ψ(β, z) can be analytically continued to β ≤ 0. The pre-factor csc(πβ) has

simple poles at β ∈ Z≤0, for which ωβ−1 yields a (multi)pole at ω = 0. Thus when

computing the residue for β ∈ Z≤0, the contour C(−∞,0] is contracted to a small circle C0

centered at the origin. We then arrive at9

Res
β→−2n

[
Ψ12↔34(β, z)

]
=

1

2πi
B(z)

∮
C0
dω ω−2n−1T 12↔34(ω, z) . (6.7)

To proceed, let us impose the following two assumptions on T 12↔34(ω, z).

1. Maximal analyticity: The only poles and branch cuts of T 12↔34(ω, z) are located

near the real or imaginary axis on the ω-plane as shown in figure 6. They correspond

to the exchange of single or multi-particle states.

2. Boundedness: T 12↔34(ω, z) is bounded for some finite extension onto the the com-

plex ω, i.e. T 12↔34(ω, z)→ 0 as |ω| → ∞ with the argument

argω ∈
(
− θ12↔34

c , θ12↔34
c

)
, (6.8)

9The residues of the poles at β = −2n− 1 all equal to zero, because T (ω, z) is an even function in ω.
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ω-plane

C0

C′0

Figure 6. Left: The contour C(−∞,0]. Right: Pulling the contour C0 to C′0, which further

decomposes into the red contour D0, the blue contour D1, the purple contour D2, the brown

contour D3, and finally the green contours.

Now, let us pull the contour C0 to the contour C′0 as shown in figure 6, where the contour is

now fan-shaped with the extension angle determined by θ12↔34
c . Due to the boundedness

assumption, the arcs of the contour C′0 at infinite (the green contours) do not contribute

to the integral.

The remaining part of the contour C′0 decomposes into four pieces: the red contour

D0, the blue contour D1, the purple contour D2, and the brown contour D3. The contour

integral along D1 can be simply related to the contour integral along D0 and using (3.5),

we get

πz2

2πi

∫
D1

dω ω−2n−1T 12→34(ω, z) = e−2nπiπz
2

2πi

∫
D0

dω ω−2n−1T 12→34(ω, z)

=
1

π
Im[Ψ12→34(β, z)] .

(6.9)

Next, performing the change of variable ω = i
√
zω′, we find:

πz2

2πi

∫
D2+D3

dω ω−2n−1T 12→34(ω, z) =
(−1)n

2i
z2−n

∫
D′2+D′3

dω′(ω′)−2n−1T 13→24(ω′, z) ,

(6.10)

where D′2 and D′3 are the contours given by rotating the contours D2 and D3 clockwise

around origin by π/2. The contour integral along D′3 can be simply related to the contour

integral along D′2, which equals to the I2 + I ′2 in Figure 5 contour that computes the

imaginary part of the analytic continued celestial amplitude. More explicitly, we have

z2−nπ

2i

∫
D′3

dω′(ω′)−2n−1T 13→24(ω, z) = e−2πni z
2−nπ

2i

∫
D′2

dω′(ω′)−2n−1T 13→24(ω, z)

= Im[Ψ13→24(β, z)] .

(6.11)

Putting everything together, we find the celestial dispersion relation (6.4).

Note that for the amplitude of the massive scalar exchange (2.30), since the amplitude

vanishes in all direction, we can instead deform the contour to C′0 in Figure 7. Therefore,
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C0

C′0

Figure 7. Contour deformation from C0 to C′0.

the integral picks up contributions from the poles and branch cuts near the real axis and

gives the imaginary part of Ψ12↔34(β, z) by (3.5). The contribution from the imaginary

axis is

−B(z)

{
π
∑
i

Res
ω→i
√
zmi, i
√

z
z−1

mi

[
ω−2n−1T 12↔34(ω, z)

]
+

(∫ i∞

i
√
zM

+

∫ i∞

i
√

z
z−1

M

)
dω ω−2n−1 Disc

[
T 12↔34(ω, z)

]}
,

(6.12)

which equals to Im [(−1)nΨ13↔24(−2n, z)] or Im [(−1)nΨ14↔23(−2n, z)], by the formulae

similar to (5.10) with the appropriate changes of the integration variable, ω → i
√
zω or

ω → i
√

z
z−1ω.

6.1 Celestial dispersion relation in string theory

Let us do the numerical check of our conjecture (6.4) for the celestial dispersion relation,

by considering the open and closed string celestial amplitudes. Specifically, we will give

the analytic form of the residues at β = −10 and β = −12 poles and numerically evaluate

Im Ψ12↔34 and Im Ψ13↔24 through the fan-like integrals as indicated in (6.9) and (6.11).

Finally, we will plot the results above and show they indeed match.

• Numeric results of β = −10

The analytic forms of residues at the β = −10 poles of open and closed string celestial
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amplitude are,

π

2
Res
β→−10

[
Ψ12↔34

open (β, z)
]

=
512π

45z3

[
−π4z(−1 + z)(4 + 7z(−1 + z))ζ(3)− 60π2z(−1 + z)(1 + z(−1 + z))ζ(5)

−360(1 + z(−1 + z))2ζ(7)
]
,

π

2
Res
β→−10

[
Ψ12↔34

closed (β, z)
]

= −16384π(−1 + z) [1 + z(−1 + z)] ζ(3)ζ(5)

z2
.

(6.13)

where ζ(x) is the Riemann zeta function. The comparison with the RHS of (6.4) is

shown in Figure 8.

5 10 15 20
z

-1.×105

-4.×105

-7.×105

-1.×106

β=-10

π

2
Res[Ψopen

1234]

ImΨopen
1234-ImΨopen

1324

5 10 15 20
z

-1.×105

-4.×105

-7.×105

-1.×106

β=-10

π

2
Res[Ψclosed

1234 ]

ImΨclosed
1234 -ImΨclosed

1324

Figure 8. The comparison between the analytic formula for the residue at β = −10 and the

numerical evaluation of the imaginary part for the open and closed string celestial amplitudes.

• Numeric results of β = −12

The analytic forms of residues at the β = −12 poles of open and closed string celestial

amplitude are,

π

2
Res
β→−12

[
Ψ12↔34

open (β, z)
]

=
128π

14175z4
[π8 (−192− z(−1 + z)(912 + z(−1 + z)(1256 + 381z(−1 + z))))

−151200π2ζ(3)2(−1 + z)2z2 − 1814400ζ(3)ζ(5)z(−1 + z)(1 + z(−1 + z))
]
,

π

2
Res
β→−12

[
Ψ12↔34

closed (β, z)
]

=
256π

945z4

[
3ψ(8)(1) + 9z(−1 + z)

(
ψ(8)(1)− 4480z(−1 + z)(2ζ(3)3 + (10 + 3z(−1 + z)ζ(9)))

)]
,

(6.14)

where ψ(n)(z) is the polygamma function. The comparison is given in Figure 9.

6.2 OPE limit

In the celestial dispersion relation, on the right hand side, the first term Im Ψ12↔34(β, z)

equals to a sum over the contributions from the s-channel exchange as discussed in Sec-

tion 3. However, in general, the second term Im Ψ13↔24(β, z) cannot be expressed as a

sum over contributions from exchange process. The obstruction is due to the fact that in

general the amplitude T 13↔24(ω, z) does not converge in the ω → ∞ limit when z > 1,
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Figure 9. The comparison between the analytic formula for the residue at β = −10 and the

numerical evaluation of the imaginary part for the open and closed string celestial amplitudes.

and thereby we cannot closed the I2 + I ′2 contour in Figure 5.10 This is exactly the case

for the open and closed string amplitudes, as we have seen in the above analysis that

Im Ψ13→24
open/closed(β, z) cannot be expressed as a sum over residues.

However, the high energy behaviors of the string scattering amplitudes become nicer in

the OPE limit (co-linear limit). This would allow us to close the I2+I ′2 contour for the lead-

ing terms in the OPE. In the following analysis, we choose to work with Im Ψ14→23
open/closed(β, z)

by noting the relations (5.5). Let us expand the open string amplitude (4.5) in the OPE

limit z →∞ as

T 14↔23
open (ω, z) = Topen

(
z

1− z
ω2, ω2

)
=

∞∑
m=0

T 14↔23,(m)
open (ω)z−m . (6.15)

From the explicit amplitude (4.5), we find that in the high energy limit ω → ∞ the

expansion coefficients behave as

T 14↔23,(m)
open (ω) ∼ ω2m−2 csc(πω2) logm(ω) . (6.16)

The I2 + I ′2 contour in Figure 5 can be closed at infinity when β ≤ −2m + 2. Hence, the

leading terms in the expansion of ImΨ14→23
open (β, z) can be computed by a sum over the

residue of the t-channel poles. For example, we have

Im
[
Ψ14→23

open (β, z)
] ∣∣∣
β→0

= −πB14→23(z)

[ ∞∑
n=1

(−1)n+1

2n2
+
∞∑
n=1

(−1)n+1(ψ(0)(n) + γ)

2n
z−1 +O(z−2)

]
= −πB14→23(z)

[
π2

24
− 1

4
log2(2)z−1 +O(z−2)

]
.

(6.17)

Similarly, the closed string amplitude (4.8) expanded in the OPE limit z →∞ gives

T 14↔23
closed (ω, z) = Tclosed

(
z

1− z
ω2, ω2

)
=

∞∑
m=−1

T
14↔23,(m)
closed (ω)z−m . (6.18)

10The analysis around Figure 5 is for analytic continuing T 12↔34(ω, z) from z > 1 to 1 > z > 0, but we

can repeat the same analysis for analytic continuing T 13↔24(ω, z) from 1 > z > 0 to z > 1, and the Figure 5

still applies upon reinterpreted the black, blue and red dots as representatives for the u-, s-, and t-channel

poles.
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In the high energy limit ω →∞, we find that the expansion coefficients behave as

T
14↔23,(m)
closed (ω) ∼ ω2m−4 logm+1(ω) . (6.19)

The I2 + I ′2 contour can be closed when β < −2m + 4. Again, the leading terms in the

expansion of ImΨ14→23
closed (β, z) can be computed by a sum over the residue of the t-channel

poles. For example, we have

Im
[
Ψ14→23

open (β, z)
] ∣∣∣
β→0

= −πB14→23(z)

[ ∞∑
n=1

1

2n3
+

∞∑
n=1

ψ(0)(n) + γ

n2
z−1 +O(z−2)

]
= −πB14→23(z)

[
ζ(3)

2
+ ζ(3)z−1 +O(z−2)

]
.

(6.20)

One can similarly compute the imaginary part of the open and closed string celes-

tial amplitudes in the OPE limit for other non-positive integer β and verify the celestial

dispersion relation for the leading orders in the large z expansion.

7 Conclusion and outlook

In this paper, we studied the relations between the bulk-locality, unitarity and analyticity

of the celestial amplitudes.

1. We showed that the imaginary part of the celestial amplitude can be expressed as

the integral along the fan-like contour (the right plot in Figure 1) that encloses the

positive real axis on the complex plane of the center of mass energy ω. The exchanges

of single- and multi-particle states produce poles and branch cuts near the positive

real axis and contribute to the fan-like contour integral. This demonstrates that the

imaginary part of the celestial amplitude is given by bulk factorization singularities.

2. By unitarity, the imaginary part of the celestial amplitude can be positively expanded

in the basis of Legendre or Jacobi polynomials for scalar or spinning particle ampli-

tudes. The projection of these orthogonal polynomials onto the celestial sphere can

be matched to the Poincaré partial waves that satisfy the massive Casimir equation

of the Poincaré algebra.

3. The four-point celestial amplitude from three distinct physical kinematic configura-

tions tiles the equator of the celestial sphere. On the boundary of each region that

functions on the two sides are not continuously connected. Instead we studied the an-

alytic continuation of the celestial amplitude from the physical regions (the intervals

listed in Table 1) to the to the unphysical region.

4. Assuming specific high energy behaviour for the flat-space amplitude for complex

scattering angles, we prove a celestial version of the dispersion relation (6.4). This

allows us to relate the residues of the poles of the celestial amplitude at negative

even integers on the complex β-plane, which is yields the EFT coefficients, to the

imaginary part of the celestial amplitude and its analytic continuation.

– 32 –



5. These results are verified in the context of the open and closed string amplitudes.

In defining the fan contour, we’ve assumed that the amplitude is well behaved as

ω → ∞ even as ω is continued on to the complex plane with a small angle. While we’ve

shown that this is holds for scalar exchange and string theory amplitudes, it will be desirable

to derive such behaviour from some general principle.

The celestial dispersion relation is reminiscent of the Zamolodchikov’s recursive rep-

resentation for the conformal blocks [29–31]. When tuning the conformal dimension of a

primary operator to some special values, certain descendant operators become zero norm

and decouple from the conformal multiplet. This phenomenon reflects on the conformal

block as poles on the complex conformal dimension plane whose residues are the conformal

blocks formed by the zero norm descendants. In our celestial dispersion relation (6.4), we

see that the residue of the poles at negative even integer β are the imaginary part of the

celestial amplitude, which can be further expanded in terms of the Poincaré partial waves.

It would be interesting to see if the origin of these poles can be traced by to the exchange

of some zero norm states in the celestial CFT.
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A Four-point helicity amplitude

Let us consider a four-point amplitude of massless particles with helicities `i for i =

1, · · · , 4. The amplitude can be expressed as a function of the angle brackets 〈ij〉 and the

square brackets [ij]. The Mandelstam variables are products of angle and square brackets,

sij = 〈ij〉[ji]. Hence, we can instead choose to express the amplitude as a function of the

angle bracket 〈ij〉 and s, t. There are relations among these variables. First, we have the

Schouten identity

〈41〉〈23〉+ 〈42〉〈31〉+ 〈43〉〈12〉 = 0 . (A.1)

We also have relations from the momentum conservation

〈23〉
〈13〉

(−s− t) +
〈24〉
〈14〉

t = 0 ,
〈12〉
〈32〉

t+
〈14〉
〈34〉

s = 0 ,
〈12〉
〈42〉

(−s− t) +
〈13〉
〈43〉

s = 0 . (A.2)

We can rewrite the left hand side of the above equation as a 3 × 2 matrix acting on the

vector (s, t), and the Schouten identity implies that all the second minors of matrix vanish.

Hence, the relations (A.2) all linearly relate to each others.
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Using (A.1) and (A.2), we can write the amplitude as a function of the variables

〈12〉 , 〈13〉 , 〈14〉 , 〈34〉 , s , t , (A.3)

or equivalently as a function of the variables

z12

z̄12
= −ε1ε2

〈12〉2

s
,

z13

z̄13
= ε1ε3

〈13〉2

s+ t
,

z14

z̄14
= −ε1ε4

〈14〉2

t
,

z34

z̄34
= −ε3ε4

〈34〉2

s
, s , t .

(A.4)

Now, using the constraint from the SL(2,C) symmetry (2.8), we find

A`i(ωi, zi) =

(
z12

z̄12

)−`2 (z13

z̄13

)−`1+`2−`3+`4
2

(
z14

z̄14

)−`1+`2+`3−`4
2

(
z34

z̄34

) `1−`2−`3−`4
2

× δ(4)(p1 + p2 + p3 + p4)T (s, t)

= δ(4)(p1 + p2 + p3 + p4)

(
z14z̄13
z̄14z13

) `3−`4
2
(
z24z̄14
z̄24z14

) `1−`2
2

(
z12
z̄12

) `1+`2
2
(
z34
z̄34

) `3+`4
2

T (s, t) ,

(A.5)

where in the second equality we have used the identities (A.2).

B Poincaré generators on single particle states

The Poincaré generators Pµ and Mµν acting on a massless single particle state |∆, z, `〉 in

the conformal primary basis as

Pµ|∆, z, `〉 = Pµ|∆, z, `〉 , Mµν |∆, z, `〉 =Mµν |∆, z, `〉 , (B.1)

where Pµ and Mµν are differential operators, whose explicit form are given by [12]

M01 =
i

2

[
(w̄2 − 1)∂̄ + (w2 − 1)∂ + 2(h̄w̄ + hw)

]
,

M02 = −1

2

[
(w̄2 + 1)∂̄ − (w2 + 1)∂ + 2(h̄w̄ − hw)

]
,

M03 = i(w̄∂̄ + w∂ + h̄+ h) ,

M12 = −w̄∂̄ + w∂ − h̄+ h ,

M13 =
i

2

[
(w̄2 + 1)∂̄ + (w2 + 1)∂ + 2(h̄w̄ + hw)

]
,

M23 = −1

2

[
(w̄2 − 1)∂̄ − (w2 − 1)∂ + 2(h̄w̄ − hw)

]
,

(B.2)

and

Pµ = 2qµe∂∆ . (B.3)
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C Analytic continuation of the string amplitudes

In this appendix, we apply the analytic continuation procedure in Section 5.2 to the open

and closed string amplitudes. As discussed in Section 5.2, the integration contour of the

celestial amplitude are being continuously deformed when going along the path (5.6). The

integration contour should asymptote to the angle inside the convergent region Θ12↔34(z).

Hence, we need to ensure that the convergent region varies continuously along the path

(5.6). Let us parametrize the string amplitudes (4.5) and (4.8) as

s = ω2 , t = −z − 1

z
ω2 , ω = reiθ , z = 1 + εe−iφ . (C.1)

The amplitudes vanish in the limit r → ∞ when the angles θ and φ are inside the region

plotted in Figure 10. We see that we can indeed find continuous deformations of the

integration contours which are always inside the convergent regions.

π
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4
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π

2

θ
open string

π
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π

2

3π

4
π

ϕ

π

4

π

2

θ
closed string

Figure 10. The convergence region Θ12↔34(z) of the open and closed string amplitudes for ε =

10−6.

D Conformal partial wave representation

The four-point celestial amplitude (2.12) can be expanded in the conformal partial wave

basis as

f∆i,`i(z, z̄) =
∞∑

`=−∞

∫ ∞
0

dν

2π

p`(∆i, `i; ν)

n`(ν)
Ψconf.

∆i,`i;1+iν,`(z, z̄) , (D.1)

where Ψconf.
∆i,`i;1+iν,`(z, z̄) is the conformal partial wave normalized such that

1

2

∫
d2z

|z|4
Ψconf.

∆i,`i;1+iν,`(z, z̄)Ψ
conf.
1−∆i,−`i;1−iν′,−`′(z, z̄) = n`(ν)× 2πδ`,`′δ(ν − ν ′) , (D.2)

for external dimensions in the principal series, i.e. ∆i ∈ 1 + iR. The normalization n`(ν)

is11

n`(ν) =
2π3

`2 + ν2
. (D.3)

11We follow the convention in [32, 33].
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For the scalar amplitude with the tree-level massive scalar exchange in the 12 ↔ 34

kinematics, the imaginary part of the expansion coefficient p`(∆i; ν) factorizes as [6]

Im p`(∆i; ν) = δ`,0π
2m2C∆1,∆2;1+iνC∆3,∆4;1−iν , (D.4)

where C∆1,∆2;∆3 is the 3-point coefficient of the celestial amplitude of two massless and

one massive scalars. Using the shadow representation of the conformal partial wave, the

factorization (D.4) is equivalent to

Im Ã12↔34
∆i

(zi, z̄i) =

∫ ∞
0

dν

2π

π2m2

n`(ν)

∫
d2z

× Ã3,∆1,∆2;1+iν(z1, z̄1, z2, z̄2, z, z̄)Ã3,∆3,∆4;1−iν(z3, z̄3, z4, z̄4, z, z̄) .

(D.5)

where Ã∆1,∆2;∆3(zi, z̄i) is the three-point celestial amplitude,

Ã∆1,∆2;∆3(zi, z̄i) =
C∆1,∆2;∆3

|z12|∆1+∆2−∆3 |z13|∆1+∆3−∆2 |z23|∆2+∆3−∆1
. (D.6)

In this appendix, we generalize the above result to the four-point scalar celestial amplitude

with the tree-level massive spin-J particle exchange. We show that the imaginary part

of such an amplitude factorizes as an integral of a product of two three-point celestial

amplitudes of two massless scalars and one massive spin-J particle,

Im Ã12↔34
∆i,J (zi, z̄i) = π2m2J+2J !

J∑
`=−J

∫ ∞
0

dν

2π

µJ,`(ν)

2|`|n`(ν)

∫
d2z

× Ã(J)
3,∆1,∆2;1+iν,`(z1, z̄1, z2, z̄2, z, z̄)Ã(J)

3,∆3,∆4;1−iν,−`(z3, z̄3, z4, z̄4, z, z̄) ,

(D.7)

where µJ,`(ν) is

µJ,`(ν) = (−1)|`|
2J−|`|(|`|+ 1)J−|`|(|`|+ 1

2)J−|`|

(J − |`|)!(2|`|+ 1)J−|`|
. (D.8)

Let us first focus on the right hand side of (D.7). The 3-point celestial amplitude is

given by the integral [34]

Ã(J)
3,∆i,∆,`

(zi, z̄i) =

(
2∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)∫
dy

y3
dz′dz̄′

×
J∑

b=−J
G

(J)
`,b (k̂; z, z̄)A3,b(p1, p2, k)δ4(k + p1 + p2) ,

(D.9)

where A3,b(p1, p2, k) is the three-point amplitude explicitly given by

A3,b(p1, p2, k) = pµ1
12 . . . p

µJ
12 εb,µ1µ2...µJ , (D.10)

with all momenta outgoing. εb,µ1µ2...µJ is the polarization tensor for spin-s particle. The

massless momenta p1, p2 are parametrized as before by pi = −ωiqi and (2.1). The massive

momentum k is parametrized by

k = mk̂ , k̂µ =
1

2y
(1 + y2 + |z′|2, 2Re(z′), 2Im(z′), 1− y2 − |z′|2) . (D.11)
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G
(J)
`,b (k̂; z, z̄) is the integration weight matrix that relates the spin-J massive irreducible

representations of the little group on R1,3 to the spin-` representations of the conformal

group on the celestial sphere. The integration weight matrix G
(J)
`,b (k̂; z, z̄) is computed

in [34]

J∑
b=−J

G
(J)
`,b (k̂; z, z̄)εµ1µ2···µJ

b =
1

J !
(

1
2

)
J

Kµ1Kµ2 · · ·KµJG
(J)
`,∆(k̂, Y ; z, z̄)

∣∣∣
Y=0

,

G
(J)
`,∆(k̂, Y ; z, z̄) =


(Y ·q)J−`[(k̂·q)(Y ·∂z̄q)−(k̂·∂z̄q)(Y ·q)]

`

(−k̂·q)∆+J
for ` ≥ 0 ,

(Y ·q)J+`[(k̂·∂zq)(Y ·q)−(k̂·q)(Y ·∂zq)]
−`

(−k̂·q)∆+J
for ` < 0 ,

Kµ(k̂, Y ) =
1

2

[
∂Y µ + k̂µ(k̂ · ∂Y )

]
+ (Y · ∂Y )∂Y µ

+ k̂µ(Y · ∂Y )(k̂ · ∂Y )− 1

2
Yµ

(
∂2
Y + (k̂ · ∂Y )2

)
,

(D.12)

where the null vector q is parametrized by z and z̄ as in (2.1). Plugging this formula into

(D.10), we find

Ã(J)
3,∆i,∆,`

(zi, z̄i) =
1

J !(1
2)J

(
2∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)∫
dy

y3
dz′dz̄′

× δ4(p+ p1 + p2)(p12 ·K)JG
(J)
`,∆(k̂, Y ; z, z̄) .

(D.13)

Now, the right hand side of (D.7) can be simplified as

π2m2J+2J !(
J !(1

2)J
)2
(

4∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)
J∑

`=−J

∫ ∞
0

dν

2π

µJ,`(ν)

2|`|n`(ν)

(
2∏
i=1

∫
dyi
y3
i

d2z′i

)∫
d2z

× δ(4)(p1 + p2 + k1)δ(4)(p3 + p4 − k2)

×
[(
p12 ·K(k̂1, Y1)

)J
G

(J)
`,1+iν(k̂1, Y1; z, z̄)

] [(
p34 ·K(k̂2, Y2)

)J
G

(J)
−`,1−iν(k̂2, Y2; z, z̄)

] ∣∣∣
Y1=Y2=0

=
π2m2J+2J !

4π
(
J !(1

2)J
)2
(

4∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)∫
dy1

y3
1

d2z′1δ
(4)(p1 + p2 + k1)δ(4)(p3 + p4 − k1)

×
(
p12 ·K(k̂1, Y1)

)J (
p34 ·K(k̂1, Y2)

)J
(Y1 · Y2)J

∣∣∣
Y1=Y2=0

= πm2J

(
4∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)
δ(4)(p1 + p2 + p3 + p4)δ(s−m2)PJ

(u− t
m2

)
,

(D.14)

where in the second equality, we have used the orthogonality condition [34]

J∑
`=−J

∫ ∞
−∞

dν
µJ,`(ν)

2|`|n`(ν)

∫
d2z G

(J)
`,1+iν(k̂1, Y1; z, z̄)G

(J)
−`,1−iν(k̂2, Y2; z, z̄) = δ(k̂1, k̂2)(Y1 · Y2)s ,

(D.15)

where the delta function δ(k̂1, k̂2) is defined by∫ ∞
0

dy2

y3
2

∫
d2z′2δ(k̂1, k̂2)F (k̂2) = F (k̂1) . (D.16)
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In the third equality of (D.14), we have used the identities∫
dy1

y3
1

d2z′1δ
(4)(p1 + p2 + k1) =

4

m2
δ(s−m2) ,

(
p12 ·K(k̂1, Y1)

)J (
p34 ·K(k̂1, Y2)

)J
(Y1 · Y2)J

∣∣∣
Y1=Y2=0

= J !

(
(2J − 1)!!

2J

)2

PJ

(u− t
m2

)
.

(D.17)

Next, let us look at the left hand side of (D.7). The four-point celestial amplitude can

be computed using the Mellin integral (2.2) and the formula (2.15) with `i = 0,

Im Ã12↔34
∆i,J (zi, z̄i) =

(
4∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)
δ(4)(p1 + · · ·+ p4)

×m2JIm

[
−

PJ
(
u−t
m2

)
s−m2 + iε

−
PJ
(
s−t
m2

)
u−m2 + iε

−
PJ
(
u−s
m2

)
t−m2 + iε

]

= πm2J

(
4∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)
PJ

(
u− t
m2

)
δ(s−m2)δ(4)(p1 + · · ·+ p4) .

(D.18)

(D.14) and (D.18) matches exactly; hence, the factorization formula (D.7) follows.

By the conformal symmetry, the three-point celestial amplitude Ã(J)
3,∆1,∆2;∆,`(zi, z̄i)

takes the form as

Ã(J)
3,∆1,∆2;∆,`(zi, z̄i) =

C
(J)
∆1,∆2;∆,`

|z12|∆1+∆2−(∆−`)|z13|∆1+(∆−`)−∆2 |z23|∆2+(∆−`)−∆1

(
z12

z13z23

)`
.

(D.19)

Plugging this into (D.7) and using the form (2.12) of the four-point celestial amplitude, we

find

Im f12↔34
∆i,J (z, z̄) = π2m2J+2J !

J∑
`=−J

∫ ∞
0

dν

2π

µJ,`(ν)

2|`|n`(ν)
CJ∆1,∆2;1+iν,`C

−J
∆3,∆4;1−iν,−`Ψ

conf.
∆i,`i;1+iν,`(z, z̄) .

(D.20)

Note that with the prefactor (2.14), the left hand side of (D.20) is exactly the scalar

Poincare partial wave (3.23), i.e.

Im f12↔34
∆i,`

(z, z̄) = (z − 1)
∆1−∆2−∆3+∆4

2 δ(iz − iz̄)Ψ12↔34
m,l (∆, z) . (D.21)

Thus, (D.20) gives a conformal partial wave representation of the scalarPoincaré partial

wave!

Finally, in [34], the three-point coefficients CJ∆1,∆2;∆3
for J = 0, 1, 2 are computed,

and recursion relations for the general three-point coefficients are derived. In Appendix E,

we compute the general three-point coefficients by directly evaluating the Mellin integral

(D.13).
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E Computation of C
(J)
∆1,∆2;∆,`

Let us compute the structure constant C
(J)
∆1,∆2;∆,` by explicitly working out the Mellin

integral (D.13). The momentum conservation delta function gives

y =
m

2(ω1 + ω2)
, z′ =

z1ω1 + z2ω2

ω1 + ω2
, z̄′ =

z̄1ω1 + z̄2ω2

ω1 + ω2
, ω1ω2 =

m2

4|z12|2
, (E.1)

and the Jacobian

|Jacobian| = 8m|z12|4ω2
2

(m2 + 4|z12|2ω2
2)3

. (E.2)

The inner products that appear in the (p12 ·K)JG
(J)
`,∆(k̂, Y ; z, z̄) are summarized as

2p12 · q = −4|z − z2|2ω2 +
m2|z − z1|2

|z12|2ω2
, 2k · q = −4|z − z2|2ω2 −

m2|z − z1|2

|z12|2ω2
,

p2
12 = m2 , k · p12 = 0 ,

(k · q)(p12 · ∂z̄q)− (k · ∂z̄q)(q · p12) = −2m(z − z1)(z − z2)

z12
.

(E.3)

We find

p12 ·K =

(
NY +

1

2

)
p12 · ∂Y −

1

2
(p12 · Y )

(
∂2
Y + (k̂ · ∂Y )2

)
, (E.4)

where NY = Y · ∂Y simply counts the number of Y . We have the following identities

∂2
YG

(J)
`,∆(k̂, Y ; z, z̄) = 0 ,

(k̂ · ∂Y )2G
(J)
`,∆(k̂, Y ; z, z̄) = (J − |`|)(J − |`| − 1)G

(J−2)
`,∆ (k̂, Y ; z, z̄) .

(E.5)

Using these formulae, we find

(p12 ·K)JG
(J)
`,∆(k̂, Y ; z, z̄)

∣∣∣
Y=0

=
1

2J

J
2∑

n=0

(−1)n(2J − 1− 2n)!!(2n− 1)!!

(
J

2n

)
×m2n(p12 · ∂Y )J−2n(k̂12 · ∂Y )2nG

(J)
`,∆(k̂, Y ; z, z̄)

∣∣∣
Y=0

=
1

2J

J
2∑

n=0

(−1)n(2J − 1− 2n)!!(2n− 1)!!

(
J

2n

)
×m2n (J − |`|)!(J − 2n)!

(J − |`| − 2n)!
G

(J−2n)
`,∆ (k̂, p12, z, z̄) .

(E.6)
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Let us assume ` ≥ 0, and consider the integral(
2∏
i=1

∫ ∞
0

dωi ω
∆i−1
i

)∫
dy

y3
dz′dz̄′δ4(p+ p1 + p2)G

(J−2n)
`,∆ (k̂, p12; z, z̄)

= 22−∆1−∆2−∆m∆1+∆2−4+J−2n|z12|−2∆1

(
(z − z1)(z − z2)

z12

)` 1

|z − z2|2(∆+`)

×
∫ ∞

0
dω2

J−2n−`∑
p=0

(−1)`+p
(
J − 2n− `

p

)ω∆2−∆1−1+∆+`+2p
2

(
|z−z1|2

|z12|2|z−z2|2

)J−2n−`−p

(
ω2

2 + |z−z1|2
|z12|2|z−z2|2

)∆+J−2n

= 21−∆1−∆2−∆m∆1+∆2−4+J−2n
J−2n−`∑
p=0

(−1)`+p
(
J − 2n− `

p

)
×B

(
∆ + `+ 2p−∆1 + ∆2

2
,
∆− `+ 2J − 4n− 2p+ ∆1 −∆2

2

)
×
(

(z − z1)(z − z2)

z12

)`
|z − z1|∆2−∆1−∆−`|z − z2|∆1−∆2−∆−`|z12|∆+`−∆1−∆2 .

(E.7)

The three-point coefficient is

C
(J)
∆1,∆2;∆,` =

m∆1+∆2−4+J

2∆1+∆2+∆+J−1J !(1
2)J

J
2∑

n=0

J−2n−`∑
p=0

(−1)`+n+p

(
J

2n

)(
J − 2n− `

p

)
× (J − |`|)!(J − 2n)!(2J − 1− 2n)!!(2n− 1)!!

(J − |`| − 2n)!

×B
(

∆ + `+ 2p−∆1 + ∆2

2
,
∆− `+ 2J − 4n− 2p+ ∆1 −∆2

2

)
.

(E.8)
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