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Abstract

We investigate the effects of spatial curvature for an atomic Bose-Einstein condensate con-
fined in an elliptical waveguide. The system is well described by an effective 1D Gross-
Pitaevskii equation with a quantum-curvature potential, which has the shape of a double-
well but crucially depends on the eccentricity of the ellipse. The ground state of the system
displays a quantum phase transition from a two-peak configuration to a one-peak configu-
ration at a critical attractive interaction strength. In correspondence of this phase transition
the superfluid fraction strongly reduces and goes to zero for a sufficiently attractive Bose-
Bose interaction.
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1 Introduction

How does a locally-varying spatial curvature influence the properties of low-dimensional quantum
systems? This is a relevant question asked by scientists working in very different fields such as

1



SciPost Physics Submission

quantum gravity [1] or quantum chaos [2]. It is well know [3–5] that the local curvature of a
curve on the three-dimensional (3D) Euclidean space is characterized by the so-called geodesic
curvature. This geodesic curvature κ is an extrinsic quantity: it does not remain invariant if the
curve is under the effect of a distance-preserving transformation [3–5]. Instead, the local curvature
of a surface on the 3D Euclidean space is characterized by the so-called Riemann curvature tensor,
which can be written in terms of the invariant Gaussian curvature and the not-invariant average
curvature [3–5]. The highly nontrivial role of curvature for constrained quantum systems has been
recently theoretically investigated with ultracold atomic gases confined in a quasi-1D [6–9] and
quasi-2D configurations [10]. The main result of these investigations is that the local curvature
gives rise to a quantum-curvature potential [6–10].

In this paper we consider an atomic Bose-Einstein condensate (BEC) confined in a quasi-1D
elliptical waveguide finding that the quantum-curvature potential has the shape of a double-well,
if the eccentricity of the ellipse is different from zero. By numerically solving the 1D Gross-
Pitaevskii equation of the BEC wavefunction under the effect of this quantum-curvature potential,
we show that the ground state of the system is uniform along the waveguide only if the eccentricity
ε of the ellipse is zero (circular waveguide with constant curvature). Instead, for ε 6= 0 we find
that the ground state is generically characterized by a two-peak configuration, where the peaks are
located around the minima of the effective double-well potential. However, we discover that in
the case of attractive interaction it exists a critical (negative) interaction strength below which the
ground state exhibits a quantum phase transition from the two-peak configuration to a one-peak
configuration. This is the analog of the spontaneous symmetry breaking, i.e. the modulational
instability [11], of the uniform configuration predicted some years ago for an 1D attractive BEC
in a circular waveguide [12–14]. Our results show that the critical interaction strength depends on
the eccentricity ε of the ellipse in a non-trivial way. We also analyze the effect of a boost velocity
on the BEC moving in the elliptical waveguide deriving the Leggett formula [15] for the superfluid
fraction of a 1D bosonic system [16–18]. Our numerical investigation reveals that the superfluid
fraction decreases dramatically in response to this quantum phase transition, eventually reaching
zero for a sufficiently negative Bose-Bose interaction.

2 Quantum-curvature potential

We consider a Bose-Einstein condensate (BEC) made of N identical bosonic atoms of mass m.
The atoms are constrained to move along a curve C by the presence of a strong harmonic potential
of frequency ω⊥ in the local transverse plane with respect to C. The characteristic length of the
transverse confinement is l⊥ =

√
~/(mω⊥) where ~ is the reduced Planck constant. We introduce

a local system (s, u, v) of coordinates, where s is the curvilinar abscissa (arclength) along C while
u and v are two coordinates of the transverse plane [6–9]. In this way the Lagrangian density of
our problem is given by

L =
i~
2

(Ψ∗∂tΨ−Ψ∂tΨ
∗)− ~2

2m
|∇Ψ|2 −

mω2
⊥

2
(u2 + v2)|Ψ|2 − 1

2
g|Ψ|4 , (1)

where Ψ(s, u, v, t) is the BEC wavefunction normalized to one and g = 4π~2as(N − 1)/m is the
3D strength of the contact inter-atomic potential with as the s-wave scattering length. Clearly, the
Laplacian operator ∇2 must be written in terms of the local system (s, u, v) of coordinates [6–9].
Assuming the factorization

Ψ(s, u, v, t) = ψ(s, t)
e
− (u2+v2)

2σ(s,t)2

π1/2σ(s, t)
(2)
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and inserting this ansatz into the Lagrangian density, after integration over u and v one gets [9,19,
20],

L̄ =
i~
2

(ψ∗∂tψ − ψ∂tψ∗)−
~2

2m
|∂sψ|2 +

~2κ2(s)
8m

|ψ|2

−
(

~2

2m

1

σ2
+
mω2
⊥

2
σ2
)
|ψ|2 − 1

2

g

2πσ2
|ψ|4 , (3)

where κ(s) is the local geodesic curvature of C, and the conditions σκ� 1 and σ � ξ must hold,
with ξ = ~/

√
2g|Ψ|2 the 3D healing length [9]. The Euler-Lagrange equations of the 1D action

functional with respect to the 1D wavefunction ψ(s, t) and the transverse width σ(s, t) are

i~∂tψ =
[
− ~2

2m
∂2s −

~2κ2(s)
8m

+
~2

2m

1

σ2
+
mω2
⊥

2
σ2 +

2~2as(N − 1)

mσ2
|ψ|2

]
ψ , (4)

and
σ2 = l2⊥

√
1 + 2as(N − 1)|ψ|2 (5)

Eq. (4), equipped with Eq. (5), is the time-dependent 1D nonpolynomial Schrödinger equation
(NPSE) [19, 20] for the wavefunction ψ(s, t) of the BEC moving along the curve C (see also [9]).
As previously discussed, the geodesic curvature κ(s) gives rise to an effective potential

UQ(s) = −~2κ(s)2

8m
. (6)

This curvature potential UQ(s) is quantum because it involves the square of the reduced Planck
constant ~. At fixed atomic mass m, only if the square of the curvature κ(s) is sufficently large
the effects of this quantum-curvature potential become relevant.

Under the assumption that σ ' l⊥, which corresponds to a very strong transverse confinement,
the 1D NPSE becomes the familiar 1D Gross-Pitaevskii (GPE) equation

i~∂tψ =
[
− ~2

2m
∂2s −

~2κ(s)2

8m
+ ~ω⊥ +

2~2as(N − 1)

ml2⊥
|ψ|2

]
ψ . (7)

It is very important to stress that, from Eq. (5), the condition σ ' l⊥ implies 2as(N−1)|ψ|2 � 1.
In the rest of the paper we will work within this 1D regime. n the new version of the manuscript
I shall discuss the role Clearly, Eq. (7) is reliable in the weak-coupling and strong-transverse-
confinement regime, where both beyond-mean-field and transverse-size effects are very small.

3 Properties of the elliptical waveguide

We now choose an ellipse for the curve C. By using cartesian coordinates its defining equation
reads

x2

a2
+
y2

b2
= 1 , (8)

where a and b are the lengths of the two semi-axes of the ellipse. Here we assume that a ≥ b, such
that a is the length of the major semi-axis. The eccentricity of the ellipse is defined as [5]

ε =

√
1− b2

a2
. (9)

Clearly, 0 ≤ ε < 1 and for ε = 0 we obtain a circle of radius R = a = b. Introducing the angle
φ ∈ [0, 2π] we can write

x = a cos (φ) (10)

y = b sin (φ) (11)
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Figure 1: Quantum-curvature potential UQ(s), Eq. (6), induced by the geodesic curvature κ(s)
of an ellipse, as a function of the arclength s, where a is the length of the major semi-axis, L =
aE(2π, ε) is the perimeter of the ellipse, and Ea = ~2/(ma2) a characteristic energy. The curves
are obtained for different values of the eccentricity ε.

and the arclength s along the ellipse can be expressed with the formula [5]

s = aE(φ, ε) , (12)

where

E(φ, ε) =

∫ φ

0

√
1− ε2 sin2 (φ′) dφ′ (13)

is the incomplete elliptic integral of the second kind. It follows that the perimeter L of the ellipse
reads

L = aE(2π, ε) , (14)

such that for ε = 0 we have L = 2πa becauseE(2π, 0) = 2π. Instead, for ε→ 1 we have L→ 4a
because E(2π, 1) = 4. We conclude that 4a < L ≤ 2πa. The geodesic curvature κ of the ellipse
can be written as [5]

κ =
1

a

√
1− ε2(

sin2 (φ) +
√

1− ε2 cos2 (φ)
)3/2 . (15)

At fixed a and ε, the maximum of the curvature is obtained for φ = 0 and φ = π, i.e.

κmax =
1

a

1

(1− ε2)1/4
, (16)

while the minimum of the curvature is obtained for φ = π/2 and φ = 3π/2, i.e.

κmin =
1

a

√
1− ε2 . (17)

Thus, for ε = 0 we have κmax = κmin = 1/a while for ε → 1 we have κmax → +∞ and
κmin → 0. We conclude that 1/a ≤ kmax < +∞ and 0 < kmin ≤ 1/a. In general, the
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Figure 2: Probablility density ρ(s) of the non-interacting BEC ground state in an ellipse as a
function of the arclength s, where a is the length of the major semi-axis and L = aE(2π, ε) is the
perimeter of the ellipse. The curves are obtained for different values of the eccentricity ε. Here the
s-wave scattering length as is set to zero or, equivalently, the number N of particles is set to one.

formula which gives the curvature κ as a function of the arclength s is called Cesaro equation.
Unfortunately, in the case of the ellipse there is no Cesaro equation. In other words, an analytical
formula of κ as a function of s is not available. However, from Eqs. (12) and (15), fixing the
length a and the eccentricity ε of the ellipse, we can easily plot κ vs s using φ as dummy variable.
More explicitly: we calculate separately κ vs φ and s vs φ, and then we plot κ vs s. The curvature
κ(s) has a the periodic structure of κ(s). By increasing ε, the perimeter L of the ellipse slightly
decreases while κmax and κmin pull away. In Fig. 1 we plot the quantum-curvature potential
UQ(s), Eq. (6), induced by the curvature κ(s) of the ellipse for different values of the eccentricity
ε. The figure clearly shows that, for ε 6= 0, UQ(s) is symmetric double-well potential where
the depth of the wells becomes larger by increasing the eccentricity. The minima (maxima) of the
quantum-curvature potentialUQ(s) are in correspondence to the maxima (minima) of the curvature
κ(s).

4 BEC ground state in elliptical waveguide

The time-independent 1D GPE is obtained from Eqs. (7) setting

ψ(s, t) = Φ(s) e−i(µ+~ω⊥)t/~ . (18)

In this way we have

µΦ =
[
− ~2

2m
∂2s −

~2κ(s)2

8m
+

2as(N − 1)~2

ml2⊥
|Φ|2

]
Φ , (19)

that is the 1D GPE equation for the stationary wavefunction Φ(s), such that ρ(s) = |Φ(s)|2 is
the probability density of finding the BEC at the position s. In Fig. 2 we report the probability
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Figure 3: Probablility density ρ(s) of the attractive BEC ground state in an ellipse as a function of
the arclength s, where a is the length of the major semi-axis and L = aE(2π, ε) is the perimeter
of the ellipse. The curves are obtained with eccentricity ε = 0.9 for different values of the adi-
mensional interaction strength γ = 2aas(N − 1)/l2⊥, where as is the 3D s-wave scattering length
and l⊥ is the characteristic length of the transverse harmonic confinement.

density ρ(s) of the ground-state of the non-interacting (as = 0 or, equivalently, N = 1) BEC
confined along the ellipse as a function of the arclength s. Our results are obtained by solving
Eq. (7) with a Crank-Nicolson predictor-corrector method and imaginary time. In the figure,
the curves correspond to different values of the eccentricity ε. Clearly, for ε = 0 the ground
state is uniform along the ellipse. However, for ε 6= 0 the ground state is no more uniform
due to a non-constant curvature κ(s) which implies a non-constant effective potential UQ(s) =
−~2κ(s)2/(8m). By increasing the eccentricity ε the localization of ρ(s) around the minima of
UQ(s), where the curvature is larger, becomes more evident.

5 Quantum phase transition

It is interesting to investigate the effect of the inter-atomic interaction on the ground state properties
of the system. In adimensional units the interaction strength reads γ = g/(2πl2⊥aEa) = 2aas(N−
1)/l2⊥ with Ea = ~2/(ma2). In Fig. 3 we consider the case of an attractive BEC and plot our
numerical results obtained for different values of a negative γ with fixed eccentricity ε = 0.9.
Quite remarkably, for γ < −1.5 the ground state has a spontaneous symmetry breaking: one of
the two local mimima contains more bosons. Indeed for γ = −2 this single-well localization is
very clear. It is important to observe that this kind of quantum phase transition happens for any ε.
In the case of a circle (ε = 0) a similar spontaneous symmetry breaking was predicted about 20
years ago [12–14]. Actually, this quantum phase transition, or spontaneous symmetry breaking,
is nothing else than the modulational instability of the ground-state configuration, induced by the
appearance of an imaginary component in the energies of the elementary excitations of the ground
state [11]. However, for ε = 0 there is a quantum phase transition from a uniform configuration to a
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single-peak configuration, while for the ε 6= 0 there is a quantum phase transition from a two-peak
configuration to a single-peak configuration. This quantum phase transition was observed some
years ago with an attractive BEC of 39K atoms, where the double-well potential was created by
intersecting two pairs of laser beams [22]. Our double-well system is slightly different because the
particles tunnel from one well to the other well following two different curved paths; moreover, our
elipsoidal configuration offers also the possibility of having persistent currents. For a sufficiently
attractive BEC the transverse width σ of the BEC becomes smaller than l⊥ and there is the collapse
of the single-peak configuration. For ε = 0 the 1D NPSE predicts the collapse of this single-peak
configuration at γc = (4/3)(a/l⊥) [19, 21]. Thus, our numerical results of Fig. 3, obtained from
the 1D GPE, are fully reliable under the condition a/l⊥ � 1. This is again the condition of a tight
transverse confinement.

6 Superfluid fraction

Let us consider the effect of a boost velocity vB on the BEC moving along the ellipse. In this case
Eq. (19) is modified as follows

µΦ =
[ 1

2m
(−i~∂s −mvB)2 − ~2κ2(s)

8m
+

2as(N − 1)~2

ml2⊥
|Φ|2

]
Φ , (20)

Now we set

Φ(s) =
n(s)1/2√

N
eiθ(s) , (21)

where n(s) = Nρ(s) is the local number density of the BEC. Morover, we introduce the local
velocity field

v(s) =
~
m
∂sθ(s) . (22)

Inserting these formulas into Eq. (20) we obtain 1D stationary equations of zero-temperature
superfluid hydrodynamics

µ = − ~2

2m
√
n
∂2s
√
n+

m

2
(v − vB)2 − ~2κ(s)2

8m
+

2as(1− 1/N)~2n
ml2⊥

, (23)

and also
∂s [n (v − vB)] = 0 . (24)

Eq. (24) implies that n (v − vB) = J , where J is a constant current density. This result is
very interesting because it says that if n(s) has spatial variations then also v(x) must have spatial
variations.

Inspired by Ref. [18], we now introduce the average value of the velocity v(x) in a region [a, b]
of the ellipse as

v̄ =
1

(b− a)

∫ b

a
v(s) ds , (25)

Then, from the previous equations we obtain

v̄ =
1

(b− a)

∫ b

a

(
J

n(s)
+ vB

)
ds =

J

n̄s
+ vB , (26)

where
n̄s =

1
1

(b−a)
∫ b
a

1
n(s)ds

. (27)
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The number density n̄s can be interpreted as the superfluid number density of the stationary state in
the spatial region [a, b]. Indeed, Eq. (27) is the 1D version of the formula obtained by Leggett [15]
for a supersolid with spatial periodicity (b − a), and recently discussed by others [16–18]. If the
stationary state Ψ(s) moves with the average velocity v̄, its current density reads J = n̄s (v̄ − vB),
where v̄ is the average velocity in the region [a, b] and n̄s the corresponding superfluid number
density. We can also introduce

n̄ =
1

(b− a)

∫ b

a
n(s) ds (28)

that is the average number density in the region [a, b]. Consequently, the superfluid fraction of the
BEC in the region [0, L] reads

fs =
n̄s
n̄

=
1

N
L2

∫ L
0

1
n(s)ds

, (29)

where N =
∫ L
0 n(s) dx = Ln̄. This formula can be also obtained as the response of the linear

momentum of the BEC to the boost velocity v̄B , that is the non-classical translational inertia of
the system [16].

In Fig. 4 we plot our numerical results of the superfluid fraction fs as a function of the
adimensional interaction strength γ for different values of the eccentricity ε of the ellipse. For
positive values of γ the superfluid fraction fs is close to 1 also with ε = 0.9. However, for 0 ≤
γ < 1 and a very large eccentricity (ε = 0.99) we find fs ' 0.95. This result is quite reasonable
because the wavefunction is strongly localized in the two well of the quantum-curvature potential.
For negative values of γ the most interesting effect appears in Fig. 4: around γ ' −1.6 the
superfluid fraction fs quckly decreases and it goes to zero for very large negative values of γ. This
is exacly the quantum phase transition from a two-peak configuration to a one-peak configuration.
As previously stressed, the one-peak configuration becomes modulationally unstable when at least
one of the energies of its elementary excitations acquires an imaginary component. A similar
modulational instability [11] happens in the formation of a train of bright solitons from a single-
peak Bose-Einstein condensate, induced by a sudden change in the sign of the scattering length
from positive to negative [23]. Our Fig. 4 reveals that the critical strength γc crucially depends on
the eccentricity ε, such as the behavior of fs as a function of γ for γ < γc. In particular, we find
that γc slightly reduces by increasing ε, but this effect is quite weak.

An important remark is that Eq. (29) has been derived here without any assumption about the
sign of γ. Moreover, the absence of superfluidity for γ = 0 is true only in the thermodynamic
limit. In a ring there is a finite energy gap between the ground state and the first excited state
also for γ = 0. The Bose system we are considering has a finite size because it is confined in a
finite elliptical ring. Finally, the 3D version of Eq. (27) was proposed historically by Leggett to
characterize the superfluid density of a supersolid [15], while here Eq. (27) is used to determine the
superfluid density of a Bose-Einstein condensate which is not supersolid but it is instead spatially
modulated due to the crucial interplay between elliptical confinement and attractive interaction.

7 Conclusions

The main goal of this paper was to understand the role of a locally-varying curvature for a Bose-
Einstein condensate confined in an elliptical waveguide. The proposed setup, and the double-well
quantum-curvature potential that we have found, can be experimentally achieved by using ultra-
cold atoms, which are a paradigmatic physical platform due to the high experimental tunability of
inter-atomic interactions and trapping potentials. For instance, one can trap N = 104 ultracold Rb
atoms by using a rapidly moving laser beam which creates a time-averaged elliptic-shaped toroidal
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Figure 4: Superfluid fraction fs of the BEC ground state in an ellipse as a function of the adimen-
sional interaction strength γ = 2aas(N − 1)/l2⊥, where a is the length of the major semi-axis, as
is the 3D s-wave scattering length and l⊥ is the characteristic length of the transverse harmonic
confinement. The curves are obtained for three values of the eccentricity ε of the ellipse.

optical dipole potential [24]. The length a of the major semi-axis of the ellpse can be a ' 100
microns and the transverse length l⊥ = 5 microns. The scattering length as could be then tuned by
using an external magnetic field, which induces a Fano-Feshbach resonance [25]. Despite the fact
that we focused on space curvature rather than space-time curvature, we believe that our results
can be of interest not only to atomic and condensed matter physics researchers, but also to a large
community working on general relativity and relativistic quantum field theory.

Acknowledgements. The author thanks Francesco Ancilotto, Koichiro Furutani, Francesco
Minardi, and Andrea Tononi for useful discussions.
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