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Abstract

We investigate whether the null energy, averaged over some region of space-

time, is bounded below in QFT. First, we use light-sheet quantization to prove

a version of the “Smeared Null Energy Condition” (SNEC) proposed in [1],

applicable for free and super-renormalizable QFT’s equipped with a UV cut-

off. Through an explicit construction of squeezed states, we show that the

SNEC bound cannot be improved by smearing on a light-sheet alone. We

propose that smearing the null energy over two null directions defines an op-

erator that is bounded below and independent of the UV cutoff, in what we

call the “Double-Smeared Null Energy Condition,” or DSNEC. We indicate

schematically how this bound behaves with respect to the smearing lengths

and argue that the DSNEC displays a transition when the smearing lengths

are comparable to the correlation length.
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1 Introduction

Energy conditions play a distinguished role at the interface between classical and quantum

physics. Nowhere, perhaps, is this better illustrated than in semi-classical gravity. Because

every metric solves the Einstein equations for some choice of stress-energy tensor, energy

conditions are needed to constrain the set of physically realizable spacetime geometries.

Classically, one such constraint, obeyed by all sensible classical theories, is the Null Energy

Condition (NEC),

Tµνk
µkν ≥ 0 for kµk

µ = 0 (1)

where Tµν is the stress tensor of classical matter on a background geometry. Penrose

showed, using the NEC as an assumption, that trapped surfaces must lead to singulari-

ties [2], ruling out traversable wormholes and bouncing cosmologies.

Quantum mechanically, the NEC is violated in even the most pedestrian of quantum field

theories. Our world is quantum mechanical. Thus the pressing question of “What space-

time geometries can arise in semi-classical gravity requires further conditions on quantum

null energy. Lacking such conditions, it is unclear whether trapped surfaces must lead to

singularities and whether exotic spacetimes such as traversable wormholes and bouncing

cosmologies can occur in semi-classical gravity.

Two important examples in this direction are the Achronal Average Null Energy Con-

dition (AANEC) [3–7] and the Quantum Null Energy Condition (QNEC) [8–11]; see [12]

for a nice review. While these results have varying degrees of applicability to semi-classical

gravity, they also illuminate the fact that energy inequalities are interesting objects in their

own right for a quantum field theory, revealing an interesting interplay between null en-

ergy, causality [13], and quantum information [7, 10].

While these previous results are of great interest, we note an important drawback to

the quantum energy conditions mentioned above: namely, the constraints they impose

on the null energy are either completely non-local (in the case of the AANEC) or state-

dependent (in the case of the QNEC). The QNEC, in particular, is motivated by an

elegant and natural generalization of classical focusing theorems in what is known as the

“Quantum Focusing Conjecture” (QFC). However the quantity that is constrained by

the QFC, the generalized entropy, is not an observable due its dependence on an entan-
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glement entropy. Complementary to these approaches, we will focus on semi-local, and

state-independent conditions on the null energy that can provide the right input into a

Penrose-type singularity theorem1.

One such proposal is the Smeared Null Energy Condition (SNEC) [1], which posits that

null energy, averaged over portion of an achronal null geodesic, Tsmear
++ , is bounded by,

schematically,

〈Tsmear
++ 〉 ≥ − 1

32πGN (δ+)2
(2)

where δ+ is the affine length of the smearing. The SNEC implies a semi-classical, Penrose-

type singularity theorem applicable in situations with NEC violation [15]. However, the

SNEC suffers from two key issues:

• Except in the context of induced gravity [16] in AdS/CFT, a proof of the SNEC has

not appeared in the literature.

• In the field theory limit GN → 0, the bound diverges, and so should become sensitive

to the ultra-violet (UV) cutoff of the theory.

In this article we address both of this issues.

Firstly, we put the SNEC on more solid footing by proving the field theory limit of the

SNEC for free and relevantly (a.k.a. super-renormalizably) perturbed field theories di-

rectly on the light-sheet. We find that the bound takes the schematic form

〈Tsmear
++ 〉 ≥ − N

ad−2(δ+)2
(3)

where N is the number of degrees of freedom, and δ+ is the smearing length, as before.

This bound makes explicit use of an short-distance cutoff a, so one should imagine apply-

ing it to effective field theories up to an energy scale significantly below a−1.

Secondly, in the interest of defining an operator that is lower bounded in the contin-

uum limit (that is, without explicit reference to a UV cutoff), we investigate the efficacy

of smearing the null energy over more directions. A slightly different phrasing of this in-

quiry is the following: “Under what conditions can we regard the null energy of an effective

field theory as a genuine operator?” For one, we show that no amount of smearing along

the transverse light-sheet coordinates provides such a definition. We propose instead that

smearing T++ over two null directions (a quantity we refer to as the double-smeared null

energy, or DSNE) provides such a definition. We argue that the DSNE is bounded below

in free massive theories and propose a general schematic for how this bound scales with

the length scales of the smearing. We further conjecture that this double-smeared null

1It is interesting to note a middle ground between these two perspectives: a quantum energy bound

whose right-hand side is state-dependent but lower-bounded by a fixed observable with sufficiently tame

UV behavior [14].
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energy condition, or DSNEC, remains true for interacting theories and displays a transi-

tion as a function of the ratio between the smearing lengths and the correlation length.

Schematically, our proposed bound is

〈Tsmear
++ 〉 ≥ −

N C
(
δ+δ−

`2

)
(δ+)d/2+1(δ−)d/2−1

(4)

where N is the number of degrees of freedom, and δ± are the smearing lengths in the two

null directions. C is a function of the dimensionless ratio of the smearing lengths and the

correlation length (in the cases we consider it is the inverse of the scalar mass, `2 = m−2);

we will argue that it is O(1) (with respect to N and a) for nice enough smearing functions.

When the mass vanishes it is an O(1) constant. However when `−2δ+δ− � 1, we will see

that C can become damped and provide an even tighter bound. This dovetails nicely

with known damping of negative Tµνu
µuν (where uµ is a future-directed time-like vector)

expectation values for massive scalar theories [17].

Finally, let us pause to mention the following at the onset: while motivated by the role

of null energy conditions in semi-classical gravity, the results of this article are purely

field theoretical. In particular, Newton’s constant will not make an appearance in any of

our key equations. We will leave a fuller consideration of the DSNEC in the context of

semi-classical gravity to future investigations.

An overview of the organization of this paper follows: we first review necessary facts

about quantizing free bosons on a light-sheet and use the “pencil” decomposition of the

theory to bootstrap the smeared massless 2d bound to generic dimensions. We then con-

struct an explicit class of squeezed states that realize this bound, at least parametrically

with the UV cutoff. After this we propose the lower-boundedness of the DSNEC and argue

for its validity through two methods: firstly we calculate its vacuum two-point function

and show that it is bounded and secondly we reexamine the DSNE in the same class of

smeared states saturating the SNEC. We show that it can also be dimensionally reduced

to an expectation value in a 2d massive theory and use this prove its lower-boundedness.

Along the way we prove a useful family of bounds on the null-energy in 2d massive the-

ories. Finally we end with a discussion of these results, their interplay with interactions,

and what further research they suggest.

A note on conventions

In this article we will work in d dimensional Minkowski space with the “mostly plus”

signature with natural units (c = ~ = 1)

ds2 = −(dx0)2 +
d−1∑
i=1

(dxi)2 = −dx+dx− +
d−1∑
i=2

(dyi⊥)2 (5)
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where x± = x0 ± x1 are lightcone coordinates. As suggested in the above equation, we

will typically reserve ~y⊥ for d− 2 transverse coordinates. Null derivatives are

∂± :=
1

2
(∂0 ± ∂1) (6)

such that ∂±x
± = 1 and ∂∓x

± = 0. In momentum space we will denote

k± =
1

2
(k0 ± k1) (7)

such that k+x
+ + k−x

− + ~k⊥ · y⊥ = kµx
µ. Note that in these conventions the integration

measures dx+dx− = 2dx0dx1 and dk+dk− = 1
2dk0dk1; we will denote these by d2x± and

d2k± for shorthand and to be clear with factors of two. Lastly, we will be contracting the

stress tensor along a null-vector, vµ+. To be definite, we will denote

T++ = vµ+v
ν
+Tµν vµ+ =

1

2
(1, 1,~0⊥). (8)

2 A lightsheet derivation of the SNEC

We begin with a derivation of the smeared null-energy condition in free scalar field the-

ory through the method of light-sheet quantization [18, 19]. The conformal properties

of free fields on quantized on a lightsheet make this an powerful approach and similar

techniques have been used in proofs of the generalized second law [19], the QNEC in free

theories [9, 20, 21] and Rényi QNEC variants [22]. We will not repeat the groundwork,

which can be found in detail in [19] but state the necessary facts as we go. While we

will focus on the story for scalars; we expect a very similar story to apply for spinors and

vector bosons following section 4 of [19]2.

The core statement of light-sheet quantization is that free fields are ultra-local in tran-

verse directions when quantized on the lightsheet: the operator algebra and the vacuum

state are tensor products of algebras and vacua associated to each null generator. To

make this well-defined and explicit, it is useful to discretize the transverse directions of

the light-sheet and view each null-generator as a finite width “pencil” of transverse area

ad−2. This pencil area will play the role of the (inverse) UV cutoff3. That is to say we

take a lightsheet defined by L = {xµ ∈ R1,d−1
∣∣ x− = 0} and realize it as the union of a

countable set of these pencils:

L = ∪pPp. (9)

2Namely that much like the free scalar, free spinors and Abelian gauge fields admit an ultra-local pencil

decomposition. For the spinor each pencil supports Nf/2 2d massless chiral fermion CFTs (where Nf is

the number of components of the d dimensional spinor). For Abelian gauge fields, their pencil theory is of

d− 2 2d massless decoupled scalars. Importantly, for each theory the bulk null stress tensor is related to

corresponding pencil stress tensor by a2−d.
3To be precise: if we restrict ourselves to a field configurations with transverse momenta |~p⊥| � a−1

then we expand a typical field configuration in a basis of top-hat functions of width a. This is explained

in appendix A.
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where p labels the pencil Pp = Rx+ ×Dp for small “pixel” Dp in the transverse directions.

Ultra-locality is then the statement that the operator content is that of a collection of

2d chiral bosonic CFTs, each local to a pencil:[
Φ(x+

1 , ~yp), ∂+Φ(x+
2 , ~yp′)

]
=

i

2ad−2
δpp′δ(x

+
1 − x

+
2 ) (10)

and that the global vacuum decomposes as

|Ω〉L =
⊗
p

|Ω〉p (11)

where each |Ω〉p is the unique null-translation invariant pencil vacuum annihilated by

P+,p =
∫
dx+∂+Φ̂(x+, ~yp)∂+Φ̂(x+, ~yp).

A given 2d “pencil CFT” has a stress-tensor T++,p which is related to the bulk stress

tensor, T++, pulled back to L by

T++,p(x
+) = ad−2T++(x+, x− = 0, ~yp) (12)

Now we can write a generic state on the light-sheet in a way that singles out a particular

pencil, Pp̄:
ρ =

∑
ij

(
ρΩ
p̄ σij

)
⊗ ρΩ

aux|i〉aux〈j|aux + h.c. (13)

where ρΩ
p̄ = |Ω〉p̄〈Ω|p̄ is the vacuum on the pencil, Pp̄, and σij should be thought of as the

summation of all possible operator insertions on the pencil Pp̄ : σij ∼ δij+a
d−2

2

∫
fij∂+Φ̂+

ad−2
∫
gij∂+Φ̂∂+Φ̂ + . . .. This term also controls the entanglement of the state reduced to

Pp̄ with the other pencils, here labelled as “aux.” Without loss of generality we parametrize

this “aux” system by pulling out the tensor product of all the vacuua on its pencils, ρΩ
aux,

and take the basis states |i〉aux to be eigenstates of Kaux = − 1
2π log ρ

(vac)
aux with eigenvalue

κi. The expectation value of the null stress tensor valued on the pencil Pp̄ can be then

written as a sum of 2d CFT stress tensor expectation values:〈
T++(x+, 0, ~yp̄)

〉
ρ

= a2−d
∑
i

e−2πκi〈T++,p̄(x
+)〉ρΩ

p̄ σii+h.c. (14)

Now let us define the smeared null-energy (SNE). We will take a square-integrable function

on the real line, f(s), normalized with
∫∞
−∞ ds f(s)2 = 1, and dropping quickly to zero for

s� 1.

T++[f ](~y) :=

∫
dx+

δ+
f(x+/δ+)2T++(x+, x− = 0, ~y) (15)

Here δ+ controls the length-scale of the smearing4. In these conventions, T++[f ] has the

same engineering dimensions (d) and spin (2) as T++. The SNE expectation value in our

light-sheet state is then

〈T++[f ]〉ρ = a2−d
∑
i

e−2πκi

∫ ∞
−∞

dx+

δ+
f(x+/δ+)2〈T++,p̄(x

+)〉
ρ

(vac)
p̄ σii+h.c.

(16)

4To precisely fix this scaling in definite terms we will further fix the standard deviation of f2 (thought

of as a probability distribution over R) to σf :=
∫∞
−∞ ds s

2 f(s)2 −
(∫∞
−∞ ds s f(s)2

)2

= 1
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Because each 〈T++,p̄〉 is really a 2d CFT expectation value we now leverage the methods

of [23] (we will provide an alternative to this method in appendix B). That is along the

pencil, we perform the coordinate transformation x+ → u(x+) (with u monotonically

increasing with x+). There then exists a unitary operator acting local to the pencil such

that

Û†p̄ [u]T++,p̄(x
+)Ûp̄[u] = u′(x+)2T++,p̄(u(x+))− 1

24π

{
u(x+), x+

}
(17)

with {u, x+} = u′′′

u′ −
3
2

(
u′′

u′

)2
the familiar Schwarzian derivative. Choosing u′(x+) =

f(x+/δ+)−2 uniformizes the smearing over the stress tensor and yields the pencil ANEC

operator plus an anomaly:

Û†p̄T++[f ]Ûp̄ = a2−d
∫ ∞
−∞

du

δ+
T̂++,p̄(u, 0, ~yp)−

1

12πad−2

∫ ∞
−∞

dx+

δ+

(
d

dx+
f(x+/δ+)

)2

(18)

The ANEC operator is a positive operator and so the spectrum of T++[f ] is bounded below

by the second Schwarzian term. Thus, noting the normalization of ρ,
∑

i e
−2πκi (ρp̄, vac σii + h.c.) =

1, we have

〈T++[f ]〉ρ ≥ −
1

12πad−2(δ+)2

∫ ∞
−∞

ds
(
f ′(s)

)2
(19)

This is precisely the SNEC with the pencil area, ad−2, replacing GN as the (inverse) UV

cutoff. We pause to note that for decoupled theories5 where the full stress tensor is the

sum of that of each field, then the total number degrees of freedom, N , will multiply the

right-hand side of (19). As an example, for ns scalars, nf spinors (of Nf components) and

nv Abelian gauge fields we will have

N = nb + ns
Nf

2
+ (d− 2)nv. (20)

See footnote 2 for elaboration on this counting.

2.1 The futility of transverse smearing

One might hope that the current SNEC, (19), can be strengthened by appropriately smear-

ing in the transverse direction:

T++[F ] =

∫ ∞
−∞

dx+

δ+

∫
dd−2y⊥
Ad−2

F2

(
x+

δ+
,
~y⊥
A

)
T++(x+, x− = 0, ~y⊥). (21)

for some smooth square integrable function F(s+, ~s⊥) on L that falls off quickly as

|s+|, |~s⊥| � 1 and normalized6 to
∫
ds+

∫
dd−2~s⊥F(s+, ~s⊥)2 = 1. It is useful to keep

in mind as a particular example the Gaussian smearing function,

FGauss(s+, ~s⊥) =
1

(2π)
d−1

4

e−
s2+
4 e−

|~s⊥|
2

4 . (22)

5In fact, the fields can also be coupled as long as the coupling is relevant. See the discussion on

interactions in section 4.
6As before, we will also normalize the standard deviations of F as

∫
ds+

∫
dd−2s⊥ (s+)2F2 −(∫

ds+
∫
dd−2s⊥s

+ F2
)2

=
∫
ds+

∫
dd−2s⊥ (s⊥)2F2 = 1.
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Indeed since the smearing over d−2 transverse directions introduces another length scale,

Ad−2, it seems possible, at least on dimensional grounds, that this could lead to a bound

independent of the UV cutoff. We now show that this is not the case. In fact we find that

(19) carries over naturally:

〈T++[F ]〉 ≥ − 1

12π ad−2(δ+)2

∫
dd−2~s⊥

∫
ds+

(
∂s+F(s+, ~s⊥)

)2
(23)

We will proceed firstly with a general argument from light-sheet quantization and then

we will construct example states that defy strengthening the SNEC through transverse

smearing.

Proceeding forward, let us discretize our transverse smearing as a summation over pencils,

again of area ad−2, the inverse of the UV cutoff:

〈T++[F ]〉ρ '
1

N

∑
p

∫
dx+

δ+
F2

(p)(x
+/δ+)〈T++(x+, 0, ~yp)〉ρ. (24)

For the sake of this argument we will take F to have compact support in the transverse

directions and Ad−2/ad−2 = N is the number of pencils that F has support on. Focusing

now on this collection of pencils {Pp}p=1,...,N , let us reparameterize our state ρ as:

ρ =
∑
ij

(
ρΩ

1 ⊗ . . .⊗ ρΩ
N

)
Σij ⊗ ρΩ

aux|i〉aux〈j|aux + h.c. (25)

The operator Σij has the dual purpose of entangling the collection of pencils {Pp} with the

“aux” pencils, as well as summing up all of the operator insertions on {Pp} preparing the

state. For the derivation of the bound in section 2, we were agnostic about the details of

these operator insertions. However, as was handily noted in [9], Σij admits an expansion

about the vacuum with n-particle contributions having coefficients that scaling as an
d−2

2 .

Thus for small a7 the leading contribution to the stress-tensor expectation value comes

from two particle insertions. Furthermore, it is easy to see that 〈T++(x+, 0, ~yp)〉ρ can only

be non-zero if both of those insertions occur on the same pencil, Pp. Thus the only relevant

contributions to Σij are of the form

Σij ⊃ δij +

N∑
p=1

σ
(p)
ij + . . . (26)

where σ
(p)
ij is a collection of operator insertions on Pp beginning with 2-particle insertions.

Thus we see that in the small a limit the relevant contributions to 〈T++〉 are diagonal in

the pencils

〈T++(x+, 0, ~yp)〉ρ =
∑
i

e−2πκi〈T++(x+, 0, ~yp)〉ρΩ
p σ

(p)
ii +h.c.

+ . . . (27)

7...compared to the characteristic wavelengths of the state.
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We now know that smearing each one of these expectation values is bounded by the right-

hand side of (19). Thus we arrive at

1

N

∑
p

∫
dx+

δ+
F2

(p)(x
+/δ+)〈T++(x+, 0, ~yp)〉ρ ≥ −

1

12πNad−2(δ+)2

∑
p

∫ ∞
−∞

ds+
(
F ′(p)(s

+)
)2

(28)

Rewriting this sum as
∑

p ∼
1

ad−2

∫
dd−2~y we have

〈T++[F ]〉ρ ≥ −
1

12πad−2(δ+)2

∫
dd−2~s⊥

∫
ds+

(
∂s+F(s+, ~s⊥)

)2
. (29)

Note that if F factorizes F(s+, ~s⊥) = F+(s+)F⊥(~s⊥), e.g. FGauss, then the transverse

integral drops out explicitly.

2.2 A series of squeezed states

Let us illustrate that (29) is not simply a failure of the pencil construction to strengthening

the SNEC by constructing a set of squeezed states with tunable negative null energy

up to the UV cutoff. The role of squeezed states (originally studied in the context of

quantum optics [24]) in realizing negative energy densities in quantum field theory is well

known [25–27]. To construct the states, we first note the null Fock quantization of the

fields

Φ(x+, 0, ~y) =

∫ ∞
0

dk+

(2π)
√

2k+

∫
dd−2~p⊥
(2π)d−2

(
âk+,~p⊥ e

−ik+x+−i~p⊥·~y + â†k+,~p⊥
eik+x++i~p⊥·~y

)
(30)

with commutators

[âk+,~p⊥ , â
†
k′+,~p

′
⊥

] = (2π)δ(k+ − k′+)(2π)d−2δd−2(~p⊥ − ~p′⊥) (31)

and mass-shell condition k− =
~p2
⊥+m2

4k+
and k+ ≥ 0. The normal ordering in T++ is with

respect to this Fock quantization.

The squeezed state in question is defined by a C-valued symmetric bi-function of mo-

menta ξ(k1
+, ~p

1
⊥; k2

+, ~p
2
⊥) = ξ(k2

+, ~p
2
⊥; k1

+, ~p
1
⊥):

|ξ〉 := Ŝ[ξ]|Ω〉L (32)

where

Ŝ[ξ] = exp

(
1

2

(
â† ◦ ξ ◦ â† − â ◦ ξ∗ ◦ â

))
(33)

and we have introduced a distributional “matrix” notation, “◦,” on momentum space

bi-functions(
f̃1 ◦ f̃2

)
(k1

+, ~p
1
⊥; k2

+, ~p
2
⊥) =

∫
dk+

2π

∫
dd−2~p⊥
(2π)d−2

f̃1(k1
+, ~p

1
⊥; k+, ~p⊥)f̃2(k+, ~p⊥; k2

+, ~p
2
⊥) (34)

In what follows we will take ξ ∈ R for notational simplicity. Since Ŝ[ξ] is unitary, our state

|ξ〉 is normalized. It is a simple enough exercise to show that Ŝ[ξ] acts by conjugation on

9
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the Fock modes as

Ŝ[ξ]†âk+,~p⊥Ŝ[ξ] = (cosh◦[ξ] ◦ â)k+,~p⊥
+
(

sinh◦[ξ] ◦ â†
)
k+,~p⊥

(35)

and on â† by the Hermitian conjugation of the above. cosh◦[ξ] and sinh◦[ξ] are defined by

their Taylor expansion with the ◦ product defined in (34). Using this it is easy to evaluate

T++[F ] in this state:

〈ξ|T++[F ]|ξ〉 =

∫
dd−2~p⊥d

d−2~p′⊥
(2π)2d−4

∫
dk+dk

′
+

(2π)2
(k+k

′
+)

1
2

(
sinh2

◦(ξ)(k+, ~p⊥; k′+, ~p
′
⊥)RG̃δ+∆+,A∆⊥

− sinh◦(ξ) ◦ cosh◦(ξ)(k+, ~p⊥; k′+, ~p
′
⊥)RG̃δ+Σ+,AΣ⊥

)
(36)

where R stands for the real part, G̃ is the Fourier transform of F2 (in dimensionless

variables):

G̃ρ+,~ρ⊥ =

∫
ds+

∫
dd−2~s⊥ F(s+, ~s⊥)2e−is

+ρ+−i~s⊥·~ρ⊥ (37)

and

∆+ = k+ − k′+ ∆⊥ = ~p⊥ − ~p′⊥ Σ+ = k+ + k′+ Σ⊥ = ~p⊥ + ~p′⊥. (38)

We are interested in how low we can tune 〈T++[F ]〉 by tuning ξ. Although partially

hidden by our notation, this is a complex minimization problem. We will simplify things

by positing an ansatz for ξ motivated by the following physical reasoning: the negative

null energy can apparently become arbitrarily negative when the damping in Σ⊥ fails.

This is precisely when the state is composed of particles of large and oppositely oriented

transverse momenta (the absence of this transverse momenta is why the smeared negative

null energy in two dimensions remains O(1)). Thus we will look at states with

ξ(k+, ~p⊥, k
′
+, ~p

′
⊥) = ξ(k+, k

′
+, |~p⊥|)(2π)d−2δd−2(~p⊥ + ~p′⊥) (39)

Within this ansatz, the nth power (with respect to the ◦ product) of ξ is:

(ξ)n◦ (k+, ~p⊥, k
′
+, ~p

′
⊥) = (ξ)n• (k+, k

′
+; |~p⊥|)(2π)d−2δd−2(~p⊥ − (−1)n~p′⊥) (40)

where we’ve introduced another matrix notation, “•,” for k+ integrations:

(f̃1 • f̃2)(k1
+, k

2
+) :=

∫
dk+

2π
f̃1(k1

+; k+)f̃2(k+; k2
+). (41)

Due to the difference in the even and odd powers of ξ this ansatz has the effect of completely

nullifying the dependence of the smearing functions on the transverse momenta:

10
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〈T++[F ]〉ξ =

∫
dd−2~p⊥
(2π)d−2

∫ ∞
0

dk+dk
′
+

(2π)2
(k+k

′
+)1/2

(
sinh2

•(ξ)(k+, k
′
+; |~p⊥|)RG̃δ+∆+,0

− sinh•(ξ) • cosh•(ξ)(k+, k
′
+; |~p⊥|)RG̃δ+Σ+,0

)
(42)

As such, one might suspect it is possible to relate (42) to an expectation value in an

appropriate 2d theory defined along a light-ray. This is indeed the case as we show now.

Consider the smeared null energy of the scalar in two dimensions, restricted to the light-

sheet, L, at x− = 0:

T++[f ] =

∫
dx+

δ+
f

(
x+

δ+

)2

: ∂+ϕ∂+ϕ : (x+)

ϕ(x+, 0) =

∫
dk+

2π
√

2k+

(
α̂k+e

−ik+x+
+ α̂†k+

eik+x+
)

(43)

and a 2d squeezed state8

|ξ(µ)〉2d = ŝ[ξ]|Ω〉2d ŝ[ξ] = exp

(
1

2

∫
dk1

+dk
2
+

(2π)2
ξ(k1

+, k
2
+, µ)α̂†

k1
+
α̂†
k2

+
− h.c.

)
(44)

Here µ appears as an auxiliary parameter in the squeezing function that we will be inter-

ested in tuning within an ensemble of squeezed states. By similar manipulations to above,

it is then easy to show that indeed

〈T++[F ]〉ξ =
Vd−3

(2π)d−3

∫ ∞
0

d|~p⊥|
2π
|~p⊥|d−3 〈ξ(µ)|T++[f ]|ξ(µ)〉2d|µ=|~p⊥| (45)

with a 2d smearing function related to d-dimensional smearing function via

f(s+)2 =

∫
dd−2~s⊥F(s+, ~s⊥)2 (46)

and Vd−3 = 2π
d−2

2

Γ( d−2
2 )

is the surface volume of a d− 3 sphere. Because we are free to choose

the functional dependence of the squeezing function ξ on |~p⊥|, it should be clear that (45)

has the very real danger of diverging due to this transverse momenta. For instance, to

make this explicit we could choose

ξ(k+, k
′
+, |~p⊥|) = χ(k+, k

′
+)ΘM,∆M (|~p⊥|) (47)

where ΘM,∆M
(|~p⊥|) is a Heaviside function with support on a shell of transverse momenta

centered at M and of width ∆M . Because Θ squares to itself (at least distributionally),

(ξ)n• = (χ)n• ×ΘM,∆M and so

〈T++[F ]〉ξ =
VM,∆M

(2π)d−2
〈χ|T++[f ]|χ〉2d (48)

8We are still taking ξ ∈ R, which precludes some generality. We are also ignoring the possible inclusion of

a “displacement operator” D[θ] = exp
(∫

dκ
2π
θκα̂κ − h.c.

)
. Theses exclusions will not affect our conclusions.

11
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where VM,∆M =
∫
dd−2~p⊥ ΘM,∆M is the volume of the transverse momentum space shell.

For thin shells, ∆M/M � 1 it scales like Md−2:

VM,∆M ≈
2π

d−2
2

Γ
(
d−2

2

) (∆M

M

)
Md−2. (49)

This is regardless of the details on how we choose the χ(k+, k
′
+) squeezing parameter.

Because |χ〉2d itself is a squeezed state in 2d, it is easy to arrange that

〈χ|T++[f ]|χ〉2d =

∫ ∞
0

dk+dk
′
+

(2π)2
(k+k

′
+)1/2

(
sinh2

•(χ)(k+, k
′
+)R(̃f2)δ+∆+

− sinh•(χ) • cosh•(χ)(k+, k
′
+)R(̃f2)δ+Σ+

)
< 0

(50)

say by making the overall magnitude of χ small so that the second term dominates.9 In

this case the full d-dimensional expectation value will also be negative, with the additional

VM,∆M coming for the ride. Thus it seems possible to engineer states with 〈T++[F ]〉 ∼
−Md−2. Because 〈T++[f ]〉2d is bounded below by − 1

12π(δ+)2

∫
ds+f ′(s+)2 for all states we

can transplant this to a bound on 〈T++[F ]〉ξ, at least for this series of squeezed states

〈T++[F ]〉ξ ≥ −c(∆M/M)
Md−2

(δ+)2

∫ ∞
−∞

ds+

(∫
dd−2~s⊥F(s+, ~s⊥)∂s+F (s+, ~s⊥)

)2∫
dd−2~s⊥F (s+, ~s⊥)2 (51)

where c(∆M/M) =
V∆M,M

6(2π)d−1Md−2 ≈
2∆M/M

3(4π)
d
2 Γ( d−2

2 )
. We can consider a series of states with

increasing M and with small but fixed ∆M/M . The only limiting factor on this series of

states is the validity of effective field theory, which is to say that we don’t excite states

with momentum on the order of a−1. Because of this, we find that is not possible to

improve the bound (29)10, by an order of the UV cutoff.

3 Double null smearing

So far we have seen that even for free scalar theories the null stress-tensor restricted to

lightsheet, L, fails to be a lower-bounded operator when the UV cutoff, a−1, is taken to

infinity. It is perhaps clear that if we want a lower bound on null-energy that is both (i)

state independent and (ii) independent of the UV cutoff then we will have to smear off

9In fact for small χ, one can imagine expanding the exponential in (44) to first order in χ. The UV

divergent negative null energy is then related to a divergent negative null-energy in “0+2” particle states

noted in [28].
10The right-hand side of (51) is consistent with (29) via the Cauchy-Schwarz integral inequality:(∫

dd−2~s⊥ F∂s+F
)2∫

dd−2~s⊥ F2
≤
∫
dd−2~s⊥ (∂s+F)2 (52)

with equality when F factorizes F(s+, ~s⊥) = F+(s+)F⊥(~s⊥). Regardless, this discrepancy is O(1) and so

does not change our conclusion that these squeezed states are concrete counterexamples to strengthening

the SNEC by O(Ad−2/ad−2) by transverse smearing.

12
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the lightsheet. In this section, following this logic, we investigate the null-energy smeared

along both null-rays in what we will coin the DSNE (for “double smeared null-energy”).

Indeed, smearing in both x+ and x− is morally similar to smearing in a time-like direction

and there is good evidence that the null-energy is well behaved when averaged over a

finite time-scale [29]. Firstly, we will investigate the vacuum two-point function of the

DSNE of the free massive boson and show that it is bounded by a cutoff independent

quantity. While this is does not constitute a proof of the lower-boundedness of the DSNE,

it establishes the plausibility of it as a bounded operator. Secondly, by revisiting the same

series of squeezed states from section 2.2, we will propose a family of bounds that we will

coin the DSNEC.

3.1 Alternative quantization

Before jumping head-first, let us briefly reorganize the Fock space of modes: (30) and

(31) are currently well suited for manipulations of null and transverse momenta, k+ and

~p⊥ (respectively), however we will find it helpful to work explicitly with the set of two

null momenta k+ and k−. In the trade-off we loose the norm of the transverse momenta,

|~p⊥|, as a quantum number but retain its direction, n̂~p⊥ which we conveniently label

as a collective set of angles, Ωd−3, on the unit Sd−3. It is easy to work out that the

corresponding quantization is

Φ(x+, x−, ~y) =

∫
Dm2

d2k±
(2π)2

∫
dΩd−3

(2π)d−3
(4k+k− −m2)

d−4
4

×
(
âk+,k−,Ωe

−ik+x+−ik−x−−i(k+k−−m2)1/2|y| cos Ω + h.c.
)

(53)

The null-momenta are restricted to the domain Dm2 = {k± ≥ 0
∣∣ 4k+k− ≥ m2}. The

oscillators satisfy

[âk+,k−,Ω, â
†
k′+,k

′
−,Ω

′ ] = (2π)d−1δ(k+ − k′+)δ(k− − k′−)δd−3
Sd−3(Ω− Ω′) (54)

where δd−3
Sd−3(Ω) is the normalized delta function on the unit Sd−3 with the north-pole set

as the origin. This Fock set of modes is related to those in (31) as

âk+,k−,Ω =
√

2 k
1/2
+ (4k+k− −m2)

d−4
4 âk+,~p, 4k+k− − ~p2

⊥ −m2 = 0 (55)

When it does not cause confusion we will often continue to write ~p⊥ = (4k+k−−m2)1/2n̂Ω

for notational simplicity, with the tacit understanding that k+, k−, and Ω are the actual

quantum numbers. Now we smear the null stress tensor with a smooth, L2-normalized

function F(s+, s−) dropping off quickly11 for |s±| � 1:

T++[F ](~y) =

∫ ∞
−∞

d2x±

δ+δ−
F(x+/δ+, x−/δ−)2T++(x+, x−, ~y)

=

∫
Dm2

d2k±d
2k′±

(2π)4

∫
dΩd−3dΩ′d−3

(2π)2d−6
|~p⊥|

d−4
2 |~p′⊥|

d−4
2 (k+k

′
+)

11Again, we will fix
∫
d2s (s+)2F2−

(∫
d2s s+ F2

)2
=
∫
d2s (s−)2F2−

(∫
d2s s− F2

)2
= 1 for definiteness

and to fix the smearing lengths δ±.

13
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×
{

2R
(
G̃δ+∆+,δ−∆−e

i(~p−~p′)⊥·~y
)
â†k+,k−,Ω

âk′+,k′−,Ω′

−
(
G̃δ+Σ+,δ−Σ− âk+,k−,Ωâk′+,k′−,Ω′e

i(~p+~p′)⊥·~y + h.c.
)}

(56)

where

∆+ = k+ − k′+ ∆− = k− − k′− Σ+ = k+ + k′+ Σ− = k− + k′− (57)

and

G̃ρ+,ρ− =

∫ ∞
−∞

ds+ds−F(s+, s−)2eis
+ρ++is−ρ− (58)

Our first interest is gauging how negative expectation values of T++[F ] can become. We

will proceed by evaluating the two-point function of T++[F ] in the vacuum. This will give

us a rough order of magnitude of how large the fluctuations (both positive and negative)

of T++[F ] can become.

3.2 The vacuum two-point function

From (56) we write the vacuum two-point function12:

〈(T++[F ])2〉Ω =
2V 2

d−3

(2π)2(d−3)

∫
D
m2

d2k±d
2k′±

(2π)4
(4k+k−−m2)

d−4
2 (4k′+k

′
−−m2)

d−4
2 k2

+k
′2
+

∣∣∣G̃δ+Σ+,δ−Σ−

∣∣∣2 (59)

There are two regimes that we are interested in: (i) the smearing is much less than the
correlation length, `2 ∼ m−2, (δ+δ−m2 � 1) and (ii) much larger than the correlation
length (δ+δ−m2 � 1).

Let us first investigate m2 = 0. We rescale κ± = δ±k±:

〈(T++[F ])2〉Ω
∣∣
m2=0

=
22d−7V 2

d−3

(2π)2(d−1)
(δ+)−(d+2)(δ−)−(d−2)

∫ ∞
0

d2κ±d
2κ′±

(
κ−κ

′
−
) d−4

2
(
κ+κ

′
+

) d
2

∣∣∣G̃κ++κ′+,κ−+κ−

∣∣∣2
(60)

The integrals over (κ− κ′)± can be done leading to

〈(T++[F ])2〉Ω
∣∣∣
m2=0

= cd (δ+)−(d+2)(δ−)−(d−2)

∫ ∞
0

d2ρ±, ρ
d+1
+ ρd−3

−

∣∣∣G̃ρ+,ρ−

∣∣∣2 (61)

with cd = 1
8(4π)d−1

Γ( d+2
2 )

Γ( d−2
2 )Γ( d−1

2 )Γ( d+3
2 )

. For |G̃|2 falling off faster than an appropriate

polynomial at large momenta,

lim
ρ+→∞

|G̃ρ+,ρ− | . ρ
− d+2

2
+

lim
ρ−→∞

|G̃ρ+,ρ− | . ρ
− d−2

2
− (62)

this expression already indicates that 〈(T++[F ])2〉Ω is finite and that it scales with smear-

ing lengths as (δ+)
−(d+2)

(δ−)
−(d−2)

. The subsequent integral is an O(1) contribution

controlled by the moments of the smearing function in momentum space. While already

a useful result, we might want to investigate (61) in the cases where it can be expressed

12Evaluated at the same transverse point, ~y⊥, which disappears as a consequence of translation invariance

of the vacuum.
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locally in position space. This is, in general, not possible because the momentum in-

tegrals do not extend over the entire plane. However when d is odd and F factorizes,

F(s) = F+(s+)F−(s−) we can perform the dual Fourier transform to find

〈(T++[F ])2〉Ω
∣∣∣
m2=0

= π2 cd (δ+)−(d+2)(δ−)−(d−2)

∫
ds+F2

+(s+)(i∂s+)d+1F2
+(s+)

×
∫
ds−F2

−(s−)(i∂s−)d−3F2
−(s−). (63)

For small m2δ+δ− it is certainly possible proceed from (59) perturbatively in γ2 = m2δ+δ−

through the change of variables, v = δ+δ−(4k+k− −m2) and κ+ = δ+k+ which removes
the dependence on m2 in the integration region

〈(T++[F ])2〉Ω =
V 2
d−3

8(2π)2(d−1)
(δ+)−(d+2)(δ−)−(d−2)

∫ ∞
0

dκ+dκ
′
+

∫ ∞
0

dvdv′ (vv′)
d−4
2 κ+κ

′
+

∣∣∣∣∣G̃κ++κ′+,
v+γ2

4κ+
+ v′+γ2

4κ′
+

∣∣∣∣∣
2

(64)

It is clear from (64) that expanding |G̃|2 in orders of γ2 leads to an expansion in

1/κ+ + 1/κ′+ and so leads to tamer UV behavior. This expansion is somewhat subtle

however: for high enough orders the inverse powers of κ+ can lead to spurious IR diver-

gences. We view this as an artifact of the perturbation theory: in fact by examining the

γ � 1 regime directly, we can see that (64) is both UV and IR convergent for large masses.

We do this now.

For small correlation lengths, γ2 = δ+δ−m2 � 1, our primary tool will be to simplify

the integral by saddle-point. The broad strategy is the following: since |G̃(ρ+, ρ−)|2 is a

positive function we will write it as |G̃(ρ+, ρ−)|2 = exp (−S(ρ+, ρ−)) for some real S that

grows faster than a logarithm at large argument. It will be useful to introduce another

change of variables, κ+ = γ`+ and v = γ2w, to make the saddle-point arguments more

natural:

〈(T++[F ])2〉Ω =
V 2
d−3

8(2π)2(d−3)
(δ+)−d−2(δ−)2−dγ2d×∫ ∞

0

d`+d`
′
+

(2π)2

∫ ∞
0

dw dw′

(2π)2
(ww′)

d−4
2 `+`

′
+ e
−S

[
γ(`++`′+),γ

(
w+1
4`+

+w′+1
4`′+

)]
.

(65)

In general, since e−S is a just a rewriting of the smearing function, it can be somewhat ar-

bitrary (although positive) at small arguments, however at large argument we will assume

that it is damped so that the smearing function is appropriately smooth in position space.

With this assumption, the general strategy is to allow γ to be large enough such that

the `+ and `′+ saddles of e−S lie in this damped regime and evaluation by saddle-point is

a good approximation. While this strategy should work in general, the details of it are

specific to the smearing function. To be definite, let us illustrate this with a Gaussian

smearing function:

FGauss(x+/δ+, x−/δ−) =
1√
2π
e
− x+2

4δ+
2−

x−2

4δ−2 (66)
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for which we have the following two-point function:

〈(T++[F ])2〉Ω =
V 2
d−3

8(2π)2(d−3)
(δ+)−(d+2)(δ−)−(d−2)γ2d×

∫ ∞
0

d`+d`
′
+

(2π)2

∫ ∞
0

dw dw′

(2π)2
(ww′)

d−4
2 `+`

′
+ e
−γ2(`++`′+)2−γ2

(
w+1
4`+

+w′+1
4`′+

)2

.

(67)

The `+ and `′+ integrals have a saddle at

¯̀
+ =

√
w + 1

2
¯̀′
+ =

√
w′ + 1

2
. (68)

There is no saddle in the w and w′ integrals and we will simply expand the exponent to
linear order about their boundary value w̄ = w̄′ = 0. We arrive at

〈(T++[F ])2〉Ω ≈
V 2
d−3

217/2(2π)2d−3
(δ+)−(d+2)(δ−)−(d−2)γ2(d−1)e−2γ2

(∫ ∞
0

dww
d−4
2
√
w + 1 e−γ

2w

)2

. (69)

The w integrals can now be done analytically to yield hypergeometric functions, however

given the level of approximation we have performed already it is consistent to look at the

leading contribution in the large γ limit:

〈(T++[F ])2〉Ω ≈
1

211/2(4π)d−1
(δ+)−(d+2)(δ−)−(d−2)γ2 e−2γ2

. (70)

Thus we find that at small correlation lengths, fluctuations of the DSNE are further

suppressed by e−2γ2
. We emphasize that this particular suppression is not universal: it is

exponential because our smearing function is Gaussian. However on general grounds, we

expect that for large γ the two-point function to be suppressed by the Fourier transform

of the smearing function evaluated at a “saddle” at order ∼ γ (in dimensionless variables

and up to order one factors) in its arguments:

〈(T++[F ])2〉Ω ∼ (δ+)−(d+2)(δ−)−(d−2) p(γ) |G̃α+γ,α−γ |2 (71)

where p(γ) is a polynomial in γ and α± are order one constants. To recap what we have

learned from this subsection and what we will take into following section:

• Vacuum fluctuations of the DSNE are finite for suitable smearing functions and scale

with the smearing lengths by (δ+)
−(d+2)

(δ−)
−(d−2)

. This is multiplied by an O(1)

factor that is perturbative in γ2 := δ+δ−m2 when the correlation length is large

compared to the smearing length (γ2 � 1).

• When the correlation length is much smaller than the smearing length, γ2 � 1,

fluctuations are further suppressed by Fourier transform of the smearing function at

the scale set by γ.

3.3 Towards a DSNEC: the squeezed states, part two

Given the boundedness of its vacuum fluctuations, our general expectation is that there is

a state-independent lower bound on the DSNE and this section we will make a conjecture
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on its form. To motivate this conjecture we will first return to the states of section 2.2,

which we remind the reader realize the UV divergence in the SNEC lower bound. For our

present purposes we will express them in the Fock quantization introduced in section 3.1:

|ξ〉 = exp

(
1

2

∫
Dm2

d2k±d
2k′±

(2π)4

∫
Sd−3

dd−3Ωdd−3Ω′

(2π)2d−6

(
â†k+,k−,Ω

ξ(k±,Ω; k′±,Ω
′)â†

k′+,k
′
−,Ω

′ − h.c.
))
|Ω〉

(72)

where we will take the ansatz

ξ(k±,Ω; k′±,Ω
′) = ξ(k+, k

′
+; k+k−)

√
k+k′+(2π)δ(k+k−− k′+k′−)(2π)d−3δd−3(Ω + Ω′). (73)

The motivation for this ansatz is clear from section 2.1: the negative energy receives

considerable contributions from modes with transverse momenta that are equal and anti-

aligned. On-shell, k+k− =
~p2
⊥+m2

4 and so the delta functions in (73) enforce this antipodal

identification of transverse momenta. We will allow ξ to be general function of the mag-

nitude, k+k−, (similar to as it was in section 2.2). The
√
k+k′+ factors are pulled out for

convenience.

Using similar tricks as in section 2.2, and writing u = 4k+k−, from (56) we write the

expectation value as

〈T++[F ]〉ξ =
Vd−3

2(2π)d−3

∫ ∞
0

dk+dk
′
+

(2π)2

∫ ∞
m2

du

2π
(u−m2)

d−4
2

√
k+k′+

×

(
sinh2

•(ξ)(k+, k
′
+;u/4)RG̃

δ+∆+,
δ−u
4k+
− δ−u

4k′+

− sinh•(ξ) • cosh•(ξ)(k+, k
′
+;u/4)RG̃

δ+Σ+,
δ−u
4k+

+ δ−u
4k′+

)
(74)

where we recall the • “matrix” notation for integration over k+, (41). Much like section 2.2,

the key technique here is to relate (74) to an expectation value in a two-dimensional scalar

theory. However, unlike section 2.2, because we are smearing over both null directions

and thus “pulling off” the light-sheet, this expectation value has to be taken in a massive

theory. To be specific, let T
(µ2)
++ [F ] be the 2d double-null smeared stress-tensor

T
(µ2)
++ [F ] :=

∫
dx+dx−

δ+δ−
F(x+/δ+, x−/δ−)2 : ∂+ϕ̂(x+, x−)∂+ϕ̂(x+, x−) : (75)

of the 2d massive scalar with mass µ2

ϕ̂(x+, x−) =

∫ ∞
0

dk+

2π
√

2k+

(
α̂k+e

−ik+x+−i µ
2

4k+
x−

+ h.c.

)
(76)

Note that in section 2.2, because we could restrict to x− = 0 the question of whether of ϕ

was massive was never an issue. Let us consider its expectation value in the 2d squeezed

state from section 2.2 which we reproduce here (to make explicit its µ2 dependence)

|ξ(µ2)〉2d = exp

(
1

2

∫ ∞
0

dk+dk
′
+

(2π)2
α̂†k+

ξ(k+, k
′
+;µ2/4)α̂†

k′+
− h.c.

)
(77)
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For a given µ2, ξ defines a 2d squeezed state in the massive theory with fixed mass,

however we will be considering this in the context of an ensemble of massive theories,

within which we will allow µ2 to vary. It is then simple to show that the d-dimensional

DSNE expectation value is related by

〈T++[F ]〉ξ =
Vd−3

2(2π)(d−3)

∫ ∞
m2

du

2π
(u−m2)

d−4
2 〈ξ(µ2)|T (µ2)

++ [F ]|ξ(µ2)〉2d
∣∣∣
µ2=u

(78)

We note that (78) is essentially the generalization of equation (45) to double-null smearing.

In a similar spirit to section 2.2, if we can derive a bound on the massive 2d null-energy

we can apply it to lower-bound this expectation value. An additional difficulty to this, not

present in section 2.2 is that this 2d theory, once pulled off the light-sheet, is no longer a

CFT (as the integration in (78) is over a mass parameter) and which limits our toolbox for

deriving such a bound. However it is still a free field theory and so luckily our toolbox is

still plentiful. In fact, in appendix B we will show that even with µ2 6= 0, 〈T (µ2)
++ [F ]〉 obeys

a (slightly weaker13) “Schwarzian”-type lower bound we derived using CFT techniques:

〈T (µ2)
++ [F ]〉 ≥ − 1

8πδ+δ−

∫
d2x±

(
∂+F

(
x+

δ+
,
x−

δ−

))2

(79)

This bound is however not very useful in the present case: because it is insensitive to the

mass, the integral over u appearing in (78) is divergent. Introducing a hard UV cutoff of

this transverse momenta, Λu = 2π
(
d−2
Vd−3

) 2
d−2

a−2, we find

〈T++[F ]〉ξ ≥ −
1

8πad−2

∫
d2x±

δ+δ−

(
∂+F

(
x+

δ+
,
x−

δ−

))2

(80)

which takes the familiar SNEC form trivially integrated over the x− direction.

Happily, in appendix B we prove a more general (and more useful) family of bounds

on 〈T (µ2)
++ [F ]〉 of which (79) is a special case. This family of bounds depend on fixed

reference frames in momentum space which we label with a boost parameter, eη:

〈T (µ2)
++ [F ]〉 ≥ −δ

+δ−

4π

∫
d2q±
(2π)2

∣∣∣F̃(δ+q+, δ
−q−)

∣∣∣2 Θ(qη − µ)e−2ηqη

√
q2
η − µ2 (81)

with qη = eηq+ + e−ηq−. Equation (81) is true for any state |ψ〉 and any η ∈ R. This

free parameter is useful as it allows us to pull out the appropriate scaling from (81) by

choosing eη =
√

δ+

δ− . Substituting (81) into (78) we can perform the u integration to arrive

at

〈T++[F ]〉ξ ≥ −
(δ+)

− d+2
2 (δ−)

− d−2
2

4(4π)
d−1

2 Γ
(
d+1

2

) ∫
d2ρ±
(2π)2

|F̃(ρ+, ρ−)|2ρ0

(
ρ2

0 − γ2
) d−1

2 Θ (ρ0 − γ)

(82)

13Recall that the bound implied by the “Schwarzian,” e.g. that appearing in (19), has a coefficient of

− 1
12π

as opposed to − 1
8π

.
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where we recall γ2 = δ+δ−m2 is the dimensionless mass to smearing ratio from the previous

section and we have introduced ρ0 = ρ+ + ρ− ≡ δ+q+ + δ−q−. We emphasize that the

integral in (82) is phrased completely in terms of dimensionless variables; we expect it to

converge for smearing functions with the following large ρ± behaviour

lim
ρ±→∞

|F̃(ρ+, ρ−)| . ρ
− d+1

2
± (83)

only affecting O(1) constants and not the parametric dependence on the smearing lengths,

at least when the mass is small (i.e. γ2 � 1). We briefly point out that (82) implies a

timelike world-line bound on the null-energy of the massive scalar in d = 4 written down

by Fewster and Roman in 2002, [28]. To see this, we can set δ+ = δ− ≡ δ imagine letting

F(s+, s−) factorize as a function of (s0, s1)14. To be more specific, and to make contact

with their notation, we will let15:

1

δ
F
(
x+

δ
,
x−

δ

)
:=

1√
2
g(x0)g1(x1) (84)

for which the dependence on g1 trivially integrates to one in the bound. We can then

imagine letting g1 being a sharply peaked Gaussian limiting to (g1(x1))2 = δ(x1). For

d = 4 we find∫
dx0 g(x0)2〈T++(x0, x1 = 0, ~y⊥ = 0)〉ξ ≥ −

(`µv
µ
+)2

12π3

∫ ∞
m

dq0|g̃(q0)|2q0

(
q2

0 −m2
)3/2

(85)

where g̃ is the Fourier transform of g, ` ≡ ∂t is the normalized tangent vector to the

timelike geodesic, and vµ+ comes from the definition of T++, (8). One can compare this

to equation (III.9) of [28].

It is also interesting to investigate (82) in the large mass scenario, γ2 � 1, to see if

we find the same suppression suggested by the two-point function in 3.2. To be specific

we will again take F = FGauss from equation (66) and precede by saddle-point in the ρ+

integral:

〈T++[FGauss]〉ξ ≥ −
(δ+)−

d+2
2 (δ−)−

d−2
2

2(4π)
d−3

2 Γ
(
d+1

2

) ∫ d2ρ±
(2π)2

e−2ρ2
+−2ρ2

−ρ0

(
ρ2

0 − γ2
) d−1

2 Θ(ρ0 − γ).

(86)

By writing ρ− = u
ρ+

we find a saddle16 in the exponential at ρ̄+ =
√
|u|. Performing the

fluctuation integral in δρ+ = ρ+ −
√
u about this saddle we have

〈T++[FGauss]〉ξ & − (δ+)−
d+2

2 (δ−)−
d−2

2

23/2(4π)
d−2

2 Γ
(
d+1

2

) ∫ ∞
0

du

2π
e−4u

(
4u− γ2

) d−1
2 Θ

(
4u− γ2

)
. (87)

14Some care needs to be taken to be consistent with how we fixed the variance of F with respect to s±

(see footnote 11), however this does not preclude such a factorization. For instance the Gaussian ansatz,

(66) factorizes in the (s0, s1) variables.
15The extra factors stem from matching the normalization

∫
d2x±

δ2
F2 = 1 with the normalization∫

dx0dx1 (g(x0)g1(x1))2 = 1.
16There is also a saddle at ρ̄+ = −

√
|u|, however this does not contribute to the integral due to the

Heaviside function.
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The u integral is now easy to perform leaving

〈T++[FGauss]〉ξ & −(δ+)−
d+2

2 (δ−)−
d−2

2

25/2(4π)d/2
e−m

2δ+δ− (88)

This kind of suppression is reminiscent of the well-known decay of massive field correlators

at space-like separations comparable with the correlation length, although we caution that

the specific exponentional decay arises from the choice of a Gaussian smearing function.

More generally, via saddle-point arguments, we would expect the right-hand side of (88) to

be suppressed by |F̃(α+m
2δ+δ−, α−m

2δ+δ−)|2 where α+ and α− are order one constants.

Lastly, we mention that this behavior has been hinted at before: in [17] it was noted that

the supremum of 〈Tµν〉uµuν along a portion of a time-like geodesic, λ, of fixed smearing

length τ0 (here uµ is the normalized velocity of that geodesic) is bounded below by a

quantity that is exponentially suppressed in the mass

sup
τ∈(−τ0/2,τ0/2)

〈Tµν(λ(τ))uµuν〉 & −kdmd (mτ0)e−mτ0 (89)

(where kd is a constant) which follows from optimizing world-line bounds derived in [29]

for smeared weak energy,
∫
dτ〈Tµν(λ(τ))uµuν〉 g(τ)2, over smearing functions.

4 Discussion

In this paper we investigated several new aspects of smeared null energy. While specifically

the computations we performed apply for the free massive scalar, we have some expectation

that our results apply broadly to Lorentzian quantum field theories for reasons we will

discuss shortly below. To recap our results, we used light-sheet quantization to prove a

conjectured bound on the SNE, the null energy smeared with a smooth function along a

light-ray. This bound makes explicit reference to a UV cutoff, which appears in this case

as a transverse “discretization” of the light-sheet. We further argued that smearing over

several light-rays along the same light-sheet does not improve the bound (in the sense of

removing its cutoff dependence) and illustrated this with a series of squeezed states whose

negative smeared null-energy can take values all the way up to the UV cutoff. Motivated

by bounding null-energies without reference to a cutoff, we posit that the null stress

tensor smeared along both null directions (that is x+ and x−) (what we coin the DSNE)

is an operator that is bounded below for all states (at least for smooth enough smearing

functions). This is motivated by showing that fluctuations over the vacuum are bounded

and by evaluating the DSNE in the above series of squeezed states. The squeezed state

expectation values suggest a form of the lower bound of the DSNE which we conjecture

to be generally true. Importantly this conjectured bound displays a transition with the

ratio of the invariant smearing length with the correlation length and for massive theories

can be substantially tighter than the bound for massless theories.
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Proving DSNEC

In this paper we did not undertake the harder task of proving the DSNEC, (4). We

expect that a proof of this (and more specifically of the bound (82)) is obtainable using

the traditional tool box of field theory techniques, at least for the current domain of free

massive quantum field theory. This will be addressed in a companion paper to appear in

the near future [30]. The larger task of proving some version of the DSNEC for generic in-

teracting field theories, however, is much more difficult and likely to employ a completely

different set of techniques than outlined here or in the companion paper, [30]. See the

below point.

Interactions

Because the techniques we have employed here are special to free field theories (either

through assuming conformal properties on L or through direct Fock quantization) it is

reasonable to ask what is the fate of the SNEC or the DSNEC in interacting field theories.

We pause to note the following distinction: the answer to this question is very different

for relevant interactions as opposed to marginal or irrelevant interactions. In particular,

as emphasized in [19], the ultra-locality of the horizon algebra and the horizon vacuum

in null quantization are safe from the introduction of interactions as long as they do not

alter the canonical structure of the theory on L. At tree-level, any interaction term de-

void of derivatives couplings will suffice. However at one-loop and higher, irrelevant and

marginal couplings pose a real danger of spoiling the light-sheet algebra either through

the necessity of derivative coupling counterterms or through (divergent) wave-function

renormalization. Thus the regime of validity of our proof of SNEC is for Gaussian field

theories in d ≥ 3 dimensions with perturbative relevant interactions. It is also our ex-

pectation that (4) holds in such theories as well, at least for a suitable definition of the

correlation length. Though admittedly not rigorous, our reason is the following: without

derivative couplings, the null stress tensor, T++, is functionally identical to the Gaussian

theory, although its expectation values may differ from the Gaussian theory. However,

by supposition, at large momenta the contribution of interactions to those expectation

values will be negligible and so we expect that since (4) holds for free theories, the ex-

pectation value 〈T++[F ]〉, if negative, will still be bounded below. Dimensional analysis

and the behavior of T++ under boosts suggests that this bound will still be of the form (4).

For strongly interacting field theories, we likely need a completely separate toolbox. An

allegory can be drawn contrasting the techniques used in the proof of the QNEC for free

field theories [9] (drawing upon the properties of free fields on a light-sheet) and those used

for proving the QNEC in interacting field theories [10] (drawing upon properties of confor-

mal field theories under modular flow). Indeed, because strongly interacting field theories

can only be suitably defined via their flow to a RG fixed point, we expect formal CFT

techniques to be required to fully prove some generic version of the DSNEC. At present we
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are not certain as to what will work and what will not,17 although perhaps investigating

CFT states prepared by stress-tensor insertions, e.g. as in [31], or investigating DSNE

expectation values in holographic descriptions of negative energy states described in [32]

will provide a nontrivial first check. For now we will leave

〈T(CFT )
++ [F ]〉ψ ≥ −

NC
(δ+)

d+2
2 (δ−)

d−2
2

(90)

with C an O(1) constant and N a suitable measure of the degrees of freedom, simply as

a conjecture to revisit in the future.
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A Appendix: An almost-basis of functions on the light-

sheet

In this appendix we add some details to the “pencil” quantization for free fields on the

lightsheet, L = {x− = 0}, by identifying an “almost-basis” of modes that makes the pencil

decomposition natural. One main outcome of this appendix is to see explicitly that this

almost-basis provides a good approximate basis for field configurations with transverse

momenta much less than the inverse pencil width: |~p⊥| � a−1, establishing a’s role as an

(inverse) UV cutoff.

Firstly we imagine overlaying the transverse ~y⊥ directions of L with a fixed square lattice

with spacing a. We will label the vertices of this lattice by an integer vector ~p. These will

be the pencil labels of section 2. To each ~p we can associate a function on L

vk+,~p(x
+, ~y⊥) :=

e−ik+x+√
2|k+|

d−1∏
i=2

Θ
(

1− |y
i
⊥−p

ia|
a/2

)
√
a

. (91)

where Θ(x) is a Heaviside function taking the value 1 for x ∈ [0, 1) and zero everywhere

else. We will denote the transverse support of vk+,~p by D~p =
{
~y⊥

∣∣∣ |yi − pia| < a/2
}

and

the product of Heaviside functions as ΘD~p(~y⊥).

17For instance, isolating the null stress tensor from a light-cone OPE (ala [13]) will suffer additional

contributions from the finite separation in the other null direction.
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It is easy to check that with respect to the Klein-Gordon norm on L,

(f1, f2) := i

∫
dx+dd−2~y⊥

(
f∗1 (x+, ~y⊥)∂+f2(x+, ~y⊥)− ∂+f

∗
1 (x+, ~y⊥)f2(x+, ~y⊥)

)
(92)

that these functions are orthonormal:

(vk+,~p, vk′+,~p′) = δ~p,~p′(2π)δ(k+ − k′+). (93)

Away from the lightsheet, vk+,~p(x
+, ~y⊥) can be extended to a full solution, ψk+,~p(x

+, x−, ~y⊥)

to the wave equation

4∂+∂−ψk+,~p = (∇2
⊥ −m2)ψk+,~p (94)

with initial condition ψk+,~p(x
+, x− = 0, ~y⊥) = vk+,~p(x

+, ~y⊥). By writing ψk+,~p(x
+, x−, ~y⊥) =

eik+x+
ψ̃k+,~p(x

−, ~y⊥), ψ̃k+,~p satisfies a Schrödinger-type first order equation

i∂−ψ̃k+,~p(x
−, ~y⊥) =

1

4k+

(
∇2
⊥ −m2

)
ψ̃k+,~p(x

−, ~y⊥). (95)

which uniquely specifies it.

The obvious downside to the collection {vk+,~p} is that they do not span the set of functions

on L and so do not provide a full basis of field configurations. However they do provide an

almost-basis for field configurations with long wavelengths compared to the pencil width:

a field configuration with |~p⊥| � a−1 can be expanded as a combination of {vk+,~p} up to

an error on the order of O(p2
⊥a

2), which we show now. Let Φ(x+, ~y⊥) be a typical field

configuration on L expressed as

Φ(x+, ~y⊥) =

∫
dk+

2π
√

2|k+|

∫
dd−2p⊥
(2π)d−2

φ̃k+,~p⊥e
−ik+x+−i~p⊥·~y⊥ . (96)

for some φ̃k+,~p⊥ . For such a Φ we define Φ(disc.) as

Φ(disc.)(x+, ~y⊥) :=

∫
dk+

2π

∑
~p

αk+,~pvk+,~p(x
+, ~y) (97)

with coefficients αk+,~p given by

αk+,~p :=(vk+,~p,Φ)

=

∫
dd−2y⊥

ΘD~p(~y⊥)

a
d−2

2

(∫
dd−2p⊥
(2π)d−2

e−i~p⊥·~y⊥ φ̃k+,~p⊥

)
=a

d−2
2

∫
dd−2~p⊥
(2π)d−2

e−i~p⊥·(a~p) φ̃k+,~p⊥R(~p⊥a) (98)

and we have defined

R(a~p⊥) :=

d−1∏
i=2

(
2

api⊥

)
sin

(
api⊥

2

)
(99)

We can think of αk+,~p as the coarse-graining of Φ over the pencil centered at ~p (after the

trivial Fourier transform in x+). Now consider the overlap of Φ with Φ(disc.):

(Φ,Φ(disc.)) =

∫
dk+

2π

∫
dd−2p⊥
(2π)d−2

dd−2p′⊥
(2π)d−2

φ̃∗k+,~p⊥
φ̃k+,~p′⊥
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× (2π)d−2
∑

~z∈Zd−2

δd−2

(
~p⊥ − ~p′⊥ −

2π

a
~z

)
R(a~p⊥)R(a~p′⊥)

(100)

which also happens to be equal to (Φ(disc.),Φ(disc.)). The periodic delta function comes

from a sum of ad−2e−i(~p⊥−~p
′
⊥)·(~pa) over pencils and organizes the momenta in terms of the

first Brillouin zone, as is familiar in lattice physics. Importantly we see that if φ̃k+,~p⊥ only

has support for |~p⊥| � a−1 then the delta function can only be satisfied on the first band

of this zone: ~p⊥ = ~p′⊥. Moreover, perturbatively expanding the expression for R for this

regime of momenta we have

(Φ,Φ(disc.)) ≈
∫
dk+

2π

∫
dd−2~p⊥
(2π)d−2

φ̃∗k+,~p⊥
φ̃k+,~p⊥

(
1− 1

24
a2p2
⊥ + . . .

)
. (101)

The error then in approximating Φ by Φ(disc.) is small for field configurations with wave-

lengths much larger than the pencil width is

E [Φ] := (Φ− Φ(disc.),Φ− Φ(disc.)) = O(a2~p2
⊥). (102)

If one is worried about the Klein-Gordon norm not being positive definite, this argument

can be repeated with the L2 norm to the same conclusion. Thus if we adopt a−1 as a UV

cutoff and restrict the path-integral to field configurations with transverse momenta much

less than a−1 then we can imagine always approximating field configuarations by their

corresponding Φ(disc.) (we will from here on drop the superscript “(disc.)”) and quantize

the theory on L in the pencil basis by promoting the coefficients αk+,~p to operators:

Φ̂(x+, x− = 0, ~y⊥ ∈ D~p) = a−
d−2

2

∫ ∞
0

dk+

2π
√

2k+

(
α̂k+,~pe

−ik+x+
+ α̂†

k+,~p
eik+x+

)
(103)

satisfying commutation relations

[α̂k+,~p, α̂
†
k+,~p′

] = (2π)δ(k+ − k′+)δ~p,~p′ . (104)

Note that {α̂k+,~p, α̂
†
k+,~p
} satisfy the commutation relations of decoupled 2d chiral scalars,

{ϕ̂~p(x+, x−)} quantized on x− = 0. The pencil label, ~p, acts as an internal index of the

scalars. The original scalar is related to these chiral scalars via

Φ̂(x+, x− = 0, ~y⊥ ∈ D~p) = a−
d−2

2 ϕ̂~p(x
+, x− = 0) (105)

This is of course the familiar relation noted by [19]; we have simply arrived at it in way

that makes the role of a−1 as a UV cutoff manifest.

B Appendix: Bounds on the null energy of the 2d massive

scalar

In this section we consider the null-quantization of the 2d massive scalar with mass, µ2

and its negative null-energy. In canonical quantization

ϕ̂(x+, x−) =

∫ ∞
0

dk+

2π
√

2k+

(
α̂k+e

−ik+x+−i µ
2

4k+
x−

+ h.c.

)
(106)
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The null stress-tensor is given by T++ =: ∂+ϕ̂∂+ϕ̂ :. In the free-theory the normal ordering

is unequivocally defined by Fock-mode normal ordering, but equivalently it is simply a

subtraction of the bare stress-tensor, T
(bare)
++ (x+, x−) = ∂+ϕ̂(x+, x−)∂+ϕ̂(x+, x−), of its

contact divergences which are encapsulated by its vacuum expectation value:

T++ = T
(bare)
++ − 〈T (bare)

++ 〉Ω. (107)

To make sense of the above expression, we will define it through point splitting,

T
(bare)
++ (x±) = lim

y±→x±
∂+ϕ(x±)∂+ϕ(y±). (108)

Now we consider smearing T++ with F(x±/δ±)2. With the appropriate introduction of a
delta-function we have

T++[F ] =
1

δ+δ−

∫
d2x±d2y±

∫
d2ρ±
(2π)2

e−iρ·∆xF
(
x±

δ±

)
F
(
y±

δ±

)(
∂+ϕ(x±)∂+ϕ(y±)− 〈∂+ϕ(x±)∂+ϕ(y±)〉Ω

)
(109)

where ∆x± = x± − y±. The integrand is symmetric18 under x± ↔ y± and so we can

restrict the ρ integration to an appropriate half-space:
∫ d2ρ±

(2π)2 → 2
∫
H

d2ρ±
(2π)2 . The first term

of (109),
∫
H d

2ρ±
∫
d2x±d2y±FxFy T (bare)

++ is an inherently a positive operator (integrating

the product of an operator and its Hermitian conjugate); it is the normal-ordering that is

responsible for sourcing any possible negative null-energy. Thus the smeared null-energy

in any state |ψ〉 is bounded below by the smeared vacuum expectation value:

〈T++[F ]〉ψ ≥ −
2

δ+δ−

∫
d2x±d2y±

∫
H

d2ρ±
(2π)2

e−iρ·∆xF
(
x±

δ±

)
F
(
y±

δ±

)
〈∂+ϕ(x±)∂+ϕ(y±)〉Ω

(110)

This statement is true for any halfspace of the ρ± plane, which essentially amounts to a

choice of reference frame. As such, any bound derived for a specific choice of H will break

covariance under Lorentz boosts. In principle, however, this bound could be optimized

over all possible reference frames and we expect that this minimization restores covariance.

In this appendix we will take the slightly less ambitious approach and consider a family of

reference frames related by a constant boost. That is we will use the momentum half-space

defined by Hη = {ρη = eηρ+ + e−ηρ− ≥ 0}. We note that bound we will find depends

explicitly on η. We have

〈T++[F ]〉ψ ≥ −δ+δ−
∫
Hη

d2ρ±
(2π)2

∫ ∞
0

dk+

2π
k+

∣∣∣F̃(δ±q±)
∣∣∣2
q+=k++ρ+, q−=ρ−+ µ2

4k+

(111)

with the constraint that ρη = eηρ+ + e−ηρ− = eηq+ + e−ηq− −
(
eηk+ + e−η µ2

4k+

)
≥ 0. We

can replace the ρ integrals for q integrals keeping track over the appropriate integration

domain:

〈T++[F ]〉ψ ≥ −δ+δ−
∫

d2q±
(2π)2

∣∣∣F̃(δ±q±)
∣∣∣2 ∫ ∞

0

dk+

2π
k+ Θ

(
qη − eηk+ − e−η

µ2

4k+

)
(112)

18This is an obvious statement for the classical fields, but here remains true for the normal-ordered T++

because the commutator of ϕ is state-independent.
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where qη = eηq++e−ηq−. We perform the linear k+ integral over the domain lying between
e−η

2

(
qη ±

√
q2
η − µ2

)
:

〈T++[F ]〉ψ ≥ −
δ+δ−

4π

∫
d2q±
(2π)2

∣∣∣F̃(δ±q±)
∣∣∣2 Θ(qη − µ)e−2ηqη

√
q2
η − µ2 (113)

Equation (113) is true for any η ∈ R. Let us explore some interesting limits of (113).

For instance by taking the mass, µ2, and the boost parameter, η, to zero, we perform the

inverse Fourier transform to find

〈T++[F ]〉ψ|µ2=0 ≥ −
1

8π

∫
d2x±

δ+δ−

{
(∂+ + ∂−)F

(
x+

δ+
,
x−

δ−

)}2

(114)

consistent with the time-like bounds of [29]. Alternatively we can choose to boost this

answer to a lightsheet by taking the η → ∞ limit. The leading terms in these integrals

are

〈T++[F ]〉ψ ≥ −
δ+δ−

4π

∫
d2q±
(2π)2

∣∣∣F̃(δ±q±)
∣∣∣2 Θ (q+) q2

+ (115)

and so in the η → ∞ limit we recover the “Schwarzian” bound, insensitive to the mass,

with however a slightly weaker coefficient ( 1
8π as opposed to 1

12π ):

〈T++[F ]〉ψ ≥ −
1

8π

∫
d2x±

δ+δ−

(
∂+F

(
x+

δ+
,
x−

δ−

))2

(116)
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