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Abstract

We study stochastic dynamics of an inverted pendulum subject to a random force in
the horizontal direction (stochastic Whitney’s problem). Considered on the entire time
axis, the problem admits a unique solution that always remains in the upper half plane.
Assuming a white-noise driving, we develop a field-theoretical approach to statistical de-
scription of this never-falling trajectory based on the supersymmetric formalism of Parisi
and Sourlas. The emerging mathematical structure is similar to that of the Fokker-Planck
equation, which however is written for the “square root” of the probability distribution
function. An exact analytical solution is obtained in the limit of strong driving.
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1 Introduction

A dynamic system driven by a time-dependent perturbation generically demonstrates diffusion
in the energy space. A paradigmatic example showing that sort of behavior is the kicked
classical rotator, a particle on a ring subject to position-dependent periodic kicks [1]. When
the kicks’ strength exceeds a certain threshold value, rotator’s time evolution described by the
standard map [2] becomes chaotic, and since the spectrum is bounded from below, energy-
space diffusion translates to the linear growth of the average kinetic energy with time. Such a
behavior is not specific to classical physics with one degree of freedom. The same phenomenon
also takes place, for example, for quantum systems of many fermions. Provided such a system
can be described by the random matrix theory [3] (e.g., in a quantum dot geometry [4]),
one finds that under the action of a time-dependent perturbation the fermionic distribution
function in the energy space evolves according to the diffusion equation [5,6]. Due to the Fermi
statistics, this leads to the growth of the system energy, eventually leading to dissipation.

Diffusion in the energy space and associated growth of the system energy can be suppressed
by a peculiar quantum effect known as dynamic localization, when destructive interference
between different paths blocks further energy increase. Dynamic localization takes place both
for a quantum kicked rotator [7–9] and a many-electron quantum dot under periodic driving
[10].

A very different mechanism of blocking energy diffusion in a pumped mechanical system
takes place if there exists a very specific trajectory, which remains localized in a bounded region
of phase space during the entire motion. A famous example is a driven inverted pendulum (see
inset to Fig. 1) described by the equation

θ̈ =ω2 sinθ + f (t) cosθ , (1)

where θ (t) is the angle of the pendulum counted from the upward position, and f (t) is a
random force acting in the horizontal direction. A typical trajectory starting in an upper half-
plane will deviate exponentially from the upright position and go to the lower half-plane to
minimize the potential energy. Later on it will exhibit chaotic motion with many rotations
around the pivot point, gradually increasing its average total energy.
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Figure 1: Examples of non-falling solutions to Eq. (1) bounded to the strip
|θ (t)| < π/2 for a particular realization of the drive f (t) at the interval (0, T ) with
ωT = 5. For any choice of θ1 and θ2 within the strip, there exists a unique trajectory
satisfying the boundary conditions θ (0) = θ1 and θ (T ) = θ2. In the limit T →∞,
the bundle of these trajectories (shown by filling) becomes infinitely thin, thus defin-
ing a unique never-falling trajectory, whose statistical properties are studied in our
paper. Inset: sketch of a driven inverted pendulum.

Remarkably, for each driving force f (t) there exist a special non-falling trajectory (non-
FT), which always remains in the upper half plane, −π/2 < θ (t) < π/2. In mathematics,
existence of a non-FT for Eq. (1) was first addressed by Courant and Robbins (CR) in the book
“What is mathematics?” published in 1941 [11], where the problem was attributed to Whitney.
Their proof of the existence was based on the intermediate value theorem and essentially
relied on the assumptions of a continuous dependence of the final pendulum position on initial
conditions. Lack of rigor in the original arguments of CR stimulated a long-lasting discussion
in mathematical literature (for a review, see Refs. [12] and [13]), and the very existence of
the non-FT was questioned [14]. An important refinement of the CR proof was made by
Broman [15], who utilized the fact that the sets of initial conditions leading to touching the left
(θ = −π/2) or right (θ = π/2) boundary are open. Nevertheless, in 2002, Arnold considered
this problem still open [16].

Arnold’s comment triggered a new wave of interest in Whitney’s problem. In 2014, Polekhin
gave a proof [17] based on the topological Wazewski principle. Polekhin’s work was followed
by a number of publications, where his approach was generalized and new topological meth-
ods to prove existence of the non-FT were applied [12,18,19].

To illustrate the concept of the non-FT, in Fig. 1 we plot nine non-falling solutions of
the boundary-value problem for the pendulum equation (1) with θ (0) = −π/2, 0, π/2 and
θ (T ) = −π/2, 0, π/2 calculated for the same given realization of the driving force f (t) on
the interval (0, T ). Each trajectory is obtained by adjusting the initial velocity θ̇ (0) to keep
the trajectory in the strip |θ (t)| < π/2. In accordance with CR, a non-falling solution of the
boundary-value problem exists for any initial and final value within the strip.

A crucial observation that we make is that the non-FT solving the boundary-value problem
for Eq. (1) is unique. To the best of our knowledge, the uniqueness of non-FT has not been
discussed in the mathematical literature. On the one hand, this fact can be easily verified by
direct numerical simulations. On the other hand, it can be proved with the help of the lemma
claiming that if two non-FT θ1(t) and θ2(t) are such that θ1(τ) < θ2(τ) and θ̇1(τ) < θ̇2(τ)
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then θ1(t)< θ2(t) for all t > τ. A detailed proof of the uniqueness of the non-FT will be given
elsewhere.

The shaded region in Fig. 1 shows a bundle of non-falling solution for the boundary-value
problem with all possible start and end points. For a sufficiently long time interval (ωT � 1),
these trajectories diverge significantly only near the end points, whereas at intermediate values
of t they closely follow each other. The larger is T , the smaller is the width of the bundle.
Finally, if we extend the time interval at which we study non-falling solutions to the whole real
axis, the bundle of non-falling trajectories will become infinitely thin, thus defining a unique
never-falling trajectory. The never-falling trajectory is an attractor of all non-falling trajectories
defined on a finite time interval. This attractor is absolutely unstable: any deviation from it
will exponentially quickly take the trajectory out of the strip −π/2< θ < π/2.

A never-falling trajectory (hereafter denoted by NFT) is a complicated functional of the
driving force f (t). Obtaining it for a given f (t) is equivalent to solving an inverse control
problem in control theory [20]. However when the pendulum is driven by an irregular force
(noise), instead of restoration of the particular form of the NFT, it is more natural to address
its statistical properties.

2 Statistical properties of the never-falling trajectory

In this Letter, we analyze the statistics of the never falling trajectory in the limiting case of a
random driving described by the white-noise correlation function

〈 f (t) f (t ′)〉= 2αδ(t − t ′). (2)

The model (2) applies when the correlation time of f (t) is much shorter than the pendulum’s
oscillation period, 2π/ω. Then NFT statistics depend on the single dimensionless parameter
α/ω3.

2.1 Analytical solution of the linearized problem

As a warm-up, consider the simplest case of weak driving, α�ω3, when the angle at the NFT
remains small and Eq. (1) can be linearized. Then we obtain a linear problem with an additive
noise, θ̈ = ω2θ + f (t), which can be immediately solved with the Green’s function method.
The requirement that the trajectory stay near the origin dictates the choice of the Feynman
Green’s function GF(t) = −exp(−ω|t|)/2ω, which decays both in the future and in the past.
The choice of the Feynman Green’s function—neither retarded nor advanced—reflects the
peculiarity of the problem, which is not of evolutionary type. In this way one obtains an explicit
expression for the NFT as a functional of the driving force: θ (t) =

∫

GF(t− t ′) f (t ′) d t ′. We see
that indeed the NFT is uniquely defined for a given driving f (t). Finally, averaging over the
white noise (2), we get a Gaussian probability distribution function (PDF) of the instantaneous
coordinate θ and momentum p = dθ/d t:

P(θ , p) =
ω2

πα
exp

�

−
ω3

α
θ2 −

ω

α
p2

�

. (3)

An approximate expression (3) is valid at α/ω3� 1, when the angle θ (t) is typically small
and the NFT does not reach the boundaries θ = ±π/2. At larger driving the nonlinearity of the
equation of motion (1) becomes important, and the explicit construction of the NFT for a given
f (t) seems impossible. Therefore in order to address the statistics of the NFT at arbitrary α/ω3

one has to use a different technique that does not rely on exact solution of Eq. (1) but is able to
perform disorder averaging at the initial stage of the consideration. One might think that the
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suitable approach would be that of the Fokker-Planck (FP) equation for the probability density
P(θ , p) [21]. However it cannot be used to describe the NFT for the following reasons. First,
the FP equation describes the ensemble of trajectories, whereas the NFT is a unique trajectory
(“of measure zero”). Second, the FP equation belongs to the evolutionary type, while the NFT
keeps information on the future behavior of the drive f (t).

2.2 Supersymmetric formalism

To attack the problem of the NFT statistics, we suggest to use the sypersymmetric formalism
developed by Parisi and Sourlas [22,23], which was inspired by the field-theoretical approach
to stochastic classical dynamics developed in 1970s [24, 25]. The idea of this formalism is
to represent summation over solutions of some classical equation of motion, L(x) = 0, for a
dynamical variable x by the functional integral over all x weighted with the delta-function
δ[L(x)]. Then this delta-function is represented as an integral with an exponent over an
auxiliary field λ, while the emerging determinant due to change of variables is written as a
functional integral over a pair of Grassmann fields χ, χ. As a result, the theory is formulated
in terms of a supersymmetric action S[x ,λ,χ,χ], which can be easily averaged over disorder.
Though specific to stochastic dynamics, the approach of Parisi and Sourlas follows the general
philosophy of theoretical description of disordered systems, where the key point is to invent a
functional representation (replica [26, 27], supersymmetric [4] or Keldysh [28, 29]) suitable
for disorder averaging.

In order to implement the outlined procedure for the pendulum equation of motion (1),
we write the partition function as a functional integral over all trajectories θ (t):

Z =

∫

Dθ (t)δ[−∂ 2
t θ + F(θ )]

�

�det[−∂ 2
t + F ′(θ )]

�

�, (4)

where F(θ ) = ω2 sinθ + f (t) cosθ . Following the standard steps [23, 30], we introduce a
bosonic field λ(t) to put the argument of the delta function to the exponent, and a pair of
Grassmann fields χ(t) and χ(t) to represent the determinant. This leads to

Z =

∫

Dθ (t)Dλ(t)Dχ(t)Dχ(t) eS , (5)

with the action S[θ ,λ,χ,χ] given by

S =

∫

d t
�

iλ[−∂ 2
t θ + F(θ )] +χ[−∂ 2

t + F ′(θ )]χ
	

. (6)

Averaging over the driving force distribution (2) generates an effective action, which can still
be written as an integral of a local-in-time Lagrangian due to the white-noise nature of driving,
see Appendix A.1.

The key trick to rewriting Eq. (4) in the form of Eq. (5) is to replace the absolute value of the
determinant by the determinant itself. This implicitly relies on the assumption that the latter is
positive for all solutions of the equation of motion [23,30]. For a generic stochastic equation
this is not true, and therefore the Parisi-Sourlas approach cannot be applied as it weights
various solutions with arbitrary signs. To work with the absolute value of the determinant one
has to resort to much more sophisticated techniques [31,32].

However the problem of the determinant sign does not appear if the solution to the stochas-
tic dynamic equation is unique. This is exactly the case of the NFT for a driven inverted pen-
dulum we are interested in. Hence, it is the uniqueness of the NFT that justifies the use of the
Parisi-Sourlas method for the description of its statistics.
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2.3 Transfer-matrix equation and the probability distribution function

The one-dimensional field theory (5) can be equivalently formulated in the quantum-mechanical
language [33], with the transfer-matrix Hamiltonian Ĥ acting on the wave function Ψ̂(θ ,λ,χ,χ).
Then evaluation of the functional integral is reduced to solving an imaginary-time Schrödinger
equation ∂ Ψ̂/∂ t = −ĤΨ̂. The most important circumstance making the statistical description
of the NFT possible is its exponentially weak sensitivity to boundary conditions (see Fig. 1).
As in the theory of Anderson localization [4], this means that the NFT corresponds to the zero
mode of the supersymmetric transfer-matrix Hamiltonian: ĤΨ̂ = 0. Singling out the Grass-
mann content of the wave function,

Ψ̂(θ ,λ,χ,χ) = Ψ(θ ,λ) +Φ(θ ,λ)χχ, (7)

we can represent the Hamiltonian as a 2× 2 differential operator acting on the vector (Ψ,Φ),
see Appendix A.2.

As a consequence of the Becchi-Rouet-Stora-Tuytin (BRST) symmetry of the theory [30],
there exists a relation between Ψ and Φ, which makes it possible to write an equation for a
single function. In the present case, this reduction has the form Φ = −i∂θΨ/λ, leading to the
following equation:

�

λ∂λ∂θλ
−1 +ω2λ sinθ + iαλ2 cos2 θ

�

Ψ(θ ,λ) = 0. (8)

The structure of the differential operator in Eq. (8) suggests switching to a new function
ψ(θ ,λ) = iΨ(θ ,λ)/λ, which will be the main object of our theory. We also make Fourier
transform from the variable λ to its conjugate momentum p: ψ(θ ,λ) =

∫

ψ(θ , p)eipλdp. In
terms of the function ψ(θ , p), Eq. (8) takes the form

�

p∂θ +ω
2 sinθ ∂p −α cos2 θ ∂ 2

p

�

ψ(θ , p) = 0. (9)

Remarkably, Eq. (9) mathematically coincides with the FP equation for stochastic dynamics
(1) (in its linearized form also known as Kramers equation [21, 34]). An essential difference
however is that the time-independent FP equation describes the steady PDF P(θ , p) of all tra-
jectories, whereas Eq. (9) is written for an auxiliary function ψ(θ , p), which encodes statistics
of the unique NFT. In order to express its instantaneous PDF P(θ , p) in terms of ψ(θ , p), one
has to evaluate the integral (4) with the prefactors δ[θ − θ (t)]δ[p − dθ (t)/d t]. After some
algebra with Grassmann numbers one finds (see Appendix A.5):

P(θ , p) =
�

ψ(θ , p),ψ(θ ,−p)
	

θ ,p, (10)

where { f , g}θ ,p = (∂θ f )(∂p g)− (∂p f )(∂θ g) is the Poisson bracket. The bilinear dependence
of the PDF on ψ reflects the fact that the NFT contains knowledge of both the past (p > 0)
and the future (p < 0) [cf. calculation with the Feymann Green’s function that lead to Eq.
(3)]. A similar bilinear dependence of the single-point wave function correlations on the zero
mode of the transfer-matrix Hamiltonian is well known in the theory of quasi-one-dimensional
Anderson localization [33,35,36]

2.4 Boundary conditions

The crucial element of our theory is boundary conditions for Eq. (9) that ensure that the tra-
jectory never leaves the region |θ (t)| < π/2. It means that the NFT should approach the
boundaries θ = ±π/2 with zero velocity: P(π/2, p) = P(−π/2, p) = 0. In accordance with
Eq. (10), it suggests that ψ should be constant at the boundary. However since the PDF is
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Figure 2: Boundary conditions (11) to Eq. (9) for the function ψ(θ , p). It should be
obtained inside the shaded region and on two dashed segments of the boundary.

bilinear in ψ, it is possible to relax this requirement and impose boundary conditions only at
the half of the lines θ = ±π/2:

ψ(π/2, p < 0) =ψ(θ ,−∞) = −1/2, (11a)

ψ(−π/2, p > 0) =ψ(θ ,∞) = 1/2. (11b)

These boundary conditions are shown in Fig. 2. Since the PDF (10) is expressed in terms of
the derivatives of ψ, its precise value at the boundary is a matter of convention. However
unit normalization of P(θ , p) imposes a constraint ψ(θ ,∞)−ψ(θ ,−∞) = 1, see Appendix
B. Resolving it in a symmetric way, we arrive at Eqs. (11).

We emphasize that Eqs. (11) do not belong to any known types of boundary conditions
to the FP equation discussed in literature (absorbing wall [37], ideally reflecting wall [21],
inelastically reflecting wall [38]). All those boundary conditions refer to the standard FP situ-
ation when one is interested in forward evolution of an ensemble of trajectories. In contrast,
boundary conditions (11) to the FP-like equation (9) describe the behavior of a unique NFT. To
some extent, our boundary conditions resemble those for an absorbing wall [37]: both of them
do not specify the distribution for outgoing momenta and fix the distribution for incoming mo-
menta. However while an absorbing wall does not transmit particles back, the boundary in
Eqs. (11) acts as a source of incoming particles with momentum-independent flux, which has
different signs at the opposite parts of the boundary.

The FP equation (9) supplemented by the boundary conditions (11) still constitutes a non-
trivial problem due to its non-locality: The functionψ at the part of the boundary,ψ(π/2, p > 0)
and ψ(−π/2, p < 0), should be found simultaneously with the solution of the inner problem.
Below we demonstrate that the system of Eqs. (9) and (11) indeed provides a full statistical
description of the NFT. In the limiting cases the solution will be obtained analytically, whereas
at arbitrary α/ω3 one should resort to numerical simulations. The results for the function
ψ(θ , p) are shown in Fig. 3 in the limit of weak (α/ω3� 1) and strong (α/ω3� 1) driving.

3 Results for the probability distribution function

3.1 Vanishing driving

In the trivial case of a vanishing driving, α = 0, the solution takes a pretty simple form
ψ(θ , p) = sign(p − 2ω sinθ/2)/2. Then two derivatives in the Poisson bracket (10) gener-
ate two delta functions in the PDF: P(θ , p) = δ(θ )δ(p), as expected since the NFT in this case
is just the unstable upper position of the pendulum.
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Figure 3: Density plots of ψ(θ , p) for α/ω3 = 0.1 (weak driving) and 40 (strong
driving) obtained by numerical solution of Eq. (9) with the boundary conditions (11).

3.2 Weak driving

In the weak driving limit, α � ω3, the sharp step at the line p = 2ω sinθ/2 gets smeared,
as can be seen in Fig. 3(a). To find the PDF, which is localized at small angles, the operator
in Eq. (9) can be replaced by its linearized version: p∂θ +ω2θ∂p − α∂ 2

p . The solution then

reads ψ(θ , p) = erf[κ(p −ωθ )]/2, where κ = (ω/2α)1/2. Substituting it into Eq. (10), we
recover the weak-noise result (3). Thus we have demonstrated that our approach based on Eq.
(9) with the boundary conditions (11) readily reproduces the NFT statistics in the weak-noise
limit.

3.3 Vanishing vertical force

The other special case when statistics of the NFT can be determined analytically is the limit
of a vanishing vertical force, ω = 0 (infinitely strong driving, α =∞). Then one of the three
terms in the FP operator in Eq. (9) disappears and the latter can be brought to the canonic
form with separated variables:

∂τψ= q−1∂ 2
q ψ, (12)

where τ and q are new coordinate and momentum defined as τ = (2θ + sin 2θ )/π and
q = (4/πα)1/3p. The boundaries θ = ±π/2 map to τ = ±1. The solution of Eq. (12) that
satisfies the boundary conditions (11) can be obtained with the help of the multiplicative Airy
transform [39] as explained in Appendix C:

ψ(τ, q) =
3 Ai′(0)
Ai(0)

∫ ∞

−∞

dµ
µ

Ai
�

(3/2)2/3µ2
�

Ai(µq)eµ
3τ. (13)

The momentum derivative needed to calculate the PDF is computed in Eq. (55):

∂qψ= −
31/6 Ai′(0)

Ai(0)

Ai(s2)exp
�2

3τs3
�

(1−τ2)1/6
, (14)

where s = q/[6(1− τ2)]1/3. The other derivative ∂τψ can be easily obtained from Eq. (12).
Owing to the Poisson-bracket structure of Eq. (10), the normalized PDF in the variables τ and
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Figure 4: Joint angle and momentum probability distribution function of the NFT,
P(θ , p) in the limit ω= 0, as follows from Eq. (15).

q is given by an analogous expression: P(τ, q) =
�

ψ(τ, q),ψ(τ,−q)
	

τ,q, and we arrive at

P(τ, q) = −
24/3

31/3

�

Ai′(0)
Ai(0)

�2 Ai(s2)Ai′(s2)
1−τ2

. (15)

The joint angle and momentum probability distribution function in terms of the original vari-
ables given by P(θ , p) = (∂ τ/∂ θ )(∂ q/∂ p)P(τ, q) is shown in Fig. 4. When θ approaches
the edges at ±π/2, the PDF shrinks in the p direction, such that the pendulum touches the
horizontal position with zero velocity: P(±π/2, p) = 0.338δ(p).

Integrating over q, we obtain the PDF of the coordinate τ:

P(τ) =
Γ (5/6)

Γ (1/3)Γ (1/2)
1

(1−τ2)2/3
, (16)

where Γ is the gamma function. The singularities of P(τ) near the edges (τ→±1) disappear
in the PDF P(θ ) = (∂ τ/∂ θ )P(τ) of the original angle θ :

P(θ ) =
4
π1/6

Γ (5/6)
Γ (1/3)

cos2 θ

[π2 − (2θ + sin 2θ )2]2/3
, (17)

which is shown by the solid red line in Fig. 5(d). Surprisingly, P(θ ) is nearly angle-independent,
with a minimum 0.303 at the upright position and a maximum 0.338 at the horizontal position
of the pendulum (θ = ±π/2).

3.4 Arbitrary driving

At arbitrary values of α/ω3, Eq. (9) with the boundary conditions (11) should be solved nu-
merically. The standard finite element method naturally generalized to include the parts of
the boundary with unknown ψ(θ , p) appears to be stable. Two examples of ψ(θ , p) obtained
numerically at representative values of α/ω3 are shown in Fig. 3. The resulting PDF of the
NFT angle, P(θ ), obtained by integrating P(θ , p) given by Eq. (10) over p are shown by blue
solid lines in Fig. 5.
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Figure 5: Probability distribution function of the NFT angle, P(θ ), for several values
of α/ω3: (a) 0.1, (b) 3, (c) 40, (d) ∞. Green histograms are obtained by direct
Monte-Carlo simulation of Eq. (1). The dashed red line in panel (a) is the approxi-
mate solution (3). Numerical solutions of Eqs. (9) and (11) are shown by blue lines.
The solid red line in panel (d) is the analytical solution (17) for ω= 0.

Figure 5 also demonstrates the results of direct numerical simulation of the NFT from the
pendulum equation (1) with randomly generated realizations of f (t). The corresponding PDF
histograms are displayed in green. Perfect agreement between P(θ ) obtained from Eqs. (9)–
(11) and by direct numerical simulation of Eq. (1) lends strong support for the validity of
our theoretical description of the NFT statistics, where disorder averaging is performed at the
initial stage of the derivation.

With the increase of the driving strength α, the narrow Gaussian distribution (3) shown by
the red dashed line in Fig. 5(a) becomes wider, and at α/ω3 ∼ 1 extends almost to the entire
interval (−π/2,π/2). Further increase of α leads to the shrinking of poorly accessible regions
near |θ | = π/2 and formation of a minimum at θ = 0 (upright position) at α/ω3 ¦ 7. In the
limit α/ω3→∞, the PDF is nearly flat, with 10 % depletion at θ = 0.

4 Connections to other mathematical physics problems

4.1 Universality of the far-momentum tail of the PDF

Now let us discuss the momentum dependence of the distribution function P(θ , p) at large p.
Its Gaussian shape at small α [Eq. (3)] crosses over to the Airy-type behavior (15) in the limit
of large α, with the large-p asymptotics

Pasymp(p)∝ exp
�

−8|p|3/9πα(1−τ2)
�

. (18)

Such a form of the far tail is typical for non-linear stochastic problems (e.g., large positive
velocity gradient in random-forced Burgers equation [40–42], statistics of extrema in a random
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potential [43]) and, as we demonstrate below, is also realized for the driven inverted pendulum
at arbitrary α. Indeed, searching for the solution of Eq. (9) in the stretch-exponent form,
ψ ∝ exp

�

−g(θ )|p|β
�

, we see that the term proportional to ω2 can be neglected at large
|p|. Hence β = 3, and using Eq. (10) we arrive at Eq. (18). The asymptotic expression (18)
is applicable for |p| > ω cos1/2 θ , provided that the number in the exponent is large. The
stretched-exponential tail of the PDF (18) can be physically understood in terms of an optimal
fluctuation of the driving force. To accelerate the pendulum to a large momentum p during
the time ∆t, one should exert a force f ∼ p/∆t. The probability P for such a fluctuation can
be estimated as − ln P ∼ f 2∆t/α ∼ p2/α∆t. Since the duration of the pulse is limited by the
requirement |θ | < π/2, we have ∆t ® 1/p and hence − ln P ∼ p3/α, in accordance with Eq.
(18).

4.2 NFT as the global action minimizer

Finally, we suggest looking at the NFT from a different perspective. Consider a boundary value
problem for Eq. (1) at a final time interval with θ (0) = θ1 and θ (T ) = θ2, where both the initial
and final points are located within the strip |θ1,2| < π/2. Numerical simulations demonstrate
that the solution to this boundary value problem is not unique if we relax the condition that
the trajectory stay within the strip, |θ (t)| < π/2. In addition to the NFT that exists for all T
(see Fig. 1), other solutions that leave the strip and then come back appear for longer intervals,
T ¦ 1/ω. Now we ascribe to each solution θ (t) the value of the corresponding action defined
as

A[θ (t)] =

∫ t2

t1

�

θ̇2/2−ω2 cosθ + f (t) sinθ
�

d t. (19)

Numerical analysis shows that the NFT provides a global minimum for A[θ (t)] among all
solutions of the boundary value problem and therefore is a minimizer [41]. This fact provides
a connection between the NFT and Burgers equation (whose characteristics are described by
the driven pendulum equation) and, more broadly, to the field of one-dimensional turbulence
[40,44,45].

5 Conclusion

To summarize, we introduce a concept of a unique never-falling trajectory for a horizontally
driven inverted pendulum and formulate the problem of its statistical description. In the case of
white-noise random driving, we provide a full solution for this problem. Using field-theoretical
methods of statistical and condensed-matter physics, we express the instantaneous joint PDF
of the pendulum’s angle and its velocity in terms of an auxiliary function satisfying the Fokker-
Planck equation with a new type of boundary conditions. In the limit of very strong driving
(vanishing gravitation), the PDF is obtained analytically. For arbitrary driving strength, the
derived equations can be easily solved numerically, which is much simpler and efficient than
direct numerical simulation of a never-falling trajectory from the equation of motion with
statistics accumulation. We demonstrate that both approaches give the same result.

In a wider context, the problem of a never-falling trajectory has many notable connections
with other mathematical physics problems: theory of minimizers (NFT is a global minimizer of
the classical action), Burgers turbulence, rear events in stochastic differential equations, etc.
We expect our approach to be also in demand in control theory. Our results can be naturally
generalized to other Langevin-type equations, which admit non-falling trajectories. Finally
we’d like to emphasize that studying the properties of a never-falling trajectory, which has
measure zero among all solutions of a driven mathematical pendulum, is not just an academic
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exercise. For example, the Usadel equation [46] describing inhomogeneous states in dirty
superconductors belongs to a class of pendulum equation, but with an essentially complex
ω, when balancing an unstable trajectory is a generic situation. The theoretical approach
developed in the present publication can then be used to obtain the density of states in inho-
mogeneous superconducting wires [47].
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A Parisi-Sourlas formalism

A.1 Supersymmetric functional representation and averaging over driving

Consider a differential equation
∂ 2

t θ (t) = F(θ (t)), (20)

where F(θ ) might be a nonlinear function with an arbitrary time dependence. For the driven
pendulum,

F(θ ) =ω2 sinθ + f (t) cosθ . (21)

Let A[θ] be a functional of a trajectory θ (t). Then the sum of A[θ] over all solutions of the
differential equation (20) can be written as a path integral over all functions θ (t) [22,23,30]:

∑

solutions

A[θ] =
∫

Dθ (t)A[θ (t)]δ[−∂ 2
t θ + F(θ )]

�

�det[−∂ 2
t + F ′(θ )]

�

�, (22)

where the delta function ensures that θ (t) indeed satisfies the equation, whereas the absolute
value of the determinant arises since the argument of the delta function contains the equation
rather its solution.

In a generic situation, when Eq. (20) possesses many solutions, the sign of the determinant
in Eq. (22) alternates between solutions. However, uniqueness of a non-falling trajectory for
Whitney’s problem guarantees that the determinant is positive, so that the functional A on it
can be written with the absolute value of the determinant replaced by the determinant itself:

A[θNFT] =

∫

Dθ (t)A[θ (t)]δ[−∂ 2
t θ + F(θ )]det[−∂ 2

t + F ′(θ )]. (23)

Following then the approach of Parisi and Sourlas [22, 23, 30], we rewrite the delta function
using an extra field λ(t) and the determinant using a pair of Grassmann fields χ(t) and χ(t):

A[θNFT] =

∫

Dθ (t)Dλ(t)Dχ(t)Dχ(t)A[θ (t)] eS , (24)

with the action

S =

∫

L d t, L = iλ[−∂ 2
t θ + F(θ )] +χ[−∂ 2

t + F ′(θ )]χ. (25)

12
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Now we average over realizations of a random force f (t), assuming Gaussian white-noise
statistics with the correlation functions 〈 f (t) f (t ′)〉 = 2αδ(t − t ′), and integrating by parts in
the kinetic term, we obtain

〈A[θNFT]〉=
∫

Dθ (t)Dλ(t)Dχ(t)Dχ(t)A[θ (t)] exp

�∫

d t (i ∂tλ∂tθ + ∂tχ ∂tχ +V)
�

,

(26)
where the superpotential V is given by

V =ω2 (iλ sinθ +χχ cosθ ) +α (iλ cosθ −χχ sinθ )2 . (27)

A.2 Hamiltonian representation

The one-dimensional field theory (26) can be interpreted as Feynman’s path-integral repre-
sentation of a certain quantum mechanics. An alternative but completely equivalent repre-
sentation is known to be provided by the time-dependent Schrödinger equation for the wave
function Ψ̂ with an appropriate transfer-matrix Hamiltonian. This idea of reducing functional
integral evaluation to solving a corresponding Shcrödinger equation has appeared to be very
fruitful in the theory of quasi-one-dimensional Anderson localization [4, 33]. We exploit the
same analogy. In the case of the path integral (26), its evaluation can be reduced to solving
the Schrödinger equation

∂ Ψ̂

∂ t
= −ĤΨ̂, Ĥ = −

�

i∂λ∂θ + ∂χ∂χ +V
�

(28)

for the wave function Ψ̂(θ ,λ,χ,χ), which can be expanded in the basis of even elements of
the Grassmann algebra according to Eq. (7). In terms of functions Ψ(θ ,λ) and Φ(θ ,λ), the
Schrödinger equation (28) can be written as

∂

∂ t

�

Ψ

Φ

�

= −H
�

Ψ

Φ

�

, H = −
�

i∂λ∂θ +V1 1
V2 i∂λ∂θ +V1

�

, (29)

where V1,2 are the coefficients of the expansion of the superpotential (27) over even Grass-
mann basis: V ≡ V1 +V2χχ.

As in the theory of Anderson localization [4,33], exponentially weak sensitivity of the NFT
to boundary conditions indicates that it corresponds to the zero mode of the transfer-matrix
Hamiltonian:

�

i∂λ∂θ +V1 1
V2 i∂λ∂θ +V1

��

Ψ

Φ

�

= 0. (30)

A.3 Reduction to the scalar equation and Fokker-Planck operator

By construction, the coefficients of the superpotential (27) obey the relation

iλV2 = ∂θV1. (31)

As a consequence, the functions Ψ and Φ become connected by the relation

iλΦ= ∂θΨ (32)

and the system (30) reduces to a single scalar equation for the function Ψ(θ ,λ):
�

iλ∂λ∂θλ
−1 + iω2λ sinθ −αλ2 cos2 θ

�

Ψ = 0. (33)

13
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It is convenient to introduce a new function

ψ(θ ,λ) = iΨ(θ ,λ)/λ (34)

and switch to the momentum representation according to

ψ(θ ,λ) =

∫

ψ(θ , p)eipλdp. (35)

The functionψ(θ , p)will play a key role in our analysis. In terms of it, the zero-mode equation
(33) takes the simplest possible form, coinciding with that of the Fokker-Planck equation:

�

p∂θ +ω
2 sinθ ∂p −α cos2 θ ∂ 2

p

�

ψ(θ , p) = 0. (36)

At the same time, the functions Ψ(θ , p) and Φ(θ , p) have an elegant representation in terms
of the function ψ(θ , p):

Ψ = ∂pψ, Φ= −∂θψ. (37)

A.4 BRST symmetry

The relation (32) between Ψ and Φ that allows to obtain a single equation for the function
Ψ is a consequence of the Becchi-Rouet-Stora-Tuytin (BRST) symmetry of the Parisi-Sourlas
theory for stochastic differential equations [30]. The Lagrangian of the theory defined in Eq.
(25) appears to be invariant with respect to infinitesimal rotations by a Grassmann field ε:
δθ = εχ and δχ = −iελ. This means that the Lagrangian satisfies D̂L = 0 and can be written
as

L = D̂(χ[−∂ 2
t θ + F(θ )]), (38)

where D̂ a nilpotent (D̂2 = 0) BRST operator

D̂ = iλ∂χ −χ∂θ . (39)

The BRST symmetry of the Lagrangian translates to the BRST symmetry of the wave functions
in the Hamiltonian representation: D̂Ψ̂ = 0. Hence there should exist such a function ψ that

Ψ̂ = D̂(χψ). (40)

Comparing with Eqs. (7) and (32), we see that thus defined function ψ coincides (up to an
overall sign) with the same function introduced in Sec. A.3.

A.5 Instantaneous joint PDF of the angle and its velocity

The instantaneous PDF of the angle and momentum of the NFT, P(θ , p), is defined by Eq. (26)
with a local-in-time functional A[θ] = δ(θ (t)− θ )δ(θ̇ (t)− p). It can be calculated by taking
two infinitesimally close moments of time, t and t + ε, replacing the functional integrals over
the regions t ′ < t and t ′ > t +ε by the corresponding zero modes, and discretizing the action
at the interval (t, t + ε):

P(θ , p) = lim
ε→0

∫

dλ1

2π
dλ2

2π
dθ1dθ2dχ1dχ1dχ2χ2δ (θ1 − θ ) δ

�

θ2 − θ1

ε
− p

�

×Ψ(λ1,θ1,χ1,χ1)exp
§

i
(λ2 −λ1)(θ2 − θ1)

ε
+
(χ2 −χ1)(χ2 −χ1)

ε

ª

Ψ(λ2,θ2,χ2,χ2). (41)
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Substituting Ψ from Eq. (7), performing all integrations and switching to the momentum rep-
resentation (35), we get

P(θ , p) = Ψ(θ , p)Φ(θ ,−p) +Ψ(θ ,−p)Φ(θ , p). (42)

In terms of the function ψ, the PDF of the NFT takes an amazingly compact form

P(θ , p) =
�

ψ(θ , p),ψ(θ ,−p)
	

θ ,p, (43)

where the Poisson bracket is defined as

{ f , g}θ ,p = (∂θ f )(∂p g)− (∂p f )(∂θ g). (44)

B Boundary conditions

To complete the formulation of the theory for the NFT statistics, we have to impose the bound-
ary conditions on the function ψ(θ , p) at θ = ±π/2 that will ensure that the pendulum never
leaves the upper-half plane. In terms of the PDF, this means that P(±π/2, p) should vanish for
all p 6= 0. The structure of Eq. (43) suggests that it is sufficient to nullify ψ(±π/2, p) not for
all p, but only on a half-line. We find it convenient to resolve this constraint by imposing the
following boundary equations:

ψ(π/2, p < 0) = −1/2, (45a)

ψ(−π/2, p > 0) = 1/2. (45b)

As a consequence of the Fokker-Planck equation (36), it follows that

ψ(θ ,±∞) = ±1/2. (46)

Let us demonstrate that the Fokker-Planck equation (36) with the boundary conditions
(45) generates the PDF P(θ , p), which is automatically normalized to unity. Using Eq. (43)
and integrating one of the two terms in the Poisson bracket by parts over θ and over p, we
obtain that the bulk contribution vanishes and only the boundary contributes:

∫

P(θ , p) dθ dp =

∫ π/2

−π/2
dθ ψ(θ ,−p)∂θψ(θ , p)

�

�

�

p=∞

p=−∞
−
∫ ∞

−∞
dpψ(θ ,−p)∂pψ(θ , p)

�

�

�

θ=π/2

θ=−π/2
.

(47)
The first term here vanishes due to Eq. (46), whereas the second term reduces to the integral
over two momentum haft-lines due to the boundary conditions (45):

∫

P(θ , p) dθ dp = −
∫ ∞

0

dpψ(π/2,−p)∂pψ(π/2, p)+

∫ 0

−∞
dpψ(−π/2,−p)∂pψ(−π/2, p).

(48)
Here ψ(±π/2,−p) are constants given by ψ(θ ,∓∞) = ±1/2, so it remains to integrate full
derivatives. Using the continuity of ψ(θ , p), we arrive at

∫

P(θ , p) dθ dp = [ψ(θ ,∞)−ψ(θ ,−∞)]2 = 1, (49)

that proves proper normalization of the PDF.
Finally, we discuss the degrees of freedom in defining the boundary conditions (45). The

first one is related to the fact that the function ψ(θ , p) enters physical observables only via its
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derivatives [see Eqs. (37) and (43)]. Therefore it is defined up to an additive constant. Nor-
malization of the PDF ensures that ψ(θ ,∞) −ψ(θ ,−∞) = 1. In our boundary conditions
(45), we resolve this constraint in a symmetric way. The second uncertainty is related to the
choice of half-lines of momentum, whereψ(±π/2, p) should be constant. Besides the conven-
tion (45), there is an alternative way to fix the values of ψ(π/2, p > 0) and ψ(−π/2, p < 0)
on the different half-lines of p that would correspond to changing the sign of the momentum.
However since the PDF is a bilinear function of ψ(θ , p) and ψ(θ ,−p), such a choice would
lead to the same expression for the PDF.

C Exact solution in the absence of gravitation (ω= 0)

C.1 Expansion in the Airy functions

Remarkably, in the absence of a vertical force, the PDF of the NFT can be obtained exactly. In
this limit, the Fokker-Planck equation (36) contains only two terms that allows to separate the
variables. To this end we define a new coordinate

τ=
4
π

∫ θ

0

cos2 θ ′dθ ′ =
2θ + sin 2θ

π
, (50)

where the overall numerical coefficient is chosen such that the boundaries θ = ±π/2 are
mapped to τ= ±1, and a new momentum

q = (4/πα)1/3p. (51)

In terms of ψ(τ, q), Eq. (36) takes a simple form:

∂τψ= q−1∂ 2
q ψ. (52)

The eigenfunctions of the operator at the right-hand side of Eq. (52) are the Airy functions
φµ(q) = Ai(µq) [48] labeled by a continuous index µ ∈ R, with the corresponding eigenvalues
εµ = µ3. Therefore a general solution of Eq. (52) can be expressed as

ψ(τ, q) =

∫ ∞

−∞
dµ c(µ)Ai(µq)exp(µ3τ), (53)

where c(µ) are the coefficients of the multiplicative Airy transform [39] of the function ψ at
the line τ= 0 (upper pendulum position).

C.2 Solution for c(µ)

The function ψ(τ, q) written in terms of the integral representation (53) solves the Fokker-
Planch equation (52) in the inner region, |τ|< 1 (i.e., |θ |< π/2). An unknown function c(µ)
should be determined from the boundary conditions (45) at |θ |= π/2. Here we demonstrate
that the proper c(µ) is given by

c(µ) =
3Ai′(0)
Ai(0)

Ai
�

(3/2)2/3µ2
�

µ
. (54)

The idea behind the ansatz (54) is that the contribution of large µ tends to explode at large
|τ| due to the exponential factor in Eq. (53) and unboundedness of the spectrum εµ = µ3.
Therefore to make the integral (53) convergent at |τ| ≤ 1, the coefficients c(µ) should decay
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not slower than exp(−|µ|3). At large |µ|, the function (54) indeed decays sufficiently fast:
c(µ) ∼ signµexp(−|µ|3)/|µ|3/2 [see Eq. (66)]. Right at the boundary, |τ| = 1, the leading
growing and decreasing exponents fully compensate each other.

To prove that ψ(τ, q) in the form (53) with c(µ) given by Eq. (54) satisfies the boundary
conditions (45), we show below (i) that ψ(±1, q) has a constant value for q < 0 (q > 0) and
(ii) that its asymptotics at q→±∞ is given by 1

2 sign q.
The first statement can be proved by calculating the momentum derivative of ψ with the

help of Eq. (69):

∂qψ(τ, q) = −
31/6 Ai′(0)

Ai(0)

Ai(s2)exp
�2

3τs3
�

(1−τ2)1/6
, (55)

where we introduced a short-hand notation

s =
q

[6(1−τ2)]1/3
=

21/3p
[3πα(1−τ2)]1/3

. (56)

Talking the limit |τ| → 1 using the asymptotic expansion (66) and the identities (65), we find

∂qψ(±1, q) =
32/3

21/6Γ (1/6)

exp
�

−|q|3/18
�

|q|1/2
θ (±q). (57)

Thus we establish that ∂qψ(±1, q) vanishes for q < 0 (q > 0), in accordance with the boundary
conditions (45).

The second statement about normalization is proved by considering the asymptotic behav-
ior ofψ(τ, q) at q→±∞. In this limit, the main contribution to the integral (53) comes from
small µ∼ 1/q that allows to take all other functions at µ= 0. Using Eq. (67), we obtain:

lim
q→∞

ψ(τ, q) = 3 Ai′(0)

∫

dµ
Ai(µq)
µ

= 3 Ai′(0) sign q

∫

dµ
Ai(µ)
µ
=

sign q
2

, (58)

as prescribed by the boundary conditions (45). This completes the proof that Eqs. (53) and
Eq. (54) provide an exact analytic solution for the function ψ(τ, q) in the limit of vanishing
ω.

C.3 Probability distribution function

The joint angle and momentum PDF P(θ , p) is given by Eq. (43). Owing to the Poisson-bracket
structure of this equation, the normalized PDF in the variables τ and q [see Eq. (50) and (51)]
is given by an analogous expression:

P(τ, q) =
�

ψ(τ, q),ψ(τ,−q)
	

τ,q. (59)

Taking the q-derivative from Eq. (55) and calculating then the p-derivative from Eq. (52), we
arrive at the following expression for P(τ, q):

P(τ, q) = −
24/3

31/3

�

Ai′(0)
Ai(0)

�2 Ai(s2)Ai′(s2)
1−τ2

, (60)

where s is defined in Eq. (56). The PDF in terms of the original variables θ and p is given by

P(θ , p) =
∂ τ

∂ θ

∂ q
∂ p

P(τ, q) = −
16cos2 θ

31/3π4/3α1/3

�

Ai′(0)
Ai(0)

�2 Ai
�

s2
�

Ai′
�

s2
�

1−τ2
. (61)
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The PDF for the coordinate is obtained by integration over the corresponding momentum,
which is done with the help of Eq. (68). As a result, the PDF of the variable τ takes a simple
form:

P(τ) =
Γ (5/6)

Γ (1/2)Γ (1/3)
1

(1−τ2)2/3
. (62)

In the original θ representation we obtain

P(θ ) =
4
π1/6

Γ (5/6)
Γ (1/3)

cos2 θ

[π2 − (2θ + sin 2θ )2]2/3
, (63)

D Mathematical supplementary: Integrals with the Airy functions

D.1 Basic identities and integrals for the Airy functions

Here we collect useful identities for the Airy function that are needed to describe the solution
of the pendulum problem in the limit ω= 0. Many facts about the Airy function can be found
in a comprehensive monograph [48].

Integral representation for the Airy function:

Ai(x) =

∫ ∞

−∞

d t
2π

exp

�

i
t3

3
+ i x t

�

. (64)

Airy function and its derivative at the origin are given by:

Ai(0) =
1

32/3Γ (2/3)
, Ai′(0) = −

1
31/3Γ (1/3)

. (65)

Asymptotic expansion at x � 1:

Ai(x)≈
1

2
p
π

exp
�

−2
3 x3/2

�

x1/4
. (66)

Useful integrals:
∫

d x
Ai(x)

x
=

∫ ∞

0

d x
Ai(x)−Ai(−x)

x
=

1
6 Ai′(0)

, (67)

∫ ∞

−∞
d x Ai(x2)Ai′(x2) = −

Ai(0)
24/3

. (68)

Eq. (67) can be obtained directly from the integral representation (64), while Eq. (68) can be
derived with the help of Eq. 2.16.33.1 of Ref. [49].

D.2 The key integral with the Airy functions

Here we prove the identity

I(p,τ) =

∫ ∞

−∞
d x Ai(x2)Ai′(px)exp

�

2
3

x3τ

�

= −
exp

�

p3

6
τ

(1−τ2)

�

21/331/2 (1−τ2)1/6
Ai

�

p2

24/3 (1−τ2)2/3

�

.

(69)
This is the key integral, which determines the PDF of the pendulum’s angle and momentum in
the absence of gravitation (ω = 0), see Sec. C. It is absent in the standard tables of integrals
[49,50] and handbooks of special functions [48,51].
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D.2.1 Canonization of the ternary cubic

Using the integral representation (64) and switching to imaginary τ, we write I(iτ, p) as a
triple integral:

I(iτ, p) =

∫

Ai(x2)Ai′(px)exp(2i x3τ/3)d x

=
1

(2π)2

∫

d t ds d x is exp i

�

t3

3
+ x2 t +

s3

3
+ x ps+

2
3

x3τ

�

. (70)

As an auxiliary step, we rescale the x variable:

I(iτ, p) =
1

(2τ)1/3
1

(2π)2

∫

d t ds d x is exp i

�

t3

3
+

x2 t
(2τ)2/3

+
s3

3
+

x ps
(2τ)1/3

+
x3

3

�

. (71)

To bring the ternary cubic to a canonic form we make a linear transformation of the vari-
ables x and t:
�

x
t

�

= M

�

u
v

�

, M =
1

(eθ + e−θ )2/3

�

eθ/3(eθ − e−θ )1/3 −e−θ/3(eθ − e−θ )1/3

e−2θ/3 e2θ/3

�

, (72)

where the angle θ is defined such that τ= sinhθ . The Jacobian of the transformation is given
by:

J = det M = (tanhθ )1/3 =
τ1/3

(1+τ2)1/6
. (73)

Hence we get

I(iτ, p) =
1

21/3(1+τ2)1/6
1

(2π)2

∫

ds du dv is exp i

�

s3 + u3 + v3

3
+ P(eθ/3u− e−θ/3v)s

�

(74)
where

P =
p

(eθ + e−θ )2/3
=

p
22/3(1+τ2)1/3

. (75)

Comparing with Eq. (69), we see that it is equivalent to the following identity:

L(τ, P)≡
1

(2π)2

∫

ds du dv is exp i

�

s3 + u3 + v3

3
+ P(eθ/3u− e−θ/3v)s

�

= −
1

31/2
exp

�

2P3

3
iτ

�

Ai(P2), (76)

that will be proven below.

D.2.2 Auxiliary integral

Consider an integral

K(x , y)≡
1

(2π)2

∫

du ds dv is exp i

�

s3 + u3 + v3

3
+ (xu+ yv)s

�

. (77)

Its Fourier transform with respect to x and y can be evaluated easily:

K(p, q) =

∫

d x d y e−ipx−iq y K(x , y) = −
2π
3

J0

�

2
3
(p3 + q3)1/2

�

θ (p3 + q3). (78)
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Now we take the inverse Fourier transform:

K(x , y) = −
2π
3

∫

dp dq
(2π)2

θ (p+ q)J0

�

2
3
(p3 + q3)1/2

�

eipx+iq y . (79)

With p+ q = u, p− q = v and s = (x + y)/2, r = (x − y)/2 we get

K(x , y) = −
1

12π

∫ ∞

0

du

∫ ∞

−∞
dv J0

�

1
3
(u3 + 3x v2)1/2

�

eisu+ir v . (80)

We take the v-integral first:

V ≡
∫ ∞

−∞
dv J0

�

1
3
(u3 + 3uv2)1/2

�

eir v =

∫ ∞

−∞
dv J0

�

u1/2

31/2
(u2/3+ v2)1/2

�

cos rv. (81)

Writing u2/3+ v2 = z2 and a = u/
p

3, we get

V = 2

∫ ∞

a
dz

z
p

z2 − a2
J0

�

u1/2

31/2
z

�

cos r
p

z2 − a2. (82)

This is the integral 2.12.22.6 from Ref. [49]:

V = 2
cos[(u/

p
3)
p

u/3− r2]
p

u/3− r2
θ (u/3− r2). (83)

Hence Eq. (80) reduces to (u= 3r2z)

K(x , y) = −
r

2π

∫ ∞

1

dz e3ir2sz cos[
p

3r3z
p

z − 1]
p

z − 1
. (84)

Changing the variables z = 1+ k2, we get

K(x , y) = −
r
π

∫ ∞

0

dk e3ir2s(1+k2) cos[
p

3r3k(1+ k2)] = −
r

2π

∫ ∞

−∞
dk e3ir2s(1+k2)+i

p
3r3k(1+k2).

(85)
Finally, eliminating the quadratic term (k = (t − s)/r

p
3), we arrive at the Airy-type integral

K(x , y) = −
1

2π
p

3

∫ ∞

−∞
d t exp i

�

t3

3
+ t(r2 − s2) +

2
3

�

3r2s+ s3
�

�

= −
1
p

3
exp i

�

2
3

�

3r2s+ s3
�

�

Ai(r2 − s2). (86)

In terms of original variables x and y ,

K(x , y) = −
1
p

3
exp

�

i
x3 + y3

3

�

Ai(−x y). (87)

D.2.3 Final step

Using Eqs. (76), (77) and (87), we obtain

L(τ, P) = K(Peθ/3,−Pe−θ/3) = −
1
p

3
exp

�

i
2P3τ

3

�

Ai(P2) (88)

As discussed above, that completes the proof of Eq. (69).

20



SciPost Physics Submission

References

[1] E. Ott, Chaos in Dynamical Systems, Cambridge University Press (1993).

[2] B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Physics
reports 52(5), 263 (1979), doi:10.1016/0370-1573(79)90023-1.

[3] M. L. Mehta, Random Matrices, Academic Press, Boston (1991).

[4] K. B. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press (1996).

[5] M. Wilkinson, Statistical aspects of dissipation by Landau-Zener transitions, Journal
of Physics A: Mathematical and General 21(21), 4021 (1988), doi:10.1088/0305-
4470/21/21/011.

[6] B. D. Simons and B. L. Altshuler, Universalities in the spectra of disordered and chaotic
systems, Phys. Rev. B 48, 5422 (1993), doi:10.1103/PhysRevB.48.5422.

[7] G. Casati, B. V. Chirikov, J. Ford and F. M. Izrailev, Stochastic Behaviour in Classical and
Quantum Hamiltonian Systems, Springer, Berlin, doi:10.1007/BFb0021757 (1979).

[8] B. Chirikov, F. Izrailev and D. Shepelyansky, Quantum chaos: localization vs. ergod-
icity, Physica D: Nonlinear Phenomena 33(1-3), 77 (1988), doi:10.1016/S0167-
2789(98)90011-2.

[9] S. Fishman, D. R. Grempel and R. E. Prange, Chaos, quantum recurrences, and Anderson
localization, Phys. Rev. Lett. 49, 509 (1982), doi:10.1103/PhysRevLett.49.509.

[10] D. M. Basko, M. A. Skvortsov and V. E. Kravtsov, Dynamic localization
in quantum dots: Analytical theory, Phys. Rev. Lett. 90, 096801 (2003),
doi:10.1103/PhysRevLett.90.096801.

[11] R. Courant and H. Robbins, What is Mathematics?: an elementary approach to ideas and
methods, Oxford University Press (1996).

[12] R. Srzednicki, On periodic solutions in the Whitney’s inverted pendulum problem, Discrete
& Continuous Dynamical Systems 12(7), 2127 (2019), doi:10.3934/dcdss.2019137.

[13] A. Shen, Rod in a train: a mechanical problem of H. Whitney, or Much Ado About Nothing,
(in Russian) (2019), https://arxiv.org/abs/1907.01598v2.

[14] T. Poston, Au courant with differential equations, Manifold 18, 6 (1976).

[15] A. Broman, A mechanical problem by H. Whitney, Nordisk Matematisk Tidskrift 6(2), 78
(1958).

[16] V. Arnold, What is Mathematics?, MCCME, Moscow, (in Russian) (2002).

[17] I. Y. Polekhin, Examples of topological approach to the problem of inverted pendulum with
moving pivot point, Nonlinear dynamics 10, 465 (2014), doi:10.20537/nd1404006.

[18] O. Zubelevich, Bounded solutions to a system of second order ODEs and the Whitney pen-
dulum, Applicationes Mathematicae 42(2-3), 159 (2015), doi:10.4064/am42-2-3.

[19] S. V. Bolotin and V. V. Kozlov, Calculus of variations in the large, existence of trajectories in a
domain with boundary, and Whitney’s inverted pendulum problem, Izvestiya: Mathematics
79(5), 894 (2015), doi:10.1070/IM2015v079n05ABEH002765.

21

https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1088/0305-4470/21/21/011
https://doi.org/10.1088/0305-4470/21/21/011
https://doi.org/10.1103/PhysRevB.48.5422
https://doi.org/10.1007/BFb0021757
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1016/S0167-2789(98)90011-2
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.1103/PhysRevLett.90.096801
https://doi.org/10.3934/dcdss.2019137
https://arxiv.org/abs/1907.01598v2
https://doi.org/10.20537/nd1404006
https://doi.org/10.4064/am42-2-3
https://doi.org/10.1070/IM2015v079n05ABEH002765


SciPost Physics Submission

[20] J. Hauser, A. Saccon and R. Frezza, On the driven inverted pendulum, In Pro-
ceedings of the 44th IEEE Conference on Decision and Control, pp. 6176–6180. IEEE,
doi:10.1109/CDC.2005.1583150 (2005).

[21] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Springer,
Berlin, doi:10.1007/978-3-642-61544-3 (1996).

[22] G. Parisi and N. Sourlas, Random magnetic fields, supersymmetry, and negative dimensions,
Phys. Rev. Lett. 43, 744 (1979), doi:10.1103/PhysRevLett.43.744.

[23] G. Parisi and N. Sourlas, Supersymmetric field theories and stochastic differential equations,
Nuclear Physics B 206(2), 321 (1982), doi:10.1016/0550-3213(82)90538-7.

[24] P. C. Martin, E. D. Siggia and H. A. Rose, Statistical dynamics of classical systems, Phys.
Rev. A 8, 423 (1973), doi:10.1103/PhysRevA.8.423.

[25] B. I. Halperin, P. C. Hohenberg and S.-k. Ma, Renormalization-group methods for critical
dynamics: I. Recursion relations and effects of energy conservation, Phys. Rev. B 10, 139
(1974), doi:10.1103/PhysRevB.10.139.

[26] S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal
Physics 5(5), 965 (1975), doi:10.1088/0305-4608/5/5/017.

[27] F. Wegner, The mobility edge problem: continuous symmetry and a conjecture, Zeitschrift
für Physik B Condensed Matter 35(3), 207 (1979), doi:10.1007/BF01319839.

[28] M. L. Horbach and G. Schön, Dynamic nonlinear sigma-model of electron localization,
Annalen der Physik 505(1), 51 (1993), doi:10.1002/andp.19935050106.

[29] A. Kamenev and A. Andreev, Electron-electron interactions in disordered metals: Keldysh
formalism, Phys. Rev. B 60, 2218 (1999), doi:10.1103/PhysRevB.60.2218.

[30] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford,
doi:10.1093/acprof:oso/9780198509233.001.0001 (2015).

[31] J. Kurchan, Replica trick to calculate means of absolute values: applications to stochas-
tic equations, Journal of Physics A: Mathematical and General 24(21), 4969 (1991),
doi:10.1088/0305-4470/24/21/011.

[32] Y. V. Fyodorov, Complexity of random energy landscapes, glass transition, and absolute
value of the spectral determinant of random matrices, Phys. Rev. Lett. 92, 240601 (2004),
doi:10.1103/PhysRevLett.92.240601.

[33] K. Efetov and A. Larkin, Kinetics of a quantum particle in long metallic wires, Sov. Phys.
JETP 58, 444 (1983) [Zh. Eksp. Teor. Fiz. 85, 764 (1983)].

[34] H. Kramers, Brownian motion in a field of force and the diffusion model of chemical reac-
tions, Physica 7(4), 284 (1940), doi:10.1016/s0031-8914(40)90098-2.

[35] A. D. Mirlin, Statistics of energy levels and eigenfunctions in disordered systems, Physics
Reports 326(5-6), 259 (2000), doi:10.1016/S0370-1573(99)00091-5.

[36] M. A. Skvortsov and P. Ostrovsky, Local correlations of different eigenfunctions in a disor-
dered wire, JETP Letters 85(1), 72 (2007), doi:10.1134/S0021364007010158.

22

https://doi.org/10.1109/CDC.2005.1583150
https://doi.org/10.1007/978-3-642-61544-3
https://doi.org/10.1103/PhysRevLett.43.744
https://doi.org/10.1016/0550-3213(82)90538-7
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevB.10.139
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1007/BF01319839
https://doi.org/10.1002/andp.19935050106
https://doi.org/10.1103/PhysRevB.60.2218
https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
https://doi.org/10.1088/0305-4470/24/21/011
https://doi.org/10.1103/PhysRevLett.92.240601
https://doi.org/10.1016/s0031-8914(40)90098-2
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1134/S0021364007010158


SciPost Physics Submission

[37] J. Masoliver and J. M. Porrà, Exact solution to the exit-time problem for an un-
damped free particle driven by Gaussian white noise, Phys. Rev. E 53, 2243 (1996),
doi:10.1103/PhysRevE.53.2243.

[38] T. W. Burkhardt, J. Franklin and R. R. Gawronski, Statistics of a confined, randomly
accelerated particle with inelastic boundary collisions, Phys. Rev. E 61, 2376 (2000),
doi:10.1103/PhysRevE.61.2376.

[39] M.-T. Rieder, T. Micklitz, A. Levchenko and K. A. Matveev, Interaction-Iinduced
backscattering in short quantum wires, Phys. Rev. B 90, 165405 (2014),
doi:10.1103/PhysRevB.90.165405.

[40] A. M. Polyakov, Turbulence without pressure, Phys. Rev. E 52, 6183 (1995),
doi:10.1103/PhysRevE.52.6183.

[41] W. E, K. Khanin, A. Mazel and Y. Sinai, Invariant measures for Burgers equation with
stochastic forcing, Annals of Mathematics pp. 877–960 (2000), doi:10.2307/121126.

[42] E. Balkovsky, G. Falkovich, I. Kolokolov and V. Lebedev, Intermittency of Burgers’ turbu-
lence, Phys. Rev. Lett. 78, 1452 (1997), doi:10.1103/PhysRevLett.78.1452.

[43] P. Le Doussal and C. Monthus, Exact solutions for the statistics of extrema of some random
1D landscapes, application to the equilibrium and the dynamics of the toy model, Physica A:
Statistical Mechanics and its Applications 317(1-2), 140 (2003), doi:/10.1016/S0378-
4371(02)01317-1.

[44] V. Gurarie and A. Migdal, Instantons in the Burgers equation, Phys. Rev. E 54, 4908
(1996), doi:10.1103/PhysRevE.54.4908.

[45] J. Bec and K. Khanin, Burgers turbulence, Physics Reports 447(1-2), 1 (2007),
doi:10.1016/j.physrep.2007.04.002.

[46] K. D. Usadel, Generalized diffusion equation for superconducting alloys, Phys. Rev. Lett.
25, 507 (1970), doi:10.1103/PhysRevLett.25.507.

[47] N. A. Stepanov and M. A. Skvortsov (in preparation).

[48] O. Vallee and M. Soares, Airy Functions And Applications To Physics, Imperial College
Press, London (2004).

[49] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and Series. Vol. 2, Gordon
and Brech, London (1986).

[50] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,
San Diego (2000).

[51] H. Bateman and A. Erdélyi, Higher Transcendental Functions. Vol. 2, McGraw-Hill, New
York (1953).

23

https://doi.org/10.1103/PhysRevE.53.2243
https://doi.org/10.1103/PhysRevE.61.2376
https://doi.org/10.1103/PhysRevB.90.165405
https://doi.org/10.1103/PhysRevE.52.6183
https://doi.org/10.2307/121126
https://doi.org/10.1103/PhysRevLett.78.1452
https://doi.org//10.1016/S0378-4371(02)01317-1
https://doi.org//10.1016/S0378-4371(02)01317-1
https://doi.org/10.1103/PhysRevE.54.4908
https://doi.org/10.1016/j.physrep.2007.04.002
https://doi.org/10.1103/PhysRevLett.25.507

	Introduction
	Statistical properties of the never-falling trajectory
	Analytical solution of the linearized problem
	Supersymmetric formalism
	Transfer-matrix equation and the probability distribution function
	Boundary conditions

	Results for the probability distribution function
	Vanishing driving
	Weak driving
	Vanishing vertical force
	Arbitrary driving

	Connections to other mathematical physics problems
	Universality of the far-momentum tail of the PDF
	NFT as the global action minimizer

	Conclusion
	Parisi-Sourlas formalism
	Supersymmetric functional representation and averaging over driving
	Hamiltonian representation
	Reduction to the scalar equation and Fokker-Planck operator
	BRST symmetry
	Instantaneous joint PDF of the angle and its velocity

	Boundary conditions
	Exact solution in the absence of gravitation (=0)
	Expansion in the Airy functions
	Solution for c()
	Probability distribution function

	Mathematical supplementary: Integrals with the Airy functions
	Basic identities and integrals for the Airy functions
	The key integral with the Airy functions
	Canonization of the ternary cubic
	Auxiliary integral
	Final step


	References

