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Abstract

We consider the real-time evolution of the Hubbard model in the limit of infinite coupling.
In this limit the Hamiltonian of the system is mapped into a number-conserving quadratic
form of spinless fermions, i.e. the tight binding model. The relevant local observables,
however, do not transform well under this mapping and take very complicated expressions
in terms of the spinless fermions. Here we show that for two classes of interesting observ-
ables the quench dynamics from product states in the occupation basis can be determined
exactly in terms of correlations in the tight-binding model. In particular, we show that
the time evolution of any function of the total density of particles is mapped directly into
that of the same function of the density of spinless fermions in the tight-binding model.
Moreover, we express the two-point functions of the spin-full fermions at any time after
the quench in terms of correlations of the tight binding model. This sum is generically
very complicated but we show that it leads to simple explicit expressions for the time
evolution of the densities of the two separate species and the correlations between a point
at the boundary and one in the bulk when evolving from the so called generalised nested
Néel states.
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1 Introduction

The Hubbard model is the fundamental paradigm of strongly correlated electrons and, as
such, is attracting the attention of theoreticians from many different corners of condensed
matter. In particular, the 1D version of the Hubbard model is at the focus of the theoretical
activity ever since Lieb and Wu discovered its Bethe Ansatz integrability [1]. In the context
of many-body systems, however, integrability does not mean simplicity: the models solved
by Bethe-Ansatz generically retain non-trivial interactions and many interesting quantities
— most importantly correlations functions — remain inaccessible in most cases. Moreover,
the Bethe Ansatz solution of the 1D Hubbard model is particularly complicated from the
technical point of view: it involves two intertwined sets of Bethe equations, i.e. it is nested
in the technical parlour, and its R-matrix is not in difference form [2]. In spite of this
mathematical complexity, however, a remarkable collective effort led to a comprehensive
description of its equilibrium thermodynamics culminating in a complete account of its
rich phase diagram [2].

A natural next step is then to understand the 1D Hubbard model out of equilibrium.
Indeed, a substantial body of work distributed over the last 15 years (see, e.g., the reviews
in the volumes [3,4]) has revealed that, when driven out of equilibrium, integrable models
display rich and interesting physics. For instance, in homogeneous settings, local observ-
ables in out-of-equilibrium integrable models relax to values described by the generalised
Gibbs Ensemble (GGE) [5, 6] rather than the standard thermal ensemble expected for
non-integrable systems [7, 8]. The GGE is a statistical ensemble built with all the local
and quasi-local conserved charges of the Hamiltonian [9, 10], which are extensively many
in integrable models. Therefore, the GGE retains extensive memory about the initial
configuration. The exact knowledge of the stationary state allows one to compute sta-
tionary values of observables without solving the overwhelmingly complicated many-body
dynamics and, moreover, it also gives access the asymptotic dynamics of correlations [11]
and entanglement [12–14]. Importantly, the occurrence of GGEs has also been observed
experimentally [15].

Another remarkable breakthrough has been the discovery that the late time behaviour
of integrable systems in inhomogeneous settings is described by a set of hydrodynamic
equations involving all the quasi-local charges: such an unconventional hydrodynamic
theory has been termed generalised hydrodynamics (GHD) [16–20]. Despite being macro-
scopically many, the GHD equations can be treated analytically, allowing for an unprece-
dented quantitative comparison between theory and experiments [21–23].

Very few of the aforementioned results, however, have so far been explicitly tested in
the case of the Hubbard model. This is mainly because none of the analytical approaches

2



SciPost Physics Submission

developed to determine the stationary state of out-of-equilibrium integrable systems [24–
27] can be applied to the Hubbard model with finite interaction strength due to its technical
complexity. In essence, the evolution of the Hubbard model has been accessed only in the
quasi-stationary regime using GHD equations [28, 29], whose solution has been explicitly
worked out also for models with a nested Bethe ansatz [30–35]. A promising direction to
compute stationary values in the Hubbard model is the so called quench action method
[26, 27]. Indeed, this approach does not require the explicit form of the set of conserved
charges and, for this reason, it has been used to obtain exact results even when, like
in the Hubbard model, the full charge spectrum was unknown [36–47]. A limitation,
however, is that this method requires the exact overlaps between the initial state and all
the eigenstates of the time-evolving Hamiltonian. These quantities have been accessed
only for a few special initial states [48–56], including one in the Hubbard model with finite
interaction strength [56].

A more general open question concerns the finite-time dynamics of the Hubbard model.
Namely the time evolution of the system away from the asymptotic regime. This regime
is clearly very interesting — for instance accessing it could reveal the quantitative mecha-
nisms allowing quantum many-body systems to attain local equilibrium — but is largely
uncharted in integrable models due to the lack of methods — both analytical and numer-
ical — which are able to access it. For instance, although in principle the quench action
can provide the full post-quench dynamics [26], this task has to be performed numeri-
cally [57,58] and can only access short times or small systems. In summary, because of its
intrinsic difficulty, the non-equilibrium dynamics of the one-dimensional Hubbard model
have so far been investigated mainly by approximate means, see e.g. Refs. [68–76].

Interestingly, however, in recent years a number of exact results concerning the finite
time dynamics have been found in a special class of integrable systems that can be thought
of as strong coupling limits of standard integrable models [59–67]. In this spirit, in Ref.
[77] we considered Hubbard in the limit of infinite repulsion, when the thermodynamics
becomes essentially that of a free model. Exploiting the quench action approach we built
the stationary state reached after quenches from a family of relatively simple low entangled
initial states. The infinite repulsion limit of the Hubbard model has later been considered
in Ref. [78], which presented a method able to reconstruct the full time evolution of
two-point correlations from a special class of product initial states where the spin has to
flip from one particle to the next. The approach of Ref. [78] is based on a mapping to
non-interacting spinless fermions, developed in Ref. [79], that works at the level of the
correlations and accounts for their evolution numerically with polynomial complexity in
time. In this paper we focus again on the finite-time dynamics of the Hubbard model
in the limit of infinite repulsion but reconstruct the dynamics of relevant observables
using a different mapping to free fermions. In particular we consider the operatorial
mapping introduced by Kumar in Ref. [80,81]. Applying Kumar’s mapping we find explicit
analytical expressions for certain relevant correlations. Differently from the results of
Ref. [78], our findings can be applied for initial states with generic spin configurations
and the explicit expressions that we provide can be evaluated in the thermodynamic limit.
On the other hand, being valid for more general initial states, our expressions for generic
two-point correlations are more complicated than those found in Ref. [78].

The rest of this manuscript is laid out as follows. In Sec. 2 we introduce the model and
discuss the infinite interaction limit. In Sec. 3 we provide a detailed review of Kumar’s
mapping for the local observables in the infinite repulsion limit. Sec. 4 is the core of
this manuscript where we use this mapping to obtain the time evolution of several local
observables. In Sec. 5 we summarise our results and discuss some further developments.
Two appendices contain some technical details of our calculations.
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2 Hubbard Model with Infinite Repulsion

We consider a system of interacting spin-full fermions on a one-dimensional lattice whose
dynamics are described by the Hubbard Hamiltonian [2], i.e.

H = −J
L−1∑
x=1

∑
α=↑,↓

(
c†x,αcx+1,α + c†x+1,αcx,α

)
+ U

L∑
x=1

(
nx,↑ −

1

2

)(
nx,↓ −

1

2

)
. (2.1)

Here we denoted by {cx,α} a set of spin-1/2 fermionic operators fulfilling the canonical
anti-commutation relations

{cx,α, cy,β} = {c†x,α, c†y,β} = 0, {cx,α, c†y,β} = δx,yδα,β , α, β =↑, ↓, (2.2)

and by nx,↑/↓ the local number operators

nx,α = c†x,αcx,α. (2.3)

Moreover we indicated by L the number of sites of the chain and we adopted open boundary
conditions.

The vacuum state is defined in the usual fashion as the state annihilated by the oper-
ators cx,α

cx,α |0〉 = 0, x = 1, 2, . . . , L, α =↑, ↓ . (2.4)

Any site on the lattice can have no particles, a fermion with spin up, a fermion with spin
down or two fermions with different spin. These states at site x are constructed by acting
with the fermionic creation operators on the vacuum as follows

|0〉 , c†x,↑ |0〉 , c†x,↓ |0〉 , c†x,↑c
†
x,↓ |0〉 . (2.5)

Since at every site there are 4 possible states, the total Hilbert space has 4L states. We
refer to the states with at least one site with two particles as double occupancy states; note
that these states are the only ones affected by the interaction term.

In this paper we are interested in the limit of infinite interaction, i.e., U → ∞. This
limit can be thought of as a limit of infinite repulsion among the fermions as no two
particles can sit on the same site. Indeed, the double occupancy states have infinite energy
and, therefore, become unphysical. The physical Hilbert space is then the 3L-dimensional
subspace with no double occupancy states.

The effective Hamiltonian describing the dynamics in this limit is written as

H∞ = −J P

L−1∑
x=1

∑
α=↑,↓

(
c†x,αcx+1,α + c†x+1,αcx,α

)P, P =
L∏
x=1

(1− nx,↑nx,↓). (2.6)

This Hamiltonian is known as the t - 0 model [2] and is non-trivial only when the number of
particles is less than L. We remark that, as shown in [82], the Hamiltonian (2.6) provides
a fermionic representation of the so called Maassarani-Mathieu model [83] — a SU(3)
generalisation of the XX spin chain.

3 Kumar mapping to free fermions

Interestingly, as shown by Kumar in Ref. [81] (see also Refs. [80,84]), the Hamiltonian (2.6)
is exactly mapped into the tight-binding model by a unitary transformation, i.e.

U†H∞U = Htb ≡ −J
L+1∑
x=1

(f †x+1fx + f †xfx+1), U†U = U†U = I, (3.1)
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where {fx} are canonical spinless fermions fulfilling

{fx, fy} = {f †x, f †y} = 0, {f †x, fy} = δx,y. (3.2)

This mapping represents the main technical tool of our analysis: In this section we will
pedagogically review the three main steps of the mapping, while in Sec. 4 we will use it to
determine the real-time evolution of interesting observables. Note that Kumar’s mapping
has originally been developed in the case of open boundary conditions but, by addressing
some additional complications, it has later been extended to the periodic case [85]. Here
we stick to the open-chain case for the sake of simplicity.

3.1 Operatorial Mapping

The first step is to define a formal operatorial mapping between the set of spinful fermions
{c†x,α}α=↑,↓ and a set {fx, σa,x}a=1,2,3 composed by canonical spinless fermions f †x fulfilling
(3.2) and Pauli matrices {σa,x}a=1,2,3. In particular, considering a chain with an even
number of sites L we define

c†x,↑ = axxσ+,x, c†x,↓ = 1
2(iayx − axxσ3,x), x odd (3.3a)

c†x,↑ = iayxσ+,x, c†x,↓ = 1
2(axx − iayxσ3,x), x even (3.3b)

where we introduced the Majorana fermions

axx = f †x + fx, iayx = f †x − fx , (3.4)

and the spin-ladder operators

σ±,x =
σ1,x ± iσ2,x

2
. (3.5)

Under the mapping (3.3) the states (2.5) transform as follows

|0〉 7→ |#〉 |−〉 , c†x,↑ |0〉 7→ f †xσ+,x |#〉 |−〉 , (3.6)

c†x,↓ |0〉 7→ f †x |#〉 |−〉 , c†x,↑c
†
x,↓ |0〉 7→ (−1)x+1σ+,x |#〉 |−〉 , (3.7)

where we respectively denoted by |#〉 and |−〉 the spinless-fermion vacuum and the spin-
down state. These states are defined by

fx |#〉 = 0, σ−,x |−〉 = 0, ∀x . (3.8)

The explicit form of the inverse of (3.3) depends on the parity of x. In particular, for odd
x we have

f †x = (1− nx,↑)c†x,↓ − nx,↑cx,↓ , σ3,x = 2nx,↑ − 1 , σ+,x = c†x,↑(c
†
x,↓ + cx,↓) , (3.9a)

axx = (1− 2nx,↑)(c
†
x,↓ + cx,↓) , iayx = c†x,↓ − cx,↓ , (3.9b)

while for even x we find

f †x = nx,↑c
†
x,↓ + (1− nx,↑)cx,↓ , σ3,x = 2nx,↑ − 1 , σ+,x = c†x,↑(c

†
x,↓ − cx,↓), (3.9c)

axx = c†x,↓ + cx,↓ , iayx = (1− 2nx,↑)(c
†
x,↓ − cx,↓) . (3.9d)

For future reference we also note the following simple relationship between the local num-
ber operators in the spinful and spinless fermions(

nx,↑ −
1

2

)(
nx,↓ −

1

2

)
=

1

2

(
1

2
− dx

)
, (3.10)
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where we introduced the local number operator for spinless fermions

dx ≡ f †xfx . (3.11)

Finally, applying the mapping (3.3) to the Hamiltonian (2.1) one finds

H =− J
L−1∑
x=1

[
(f †x+1fx + f †xfx+1)Xx,x+1 + (−1)x(f †x+1f

†
x + fxfx+1)(Xx,x+1 − 1)

]
− U

2

L∑
x=1

(
f †xfx −

1

2

)
, (3.12)

where we introduced the SWAP operator

Xx,x+1 =
1

2
+

1

2

∑
a=1,2,3

σa,x+1σa,x , (3.13)

which exchanges the spin states at positions x and x+ 1. For the sake of completeness we
report the straightforward calculation in Appendix A.

3.2 Infinite-repulsion Limit

The form (3.12) of the Hamiltonian makes it very simple to understand the effect of the
U → ∞ limit. Indeed, U appears in (3.12) only as a chemical potential for the spinless
fermions. This means that the sectors of the Hilbert space with fixed number of fermions
are separated by an energy gap proportional to U and changing the particle number costs
increasingly more energy for increasing values of U , becoming infinitely expensive in the
limit U →∞. As a result, the effect of the limit is to fix the particle number.

As we now review (see also Ref. [84]), the standard way to formalise this intuition is to
employ a Schrieffer-Wolff transformation to the Hamiltonian H/U . The idea is to apply
a unitary transformation of the form

W = eiS . (3.14)

Here S is an Hermitian operator with a regular expansion in J/U , which is chosen to
explicitly move the terms that do not conserve the number of spinless fermions to higher
orders in J/U . Let us begin by breaking the Hamiltonian into four parts

H = UD + JT0 + JT2 + JT−2 , (3.15)

where

D =
L

4
− 1

2

L∑
x=1

f †xfx (3.16a)

T0 = −J
L−1∑
x=1

(f †x+1fx + f †xfx+1)Xx,x+1 (3.16b)

T2 = T †−2 = −J
L−1∑
x=1

(−1)xf †x+1f
†
x(Xx,x+1 − 1) . (3.16c)

The operators D and T conserve the number of spinless fermions, and the operators T2

and T−2 increase and decrease their number by two, respectively. These operators satisfy
the following commutation relations

[Tn, D] = n
2Tn, n = ±2 . (3.17)
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Next we determine S such that the transformation (3.14) moves the operators T2 and T−2

to higher order terms in J/U . We define the transformed Hamiltonian as

H ′ = eiSHe−iS = H + [iS,H] + 1
2 [iS, [iS,H]] + . . . (3.18)

and take S to have a regular power series expansion of the form

S =
J

U
S(0) +

J2

U2
S(1) +

J3

U3
S(2) + . . . . (3.19)

Performing the transformation, we substitute (3.15) and (3.19) into (3.18) and divide by
U

H ′

U
= D +

J

U

(
T0 + T2 + T−2 + [iS(0), D]

)
+
J2

U2

(
[iS(0), (T0 + T2 + T−2)] +

1

2

[
iS(0), [iS(0), D]

]
+ [iS(1), D]

)
+ . . . . (3.20)

To remove the terms that do not conserve the number of fermions at order J/U , we require

T2 + T−2 + [iS(0), D] = 0 . (3.21)

Taking
iS(0) = −T2 = T−2 (3.22)

satisfies this condition and simplifies the transformed Hamiltonian to

H ′

U
= D +

J

U
T0 +O

(
J2

U2

)
. (3.23)

This procedure can be continued, but for our purposes it is sufficient to stop here, giving
a transformed Hamiltonian of the form

H ′ =
UL

4
− U

2

L∑
x=1

f †xfx − J
L−1∑
x=1

(f †x+1fx + f †xfx+1)Xx,x+1 +O
(
J2

U

)
. (3.24)

To take the strong-coupling limit, we act on states with a fixed number of particles, so
that the first two terms contribute a constant which we can ignore. Therefore, in the limit
of infinite interaction the Hamiltonian becomes

H∞ = −J
L−1∑
x=1

Xx,x+1(f †x+1fx + f †xfx+1) , (3.25)

which, as promised, conserves the number of spinless fermions.

3.3 Kumar’s Transformation

The final step of Kumar’s mapping is to remove the spin terms Xx,x+1 from (3.25). This
can be done by applying the following unitary transformation [81]

U ≡ U2U3 · · ·UL, Ux ≡ (1− dx) + dxXx, (3.26)

where
Xx ≡ Xx,x−1Xx−1,x−2 . . . X2,1 , (3.27)
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is the operator implementing a periodic one-site shift to the left in a spin-1/2 chain of x
sites. Note that the operators Xx,x+1 = Xx+1,x are both unitary and Hermitian, whereas
both Xx and Ux are unitary but not Hermitian

X2
x,x−1 = I, X †xXx = I, U †xUx = I , (3.28)

where I represents the identity operator. Moreover

[Ox, Uy] = 0, y < x, (3.29)

where Ox is a generic operator acting non-trivially only at x.
Let us now act with U on a generic single term in the sum of the Hamiltonian (3.25),

specifically
Xx+1,x(f †x+1fx + f †xfx+1) . (3.30)

The first x−1 terms in the product U act trivially, leaving the expression unchanged. This
can be seen by using the commutation relations above to commute all the Ux operators
through to their daggered counterparts where they annihilate each other

U †x−1U
†
x−2 . . . U

†
2Xx+1,x(f †x+1fx + f †xfx+1)U2 . . . Ux−2Ux−1

= Xx+1,x(f †x+1fx + f †xfx+1) . (3.31)

The next term in the product U acts non-trivially. In particular we have

U †xXx+1,x(f †x+1fx + f †xfx+1)Ux = U †xXx+1,x(f †x+1fxXx,x−1 + f †xfx+1)

= f †x+1fxXx+1,xXx + X−1
x Xx+1,xf

†
xfx+1

= f †x+1fxXx+1 + X−1
x+1f

†
xfx+1 . (3.32)

In the first line we acted with the fermions on the operator Ux: since the first product of
two fermions has an annihilation operator at site x, it picks up a factor of Xx. The second
term has a creation operator at site x and therefore remains unchanged. In the second
line, we applied the operator U †x, which results in the second term gaining a factor of X †x .
In the last line we collected the Xx+1,x into the product X operators denoted by X .

Acting with the next term in the product U serves to remove the spin terms entirely

U †x+1(f †x+1fxXx+1 + X †x+1f
†
xfx+1)Ux+1 = f †x+1fxX−1

x+1Xx+1 + X−1
x+1Xx+1f

†
xfx+1

= f †x+1fx + f †xfx+1 . (3.33)

Finally, the remaining terms act trivially, since they commute with the fermions and are
unitary

U †LU
†
L−1 . . . U

†
x+2(f †x+1fx + f †xfx+1)Ux+2 . . . UL−1UL = f †x+1fx + f †xfx+1 . (3.34)

In summary, we have shown that

U†Xx+1,x(f †x+1fx + f †xfx+1)U = f †x+1fx + f †xfx+1, (3.35)

which leads immediately to Kumar’s result [81]

Htb = U†H∞U = −J
L−1∑
x=1

(f †x+1fx + f †xfx+1) . (3.36)
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This free Hamiltonian can now be readily diagonalised using the standard Fourier trans-
form for open boundary conditions

fx =

√
2

L+ 1

∑
k

f(k) sin(kx), k =
nπ

L+ 1
, n = 1, 2, . . . , L , (3.37)

resulting in

Htb =
∑
k

ε(k)f †(k)f(k), ε(k) = −2J cos k . (3.38)

Before concluding this survey we note that the transformation (3.26) is somewhat “asym-
metric” as it treats the two boundaries of the system differently. Indeed, the operator Ux
acts non-trivially only on [1, x]. As might be expected, one can also use an alternative
unitary transformation to map (3.25) into (3.36) which acts “from the other edge” of the
system, namely

V ≡ VL−1VL−2 · · ·V1, Vx ≡ (1− dx) + dxXxX−1
L , (3.39)

where
XxX−1

L = Xx+1,xXx+2,x+1 . . . XL,L−1 , (3.40)

act non-trivially only on [x, L]. Proceeding as above one can readily show

Htb ≡ V†H∞V. (3.41)

Although (3.26) and (3.39) give equivalent results, in the following we will use the original
formulation (3.26) as it is somewhat more intuitive.

4 Time evolution of local observables

The fact that the Hubbard model for infinite repulsion can be mapped to a free Hamil-
tonian opens the possibility to directly compute the time evolution of local observables
after a quantum quench. The task then is to choose local operators and initial states
that transform simply under the Kumar transformation. In this section we fix a family of
simple initial states and present two classes of operators which turn out to have accessible
dynamics. Specifically, we consider quenches from generic product states of the form

|Ψ〉 =

N∏
j=1

c†xj ,σj |0〉 , xj ∈ {1, . . . , L}, σj =↑, ↓, (4.1)

where N ≤ L. The key property of (4.1) is that it takes a factorised form in terms of the
target operators of the Kumar mapping. Namely, under the mapping (3.3) it becomes

|Ψ〉 =

N∏
j=1

f †xj

N∏
j=1

(δσj ,↑σ+,xj + δσj ,↓I) |#〉 |−〉 . (4.2)

We now proceed to identify two classes of “solvable” operators.

9
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4.1 Analytic Functions of the Total Number Operator

The first class of operators with solvable dynamics are F (nx1 , . . . , nxm) where F (z1, . . . , zm)
is an arbitrary analytic function of m variables and

nx ≡ nx,↑ + nx,↓, (4.3)

is the operator counting the number of spin-full fermions at position x. Indeed, we have
the following property

Property 1. For any analytic function F (z1, . . . , zm) we have

〈Ψ|eitH∞F (nx1 , . . . , nxm)e−itH∞ |Ψ〉 = 〈Ψf |eitHtbF (dx1 , . . . , dxm)e−itHtb |Ψf 〉 , (4.4)

where Htb is the tight binding Hamiltonian (cf. (3.36)), dx is the local number operator of
spinless fermions (cf. (3.11)), and we defined

|Ψf 〉 =

N∏
j=1

f †xj |#〉 . (4.5)

Proof. We prove the property in two steps. First we show

〈Ψ|eitH∞F (nx1 , . . . , nxm)e−itH∞ |Ψ〉 = 〈Ψ|eitH∞F (dx1 , . . . , dxm)e−itH∞ |Ψ〉 , (4.6)

and then

〈Ψ|eitH∞F (dx1 , . . . , dxm)e−itH∞ |Ψ〉 = 〈Ψf |eitHtbF (dx1 , . . . , dxm)e−itHtb |Ψf 〉 . (4.7)

Since F (z1, . . . , zm) is analytic we can establish the first step considering generic monomials
of the form

〈Ψ|eitH∞np1x1 · · ·npmxme−itH∞ |Ψ〉 . (4.8)

Now we use (3.10) and (3.3) to obtain

nx = nx,↑ + nx,↓ = dx − 2nx,↑nx,↓

= dx − 2

(
1 + σ3,x

2

)(
1− σ3,x(2dx − 1)

2

)
. (4.9)

In words this means that nx and dx only differ by the operator counting the number of
double occupancies. Therefore, we have

npmxme
−itH∞ |Ψ〉 = dpmxme

−itH∞ |Ψ〉 . (4.10)

Indeed, the state (4.1) does not have double occupancies and the latter are not produced
during the time evolution. This is obvious considering the form (2.6) of the Hamiltonian
but can also be seen from (4.2) and (3.25). Indeed, when expressed in terms of spinless
fermions and Pauli spins, the state |Ψ〉 has up spins only in positions occupied by spinless
fermions and this property is preserved by the Hamiltonian (3.25). Therefore, the second
operator on the second line of (4.9) annihilates it at all times.

Using (4.10) and the fact that nx commute for different x we immediately have (4.6).
To prove the second step we perform the Kumar rotation (3.26). Namely

〈Ψ|eitH∞F (dx1 , . . . , dxm)e−itH∞ |Ψ〉 = 〈Ψ|UU†eitH∞F (dx1 , . . . , dxm)e−itH∞UU†|Ψ〉
= 〈Ψ|UeitHtbF (dx1 , . . . , dxm)e−itHtbU†|Ψ〉 , (4.11)

10
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where we used that U†dxU = dx. To conclude we explicitly evaluate the action of U† on
the state |Ψ〉

U† |Ψ〉 =
(

(1− nL) + nLX †L
)
· · ·
(

(1− n2) + n2X †2
) N∏
j=1

f †xj

N∏
j=1

(δσj ,↑σ+,xj + δσj ,↓I) |#〉 |−〉

= |Ψf 〉

X †xNX †xN−1
· · · X †x2X †x1

N∏
j=1

(δσj ,↑σ+,xj + δσj ,↓I) |−〉


= |Ψf 〉 |σN , σN−1, . . . , σ1︸ ︷︷ ︸

N

,−, . . . ,−︸ ︷︷ ︸
L−N

〉 , (4.12)

where we set X1 = I. Since the transformed version of the state maintains a product form
and F (dx1 , . . . , dxm) acts as the identity on the spin part we immediately have (4.7).

Expressed in physical terms Property 1 states that the evolution of any function of
the density of spin-full fermions is mapped directly into that of the density of spin-less
fermions. In other words, from the point of view of this class of observables the Hubbard
model for U =∞ behaves as a single gas of free fermions. This should be compared with
the U = 0 limit, where, instead, it corresponds to two independent free fermionic gases.

On the practical level this means that the time-evolution of the expectation value of
F (nx1 , . . . , nxm) can can be easily computed using free fermion techniques. For instance,
considering a state |ΨN 〉 with Néel ordering for the particles but with arbitrary spin
configuration, i.e.

|ΨN 〉 =

L/2∏
x=1

c†2x,σ2x |0〉 , σ2x =↑, ↓, (4.13)

the one- and two- point functions of the density operator are explicitly evaluated as

CΨN (x, x, t) =
1

2(L+ 1)

∑
k

(
1 + (−1)xe−4itJ cos(k)

)
(1− cos(2kx)) ,

DΨN (x, y, t) =
1

(L+ 1)2

∑
k1,k2

(1 + (−1)ye−4itJ cos(k1))(1− (−1)ye4itJ cos(k2))

× sin(k1x) sin(k1y) sin(k2x) sin(k2y), (4.14)

where we introduced fermionic and density-density two-point correlators

CΨ(x, y, t)≡〈Ψ|eitH∞c†x,↑cy,↑e
−itH∞ |Ψ〉+ 〈Ψ|eitH∞c†x,↓cy,↓e

−itH∞ |Ψ〉 , (4.15)

DΨ(x, y, t)≡〈Ψ|eitH∞nxnye
−itH∞ |Ψ〉−〈Ψ|eitH∞nxe

−itH∞ |Ψ〉〈Ψ|eitH∞nye
−itH∞ |Ψ〉.

Note that CΨ(x, x, t) only depends on dx even though CΨ(x, y, t) for x 6= y does not.
In the thermodynamic limit L→∞ the above expectation values can be written as

CΨN (x, x, t)th = limthCΨN (x, x, t) =
1

2
[1 + (−1)xJ0(4Jt)− J2x(4Jt)] . (4.16)

DΨN (x, y, t)th = limthDΨN (x, y, t) = δx,y −
∣∣Jx−y(4Jt) + (−1)y+1Jx+y(4Jt)

∣∣2 . (4.17)

Where we introduced the Bessel functions of the first kind

Jn(z) =
1

2π

∫ π

−π
dk ei(nk−z sin(k)) . (4.18)

11
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Figure 1: Time evolution of one-point function (left) and connected two-point function
(right) of the total density operator nx after a quench from an initial state with Néel
order in the particles (cf. (4.13)) in the thermodynamic limit (the insets report the long
time behaviour). The one-point function relaxes to 1/2 in the infinite-time limit while
the connected two-point function goes to δx,0. Note that at times Jt = 2x/4 and Jt =
(x+ y)/4 the correlations begin to be affected by the boundary (the maximal velocity for
the propagation of correlations is vmax = 4J).

The dynamics described by Eqs. (4.16) and (4.17) are illustrated in Fig. (1).
We remark that Property 1 can also be used to compute more complicated functions

of {nx}Lx=1. An interesting example is the time-evolution of the full counting statistics of

NA =
∑
y∈A

ny, (4.19)

i.e., the total number of spinfull fermions in a given subsystem A ⊂ {1, . . . , L}, on the time
evolving state e−itH∞ |N〉. The full counting statistics of a certain observable O in a state
|Φ〉 is the probability distribution for the outcomes of measurements of O in |Φ〉 and, as
such, encodes detailed information about the quantum fluctuations O. In particular, over
the last few years there has been increasing interest in the time-evolution of full counting
statistics after quantum quenches [86–92].

The full counting statistics is completely specified by its Fourier transform, the char-
acteristic function of the probability distribution, which in our case reads as

χΨ(t, A, λ) ≡ 〈Ψ|eitH∞eiλNAe−itH∞ |Ψ〉 = 〈Ψf |eitHtbeiλDAe−itHtb |Ψf 〉 , (4.20)

where we again used Property 1 and we introduced

DA =
∑
y∈A

dy. (4.21)

The r.h.s. of (4.20) is immediately expressed as the determinant of a |A| × |A| matrix [88,
95,96]. In particular we have

χΨ(t, A, λ) = det(I + (eiλ − 1)CΨf
A (t)), (4.22)

where I denotes the identity matrix and

[CΨf
A (t)]x,y = 〈Ψf |eitHtbf †xfye

−itHtb |Ψf 〉 , x, y = 1, . . . , |A| , (4.23)
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Figure 2: Characteristic function χN (t, A, λ) (cf. (4.20)) vs subsystem size for different
times after a quench from the state (4.13) in the thermodynamic limit. The two panels
correspond to λ = π (left) and λ = 7π/5 (right). In both cases χN (t, A, λ) approaches 0
for all ` for large times, signalling the melting of the order.

is the correlation matrix reduced to the subsystem A. In particular, for a state with Néel
order in the particles (cf. (4.13)) we have

[CNfA (t)]x,y = δx,y +
(−1)y

L+ 1

∑
k

sin(kx) sin(ky)e−4iJ cos(k)t, (4.24)

where we introduced

|Nf 〉 =

L/2−1∏
x=0

f †2x+1 |#〉 . (4.25)

Specifically, in the thermodynamic limit we find

limth[CNfA (t)]x,y = δx,y−
ix+y

2
(Jx−y(4Jt)−(−1)xJx+y(4Jt)) , x, y = 1, . . . , |A| . (4.26)

The time evolution of the characteristic function (4.20) for two different values of λ is
depicted in Fig. 2. We see that the Néel order melts very rapidly after the quench.

Before concluding this subsection we note that Property 1 can be immediately extended
to initial states of the form

|Ψ(g)〉 =

 ∑
{yj},{sj}

A{yj},{sj}

N∏
j=1

c†yj ,σj

 |0〉, (4.27)

where |{yj}|= |{sj}|=N<L. In this case, using that dx acts diagonally on the spin sector
we find

〈Ψ(g)|eitH∞F (nx1 , . . . , nxm)e−itH∞ |Ψ(g)〉 = (4.28)

=
∑

{yj},{sj}
|A{yj},{sj}|2 〈Ψf{yj}|eitHtbF (dx1 , . . . , dxm)e−itHtb |Ψf{yj}〉.

Here, for the sake of clarity, we reported the explicit dependence of the state (4.5) on the
set of particle positions {yj}.
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4.2 Two-point correlators

The second class of operators whose dynamics simplifies when evolving from the states
(4.1) are

c
(†)
x,↑(↓)c

(†)
y,↑(↓), (4.29)

i.e., quadratic monomials of spin-full operators. In particular, we consider the only two
equal-time two point functions which are not identically zero because violating spin or
particle number conservation, namely

C↑,Ψ(x, y, t) ≡ 〈Ψ|eitH∞c†x,↑cy,↑e
−itH∞ |Ψ〉 , (4.30)

C↓,Ψ(x, y, t) ≡ 〈Ψ|eitH∞c†x,↓cy,↓e
−itH∞ |Ψ〉 . (4.31)

Firstly, we use a simple argument to rewrite the second correlator as the expectation of
the operator with both spins up, with respect to a spin-flipped state. Let F be the unitary
spin-flip operator such that

Fc(†)
x,↑F† = c

(†)
x,↓, Fc(†)

x,↓F† = c
(†)
x,↑ . (4.32)

Inserting this operator into the correlator gives

C↓,Ψ(x, y, t) = 〈Ψ|F†FeitH∞F†Fc†x,↓F†Fcy,↓F†Fe−itH∞F†F|Ψ〉 . (4.33)

Noting that Hamiltonian (2.1) is invariant under this transformation, the expectation
value can be rewritten as

C↓,Ψ(x, y, t) = C↑,Ψ′(x, y, t) , (4.34)

where

|Ψ′〉 =
N∏
j=1

c†xj ,σ̄j |0〉 , ↑̄ = ↓ , ↓̄ = ↑ . (4.35)

Therefore, to calculate the correlators of interest, we will calculate the expectation value
of the operator with both spins up, but with respect to a generic state |Ψ〉. This makes
the calculation easier, as the Kumar mapping (3.3) is simpler on fermions with spin up.

Employing a similar reasoning we can also restrict ourselves to the case max(x, y) >
L/2, which, as we will see, is easier to treat with the unitary transformation (3.39). Indeed,
if max(x, y) ≤ L/2 we can apply the unitary reflection operator R acting as

Rc(†)
x,↑R† = c

(†)
L+1−x,↑, Rc(†)

x,↓R† = c
(†)
L+1−x,↓ . (4.36)

This gives
C↑,Ψ(x, y, t) = C↑,Ψ′′(L+ 1− x, L+ 1− y, t), (4.37)

with

|Ψ′′〉 =
N∏
j=1

c†L+1−xj ,σj |0〉 . (4.38)

Analogously
C↓,Ψ(x, y, t) = C↑,Ψ′′′(L+ 1− x, L+ 1− y, t), (4.39)

with

|Ψ′′′〉 =
N∏
j=0

c†L+1−xj ,σ̄j |0〉 . (4.40)
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In summary, to evaluate C↑,Ψ(x, y, t) and C↓,Ψ(x, y, t) for all x and y here we consider

C↑,Ψ(x, y, t), max(x, y) > L/2 , (4.41)

and access all the other cases by performing the appropriate spin-flip and reflections of the
state. We begin our analysis of C↑,Ψ(x, y, t): applying the Kumar mapping, the correlators
are written as

C↑,Ψ(x, y, t) = 〈Ψ|eitH∞(f †x + (−1)x+1fx)(fy + (−1)y+1f †y)σ+,xσ−,ye−itH∞ |Ψ〉 , (4.42)

where the Hamiltonian is given by (3.12). This can be further simplified using the fact
that the initial state has fixed particle number

C↑,Ψ(x, y, t) = 〈Ψ|eitH∞(f †xfy + (−1)x+yfxf
†
y)σ+,xσ−,ye−itH∞ |Ψ〉 . (4.43)

Next we apply the unitary transformation (3.26) to write the infinite interaction Hamil-
tonian as the free Hamiltonian Htb (3.36) in the spinless fermions, i.e.

C↑,Ψ(x, y, t) = 〈Ψ|UU†eitH∞UU†(f †xfy + (−1)x+yfxf
†
y)σ+,xσ−,yUU†e−itH∞UU†|Ψ〉 (4.44)

= 〈Ψf | 〈Ψs| eitHtbU†(f †xfy + (−1)x+yfxf
†
y)σ+,xσ−,yUe−itHtb |Ψf 〉 |Ψs〉. (4.45)

Here we used
U† |Ψ〉 = |Ψf 〉 |Ψs〉 , (4.46)

with

|Ψf 〉 =

N∏
j=1

f †xj , |Ψs〉 = |σN , σN−1, . . . , σ1︸ ︷︷ ︸
N

,−, . . . ,−︸ ︷︷ ︸
L−N

〉 . (4.47)

The unitary operator U is a product of operators Uz, and those with z = 1, 2, . . . ,min(x, y)−
1 can be commuted left through the spins and spinless fermions, cancelling with their coun-
terparts in the operator U†. This leaves

C↑,Ψ(x, y, t) = 〈Ψf | 〈Ψs|eitHtbU †L · · ·U
†
min(x,y)(f

†
xfy + (−1)x+yfxf

†
y)

· σ+,xσ−,yUmin(x,y) · · ·ULe−itHtb |Ψf 〉 |Ψs〉 . (4.48)

The operators Uz act on the creation and annihilation operators in the fermions as follows

U (†)
z f †z = X (†)

z , U (†)
z fz = I . (4.49)

Therefore, noting that
[U (†)
x , f (†)

y ] = 0, x 6= y, (4.50)

we can replace Ux/y in (4.48) with either I or Xx/y depending on whether they are on the
left or on the right of the fermionic operators. Specifically we find

C↑,Ψ(x, y, t) = 〈Ψt|T←

X †x max(x,y)−1∏
z=min(x,y)+1

U †z

 f †xfyσ+,xσ−,yT→

Xy max(x,y)−1∏
z=min(x,y)+1

U †z

|Ψt〉

+ (−1)x+y 〈Ψt|T←

X †y max(x,y)−1∏
z=min(x,y)+1

U †z

 fxf †yσ+,xσ−,yT→

Xx max(x,y)−1∏
z=min(x,y)+1

U †z

|Ψt〉. (4.51)
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Here, to write this expression in compact form we introduced the following z-ordered
products of non-commuting operators

T←
[
OxO

′
y

]
=

{
OxO

′
y x > y

O′yOx x < y
, T→

[
OxO

′
y

]
=

{
O′yOx x > y

OxO
′
y x < y

, (4.52)

the state
|Ψt〉 ≡ Umax(x,y)+1 · · ·ULe−itHtb |Ψf 〉 |Ψs〉 , (4.53)

and used the convention
b∏

z=a

U †z = I, for b < a . (4.54)

To evaluate (4.51), we will next expand the operators Ux which will then allow us to write
each term as a product of a correlator in just the spinless fermions (depending on time)
and a correlator in just the spins (independent of time). To express this succinctly we
introduce the following set of projectors

P(k)
x ≡

{
1− dx, k = 0

dx, k = 1
. (4.55)

In this succinct notation, the operators Ux can be written as

Ux =
∑
k=0,1

X kxP(k)
x . (4.56)

We can then write the two-point function as a linear combination of terms, where each
term is the product of a correlator in the spinless fermions and a correlator in the spins.
In particular we have

C↑,Ψ(x, y, t) =
∑

{kz}∈{0,1}
CΨs(x, y, {kz}) 〈Ψf |eitHtbf †xfy

L∏
z=min(x,y)+1
z 6=max(x,y)

P(kz)
z e−itHtb |Ψf 〉

+ (−1)x+y
∑

{kz}∈{0,1}
DΨs(y, x, {kz}) 〈Ψf |eitHtbfxf

†
y

L∏
z=min(x,y)+1
z 6=max(x,y)

P(kz)
z e−itHtb |Ψf 〉 , (4.57)

for x 6= y and

C↑,Ψ(y, y, t) =
∑

{kz}∈{0,1}
EΨs(y, {kz}) 〈Ψf |eitHtb

L∏
z=y

P(kz)
z e−itHtb |Ψf 〉 . (4.58)

To write these expressions we used

P(k)
x P(p)

x = P(k)
x δp,k, (4.59)
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and defined

CΨs(x, y, {kz}) ≡



〈Ψs,kx+1,...,kL | X−1
x σ+,xX−kx−1

x−1 · · · X−ky+1

y+1

·σ−,yXyX ky+1

y+1 · · · X
kx−1

x−1 |Ψs,kx+1,...,kL〉 x > y

〈Ψs,ky+1,...,kL | X
−ky−1

y−1 · · · X−kx+1

x+1 X−1
x σ+,x

· X kx+1

x+1 · · · X
ky−1

y−1 σ−,yXy |Ψs,ky+1,...,kL〉 x < y

, (4.60)

DΨs(x, y, {kz}) ≡



〈Ψs,kx+1,...,kL | X
−kx−1

x−1 · · · X−ky+1

y+1 X−1
y σ−,y

· X ky+1

y+1 · · · X
kx−1

x−1 σ+,xXx |Ψs,kx+1,...,kL〉 x > y

〈Ψs,ky+1,...,kL | X−1
y σ−,yX−ky−1

y−1 · · · X−kx+1

x+1

·σ+,xXxX kx+1

x+1 · · · X
ky−1

y−1 |Ψs,ky+1,...,kL〉 x < y

, (4.61)

EΨs(y, {kz}) ≡ 〈Ψs,ky ,...,kL |σ+,yσ−,y|Ψs,ky ,...,kL〉 , (4.62)

with
|Ψs,ka,...,kb〉 = X kaa · · · X kbb |Ψs〉 . (4.63)

As shown in Appendix B, the above expressions can be written in the following drastically
simpler form

CΨs(x, y, {kz}) = 〈Ψs,K1,K2 |Imin(x,y)−1 ⊗ P (1)
|y−x|+1,K1

⊗ IL−max(x,y)|Ψs,K1,K2〉 , (4.64)

DΨs(x, y, {kz}) = 〈Ψs,K1,K2 |Imin(x,y)−1 ⊗ P (2)
|y−x|+1,K1

⊗ IL−max(x,y)|Ψs,K1,K2〉 , (4.65)

EΨs(y, {kz}) = 〈Ψs,0,K2 |X
−ky+1
y σ+,yσ−,yX ky−1

y |Ψs,0,K2〉 , (4.66)

where we introduced the rank-1 projectors

P
(1)
a,b = |− . . .−︸ ︷︷ ︸

a−b−1

+ . . .+︸ ︷︷ ︸
b+1

〉 〈− . . .−︸ ︷︷ ︸
a−b−1

+ . . .+︸ ︷︷ ︸
b+1

| , a ≥ b+ 1, (4.67)

P
(2)
a,b = |+ . . .+︸ ︷︷ ︸

a−b−1

− . . .−︸ ︷︷ ︸
b+1

〉 〈+ . . .+︸ ︷︷ ︸
a−b−1

− . . .−︸ ︷︷ ︸
b+1

| , a ≥ b+ 1, (4.68)

the state
|Ψs,K1,K2〉 = XK1+1

max(x,y)X
K2
L |Ψs〉 , (4.69)

and we set

K1 ≡
max(x,y)−1∑
z=min(x,y)+1

kz, K2 ≡
L∑

z=max(x,y)+1

kz . (4.70)

Using that kz = 0, 1 we find the following ranges for K1 and K2

K1 ∈ {0, . . . , |y − x| − 1}, K2 ∈ {0, . . . , L−max(x, y)} . (4.71)

The expressions (4.57, 4.64, 4.65) and (4.58, 4.66) provide a substantial simplification
in the calculation of correlation functions: since the correlators (4.64)–(4.66) are constant
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with respect to time, they can be evaluated once and for all and regarded as fixed coef-
ficients. Given a set of coefficients {CΨs(x, y, {kz}),DΨs(x, y, {kz}), EΨs(y, {kz})} one can
then compute the time-evolution of C↑,Ψ(x, y, t) by evaluating a number of correlators in
the tight binding model evolving from a Fock state |Ψf 〉. Since the latter states are Gaus-
sian, this task can be performed efficiently by writing the free fermion correlators in terms
of determinants. Although the sums in (4.57) and (4.58) generically involve a very large
number of terms (of the order of 2L), for specific states (4.47) and positions x and y the
sums can be exactly performed leading to explicit analytical expressions. For instance, let
us consider two specific “generalised nested Néel” states of Ref. [77]:

|N22〉 =

L/4∏
x=1

c†4x−2,↑c
†
4x,↓ |0〉 , |N ′22〉 =

L/4∏
x=1

c†4x−2,↓c
†
4x,↑ |0〉 , (4.72a)

|N ′′22〉 =

L/4−1∏
x=0

c†4x+1,↓c
†
4x+3,↑ |0〉 , |N ′′′22〉 =

L/4−1∏
x=0

c†4x+1,↑c
†
4x+3,↓ |0〉 , (4.72b)

and

|N23〉 =

L/6∏
x=1

c†6x−4,↑c
†
6x−2,↓c

†
6x,↓ |0〉 , |N ′23〉 =

L/6∏
x=1

c†6x−4,↓c
†
6x−2,↑c

†
6x,↑ |0〉 , (4.73a)

|N ′′23〉 =

L/6−1∏
x=0

c†6x+1,↓c
†
6x+3,↓c

†
6x+5,↑ |0〉 , |N ′′′23〉 =

L/6−1∏
x=0

c†6x+1,↑c
†
6x+3,↑c

†
6x+5,↓ |0〉 . (4.73b)

Note that in the case of (4.72) we took the chain length to be multiple of 4 while in the
case of (4.73) we took it to be a multiple of 6. We also remark that the dynamics from the
states (4.72) can also be studied with the approach of Ref. [78] but the ones from (4.73)
can not.

4.2.1 States (4.72)

For the initial states (4.72) we find

|N22f 〉 = |N ′22f 〉 = |Nf 〉 ≡
L/2−1∏
x=0

f †2x+1 |#〉 ,

|N ′′22f 〉 = |N ′′′22f 〉 = |N̄f 〉 ≡
L/2−1∏
x=0

f †2x |#〉 , (4.74)

|N22s〉 = |N ′′′22s〉 = |S〉 ≡
L/4∏
y=1

σ+,2y−1 |−〉,

|N22s〉 = |N ′′′22s〉 = |S̄〉 ≡
L/4∏
y=1

σ+,2y |−〉. (4.75)

From the expressions (4.74, 4.75) and the explicit form (4.64)–(4.66) of the coefficients
one can deduce a number of general constraints. First we note that C(x, y, {kz}) and
D(x, y, {kz}) respectively vanish for K1 > 1 and |x−y|−K1 < 2 because the states (4.75)
do not feature a block of up spins of size larger than one. The second observation is that
all coefficients vanish if |x − y| > L/2. This is because the projectors (4.67) and (4.68)
can give a non-zero result only if the blocks of down spins in (4.67)–(4.68) are contracted
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with the block of down spins in the states (4.75). This can happen only if the size of the
block of down spins in the states is larger then or equal to the support of the projectors.
Noting that the former is L/2 + 1 and the latter |x − y| + 1 gives the above inequality.
Note that this constraint is in agreement with physical intuition: the correlations

C↑,N22(x, y, t), C↑,N ′22(x, y, t), C↑,N ′′22(x, y, t), C↑,N ′′′22(x, y, t), (4.76)

can be non zero only if there are no particles between x and y. The best case is then when
all other particles are squeezed at the two edges of the system leaving a free region of size
L/2.

In fact, from (4.64)–(4.66) one can easily evaluate the coefficients explicitly. Here,
however, we do not present the explicit expressions but rather show two simple examples
where the correlations take a particularly simple form.

Number operators. The case x = y is perhaps the simplest limiting case. Indeed,
recalling the form (4.75) of the states, we immediately find

ES(y, {kz}) = δky ,1mod(K2, 2)θ(L/2 ≥ K2 + 1)

+ δky ,0mod(K2 + y − 1, 2)θ(L/2 ≥ K2 + y) , (4.77)

ES̄(y, {kz}) = δky ,1mod(K2 + 1, 2)θ(L/2 > K2 + 1)

+ δky ,0mod(K2 + y, 2)θ(L/2 > K2 + y) . (4.78)

where we used 0 ≤ K2 ≤ L− y (cf. (4.71)). Using now y > L/2 we find

ES(y, {kz}) = δky ,1mod(K2, 2), ES̄(y, {kz}) = δky ,1mod(K2 + 1, 2) . (4.79)

Plugging back into (4.58) and using∑
{kz}∈{0,1}

mod(ky+1 + · · ·+ kL + a, 2) =
1

2

∑
η=±

∑
{kz}∈{0,1}

ηky+1+....+kL+a+1, (4.80)

we find

C↑,N22(y, y, t) =
1

2
〈Nf |eitHtbdy

1−
L∏

z=y+1

(1− 2dz)

 e−itHtb |Nf 〉 , (4.81)

C↑,N ′22(y, y, t) =
1

2
〈Nf |eitHtbdy

1 +
L∏

z=y+1

(1− 2dz)

 e−itHtb |Nf 〉 , (4.82)

C↑,N ′′22(y, y, t) =
1

2
〈N̄f |eitHtbdy

1 +

L∏
z=y+1

(1− 2dz)

 e−itHtb |N̄f 〉

=
1

2
〈Nf |eitHtbdL+1−y

[
1 +

L−y∏
z=1

(1− 2dz)

]
e−itHtb |Nf 〉 , (4.83)

C↑,N ′′′22(y, y, t) =
1

2
〈N̄f |eitHtbdy

1−
L∏

z=y+1

(1− 2dz)

 e−itHtb |N̄f 〉

=
1

2
〈Nf |eitHtbdL+1−y

[
1−

L−y∏
z=1

(1− 2dz)

]
e−itHtb |Nf 〉 , (4.84)
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where in the second lines of (4.83) and (4.84) we performed a reflection in the tight-binding
model. Using (4.34), (4.37) and (4.39) we then have

C↑/↓,N22
(y, y, t) =

1

2



〈Nf |eitHtbdy

1∓
L∏

z=y+1

(1− 2dz)

 e−itHtb |Nf 〉 , y > L/2

〈Nf |eitHtbdy

1±
L∏

z=y+1

(1− 2dz)

 e−itHtb |Nf 〉 , y ≤ L/2

. (4.85)

Finally, noting that

|Nf 〉 = eiπD{1,...,L} |Nf 〉 = eiπL |Nf 〉 , [Htb, D{1,...,L}] = 0, (4.86)

where DA is defined in (4.21), we can rewrite the expressions in the following compact
form

C↑/↓,N22
(y, y, t) =

1

2
〈Nf |eitHtbdy(1± eiπD{1,...,y−1})e−itHtb |Nf 〉

=
1

2
〈Nf |eitHtbdye

−itHtb |Nf 〉

∓ 1

4
〈Nf |eitHtb(eiπD{1,...,y} − eiπD{1,...,y−1})e−itHtb |Nf 〉 . (4.87)

Using (4.20) and (4.22) we then have

C↑/↓,N22
(y, y, t) =

1

2
〈Nf |dy(t)|Nf 〉∓

1

4
[χN (t, {1, . . . , y}, π)− χN (t, {1, . . . , y − 1}, π)]

=
1

2
〈Nf |dy(t)|Nf 〉∓

1

4

[
det(I− 2CNf{1,...,y}(t))−det(I− 2CNf{1,...,y−1}(t)

]
, (4.88)

where the correlation matrix is reported explicitly in (4.23). Since the characteristic func-
tion χN (t, A, λ) decays very rapidly to zero after a quench from a state with Néel ordering
in the particles (cf. Fig 2), we expect C↑/↓,N22

(y, y, t) to rapidly approach 〈Nf |dy(t)|Nf 〉 /2.
This is explicitly demonstrated in Fig. 3.

This fact is remarkable: we found that in the presence of Néel ordering in both par-
ticles and spin the spin resolved densities approach very rapidly a value that is entirely
determined by the free fermion result 〈Nf |dy(t)|Nf 〉. More precisely we have

〈N22|eitH∞nx,↑/↓e
−itH∞ |N22〉 7→

1

L
〈N22s|

L∑
x=1

σ+/−,x|N22s〉 〈Nf |dy(t)|Nf 〉 . (4.89)

This means that for these observables the time evolution undergoes two different phases.
First they equilibrate “locally” to the time-dependent free fermion result and then they
reach stationarity following the free fermionic dynamics. In the next subsection we will
see that the same kind of “local equilibration” occurs also for generalised Néel ordering
in the spin. Namely, this effect takes place every time that the spin configuration {σj}
(cf. (4.1)) has a periodic pattern.

Boundary Correlations. Another simple limiting case for the states (4.75) is y = L.
Indeed, in this case we have that the range of values that K2 can take is shrunk to K2 = 0
(cf. (4.71)). Moreover, we immediately see that

CΨs(x, L, {kz}) = δK1,0δ(s)1,+θ(x > L/2), DΨs(x, L, {kz}) = 0, (4.90)
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Figure 3: Dynamics of the number operators after a quench from the generalised
nested Néel state (4.72) in the thermodynamic limit. The left panel shows the time
evolution of the densities at x = 35, comparing C↑,N22(y, y, t), C↓,N22(y, y, t), and
(C↑,N22(y, y, t) + C↓,N22(y, y, t))/2 = 〈Nf |dy(t)|Nf 〉 /2. The right panel shows fixed-time
slices of |C↑,N22(y, y, t)− C↓,N22(y, y, t)|.

where (s)1 is the first spin of |Ψs〉 (one of the two states (4.75)). Plugging into (4.57) this
leads to

C↑,Ψ(x, y, t) = δ(s)1,+θ(L/2 > |x− y|) 〈Ψf |eitHtbf †x

L−1∏
z=x+1

(1− dz)fLe−itHtb |Ψf 〉 . (4.91)

Using again (4.34), (4.37) and (4.39) we finally obtain

C↑,N22(x, 1, t) = θ(x < L/2 + 1) 〈Nf |eitHtbf †x

x−1∏
z=2

(1− dz)f1e
−itHtb |Nf 〉 , (4.92)

C↓,N22(x, L, t) = θ(x > L/2) 〈Nf |eitHtbf †x

L−1∏
z=x+1

(1− dz)fLe−itHtb |Nf 〉 , (4.93)

C↑,N22(x, L, t) = C↓,N22(x, 1, t) = 0 . (4.94)

These expressions are again written in terms of determinants involving the correlation
matrix (4.23). In particular, we have

C↑,N22(x, 1, t) = θ(x < L/2 + 1) det(CNf ′{1,...,x−1}(t)) ,

C↓,N22(x, L, t) = θ(x > L/2) det(CNf ′′{x,...,L−1}(t)), (4.95)

where we defined

[CNf ′A ]x,y = [CNfA ]x+1,y − δx+1,y , [CNf ′′A ]x,y = [CNfA ]x,y+1 − δx,y+1 . (4.96)

A representative example of the dynamics of C↑,N (x, 1, t) in the thermodynamic limit is
reported in Fig. 4

21



SciPost Physics Submission

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35

|C
↑,
N

2
2
(x
,1
,t
)|

Jt

x = 5
x = 6

m
ax

t
|C
↑,
N

2
2
|

x

0

0.001

0.002

0.003

0.004

0.005

2 4 6 8 10 12 14

0
0.1
0.2
0.3
0.4

0 2 4 6 8 10 12 14

|C
↑,
N

2
2
(x
,1
,t
)|

x

t = 0
t = 10
t = 20
t = 30

m
ax

x
|C
↑,
N

2
2
|

t

Figure 4: Dynamics of the bulk boundary correlation C↑,N22(x, 1, t) after a quench from
the nested Néel state (4.72) in the thermodynamic limit. The left panel reports the
time evolution of |C↑,N22(x, 1, t)| at two specific positions while the right panel shows
four fixed-time cuts of |C↑,N22(x, 1, t)| (the insets respectively show the decay in x of
maxt |C↑,N22(x, 1, t)| and in t of maxx |C↑,N22(x, 1, t)|).

4.2.2 States (4.73)

For the states (4.73) we find

|N23f 〉 = |N ′23f 〉 = |Nf 〉 ≡
L/2−1∏
x=0

f †2x+1 |#〉 ,

|N ′′23f 〉 = |N ′′′23f 〉 = |N̄f 〉 ≡
L/2−1∏
x=0

f †2x |#〉 , (4.97)

|N23s〉 = |S1〉 ≡
L/6∏
y=1

σ+,3y |−〉,

|N ′23s〉 = |S2〉 ≡
L/6∏
y=1

σ+,3y−2σ+,3y−1 |−〉, (4.98)

|N ′′23s〉 = |S̄1〉 ≡
L/6∏
y=1

σ+,3y−2 |−〉,

|N ′′′23s〉 = |S̄2〉 ≡
L/6∏
y=0

σ+,3y−1σ+,3y |−〉 . (4.99)

Once again combining these expressions and the explicit forms (4.64)–(4.66) of the coeffi-
cients one can deduce a number of general constrains on K1, K2, x and y. For instance,
we have that all C coefficients vanish unless K1 < 3 and all D coefficients vanish unless
|x− y| −K1 < 4. Finally, all coefficients are zero if |x− y| > L/2 + 1.

Focussing again on simple limiting cases, and using

ES1(y, {kz}) = δky ,1δmod(K2+1,3), (4.100)

ES2(y, {kz}) = δky ,1δmod(K2,3) + δky ,1δmod(K2+2,3) , (4.101)

ES̄1
(y, {kz}) = δky ,1δmod(K2,3), (4.102)

ES̄2
(y, {kz}) = δky ,1δmod(K2+1,3) + δky ,1δmod(K2+2,3) , (4.103)
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for y > L/2, we find

C↑,N23(y, y, t) =
1

3

2∑
n=0

ei
2π
3
n 〈Nf |eitHtbdye

i 2π
3
nD{y+1,...,L}e−itHtb |Nf 〉 , (4.104)

C↑,N ′23(y, y, t) =
1

3

2∑
n=0

(1 + ei
4π
3
n) 〈Nf |eitHtbdye

i 2π
3
nD{y+1,...,L}e−itHtb |Nf 〉 , (4.105)

C↑,N ′′23(y, y, t) =
1

3

2∑
n=0

〈Nf |eitHtbdL−y+1e
i 2π

3
nD{1,...,L−y}e−itHtb |Nf 〉 , (4.106)

C↑,N ′′′23(y, y, t) =
1

3

2∑
n=0

(ei
2π
3
n + ei

4π
3
n) 〈Nf |eitHtbdL+1−yei

2π
3
nD{1,...,L−y}e−itHtb |Nf 〉 . (4.107)

Employing now (4.34), (4.37) and (4.39) this leads to

C↑,N23(y, y, t) =
1

3

2∑
n=0

〈Nf |eitHtbdye
i 2π

3
nD{1,...,y−1}e−itHtb |Nf 〉 ,

C↓,N23(y, y, t) =
1

3

2∑
n=0

(ei
2π
3
n + ei

4π
3
n) 〈Nf |eitHtbdye

i 2π
3
nD{1,...,y−1}e−itHtb |Nf 〉 . (4.108)

In terms of determinants we have

C↑,N23(y, y, t) =
1

3
〈Nf |eitHtbdye

−itHtb |Nf 〉

+
1

3

2∑
n=1

1

ei
2π
3
n − 1

[
det(I− (ei

2π
3
n − 1)CNf{1,...,y}(t))

−det(I− (ei
2π
3
n − 1)CNf{1,...,y−1}(t)

]
, (4.109)

C↓,N23(y, y, t) =
2

3
〈Nf |eitHtbdye

−itHtb |Nf 〉

+
1

3

2∑
n=1

ei
2π
3
n + ei

4π
3
n

ei
2π
3
n − 1

[
det(I− (ei

2π
3
n − 1)CNf{1,...,y}(t))

−det(I− (ei
2π
3
n − 1)CNf{1,...,y−1}(t)

]
. (4.110)

As promised, also in this case we see the local equilibration (4.89) taking place after a
short transient.

Moreover, using that the only non-zero coefficients for y = L are

CS̄1
(x, L, {kz}) = δK1,0θ(x > L/2), (4.111)

CS2(x, L, {kz}) = (δK1,0 + δK1,1)θ(x > L/2− 1), (4.112)

we find

C↑,N23(x, 1, t) = θ(x < L/2 + 1) det(CNf ′{1,...,x−1}(t)) ,

C↓,N23(x, L, t) = θ(x > L/2− 1)
L−1∑
y=x+1

det(CNf ′′{x,...,L−1},y(t)), (4.113)
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where we defined

[CNf ′′A,y0
]x,y =


[CNfA ]x,y+1 − δx,y+1 x, y > y0

[CNfA ]x,y − δx,y x > y0, y ≤ y0

[CNfA ]x−1,y+1 − δx−1,y+1 y > y0, x ≤ y0

[CNfA ]x−1,y − δx−1,y x, y ≤ y0

. (4.114)

This treatment is easily generalised to all states |Npq〉 with p, q ≥ 2.

5 Conclusions

In this paper we studied the real-time dynamics of the Hubbard model with open boundary
conditions in the limit of infinite repulsion. In this limit, as shown in Ref. [81], the
Hamiltonian of the model can be unitarily mapped into the tight-binding model at the
price of complicating the form of the observables. Here we showed that, in spite of this
complication, one can efficiently compute the evolution of the expectation values of certain
observables after a quench from initial states in product form. In particular, we pointed
out that the expectation value of any function of the total density is exactly equal to the
analogous quantity in the tight-binding model. Moreover, we proved that the two point
functions of the Hubbard fermions can be expressed as linear combinations of determinants
multiplied by simple time-independent coefficients. Specifically, we obtained particularly
simple expressions for the expectation value of the densities of particles of each separate
species and for the correlation between one point at the boundary and one in the bulk
evolving from the generalised nested Néel states of Ref. [77]. Our results on the evolution
of total densities are directly extended for initial states not in product form, while generic
two point functions become more complicated when foregoing the product structure.

Our results are also the starting point for a number of interesting further develop-
ments. First we can use our results to study inhomogeneous initial states such as those
corresponding to bipartitioning protocols with global spin imbalance. This would allow
to obtain correlation functions which are not accessible in GHD (except for zero entropy
states [99]) potentially accessing the diffusive scale. Indeed, the strong coupling Hubbard
can be thought of as a quantum version of the classical cellular automaton studied in
Refs. [100, 101], which could access the diffusion constant exactly. Another more difficult
development concerns the use of our results as a starting point to set up an equations-of-
motion scheme — similar to the one used to study prethermalization weakly interacting
systems [68,102–105] — to study the Hubbard model with large but finite interaction. A
final extension of our calculations, motivated by recent cold-atom experiments [106] and
by the results of Ref. [78], is to apply the generalised Kumar’s mapping of Ref. [80] to the
quench dynamics of a multispecies Hubbard model with SU(N) symmetry.
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A Kumar mapping on the Hubbard Hamiltonian with finite
interaction

To apply the Kumar mapping (3.3) to the Hamiltonian (2.1) we break sum across odd
and even sites and then write everything in terms of the Majorana fermions

H =− J
∑
α=↑,↓

L/2∑
x=1

(
c†2x−1,αc2x,α + c†2x,αc2x−1,α

)
+

(L−1)/2∑
x=1

(
c†2x,αc2x+1,α + c†2x+1,αc2x,α

)
+ U

L∑
x=1

(
nx,↑ −

1

2

)(
nx,↓ −

1

2

)

=− J

L/2∑
x=1

(
c†2x−1,↑c2x,↑ + c†2x,↑c2x−1,↑

)
+

(L−1)/2∑
x=1

(
c†2x,↑c2x+1,↑ + c†2x+1,↑c2x,↑

)

+

L/2∑
x=1

(
c†2x−1,↓c2x,↓ + c†2x,↓c2x−1,↓

)
+

(L−1)/2∑
x=1

(
c†2x,↓c2x+1,↓ + c†2x+1,↓c2x,↓

)
+ U

L∑
x=1

(
nx,↑ −

1

2

)(
nx,↓ −

1

2

)

=− J
L/2∑
x=1

(
ax2x−1σ

+
2x−1(−iay2xσ

−
2x) + iay2xσ

+
2xa

x
2x−1σ

−
2x−1

)
− J

(L−1)/2∑
x=1

(
iay2xσ

+
2xa

x
2x+1σ

−
2x+1 + ax2x+1σ

+
2x+1(−iay2xσ

−
2x

)
− J

4

L/2∑
x=1

(
(iay2x−1 − ax2x−1σ

z
2x−1)(ax2x + iay2xσ

z
2x) + (ax2x − iay2xσ

z
2x)(−iay2x−1 − ax2x−1σ

z
2x−1)

)
− J

4

(L−1)/2∑
x=1

(
(ax2x − iay2xσ

z
2x)(−iay2x+1 − ax2x+1σ

z
2x+1) + (iay2x+1 − ax2x+1σ

z
2x+1)(ax2x + iay2xσ

z
2x)
)

+
U

2

L∑
x=1

(
1

2
− dx

)
. (A.1)

Note that in the U -dependent term we have applied the identity (3.10). We then expand
and simplify the summands of the first two sums, before combining them with the second
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two sums. This results in

H =− J

L/2∑
x=1

(
ax2x−1σ

+
2x−1(−iay2xσ

−
2x) + iay2xσ

+
2xa

x
2x−1σ

−
2x−1

)

+

(L−1)/2∑
x=1

(
iay2xσ

+
2xa

x
2x+1σ

−
2x+1 + ax2x+1σ

+
2x+1(−iay2xσ

−
2x

)
+

1

4

L/2∑
x=1

(
(iay2x−1 − ax2x−1σ

z
2x−1)(ax2x + iay2xσ

z
2x) + (iay2x−1 + ax2x−1σ

z
2x−1)(ax2x − iay2xσ

z
2x)
)

+
1

4

(L−1)/2∑
x=1

(
(iay2x+1 + ax2x+1σ

z
2x+1)(ax2x − iay2xσ

z
2x) + (iay2x+1 − ax2x+1σ

z
2x+1)(ax2x + iay2xσ

z
2x)
)

+
U

2

L∑
x=1

(
1

2
− dx

)

=− J

2

L/2∑
x=1

(
2ax2x−1σ

+
2x−1(−iay2xσ

−
2x) + 2iay2xσ

+
2xa

x
2x−1σ

−
2x−1 + iay2x−1a

x
2x − ax2x−1σ

z
2x−1iay2xσ

z
2x

)

+

(L−1)/2∑
x=1

(
2iay2xσ

+
2xa

x
2x+1σ

−
2x+1 + 2ax2x+1σ

+
2x+1(−iay2xσ

−
2x) + iay2x+1a

x
2x − ax2x+1σ

z
2x+1iay2xσ

z
2x

)
+
U

2

L∑
x=1

(
1

2
− dx

)
.

The two J-dependent sums have the same form, so we combine them introducing a sum
over s = ±1. Note that from the boundary conditions axL+1 = ayL+1 = 0, so the term with
x = L/2, s = 1 contributes nothing to the sum. The summand has a common factor in
the Majorana fermions, so we extract this and simplify the part depending on the spins

H = −J
2

∑
s=±1

L/2∑
x=1

[
iay2xa

x
2x+s

(
2σ+

2x+sσ
−
2x + 2σ+

2xσ
−
2x+s + σz2x+sσ

z
2x

)
+ iay2x+sa

x
2x

]
+
U

2

L∑
x=1

(
1

2
− dx

)

= −J
2

∑
s=±1

L/2∑
x=1

[
iay2xa

x
2x+s (2X2x,2x+s − 1) + iay2x+sa

x
2x

]
+
U

2

L∑
x=1

(
1

2
− dx

)
,

where we introduced the short-hand notation

Xx,x+1 =
1

2
+

1

2

∑
a=1,2,3

σa,x+1σa,x . (A.2)
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Next we express the Hamiltonian in terms of the spinless fermions which are related to
the Majorana fermions by (3.4)

H =− J

2

∑
s=±1

L/2∑
x=1

[
(f †2x − f2x)(f †2x+s + f2x+s) (σ2x+s ·σ2x) + (f †2x+s − f2x+s)(f

†
2x + f2x)

]

+
UL

4
− U

2

L∑
x=1

f †xfx

=− J
∑
s=±1

L/2∑
x=1

[
(f †2xf2x+s + f †2x+sf2x)X2x,2x+s + (f †2xf

†
2x+s − f2xf2x+s)(X2x,2x+s − 1)

]

− U

2

L∑
x=1

(
f †xfx −

1

2

)
.

Finally, we sum explicitly over s and observe that we can rewrite the sum over all the sites
instead of having separate terms for odd and even sites. This leads to (3.12).

B Simplification of the Coefficients

Using the algebraic relations

X−1
a σ±,xmod aXa = σ±,x+1 mod a, X−1

a (Ok ⊗ Ia−k)Xa = X−1
b (Ok ⊗ Ib−k)Xb , (B.1)

where Ok is a generic operator of support k and a, b > k, together with

X−1
a Xb = X−1

max(a,b)(Imin(a,b)−1 ⊗X sgn(b−a)
|b−a|+1 )Xmax(a,b), (B.2)

we can rewrite (4.60) and (4.61) as follows

CΨs(x, y, {kz}) =


〈Ψs,K1,K2 |σ+,x−K1(Iy−1 ⊗X−1

x−y+1)σ−,x |Ψs,K1,K2〉 x > y

〈Ψs,K1,K2 |σ+,y(Ix−1 ⊗Xy−x+1)σ−,y−K1 |Ψs,K1,K2〉 x < y

, (B.3)

DΨs(x, y, {kz}) =


〈Ψs,K1,K2 |σ−,x(Iy−1 ⊗Xx−y+1)σ+,x−K1 |Ψs,K1,K2〉 x > y

〈Ψs,K1,K2 |σ−,y−K1(Ix−1 ⊗X−1
y−x+1)σ+,y |Ψs,K1,K2〉 x < y

, (B.4)

EΨs(y, {kz}) = 〈Ψs,0,K2 |X
−ky+1
y σ+,yσ−,yX ky−1

y |Ψs,0,K2〉 , (B.5)

where |Ψs,K1,K2〉 is defined in Eq. (4.69) while K1 and K2 are defined in Eq. (4.71). Now
we note that |Ψs,K1,K2〉 is an eigenvector of σ3,x for all x. Namely it is written as

|Ψs,K1,K2〉 = |s1, . . . , sL〉 , (B.6)

for some {sj} = ±. This follows from the fact that |Ψs〉 is of the form (B.6) and Xz are
deterministic in the basis (B.6).
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Now we consider CSA(x, y, {kz}) and DSA(x, y, {kz}) separately. In particular, since

〈Ψs,K1,K2 |σ+,max(y,x)(Imin(y,x)−1 ⊗X|y−x|+1)σ−,max(y,x)−K1
|Ψs,K1,K2〉 =

=

max(x,y)−K1−1∏
i=1

δsi,−

max(x,y)∏
i=max(x,y)−K1

δsi,+, (B.7)

we have

CΨs(x, y, {kz}) = 〈Ψs,K1,K2 |Imin(x,y)−1 ⊗ P (1)
|y−x|+1,K1

⊗ IL−max(x,y)|Ψs,K1,K2〉 . (B.8)

where P
(1)
a,b is defined in (4.67). Similarly, we have

〈Ψs,K1,K2 |σ−,max(y,x)−K1
(Imin(y,x)−1 ⊗X−1

|y−x|+1)σ+,max(y,x)|Ψs,K1,K2〉 =

=

max(x,y)−K1−1∏
i=1

δsi,−

max(x,y)∏
i=max(x,y)−K1

δsi,+, (B.9)

which implies

DΨs(x, y, {kz}) = 〈Ψs,K1,K2 |Imin(x,y)−1 ⊗ P (2)
|y−x|+1,K1

⊗ IL−max(x,y)|Ψs,K1,K2〉 , (B.10)

where P
(2)
a,b is defined in (4.68).
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odd particle numbers and Lieb-Liniger scaling limit, J. Phys. A 47, 345003 (2014);
M. Brockmann, J. D. Nardis, B. Wouters, and J.-S. Caux, A Gaudin-like determinant
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[82] F. Göhmann and S. Murakami, Fermionic representations of integrable lattice sys-
tems, J. Phys. A:Math. Gen. 31, 7729 (1998).

[83] Z. Maassarani and P. Mathieu, The su(N) XX model, Nucl. Phys. B 517, 395 (1998).

[84] A. Nocera, F. H. L. Essler, and A. E. Feiguin, Finite-temperature dynamics of the
Mott insulating Hubbard chain, Phys. Rev. B 97, 045146 (2018).

[85] W. Brzezicki, J. Dziarmaga, and A. M. Oleś, Topological order in an entangled
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