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Abstract. We investigate the non-equilibrium dynamics of a one-dimensional spin-1/2 XXZ
model at zero-temperature in the regime |∆| < 1, initially prepared in a product state with
two domain walls i.e, |↓ . . . ↓↑ . . . ↑↓ . . . ↓〉. At early times, the two domain walls evolve
independently and only after a calculable time a non-trivial interplay between the two emerges
and results in the occurrence of a split Fermi sea. For ∆ = 0, we derive exact asymptotic
results for the magnetization and the spin current by using a semi-classical Wigner function
approach, and we exactly determine the spreading of entanglement entropy exploiting the
recently developed tools of quantum fluctuating hydrodynamics. In the interacting case, we
analytically solve the Generalized Hydrodynamics equation providing exact expressions for the
conserved quantities. We display some numerical results for the entanglement entropy also in
the interacting case and we propose a conjecture for its asymptotic value.
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1. Introduction

A domain wall (DW) state of a quantum spin-1/2 chain is a product state prepared by joining two
domains of aligned spins with opposite magnetization, as for instance |↑ . . . ↑↓ . . . ↓〉. Despite
its simplicity, the time evolution of such a state shows non-trivial features of non-equilibrium
dynamics and, for this reason, it has been the main character of a large number of studies,
including stability analysis [1–3], exact computations for the free case e.g. [4–15], approximate
and numerical results for the interacting integrable e.g. [16–29] and non-integrable e.g. [30–34]
chain. For integrable spin chains such as XXZ (see Eq. (1) below), this research has led, only
very recently, to a full analytical understanding of the DW dynamics e.g. [35–41], obtained by
means of Generalized Hydrodynamics (GHD) [35,42] and of its quantum fluctuations [43]. This
exact solution substantiates an intuitive hydrodynamic picture of the non-equilibrium dynamics
which follows. Because of the integrability of the XXZ spin chain, stable quasiparticles
excitations are initially emitted at the domain wall and propagate in time with a constant
velocity, whose value depends on the interaction coupling. The fastest excitations of the
spectrum define a fan-shaped spatio-temporal region (called lightcone) around the junction,
inside which entanglement spreads and the initially ordered domains melt. Quite interestingly,
the physics of the melting process is not modified by the presence of interactions. In particular,
it has been shown that, up to a rescaling of the lightcone, the charges profiles in the gapless
XXZ model [40] have the same behavior as a free Fermi system [4]. This similarity extends
even to the half-system entanglement entropy, which shows the same asymptotic growth as
S1(0, t) ∼ 1

6
log t in the free [7] and interacting [41] case. Notice that this is a peculiarity of

DW states, related to the structure of its Bethe Ansatz equations. Indeed, in generic integrable
models, interactions are responsible for a dressing of the observables that typically modifies
the non-equilibrium dynamics, see e.g. Ref. [44–47] for recent reviews. The case of bipartite
spin states with initial correlations has also been considered in literature [6, 20, 21, 48], where
it is observed that the presence of initial entangled quasiparticles results into a faster spreading
of the half-system entanglement.

In this work, we extend the rich analysis on DW states to the case where three domains
of aligned spins with different orientations are joined together, i.e., for an initial state like
|↓ . . . ↓↑ . . . ↑↓ . . . ↓〉. In the following, we will refer to this state as double domain wall.
Intuitively, the non-equilibrium dynamics of a XXZ spin chain prepared in a double DW state
can be split into two regimes. At early times, the light cones generated at the two junctions do
not intersect and the evolution is that of two independent DW states of Ref. [40]. Conversely,
when the quasiparticles emitted from the two walls meet, a non-trivial interplay between the
physics of the single DWs takes place and characterizes the melting process at later times.
In this regime, the half-system entanglement (i.e., with the entangling point in the middle
of the central domain, which is initially equal to zero) is fed by the double contribution of
left and right moving quasiparticles coming from the two walls and therefore it undergoes a
rapid growth. At large times, the entanglement saturates to a constant value S1(0, t) ∼ 1

3
log `,

which depends on the size 2` of the domain of upwards spins at t = 0. Throughout the rest of
the work, we present exact calculations and numerical analysis in order to corroborate these
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intuitions with quantitative arguments.
Outline. We organize the contents of the paper as follows. In Sec. 2, we introduce the

model and we set up the quench protocol considered in this work. Although the physics of the
melting process is found to be qualitatively similar for any value of the interaction coupling
|∆| < 1, we treat the non-interacting case (∆ = 0) in a dedicated section (Sec. 3), for a clearer
exposition. In particular, in Sec. 3.1, we characterize the semi-classical evolution in phase space
in terms of the Wigner function and we derive exact asymptotic results for the magnetization
and the spin current profiles. In Sec. 3.2 we discuss the behavior of the entanglement. As
pointed out in the recent works [6, 41, 43, 49], this study requires a re-quantization of the semi-
classical hydrodynamic background in terms of a Luttinger liquid and the use of conformal
invariance. Exact numerical lattice calculations are performed to test and complement our
findings for the free model. Section 4 contains instead the analysis of the model at finite
interactions. After a short summary of the Bethe Ansatz solution in Sec. 4.1, in Sec. 4.2
we consider the hydrodynamic limit of the spin chain and we characterize the initial state at
t = 0 using the local density approximation. The GHD equations are reported in Sec. 4.3,
together with a detailed derivation of their analytic solution. The exact computation of the
profiles follows in Sec. 4.4, where one can also find numerical checks based on time-dependent
Density Matrix Renormalization Group (tDMRG). The analytic treatment of the entanglement
evolution in the interacting case is very challenging as it needs a careful analysis based on
quantum GHD [43]. This study goes well beyond the goal of this paper. Nevertheless, in
Sec. 4.5, we present a numerical analysis of the entanglement and we compare our numerical
findings with the exact solution of the non-interacting case. Finally, we report our conclusions
in Sec. 5 and some technical aspects of the Bethe Ansatz solution in Appendix A.

2. Setup of the problem

We consider the one-dimensional XXZ model with Hamiltonian

Ĥ = −1

4

L/2−1∑
x=−L/2

(
σ̂x
xσ̂

x
x+1 + σ̂y

xσ̂
y
x+1 + ∆σ̂z

xσ̂
z
x+1

)
(1)

where L is the length of the chain and σ̂α=x,y,z
x are standard Pauli operators acting on site x.

Here, ∆ is the interaction coupling which we set to be in the gapless regime |∆| 6 1, where it
is customary to write ∆ = cos γ. We do not consider |∆| > 1 because energy arguments show
that domain wall states do not melt, see Ref. [50,51]. The case |∆| = 1 is very peculiar [52,53]
and therefore it will be also excluded from this study. We further focus on the rational case,
i.e., on those values of γ that can be written as the ratio γ = πQ/P , with Q, P two co-prime
integers, 1 6 Q < P . In the rational case, γ admits a continued fraction representation

γ =
π

ν1 + 1
ν2+ 1

ν3+...

(2)

where {ν1, . . . , νq} is a set of numbers satisfying ν1, . . . , νq−1 > 1 and νq > 2. In the
thermodynamic limit L→∞, the model (1) is exactly solved by means of Thermodynamic
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Figure 1. Illustration of the melting dynamics of the double domain wall state in Eq. (4). At
t = 0 the system is prepared in the product state of three ordered domains, resulting into
a step-like shape of the magnetization profile m(x, t) (left panel). (a) At early times, the
central domain of aligned spin begins to melt into the left and right ferromagnets generating
non-homogeneous propagation fronts around the junctions. After the initial transient regime,
the two propagating fronts merge (b) and contribute together to the relaxation (c)-(d).

Bethe Ansatz (TBA). In particular, for large values of the system size L and under the string
hypothesis [54], one can describe the excitation spectrum of the spin chain in terms of different
species of quasiparticles (generically referred to as strings). A short summary of the TBA
solution of the model (1) will be reported in Sec. 4.1 while we address the reader to e.g.
Ref. [54, 55] for a comprehensive discussion. The total number of allowed strings δ is read
from the interaction coupling in Eq. (2) as

δ =

q∑
k=1

νk. (3)

Each of the strings has a well-defined length lj , parity uj and sign sj , which are all given in
terms of {ν1, . . . , νq} after some manipulations [40, 54], see Appendix A.

At t = 0, we prepare the system in the product state

|Ψ(0)〉 =
−`−1⊗

x=−L/2

|↓x〉 ⊗
⊗̀
x=−`

|↑x〉 ⊗
L/2⊗

x=`+1

|↓x〉 , (4)

where±` are the positions of the domain walls and |↑x〉 (resp. |↓x〉) is the eigenstate of σ̂z
x with

eigenvalue +1 (resp. −1). For t > 0 we consider the Hamiltonian dynamics generated by (1)

|Ψ(t)〉 = e−itĤ |Ψ(0)〉 , (5)

during which the central ordered domain of (4) gradually melts into the left and right
ferromagnets, see Fig. 1 for an illustration.

Our focus will be on the hydrodynamic limit of the model, where several exact results can
be derived in the limit of large space and time scales. Specifically, we shall consider the scaling
limit x, `, L, t→∞ at fixed ratios x/t and `/L and we shall investigate the non-equilibrium
dynamics of the local magnetization m and of the local spin current J , defined as

m(x, t) =
1

2
〈Ψ(t)|σ̂z

x|Ψ(t)〉 , J(x, t) =
1

4
〈Ψ(t)|σ̂y

xσ̂
x
x+1 − σ̂x

xσ̂
y
x+1|Ψ(t)〉 . (6)
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The initial state (4) has zero entanglement for any bipartition. However, the latter is generated
during the melting dynamics through the spreading of quasiparticles from the junctions towards
the ordered regions. Therefore, we will investigate the formation and the subsequent growth of
the entanglement entropy by focusing on the Rényi entropy of a subsystem A = [x,+∞]

Sα(x, t) =
1

1− α log tr (ρ̂A)α (7)

and its limit α→ 1, i.e., the Von Neumann entanglement entropy

S1(x, t) = − tr ρ̂A(t) log ρ̂A(t). (8)

In Eqs. (7), (8), ρ̂A = trĀ ρ̂(t) is the reduced density matrix of the subsystem A, obtained by
tracing out the degrees of freedom of the interval Ā = [−∞, x) from the full density matrix
ρ̂ = |Ψ(t)〉 〈Ψ(t)|.

3. Analytic solution of the non-interacting case

We first investigate the melting dynamics of the double DW (4) in a non-interacting spin chain,
leaving the discussion of the interacting model to Sec. 4. After setting ∆ = 0 in Eq. (1), the
spin chain Hamiltonian reduces, up to an irrelevant additive constant, to the free Fermi gas

Ĥ = −1

2

L/2−1∑
x=−L/2

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)
(9)

where ĉ†x, ĉx are standard lattice Fermi operators, obtained from the ladder Pauli operators
σ̂±x = (σ̂x

x ± iσ̂y
x)/2 after a Jordan-Wigner transformation [56]. Although the non-equilibrium

evolution of the free Fermi gas (9) can be investigated by means of exact lattice calculations
[4, 5], we shall focus on a hydrodynamic limit. Indeed, a large-scale description gives not
only access to asymptotically exact results for several quantities of interest (such as the
magnetization profile and the spin current) without difficult computations, but also, it allows us
to characterize the entanglement evolution during the melting process, whose lattice derivation
is currently out-of-reach with standard techniques.

3.1. Semi-classical hydrodynamics

In the thermodynamic limit L, ` → ∞ at fixed ratio `/L, we describe the local physics of
the model (9) in terms of coarse-grained cells, each containing a large number of lattice sites.
Inside each cell, we diagonalize the Hamiltonian (9) in Fourier space, obtaining [6]

Ĥ = −
∫ L/2

−L/2
dx

∫ π

−π

dk

2π
cos k η̂†k,x η̂k,x (10)

where the lattice index x is replaced by a continuous variable. Here, η̂†k,x, η̂k,x are the creation
and annihilation operators of a fermionic particle with momentum k inside the cell labeled
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Figure 2. Snapshots of the Wigner function (12) during the melting dynamics of the double
DW (11).

by x. In this limit, it is easy to see that the initial state in Eq. (4) corresponds to a gas where
fermionic particles with momentum −π 6 k 6 π entirely fill the spatial region −` 6 x 6 `,
leaving empty the rest of the chain. Therefore, in terms of the Wigner function n(x, k) [57, 58]
(which is essentially the occupation function of the free Fermi gas), the macrostate at t = 0

corresponding to the double DW state (4) is given by

n(x, k) =

1, if |x| 6 ` and |k| 6 π

0, otherwise.
(11)

At times t > 0, the fermionic particles propagate independently with constant velocity
v(k) = sin k. This implies that the occupation number at time t > 0 can be obtained by
tracking backward the trajectory of each particle up to t = 0 and it reads

n(x, t, k) = n(x− t sin k, 0, k). (12)

The result (12) might be also viewed as solution of a Euler-like hydrodynamic equation [6, 49]

(∂t + sin k ∂x) n(x, t, k) = 0, (13)

satisfied by the Wigner function, at lowest order in the ∂x and ∂k derivatives [59–62]. Similar
studies in higher spatial dimensions d > 1 and at non-zero temperature can be found in
Ref. [63, 64]. In Fig. 2, we show the hydrodynamic evolution of n(x, t, k) during the double
DW melting process.

Notice that the Wigner function in Eq. (12) shows a particularly simple form as it takes
only the values 0 or 1, due to the zero-entropy condition of the local states during the time
evolution [65]. As a consequence, it is possible to encode all the information about the phase-
space dynamics in terms of the contour of the Wigner function, typically called Fermi contour
Γ(t), which keeps track of the Fermi points at each position x.

From the inspection of Fig. 2, one can graphically determine the Fermi points at each x
and t. In particular, the number n of Fermi points is given by the number of intersections of a
vertical line drawn at position x and time t with the contour of n(x, t, k). With this method, we
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(a) (b)

Figure 3. (a) Illustration of the particles spreading during the melting dynamics. From the
junctions at x = ±`, two lightcones open up and determine the melted region ||x| − `| < t.
At early times t < ` these lightcones do not intersect and a connected Fermi sea is found at
any position x (light-orange region). Conversely, when t > `, the particles emitted from one
junction penetrate inside the lightcone of the other, leading to a split Fermi sea for |x| 6 t− `
(dark-orange region). (b) Graphical solution of Eq. (15) at fixed time t: for any x1 such that
|t− `| < |x1| 6 t+ ` (light-orange region), one obtains two Fermi points k(1,2)F (x1, t), while
for |x2| 6 t− ` (dark-orange region) one finds the four solutions k(s)F (x2, t), s = 1, . . . , 4. In
each regime, the values of the roots k(s)F (x, t) are given in Eq. (17). Thick red lines denotes the
intial position ±` of the two domain walls.

observe that two Fermi points are found at each position x as long as t < ` while, for t > `,
one enters in a richer landscape where split Fermi seas can be found. This behavior of the
Fermi seas can be easily understood considering lightcone regions ||x| − `|/t 6 1 around the
two junctions x = ±`, determined by the propagation of the fastest modes with k = ±π/2
and velocity v(±π/2) = ±1, see Fig. 3(a) for an illustration. At times t < `, the dynamics of
the particles inside the two lightcones is independent and thus we find a connected Fermi sea
at any position x. In this regime, the evolution is that of two independent domain walls [4].
Conversely, at times t > `, the two lightcones intersect over the spatial region x ∈ [−t+`, t−`]
and, as a consequence, a split Fermi sea is found. Precisely, the number n of Fermi points in
each regime is

n =


4, if |x| 6 t− `;
2, if |t− `| < |x| 6 t+ `;

0, otherwise.

(14)

Since the propagating modes on the Fermi contour are only those initially located at x = ±`,
the analytic expression of the Fermi points follows from the equation of motion

x = ±`+ sin kF t (15)
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which is readily solved as

kF =
{

arcsin
x± `
t

; π − arcsin
x± `
t

}
. (16)

By exploiting the symmetry properties of the contour ad with elementary algebra, one can
show that the four roots in Eq. (16) combine together to give the following Fermi points in
each regime:

kF (x, t) =



± arcsin ||x|−`|
t

;±(π − arcsin ||x|−`|
t

),

if |t− `| < |x| 6 t+ `;

± arcsin |x|+`
t

;±(π − arcsin |x|+`
t

);∓ arcsin ||x|−`|
t

;∓(π − arcsin ||x|−`|
t

),

if |x| 6 t− `,
(17)

with sign determined by
sign(kF (x, t)) = sign(x(|x| − `)), (18)

as illustrated in Fig. 3(b). Denoting such Fermi points with k(s)
F (x, t) (s = 1, . . . , n and k(s)

F in
increasing order), and the (split-)Fermi sea Γ(x, t) with

Γ(x, t) =
n−1⋃
s=1

[k
(s)
F (x, t), k

(s+1)
F (x, t)], (Γ(t) =

⋃
x

Γ(x, t)) (19)

one can derive exact asymptotic results by summing up each individual contribution coming
from a filled mode at position x and time t, i.e., for each k ∈ Γ(x, t). For instance, the
asymptotic result for the magnetization profile is given by

m(x, t) = −1

2
+

∫
Γ(x,t)

dk

2π
= −1

2
+

n−1∑
s=1

k
(s+1)
F (x, t)− k(s)

F (x, t)

2π
. (20)

Explicitly, using Eq. (17) in (20), we obtain

m(x, t) =

−
1
2

+ 1
π

(
arcsin |x|+`

t
− arcsin |x|−`

t

)
, if |x| 6 t− `;

− 1
π

arcsin |x|−`
t
, if |t− `| < |x| 6 t+ `.

(21)

Similarly, the spin current in Eq. (6) is obtained as the weighted sum

J(x, t) =

∫
Γ(x,t)

dk

2π
sin k =

1

2π

n−1∑
s=1

(
cos k

(s)
F (x, t)− cos k

(s+1)
F (x, t)

)
(22)

=


sign(x)
π

(√
1− (|x|−`)2

t2
−
√

1− (|x|+`)2
t2

)
, if |x| 6 t− `;

sign(x)
π

√
1− (|x|−`)2

t2
, if |t− `| < |x| 6 t+ `.

(23)

In Fig. 4, we show the exact asymptotic formulae for the profiles in Eq. (21)-(22) against exact
lattice numerical calculations finding a perfect agreement. The numerical data are obtained
from the lattice evolution of the two-point function

Gx,x′(t) = 〈Ψ(t)|ĉ†xĉx′|Ψ(t)〉 . (24)
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Figure 4. (a) Magnetization and (b) spin current profiles for the non-interacting double domain
wall melting problem. The different curves show the behavior of the analytic solutions (21)-(22)
at different times while the symbols are obtained with exact numerical calculations on a lattice
of size L = 600 and ` = 100. The matching of the profiles with the numerics is extremely
good.

In particular, we determine Gx,x′(0) from the exact diagonalization of the Hamiltonian

Ĥ(0)
xx = −1

2

L/2−1∑
x=−L/2

(
ĉ†xĉx+1 + h.c.

)
+

L/2∑
x=−L/2

V (x)ĉ†xĉx (25)

with auxiliary potential

V (x) =

{
−Λ, if |x| 6 `;

Λ, otherwise
, Λ→∞, (26)

which is chosen such that its ground state reproduces the initial state of Eq. (4). Subsequently,
we evolve the two-point function in the eigenstate basis of the Hamiltonian (9), see Ref. [6, 20]
for a detailed discussion on the numerical implementation. From the exact evolution of the
two-point correlation (24), it follows that

m(x, t) = −1

2
+Gx,x(t), J(x, t) =

1

2i
(Gx,x+1(t)−Gx+1,x(t)) . (27)

3.2. Quantum fluctuations and Entanglement entropy

It is important to notice that the phase-space approach discussed in Sec. 3.1 does not include
quantum fluctuations of the Fermi contour and therefore, it is not sufficient to characterize
the entanglement spreading during the melting dynamics. On the other hand, an exact lattice
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calculation for such non-homogeneous and non-equilibrium processes is currently not possible
with standard techniques, even for the free model (9) considered in this section. To overcome
this limit, it has been recently noticed [6, 41, 43, 49] that the asymptotic behavior of the
entanglement is effectively described by a quantum hydrodynamic theory, obtained after the
re-quantization of the Fermi contour of Sec. 3.1 in terms of a Luttinger-liquid [66]. The
latter has to reproduce the relevant low-energy quantum physics in the vicinity of the Fermi
points, which essentially consists in the formation of particle-hole excitations around the Fermi
contour. Following this program, we consider the quantum fluctuations of the fermionic density
in terms of a fluctuating-field χ̂

δ%̂(x, t) =
1

2π
∂xχ̂(x, t) (28)

and we expand, at leading order in the scaling dimension of the low-energy fields, the
time-dependent creation and annihilation fermionic operator with standard bosonization
method [66–68]

ĉ†x(t) ∝ : exp
(
i
2

[χ̂+(x, t)− χ̂−(x, t)]
)

: + less relevant operators;

ĉx(t) ∝ : exp
(
i
2

[χ̂−(x, t)− χ̂+(x, t)]
)

: + less relevant operators,
(29)

up to a non-universal amplitude and a semi-classical phase which are not important for our
scopes (see e.g. Ref. [6, 7, 49] for more details on the phase and e.g. Ref. [69, 70] for the
amplitude). In Eq. (29), we have introduced the chiral components of the fluctuating field
χ̂ = χ̂+ + χ̂− which carry the physical interpretations of right (+) and left (−) moving
excitations along the Fermi contour. It is therefore useful to introduce a parametrization of the
Fermi contour Γ(t) in terms of a coordinate θ along the curve as

Γ(t) =
{

(x(θ), k(θ)) : k(θ) ∈ Γ(x(θ), t)
}
. (30)

The dynamics of the chiral fields χ̂± is then governed by the conformal field theory of a free
massless boson or, equivalently, by the Luttinger-liquid Hamiltonian along the Fermi contour
(see e.g. [6, 41, 43, 49, 70, 71])

ĤLL[Γ] =

∫
Γ

dθ

2π
J (θ) sin k(θ) (∂θχ̂a)

2 , (31)

where J (θ) is a jacobian factor and a = ± if k(θ) ≷ 0. Importantly, in our hydrodynamic
description of the problem, quantum fluctuations in the initial state are given by the ground
state of ĤLL[Γ(0)] and the effect of the time-evolution is simply to transport such quantum
fluctuations along the curve Γ(t), which gets deformed over time according to the semi-classical
dynamics of Sec. 3.1.

With this framework, we now consider the large-scale contribution to the Rényi entropy
in Eq. (7) of a subsystem A = [x,+∞] by using a conformal field theory (CFT) approach. For
integer Rényi index α, the latter can be expressed as the expectation value of a twist field T̂α
living at the boundaries of the subsystem A [72–74]

S̃α(x, t) =
1

1− α log 〈Tα(x, t)〉 . (32)
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Figure 5. Parametrization of the initial Fermi contour with the coordinate θ along the unit
circle. Notice that the horizontal branches of the contour do not contain propagating modes and
therefore are not needed for the description of the entanglement evolution.

Moreover, in our chiral model, T̂α admits a decomposition in chiral twist fields
{

Φ̂−α , Φ̂
+
α

}
that

behave under conformal mappings as primary fields with scaling dimension

hα =
1

24

(
α− 1

α

)
. (33)

It follows that S̃α(x, t) can be written as the n-point correlation function of the chiral fields
Φ̂−α , Φ̂

+
α of the CFT which lives along the Fermi contour at time t. Because of the conservation

of momentum during the time-evolution, the Fermi points k(s)
F (x, t) at time t can be traced

backward to the initial Fermi contour where they can be simply parametrized as

θ = π + k (−π 6 k 6 π), (34)

as illustrated in Fig. 5. Denoting with θs the positions of k(s)
F (x, t) along the initial Fermi

contour, the Rényi entropy reduces to

S̃α(x, t) =
1

1− α log

 n∏
s=1

∣∣∣∣dθdx

∣∣∣∣hα
θ=θs

〈
n/2−1∏
q=0

Φ̂+
α (θ2q+1)Φ̂−α (θ2q+2)

〉 (35)

and it can be exactly determined, as we now discuss. From Eq. (16) we obtain the Weyl factors

n∏
s=1

∣∣∣∣dθdx

∣∣∣∣
θ=θs

=


[
t
√

1− (|x|−`)2
t2

]−2

if |t− `| < |x| 6 t+ `;[
t2
√

1− (|x|−`)2
t2

√
1− (|x|+`)2

t2

]−2

if |x| 6 t− `
(36)

while the n-point correlation function is given by〈
n/2−1∏
q=0

Φ̂+
α (θ2q+1)Φ̂−α (θ2q+2)

〉
=


g(θ1, θ2), if |t− `| < |x| 6 t+ `;

g(θ1,θ2)g(θ3,θ4)g(θ1,θ4)g(θ2,θ3)
g(θ1,θ3)g(θ2,θ4)

, if |x| 6 t− `,
(37)
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where

g(θ, θ′) =

∣∣∣∣2 sin
θ − θ′

2

∣∣∣∣−2hα

. (38)

Plugging Eq. (36) and (37) into Eq. (35) and with simple algebra, we arrive to the result

S̃α(x, t) =


α+1
12α

log

(
2t2 cos2 φ cos2 ϕ

sin2(φ−ϕ2 )
cos2(φ+ϕ2 )

)
, if |x| 6 t− `;

α+1
12α

log(4t cos2 φ), if |t− `| < |x| 6 t+ `

(39)

where we introduced the shorthands

φ ≡ arcsin
|x| − `
t

; ϕ ≡ arcsin
|x|+ `

t
. (40)

The CFT result in Eq. (39) provides only the universal contribution to the Rényi entropies and
it has to be complemented with a non-universal cutoff ε(x, t) so that

Sα(x, t) =
1

1− α log
[
ε2hα 〈T̂ (x, t)〉

]
= S̃α(x, t) +

2hα
1− α log ε(x, t). (41)

For a non-interacting spin-1/2 chain, the exact expression of the cutoff for the von-Neumann
entanglement entropy is known [72, 75]. In particular, for n = 2, i.e., for a connected Fermi
sea, it is given in terms of the magnetization profile in Eq. (20) as [6, 7]

ε(x, t) =
C

cos πm(t, x)
= C/ cosφ, if |t− `| < |x| 6 t+ ` (42)

where C is a known non-universal amplitude, see Ref. [75] and Eq. (46) below. In the presence
of the split Fermi sea, the computation of ε is more involved but it can be still performed
analytically exploiting the Fisher-Hartwing conjecture. As a result, one obtains the generic
formula [76]

log ε(x, t) =
∑

16s<s′6n

(−1)s+s
′
log

∣∣∣∣sin θs − θs′2

∣∣∣∣+
n

2
logC. (43)

One can check that Eq. (43) correctly reproduces the cutoff in Eq. (42) for n = 2 while, in the
regime with four Fermi points, it gives

ε(x, t) =
C2

cosφ cosϕ
, if |x| 6 t− `. (44)

Hence, including the cutoff contribution (42)-(44) in Eq. (39) and taking the replica limit
α→ 1, we finally obtain the result for the entanglement entropy

S1(x, t) =


1
6

log

(
t2| cos3 φ| | cos3 ϕ| sin2(φ−ϕ2 )

cos2(φ+ϕ2 )

)
+ 2Υ, if |x| 6 t− `;

1
6

log(t| cos3 φ|) + Υ, if |t− `| < |x| 6 t+ `
(45)
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Figure 6. Evolution of the entanglement profiles in the double domain wall melting of a non-
interacting spin-1/2 chain. The symbols are obtained with exact lattice numerical calculations
while the full-line is our result in Eq. (45). The numerical data are obtained for a chain of size
L = 600 and setting ` = 100.

where Υ is a non-universal constant [75], related to C as

Υ = −1

6
log(C/2) ' 0.4785. (46)

In the regime |t− `| < |x| 6 t+ ` where the two lightcones do not intersect, we observe that
Eq. (45) is in agreement with the exact prediction for the entanglement spreading of a DW
state, obtained in Ref. [7]. On the contrary, for |x| 6 t− `, we find a non-trivial behavior of the
entanglement that cannot be reduced to just a sum of the two individual contributions coming
from each lightcone.

We tested our formula (45) for the entanglement entropy against exact lattice numerical
calculations finding an excellent agreement, see Fig. 6. The numerical data are obtained from
the two-point correlation matrix in Eq. (24) restricted to an interval A of length |A|

GA(t) = [Gx,x′(t)]x,x′∈A (47)

as [77–82]

SA(t) =

|A|∑
j=1

[ξj(t) log ξj(t)− (1− ξj(t)) log(1− ξj(t))] (48)

where ξj(t), j = 1, . . . , |A| are the eigenvalues of GA(t), see e.g. Ref. [6, 20] for more details.
It is interesting to consider the dynamics of the half-system entanglement by setting x = 0

in (45). In this case, the variables in Eq. (40) simplifies to ϕ = −φ = arcsin(`/t) and the
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half-system entanglement entropy reads

S1(0, t > `) =
1

6
log
(
`2
∣∣1− `2/t2

∣∣3)+ 2Υ
t�`∼ 1

3
log `+ 2Υ. (49)

Moreover, by expanding Eq. (45) for t� |x|, ` at leading order, it is easy to show that

S1(x, t)
t�|x|,`∼ 1

3
log `+ 2Υ. (50)

The saturation of entanglement in Eq. (49)-(50) can understood with a simple CFT argument
that we now discuss. At large but fixed time t� |x|, `, the bulk of the system is characterized
by a homogeneous magnetization profile (see Eq. (21))

m(x, t)
t�|x|,`∼ −1

2
+

2`

πt
(51)

and by a correlated region of size (see Fig. 3(a))

L(t) = 2(t− `) t�`∼ 2t. (52)

This asymptotic setup can be equivalently interpreted as a homogeneous finite-size system
of length L(t) containing two species of fermionic particles (one from each junction) with
density % = (m+ 1/2)/2 ∼ `/(πt), whose half-system entanglement is known [72, 83] and
reproduces the result in Eq. (50)

S1(0, t) ∼ c

6
log

(L(t)

2ε(t)

)
=

1

3
log `+ 2Υ, (53)

after setting c = 2 and the short distance cutoff to ε(t) = C/ sin(π%) ∼ Ct/` (see Eq. (42) and
Ref. [75]). In Fig. 7, we compare the results in Eq. (49)-(50) with exact lattice calculations
of the half-system entanglement. As one can see, our exact formula is in perfect agreement
with the numerical data. Notice that the result in Eq. (50) agrees with that of Ref. [84],
obtained with exact lattice calculations. This gives a non-trivial check about the validity of our
hydrodynamic approach.

4. Analytic solution of the interacting case

We now turn to the discussion of a gapless XXZ model (1) for general |∆| < 1. As we argue
below, the presence of non-zero interactions requires some adjustments in our hydrodynamic
description but it does not qualitatively affect the physical dynamics obtained from the solution
of the non-interacting limit in Sec. 3.

4.1. Bethe Ansatz solution

As anticipated in Sec. 2, the Hamiltonian (1) is diagonalized by means of the Bethe Ansatz
[54, 55]. In particular, the eigenstates of the model can be written down exactly and are
labeled by a set of complex numbers {λj} (also called rapidities) which generalize the concept
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Figure 7. (a) Half-system entanglement entropy for a non-interacting spin-1/2 chain initially
prepared in a double domain wall state (4) as function of time. The exact prediction in Eq. (49)
(full-line) is compared with the numerical data (symbols) obtained for a lattice of size L = 350

with ` = 25. At times t � `, the half-system entanglement saturates to the constant value
1
3 log `+ 2Υ (dashed horizontal line). (b) Asymptotic saturation of the entanglement profiles
to the value 1

3 log `+ 2Υ for spatial positions |x| � t, see Eq. (50).

of particle momenta of a free Fermi gas to the interacting case. The value of {λj} is not
arbitrary but it is found as solution of a set of non-linear algebraic equations called Bethe
Ansatz equations. In the Hilbert space sector with M spins up and assuming periodic boundary
conditions of the chain, the Bethe Ansatz equations take the form [54](

sinh(λj + iγ/2)

sinh(λj − iγ/2)

)L
=

∏
16i<j6M

sinh(λj − λi + iγ)

sinh(λj − λi − iγ)
, γ = arccos ∆ ∈ (0, π). (54)

Eq. (54) implements non-trivial quantization conditions for the interacting model (1) on a ring
of length L. In the thermodynamic limit L→∞ and according to the string hypothesis [54],
the solutions of Eq. (54) are arranged into strings i.e., in regular patterns in the complex plane
composed by lj rapidities having the same real part λβj and equidistant imaginary parts

{λj}Mj=1 →
{
λβj + i

γ

2
(lj + 1− 2r) + i

π(1− uj)
4

} j = 1, . . . , δ;

r = 1, . . . , lj;

uj = ±1.

(55)

Here, δ is the total number of strings (given in Eq. (3)), lj is the length and uj is the parity of
a given string while β is a label for the strings of a given species, see Appendix A for more
details and e.g. Ref. [54, 55] for a more systematic treatment. Deviations from Eq. (55) are
expected to vanish exponentially with the system size when L → ∞. The different strings
are interpreted as δ different species of quasiparticles, each described by a real rapidity λβj ,
corresponding to the string center. Since for L→∞ the spectrum becomes densely populated,
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it is useful to introduce a macroscopic spectral distribution of quasiparticles

ρj(λ
β
j ) = lim

L→∞

1

(L|λβ+1
j − λβj |)

(56)

that satisfy the following integral equation [54]

sjρj(λ) = aj(λ)−
δ∑

k=1

∫ ∞
−∞

dµ Tj,k(λ− µ) ρk(µ) (57)

where

aj(λ) =
uj
π

sin(γlj)

cosh(2λ)− uj cos(γlj)
≡ a

(uj)
lj

(λ), (58a)

Tj,k(λ) = (1− δlj ,lk)a
(ujuk)

|lj−lk|(λ) + 2a
(ujuk)

|lj−lk|+2(λ) + · · ·+ 2a
(ujuk)
lj+lk−2(λ) + a

(ujuk)
lj+lk

(λ) (58b)

and we recall that sj denotes the sign of the string (see Appendix A). The solution of Eq. (57)
allows us to characterize the ground state of a translationally-invariant Hamiltonian (1) in the
thermodynamic limit. For more generic states, the l.h.s. of Eq. (57) is modified as ρj → ρj+ρ

h
j ,

with ρhj a distribution function for the unoccupied quasimomenta. The relation between ρj
and ρhj is not determined by Bethe Ansatz alone but it requires additional thermodynamic
arguments [54]. For later convenience, we introduce also the occupation function

nj(λ) =
ρj(λ)

ρj(λ) + ρhj (λ)
, (59)

which will play the same role of the Wigner function of Sec. 3.1 for the interacting model (1)
in its hydrodynamic description, see Sec. 4.3.

4.2. Large-scale description of the initial state

Let us now consider a large-scale asymptotic description of the model (1) in terms of periodic
boxes ∆x, each containing a large number of lattice sites. In this way, we can determine the
local macrostate nj(x, λ) by solving the TBA equations of Sec. 4.1 within each coarse-grained
cell x. At this point, we are in need of a large-scale description of the macrostate corresponding
to the intial state in Eq. (4). To achieve this goal, we first investigate the TBA solution of a
generic spin-state

%̂(h) = exp
(

2hŜz

)
/Z; Z = tr

(
e2hŜz

)
, (60)

where h is an external magnetic field and Ŝz =
∑L/2

x=−L/2 σ̂
z
x is the total spin in the z-direction.

In this simple instance, the occupation functions are known exactly [40, 54]. In particular, the
first δ − 2 strings are

n
(h)
j (λ) =

[
sin(yih)

sinh((lj + yi)h)

]2

mi 6 j < mi+1; j 6 δ − 2 (61)
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where {y−1, y0, . . . , yq} and {m0,m1, . . . ,mq} are two set of numbers related to {ν1, . . . , νq},
as reported in Appendix A. The second-to-last and the last strings have instead a different
behavior

n
(h)
δ−1(λ) =

1

1 + κehP
, n

(h)
δ (λ) =

κ

1 + κehP
; κ =

sin(lδ−1h)

sin(lδh)
. (62)

In the limit of strong magnetic field |h| → ∞, the spin-state (60) becomes fully-polarized and
it reduces to the projector

lim
|h|→∞

%̂(h) =

%̂
(⇑) ≡ |⇑〉 〈⇑| , if h > 0;

%̂(⇓) ≡ |⇓〉 〈⇓| , otherwise
(63)

where |⇑〉 ≡ ⊗x |↑x〉 and similarly for |⇓〉. As a consequence, the occupation functions in
Eq. (61)-(62) simplify to

lim
h→∞

n
(h)
j =

δj,δ + δj,δ−1, if h > 0;

0, otherwise
(64)

signaling that only the largest two strings are responsible for the thermodynamics of the
polarized state (63) [40, 41]. This observation is at the basis of our analytical solution of the
double domain wall melting problem, as discussed in the following section.

From the solution (64) of a polarized spin state, we can easily derive the occupation
functions nj(x, λ) corresponding to the double DW state (4). In particular, we associate to
each coarse-grained cell x the polarized state

%̂(x) =

%̂
(⇑), if |x| 6 `;

%̂(⇓), otherwise
(65)

so that the initial occupation functions for our setup read

nj(x, λ) = Θ(`− |x|)(δj,δ + δj,δ−1), (66)

with Θ the Heaviside step-function.

4.3. Generalized Hydrodynamics

The hydrodynamic evolution of the initial state (66) is established by means of Generalized
Hydrodynamics (GHD),which provides the following set of continuity equations for the
occupation functions [35, 42] (

∂t + veff
j ∂x

)
nj(x, t, λ) = 0. (67)

This set of equations has the same structure of Eq. (12), obtained in Sec. 3.1 for the non-
interacting model, but it is characterized by an effective velocity veff

j = veff
j (x, t, λ)

veff
j =

∂λe
dr
j

∂λpdr
j

(68)
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which depends self-consistently on the state nj(x, t, λ) through the dressing operation [35, 40]

qdr′
j (x, t, λ) = q′j(λ)−

δ∑
k=1

∫ ∞
−∞

dµ Tj,k(λ− µ) sk nk(x, t, µ) qdr′
k (x, t, µ), (69)

where qj is a generic function‡. For the specific case of Eq. (68), the energy e(λ) and the
derivative of the momentum eigenvalue p′(λ) are

e(λ) = −π sin(γ)aj(λ), p′(λ) = 2πaj(λ) (70)

and their dressed value is obtained as solution of Eq. (69).
The GHD equations (67) are exact only in the limit of large space and time scales.

Nevertheless, they proved to give a very accurate description of the dynamics even for relatively
small times and distances, as confirmed by several numerical tests e.g. [35, 37, 40, 42, 88–92]
and even some experimental studies [47, 93, 94]. Therefore, we will make use of the GHD
equations as a basis for our analysis, providing further numerical tests based on time-dependent
Density Matrix Renormalization Group (tDMRG) simulations of our results.

A formal solution of GHD equations (67) is obtained with method of characteristics,
yielding

nj(x, t, λ) = nj(x̃(t), 0, λ) (71)

where

x̃(t) = x−
∫ t

0

ds veff
j (s, x̃(s), λ). (72)

Plugging the initial state (66) in Eq. (71), it is easy to see that only on the largest two strings
are relevant for the dynamics since

nj(x, t, λ) = Θ(`− |x̃(t)|)(δj,δ + δj,δ−1). (73)

Moreover, the structure of the interaction kernels in Eq. (58) reveals the following symmetry
properties of the last and the second-to-last strings [40]

aδ(λ) = −aδ−1(λ), Tδ,k(λ) = −Tδ−1,k(λ), (74)

and the signs sδ = −sδ−1. This implies that the dressing operation (69) of the largest two
strings gives

pdr′
δ (λ) = 2πaδ(λ)−

∫ ∞
−∞

dµ Tδ,δ(λ− µ)sδ

(
nδ(x, t, µ) pdr′

δ (x, t, µ) (75)

+ nδ−1(x, t, µ) pdr′
δ−1(x, t, µ)

)
= −pdr′

δ−1(λ) (76)

and, with the same calculation, one can show that edr′
δ = −edr′

δ−1. It follows that the largest two
strings share the same effective velocity (68) veff

δ = veff
δ−1, which in turns implies from Eq. (73)

that the occupation functions

nδ(x, t, λ) = nδ−1(x, t, λ). (77)

‡ See also Ref. [85–87] for a rigorous proof of Eq. (67), (68).



19

From this observation, using Eq. (77) in Eq. (75) (and similarly for the dressed energy), we
conclude that the dressing operation becomes trivial and the effective velocity veff

δ reduces to

veff
δ ≡ vδ =

∂λe

∂λp
= ζ0 sin(sδ pδ(λ)) (78)

where we defined
ζ0 = sin γ/ sin(π/P ). (79)

Therefore, plugging Eq. (78) into Eq. (73), we obtain the following analytical solution of the
GHD equations (67)

nj(t, x, λ) = Θ(`− |x− vj(λ)t|, λ), j ∈ {δ − 1, δ}. (80)

4.4. Magnetization and Spin-current profiles

The analytic solution (80) of GHD allows us to derive exact asymptotic results for the conserved
charges and currents of the model. Proceeding similarly to what done in Sec.3.1, we define the
(split-) Fermi sea of the interacting model as

Γ(x, t) = {λ : x = ±`+ vδ(λ)t} . (81)

This equation of motion can be easily solved by noticing that the quantity sδpδ(λ) is a
monotonic function in the interval [−π/P, π/P ]. Therefore, in analogy with the free case, we
define the function k(λ) ≡ sδpδ(λ) and we obtain the roots

kF =

{
arcsin

x∓ `
tζ0

; π − arcsin
x∓ `
tζ0

}
(82)

that arrange together to give the following Fermi points

k
(s)
F (x, t) =



± arcsin ||x|−`|
ζ0t

;±(π − arcsin ||x|−`|
ζ0t

),

if |ζ0t− `| < |x| 6 ζ0t+ `;

± arcsin |x|+`
ζ0t

;±(π − arcsin |x|+`
ζ0t

),∓ arcsin ||x|−`|
ζ0t

;∓(π + arcsin ||x|−`|
ζ0t

);

if |x| 6 ζ0t− `,
(83)

with sign(k
(s)
F (x, t)) = sign(x(|x| − `)). We use then the Fermi points (83) to construct the

(split-)Fermi sea Γ(x, t) as in Eq. (19). Notice that the structure of Γ(x, t) is very similar to
that found in the non-interacting case (cf. Eq. (17)) although the presence of the interactions
is responsible for a rescaling of the lightcones with ζ0.

At this point, we are ready to compute the non-equilibrium dynamics of the charges
profiles. In particular, the profile of the magnetization is obtained as the weighted sum over the
single quasiparticle contributions

m(t, x) = −1

2
+

δ∑
j=1

∫ ∞
−∞

dλ

2π
sj p

dr′
j (x, t, λ) nj(x, t, λ) (84)
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Figure 8. (Top) Magnetization and (bottom) spin current profiles during the double domain
wall melting dynamics for several values of the interaction coupling γ (corresponding to
∆ = 0.223, 0.309, 0.5, 0.707, from the left to the right panels). The different curves show the
behavior of the analytic solutions (21)-(22) at different times while the symbols are obtained
with tDMRG numerical simulations obtained for a lattice of size L = 225 and ` = 35. The
matching of the profiles with the numerics is seen to be very good although finite-size effects
are still visible.

that, in the case of a double DW melting dynamics, reduces to

m(x, t) =− 1

2
+

∫
Γ(x,t)

dλ
k′(λ)

2π

=


−1

2
+ P

2π

(
arcsin |x|+`

ζ0t
− arcsin |x|−`

ζ0t

)
,

if |x| 6 ζ0t− `;
− P

2π
arcsin |x|−`

ζ0t
, if |ζ0t− `| < |x| 6 ζ0t+ `.

(85)

Similarly, for the spin current one obtains the generic expression

J(t, x) =
δ∑
j=1

∫ ∞
−∞

dλ

2π
sj p

dr′
j (x, t, λ) veff

j (x, t, λ) nj(x, t, λ) (86)
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Figure 9. Snapshots of the entanglement profiles during the double DW melting dynamics for
different values of the interaction coupling γ. The data are obtained with tDMRG for a system
of size L = 225 and ` = 35, and correspond to the charges profiles shown in Fig. 8

that simplifies, thanks to the solution in Eq. (83), to

J(x, t) =

∫
Γ(x,t)

dλ

2π
k′(λ) ζ0 sin(k(λ))

=


sgn(x)ζ0

2π/P

(√
1− (|x|−x0)2

ζ20 t
2 −

√
1− (|x|+x0)2

ζ20 t
2

)
, if |x| 6 ζ0t− `;

sgn(x)ζ0
2π/P

(√
1− (|x|−x0)2

ζ0t2
− cos(π/P )

)
, if |ζ0t− `| < |x| 6 ζ0t+ `.

(87)

Notice that Eqs. (85)-(87) correctly reproduce the non-interacting results of Eqs. (21)-(22)
when Q = 1, P = 2 (i.e., for ∆ = 0). As expected, in the regime |ζ0t− `| < |x| 6 ζ0t+ `, the
exact asymptotic formulae (85)-(87) are the same as those of a single DW, derived in Ref. [40].
On the other hand, the analytic solution of the GHD in the regime |x| 6 ζ0t− ` is non-trivial.

We tested our results (85)-(87) with tDMRG numerical simulations performed using
the open-source library iTensor [95], as shown in Fig. 8 for several values of the interacting
coupling ∆. The physical parameters in the simulations had to be chosen to achieve the best
compromise between having small finite size effects (so large L and `) and little entanglement
(so not too long times). The resulting values are those reported in Fig. 8. Indeed, although
finite-size effects are still visible, the agreement of the curves with the numerics is very good
and it undoubtedly confirms our exact results.

4.5. Numerical analysis of the Entanglement entropy

Finally, we discuss the dynamics of the entanglement for the interacting model (1). We notice
that a re-quantization of the GHD evolution of Sec. 4.3 in terms of a Luttinger liquid is
possible also in the interacting case, as outlined in Ref. [43]. Moreover, in the specific case
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(a) (b)

Figure 10. (a) Numerical analysis of the half-system entanglement at large times t� ` for a
lattice of size L = 120 with ∆ = 0.5 and different domain sizes `. We observe a saturation of
the entanglement to a constant value that we extracted with a best fit of our data (dashed-lines).
(b) Comparison of the numerical results with the Ansatz in Eq. (88) using the proxy (89) for
∆ = 0.5, 0.7. Although finite-size effects affect our data, we see a good agreement, which we
expect to improve with larger values of L, ` and t. In the plot, error bars are extracted from the
covariance matrix of the fitting plateaus.

of a single DW, it has been shown [41] that the low-energy field theory is characterized by
a constant Luttinger parameter, which displays a fractal dependence on ∆. In this simple
instance, conformal invariance is not broken and an asymptotic prediction for the asymptotic
growth of the half-system entanglement can be derived with CFT scaling arguments [41].
Though, in our double DW setting, this is not the case and we find the exact computation of
the entanglement highly non-trivial.

Nevertheless, from the numerical study in Fig. 9, we observe that the behavior of the
entanglement profiles is not qualitatively influenced by the presence of interactions. In
particular, in the regime |ζ0t− `| < |x| 6 ζ0t+ `, we observe that the entanglement spreading
is given by two independent contributions that are developed around each junction. Conversely,
when |x| 6 tζ0 − `, we find an interplay of the quasiparticles emitted from the two walls,
which results into a fast growth of the half-system entanglement entropy, similarly to what
observed in Sec. 3.2 for a free model. Motivated by this strict analogy with the free case, we
expect an asymptotic saturation of entanglement and we conjecture the following form

S1(x, t) ∼ 1

3
log `+ c(γ), (88)

where c(γ) is a non-universal constant depending on the parameter γ that we are unable to
determine. However, by considering the entanglement evolution of two initial domains of
upwards spins with different sizes (respectively ` and `′), we can test our conjecture (88)
considering the difference

∆S1 = S
(`)
1 (0, t)− S(`′)

1 (0, t) ∼ 1

3
log

`

`′
. (89)

We show the results of our simulations in Fig. 10. In particular in Fig. 10(a), we observe
an asymptotic saturation of the half-system entanglement for different values of `. The panel
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10(b) is instead a numerical test of our Ansatz (88), where we construct our proxy in Eq. (89)
with the plateaus obtained as in Fig. 10(a). We find a good agreement for different values of ∆

already for modest values of L and `.

5. Summary and conclusions

We investigated the non-equilibrium dynamics of a spin-1/2 XXZ model (1) at zero temperature,
initially prepared in a state with two domain walls (4). This quench setup is a generalization
of the widely studied bipartitioning protocols (see e.g. [4–8, 35, 37, 40–42]), where now a
central domain of upwards spins x ∈ [−`, `] is joined to two semi-infinite down-oriented
ferromagnets, respectively on its left [−L/2,−`− 1] and right [`+ 1, L/2] sides. In particular,
we focused on the rational case, where ∆ = cos γ and γ = πQ/P , with Q,P two co-prime
integers. In this case, as first noticed in Ref. [40], the structure of the Bethe Ansatz solution
allows us to analytically solve the GHD equations (67) and, as a consequence, to determine the
exact asymptotic evolution of the charges and currents profiles during the melting dynamics
(see Eq. (85) and (87)). The non-trivial result of this paper is that such exact solvability of
the model extends also to a late-time regime characterized by the presence of correlations
between the two domain walls, and therefore, by the emergence of split Fermi-seas. To our
best knowledge, this is the first case where a fully-analytical GHD solution is found with
multiple Fermi points. In Sec. 3, we also treated the case of a non-interacting spin chain (i.e. a
free Fermi gas initially confined in a segment of size 2`) in detail. For the free gas, after the
derivation of the charges profile with standard hydrodynamic techniques (see Sec. 3.1), we
applied recent developments in quantum fluctuating hydrodynamics [6, 49] to give an exact
description of the entanglement entropy (see Eq. (45)). Moreover, we found an asymptotic
saturation of the half-system entanglement entropy as S1(0, t) ∼ 1

3
log `. Motivated by the

strict analogy of the melting dynamics in the free and interacting case, we expect a similar
behavior for the interacting chain (88), as confirmed by several numerical simulations (see
Fig. 10).

We mention that the exact solution of the GHD equations reported in this work can be, in
principle, extended to a whole class of spin chain polarized states such as multiple domain wall
configurations and spin-helix states [96]. Nonetheless, it could be interesting to investigate the
entanglement evolution of a double domain wall state with quantum GHD [41, 43] and, in this
way, to prove our conjecture (88) about the half-system entanglement growth.
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related projects.



24

Appendix A. Some details on the strings solutions.

In this appendix, we report some useful formulae for the determination of the length lj ,
parity uj and sign sj of a given string solution j ∈ {1, . . . , δ}, following the discussion of
Ref. [54]. From the set of numbers {ν1, . . . , νq}, which are obtained from the continued
fraction representation of the interaction coupling γ (see Eq. (2)), we construct the two set of
numbers {y−1, y0, . . . , yq}, {m0,m1, . . . ,mq} as

y−1 ≡ 0, y0 ≡ 1, y1 = ν1, yi>2 = νiyi−1 + yi−2; (A.1a)

m0 ≡ 0; mi>1 =
i∑

p=1

νp (mq ≡ δ). (A.1b)

In terms of these series of numbers we have the following relations for the length lj

lj = yi−1 + (j −mi)yi for mi < j < mi+1, and lδ ≡ yq; (A.2)

the parity uj

uj = (−1)(lj−1)Q/P for mi < j < mi+1, and uδ ≡ (−1)q; (A.3)

and the sign sj
sj = sign(ωj), for mi 6 j < mi+1 (A.4)

where ωj ≡ (−1)i(pi − (j −mi)pi+1) and the series {p0, . . . , pq} is defined by

p0 ≡ π/γ, p1 ≡ 1, pi>2 = pi−2 − νi−1pi−1. (A.5)

As a concrete example, let us consider the case with Q ≡ 1 (hence, γ = π/P ), known
also as root of unity point. In this instance, one finds δ ≡ P strings (see Eq. (3)) with the
following properties

lj = j, uj = 1, ωj = P − lj j ∈ {1, . . . , P − 1}; (A.6)

lP = 1, uP = −1, ωP = −1. (A.7)
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[10] V. Hunyadi, Z. Ràcz, and L. Sasvàri, Dynamic scaling of fronts in the quantum XX chain, Phys. Rev. E 69,

066103 (2004)
[11] T. Platini and D. Karevski, Scaling and front dynamics in Ising quantum chains, Eur. Phys. J. B 48, 225

(2005)
[12] T. Platini and D. Karevski, Relaxation in the XX quantum chain, J. Phys. A 40, 1711 (2007)
[13] A. De Luca, J. Viti, D. Bernard and B. Doyon, Nonequilibrium thermal transport in the quantum Ising

chain, Phys. Rev. B 88,1342301 (2013)
[14] A. De Luca, G. Martelloni and J. Viti, Stationary states in a free fermionic chain from the quench action

method, Phys. Rev. A 91, 021603 (2014)
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