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Abstract

We investigate the entanglement dynamics in a free-fermion chain initially pre-
pared in a Fermi sea and subjected to localized losses (dissipative impurity).
We derive a formula describing the dynamics of the entanglement entropies in
the hydrodynamic limit of long times and large intervals. The result depends
only on the absorption coefficient of the effective delta potential describing
the impurity in the hydrodynamic limit. Genuine dissipation-induced entan-
glement is certified by the linear growth of the logarithmic negativity. Finally,
in the quantum Zeno regime at strong dissipation the entanglement growth is
arrested (Zeno entanglement death).

1 Introduction

Common experience suggests that the interaction between a quantum system and its
environment, and the ensuing dissipation, is detrimental for quantum entanglement. In
recent years this view was challenged as it was realized that dissipation can be a resource
to engineer quantum states [1], for quantum computation [2], or to stabilize exotic states
of matter, such as topological order [3]. These results, together with the interest in Noisy-
Intermediate-Scale-Quantum (NISQ) devices [4], urge for a thorough understanding of the
interplay between entanglement and dissipation in open quantum systems.

A major obstacle is that it is a challenging task to encapsulate the system-environment
interaction within a theoretical framework. Within the so-called Markovian approxima-
tion, the Lindblad equation provides a powerful framework to address open quantum
systems [5]. Interestingly, for some models it is possible to obtain exact solutions of
the Lindblad equation [6–16], for instance, in noninteracting systems with linear dissi-
pators [6]. Perturbative field-theoretical approaches are also available [17]. A promising
direction is to extend the hydrodynamic framework to integrable systems subjected to
dissipation [14, 18–21]. This is motivated by the tremendous success of Generalized Hy-
drodynamics (GHD) for integrable systems [22, 23]. In some simple free-fermion setups
it has been shown that it is possible to use a hydrodynamic approach to described the
entanglement dynamics [24, 25]. This generalizes a well-known quasiparticle picture for
the entanglement spreading in integrable systems [26–33].

Dissipative impurities provide a minimal theoretical laboratory to study the effects of
dissipation in quantum many-body systems. They are the focus of rapidly-growing inter-
est, both theoretical [34–46], as well as experimental [47–52], also in interacting fermionic
systems [53,54]. The interplay between entanglement and thermodynamic entropy in the
presence of dissipative impurities has not been explored much.
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Figure 1: Dissipation-induced entanglement growth. (a) and (b) A free-fermion chain is
prepared in Fermi sea and subject to fermionic losses acting at the center of the chain at
x = 0. Here γ− is the loss rate. We are interested in the entanglement entropy S of a
subregion of length `. We consider two partitions. In the first one (side partition) A is
placed next to the dissipative impurity (see (a)). In the second one (centered partition) a
subregion A′ is centered around the impurity (see (b)). (c) Mechanism for entanglement
generation. A fermion reaching the origin can be absorbed or reflected. The reflected and
transmitted fermions are entangled.

One aim of this paper is to start such investigation. We focus on noninteracting
fermions with localized fermion losses. The chain is initially prepared in a Fermi sea, and
then undergoes Lindblad dynamics. To monitor the entanglement dynamics we consider
the entanglement entropies [55–58] (both von Neumann and Rényi entropies), and the
fermionic logarithmic negativity [59–75]. The setup is depicted in Fig. 1. An infinite
chain is prepared in a Fermi sea with generic Fermi level kF . The dissipation acts at the
origin removing fermions incoherently at a rate γ−. To quantify the entanglement shared
between different subregions we consider the bipartitions of the chain shown in Fig. 1 (a)
and (b). In (a) (side bipartition) a subsystem A of length ` is placed next to the impurity,
whereas in (b) (centered partition) a subsystem A′ of the same length is centered around
the origin. Here we focus on the hydrodynamic limit of large ` and long times, with their
ratio fixed. A crucial observation is that in the hydrodynamic limit of large distances from
the dissipation source and long times, the dissipation acts as an effective delta potential
(dissipative impurity) with imaginary strength. The associated reflection and transmission
amplitudes can be derived analytically [44]. The presence of loss dissipation is reflected
in a nonzero absorption coefficient.

Due to the nonunitary dynamics entanglement and thermodynamic correlations are
deeply intertwined. The origin of entanglement is understood as follows. The mechanism
is depicted in Fig. 1 (c). The effective delta potential at the origin gives rise to a su-
perposition between the transmitted and the reflected fermion, which form an entangled
pair. The propagation of entangled pairs generate entanglement between different spatial
regions of the system. More precisely, regions that share entangled pairs get entangled. A
similar mechanism is responsible for entanglement production in free-fermion chains with
a defect [76–80]. Together with quantum entanglement, thermodynamic correlation is pro-
duced during the dynamics. Although the initial state is homogeneous, dissipation gives
rise to a nontrivial density profile. This is accompanied by the creation of thermodynamic
entropy. Here we show that the entanglement entropies cannot distinguish between these
two types of correlations. The reason is that due to the nonunitary dynamics the total
system is not in a pure state and the von Neumann entropy and the mutual information
are not proper entanglement measures for globally mixed states. This can be understood
physically as follows. One can think of the global mixed state as emerging from a larger
system comprising the original system and some environment. The density matrix of the
original system is obtained by tracing over the degrees of freedom of the ad hoc chosen
environment (purification). This trace introduces some correlation between the degrees of
freedom of the original system. In contrast, the logarithmic negativity is a proper measure
also for globally mixed states, and it does not suffer from this problem. The fact that the
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von Neumann entropy is not a good entanglement measure is reflected in a generic linear
growth with time. This linear growth in open quantum systems has been observed already,
for instance, in [81]. One of our main results is that in the hydrodynamic limit the von
Neumann entropy of A (see Fig. 1 (a)) is described by

S =
`

2

∫ kF

−kF

dk

2π
H1(1− |a|2) min(|vk|t/`, 1). (1)

We provide similar results for A′. In (1) we defined H1(x) := −x ln(x)− (1− x) ln(1− x),
and vk is the fermion group velocity. Crucially, |a|2 is the absorption coefficient, which is
nonzero because of the losses. For lattice systems a maximum velocity vmax exists and (1)
predicts a linear growth at short times vmaxt/` < 1, followed by a volume-law scaling at
long times. We provide similar results for the Rényi entropies and the moments of fermionic
correlation functions. Formula (1) is similar to that describing the entanglement dynamics
in a free-fermion chain with a bond defect [76]. The main difference is that in the unitary
case the growth of the entropy depends only on the transmission coefficient of the defect.
We should stress that although we present results only for the two geometries in Fig. 1, it
should be possible to generalize Eq. (1) to to arbitrary bipartitions.

Again, the linear growth in (1) does not reflect genuine entanglement production, which
can be diagnosed by the logarithmic negativity. For instance, we show that the logarithmic
negativity grows linearly with time for subsystem A, whereas it does not increase for A′.
This supports the mechanism outlined above. For the bipartition in Fig. 1 entanglement
is due to the shared pairs formed by the transmitted and the reflected fermions. On the
other hand, for the bipartition in Fig. 1 (b) these pairs are never shared between A′ and
its complement.

The manuscript is organized as follows. In section 2 we introduce the model and the
setup. In particular, we review the formula for the fermionic correlators in the hydrody-
namic limit, which are the main ingredients to compute the entanglement entropies and
the negativity. These formulas where presented elsewhere [39,44]. Entangled-related quan-
tities are introduced in section 3. In section 4 we present our main results. We first discuss
the formula describing arbitrary functions of the moments of the fermionic correlators in
the hydrodynamic limit. In section 4.1 we specialize to the moments of the fermionic
correlators. In section 4.2 we discuss the hydrodynamic behavior of the entanglement
entropies. In section 4.3 we focus on the stationary value of the entanglement entropy,
discussing its dependence on the dissipation strength. In section 5 we present numerical
benchmarks. We focus on the moments of the fermionic correlators in section 5.1, and on
the entanglement entropies in section 5.2. We discuss some future directions in section 6.
In Appendix A we report the derivation of the main result of section 4.

2 Localized losses in a Fermi sea: Review of known results

Here we consider the infinite free-fermion chain defined by the Hamiltonian

H =

∞∑
x=−∞

(c†xcx+1 + c†x+1cx) , (2)

where c†x, cx are creation and annihilation operators at site x. The fermionic operators obey
standard canonical anticommutation relations. To diagonalize (2) one defines a Fourier
transform with respect to x, introducing the fermionic operators bk in momentum space
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as

bk :=
∞∑

x=−∞
e−ikxcx, cx =

∫ π

−π

dk

2π
eikxbk . (3)

Eq. (2) is rewritten in terms of bk as

H =

∫ π

−π

dk

2π
εkb
†
kbk , εk := 2 cos(k) . (4)

Eq. (4) is diagonal, and it conserves the particle number. Let us consider a generic fermion
density nf = kF /π, with kF the Fermi momentum. The ground state of (2) is obtained
by filling the single-particle states with quasimomenta k in k ∈ [−kF , kF ]. The state with
nf = 1 (kF = π) in which all the quasimomenta are occupied is a product state, and it has
trivial correlations. For intermediate filling 0 < kF < π the ground state of (2) is critical,
with power-law correlations.

From the single-particle dispersion in (4) we define the group velocity vk of the fermions
as

vk :=
dεk
dk

= −2 sin(k) . (5)

Here we consider the out-of-equilibrium dynamics under the Hamiltonian (2) and localized
loss processes at the center of the chain. These are treated in the formalism of quantum
master equations [5]. The time-evolved density matrix ρt of the system is described by

dρt
dt

= −i[H, ρt] + L−ρtL
−† − 1

2
{L−†L−, ρt} . (6)

Here, the so-called Lindblad jump operator L− is defined as L− =
√
γ−c0 (see Fig. 1 for

a pictorial definition), with γ− the loss rate. Eq. (6) describes incoherent absorption of
fermions at the center of the chain.

Entanglement properties of the systems can be extracted from the fermionic two-point
correlation functions, i.e., the covariance matrix

Gx,y(t) := Tr(c†xcyρ(t)) . (7)

The dynamics of Gx,y is obtained as (we drop the dependence on the coordinates x, y to
lighten the notation)

G(t) = etΛG(0)etΛ
†
, (8)

where G(0) is the matrix containing the initial correlations. The matrix Λ is defined as

Λ = ih− Γ−

2
, (9)

where h = δ|x−y|,1 is the Hamiltonian contribution while Γ− = γ−δx,0 encodes the localized
dissipative effects. The covariance matrix Gx,y is the solution of the linear system of
equations

dGx,y
dt

= i(Gx+1,y +Gx−1,y −Gx,y+1 −Gx,y−1)− γ−

2
(δx,0Gx,y + δy,0Gx,y). (10)

Here we are interested in the hydrodynamic limit of large distances from the origin and
long times, i.e., x, y, t→∞ with the ratios x/t, y/t fixed. In this limit it can be shown that
the dissipation is effectively described by a delta potential. The strength of the potential is
imaginary, which is a consequence of nonunitarity. Several properties of the system can be
derived by studying the scattering problem of a quantum particle with an imaginary delta
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potential [82]. For several initial states, both homogeneous as well as inhomogeneous ones,
the dynamics of Gx,y can be described solely in terms of the initial fermionic occupations
and the reflection and transmission coefficients of the emergent delta potential [44]. Here
we are interested in the situation in which the initial state of the dynamics is a Fermi sea
with arbitrary Fermi momentum kF .

2.1 Hydrodynamic limit of the covariance matrix

In the hydrodynamic limit the solution of (10) with initial condition the Fermi sea is
obtained as [44] (see also [39])

Gx,y(t) =

∫ kF

−kF

dk

2π
(eikx + χx(t)r(k)ei|kx|)(e−iky + χy(t)r(k)e−i|ky|). (11)

Notice the absolute values in the second terms in the brackets. Moreover, one should
observe that the contributions associated with the two coordinates x, y factorize. This
factorization is crucial [40] to obtain the exact solution of (10). In (11) r(k) is the
momentum-dependent reflection amplitude of the effective delta potential describing the
dissipation source at the origin. The analytic expression for r(k) and for the associated
transmission amplitude τ(k) are given as [44]

r(k) := −γ
−

2

1
γ−

2 + |vk|
, τ(k) :=

|vk|
γ−

2 + |vk|
, (12)

where vk is the fermion group velocity defined in (5). Notice that (12) coincide with
the reflection and transmission amplitude for a quantum particle scattering with a delta
potential with imaginary strength −iγ−/2 after redefining [82] vk ∼ k. Crucially, since
the dynamics is nonunitary one has that

|a|2 := 1− |r|2 − |τ |2 =
γ−|vk|

(γ
−

2 + |vk|)2
> 0, (13)

where we defined the absorption coefficient |a|2, which is the probability that a fermion
with quasimomentum k is removed at the origin.

The time dependence of the correlator in (11) is encoded in the function χx, which is
defined as

χx := Θ(|vk|t− |x|). (14)

At t = 0 from (11) one recovers the initial correlation of the Fermi sea as

Gx,y(0) =
sin(kF (x− y))

π(x− y)
. (15)

To get an idea of the effect of the dissipation, it is instructive to consider the dynamics
of the local fermionic density nx,t

nx,t = Gx,x. (16)

This is discussed in Fig. 2. We plot nx,t versus the scaling variable x/(2t), showing results
for γ− = 0.5 and γ− = 10. The results are obtained by using (11). We focus on the effects
of the localized losses on the initial Fermi sea with kF = π/2. As expected, the Fermi
seas gets depleted with time and a nontrivial density profile forms around the origin. For
|x/(2t)| > 1 the effect of the dissipation is not present and one has the initial density 1/2.
The density profile exhibits a discontinuity at the origin. This reflects the presence of an
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Figure 2: Dynamics of the fermionic density nx,t in the presence of localized losses. Re-
sults are for the initial Fermi sea with kF = π/2 and for loss rate γ− = 10 and γ− = 0.5
(continuous and dotted lines, respectively). The oscillations are an artifact of the approx-
imations and vanish in the hydrodynamic limit x, t → ∞ with their ratio fixed. Notice
that in the hydrodynamic limit the density develops a discontinuity at the origin.

effective delta potential at the origin. Finally, the oscillations present in Fig. 2 are an
artifact of the approximations employed to derive (11), and vanish in the hydrodynamic
limit. In the strong dissipation limit γ− →∞ the evolution of the density freezes. This is
a manifestation of the quantum Zeno effect [83–85]. In the following sections we show that
the fermionic dynamics shown in Fig. 2 is accompanied with a robust linear entanglement
growth with time.

3 Entanglement entropies and logarithmic negativity: Def-
initions

In order to understand how the presence of localized losses affects the entanglement content
of the system here we focus on several quantum-information-related quantities, such as the
entanglement entropies and the logarithmic negativity. To introduce them, let us consider
a bipartition of the system as A ∪ Ā (see, for instance, Fig. 1 (a) and (b)). By tracing
over the degrees of freedom of Ā, which is the complement of A, one obtains the reduced
density matrix ρA = TrĀρ, where ρ is the full-system density matrix. The Rényi entropies
are defined as [55–58]

S(n) :=
1

1− n
Tr(ρnA), withn ∈ R. (17)

In the limit n→ 1 one obtains the von Neumann entropy as

S = −TrρA ln(ρA). (18)

Both Rényi and von Neumann entropies are good entanglement measures provided that
the full system is in a pure state. However, in the presence of dissipation the full sys-
tem is in a mixed state, which introduces some “classical” correlation between A and Ā.
This spurious, i.e., non-quantum, correlation, affects both the Rényi entropies and the
entanglement entropy.

In these situations the so-called logarithmic negativity [60,61] can be used to quantify
the amount of genuine entanglement between A and the rest. The logarithmic negativity
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E is defined from the partially-transposed density matrix ρT . This is defined from ρ by
taking the matrix transposition with respect to the degrees of freedom of Ā as

〈ei, ēj |ρT |ek, ēl〉 = 〈ei, ēl|ρ|ei, ēj〉, (19)

with ei, ēj two bases for A and its complement, respectively. Unlike ρ, ρT is not pos-
itive definite, and its negative eigenvalues quantify the amount of entanglement. The
logarithmic negativity is defined as

E = ln(Tr|ρT |). (20)

Here we focus on free-fermion models. For free-fermion and free-boson models both the
Rényi entropies and the von Neumann entropy of a region A are calculable from the
fermionic correlation function Gx,y restricted to A, i.e., with x, y ∈ A. Specifically, the
Rényi entropies are obtained as [86]

S(n) =
1

1− n
Tr ln

[
Gn + (1−G)n

]
. (21)

In the limit n→ 1, one recovers the von Neumann entropy as

S = −Tr(G ln(G)− (1−G) ln(1−G)). (22)

The logarithmic negativity E can be calculated efficiently from the two-point function only
for free bosons [87]. For free fermions the partial transposed ρT is not a gaussian operator,
although it can be written as a sum of two gaussian operators [71] as

ρT = e−iπ/4O+ + eiπ/4O−, (23)

where O± are gaussian operators. Very recently, an alternative definition of negativity
has been put forward [73–75]. We dub this alternative negativity fermionic negativity. Its
definition reads as

E := ln Tr
√
O+O−. (24)

Here we use the same symbol E for the fermionic negativity and for the standard one
in (20) because in the following we will only use the fermionic one. In contrast with (20),
since the product O+O− is a gaussian operator, the fermionic negativity (24) can be
computed effectively in terms of fermionic two-point functions. Specifically, let us rewrite
the full-system correlation matrix G as

G =

(
GAA GAĀ
GĀA GĀĀ

)
(25)

Here GWZ , with W,Z = A, Ā is obtained from the full system Gx,y restricting to x ∈ W
and y ∈ Z. One now defines the matrices G± as

G± =

(
−GAA ±iGAĀ
±iGĀA GĀĀ

)
(26)

We then define the matrix CT as

CT =
1

2
I− P−1(G+ +G−), withP = I−G+G−. (27)

From the eigenvalues ξi of CT and λi of G we can define the fermionic negativity E as [74]

E =
∑
i

[
ln[ξ

1/2
i + (1− ξi)1/2] +

1

2
ln[λ2

i + (1− λi)2]
]
, (28)

It has been shown in Ref. [75] that under reasonable assumptions the fermionic negativity
is a good entanglement measure for mixed states.
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4 Hydrodynamic description of entanglement entropies

We now discuss the out-of-equilibrium dynamics of the entanglement entropies in the
hydrodynamic limit. Before that, we provide a more general result, which allows us to
obtain the hydrodynamic behavior of the trace of a generic function of the fermionic
correlator (cf. (11)). Let us consider the bipartitions in Fig. 1 (a) and (b). In Fig. 1 (a)
subsystem A is the interval [0, `], i.e., on the right of the dissipative impurity. In Fig. 1
(b) we consider subsystem A′ = [−`/2, `/2] centered around the impurity. Let us consider
a generic function F(z), and let us focus on the quantity TrF(GX), with X = A,A′. In
the hydrodynamic limit t, `→∞, with their ratio fixed, one can show that

TrF(GX) = `

∫ kF

−kF

dk

2π

[(
1− 1

2zX
min(zX |vk|t/`, 1)

)
F(1)

+
1

2zX
F(1− zX |a(k)|2) min(zX |vk|t/`, 1)

]
, zA(A′) = 1(2). (29)

Here vk is the fermion group velocity in (5), and |a(k)|2 is the absorption coefficient of
the emergent delta potential (cf. (13)) at the origin. Eq. (29) depends only on 1 − |a|2,
i.e., the probability of the fermions not to be absorbed at the origin. Also, the only
dependence on time is via the factor min(zX |vk|t/`), which encodes the fact that A and A′

are finite, and information propagates from the origin at a finite velocity vk. The factor
zX in (29) accounts for the different geometries in Fig. 1 (a) and (b), and it has a simple
interpretation. For instance, in the argument of the second term in (29) zX takes into
account that for the bipartition in Fig. 1 (a) the number of absorbed fermions is twice that
for the bipartition in Fig. 1 (a) because the impurity is at the center of A′. Moreover, in
min(zX |vk|t/`, 1), zX reflects that for A′ the distance between the impurity and the edge
of A′ is `/2 instead of `.

For generic F(z), Eq. (29) predicts a linear behavior with time for t ≤ `/(zXvmax), with
vmax the maximum velocity in the system. This is followed by an asymptotic saturation
at t → ∞ to a volume law ∝ `. Finally, for γ− = 0 one recovers the unitary case and
from (29), one obtains that

TrF(GX) = `

∫ kF

−kF

dk

2π
F(1). (30)

Eq. (30) means that in the absence of dissipation there is no dynamics and for any F one
has a constant contribution that is proportional to `. The fact that there is no dependence
on zX and on the geometry reflects translation invariance.

The derivation of (29) is reported in Appendix A and it relies on the multidimensional
stationary phase approximation [88], and on the assumption that F(z) admits a Taylor
expansion around z = 0. We should also stress that although we discuss only the two
geometries in Fig. 1 (a) and (b), it should be possible to generalize (29) to arbitrary
bipartitions or multipartitions. In the following, by considering different functions F(z)
we provide exact results for the moments of the correlation matrix and the entanglement
entropies in the hydrodynamic limit.

4.1 Moments of the correlation matrix

Here we study the hydrodynamic limit of the moments Mn of the fermionic correlation
matrix. These are defined as

Mn = Tr(Gn), (31)
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Figure 3: Moments of the fermionic correlator Mn = Tr(Gn), where G is the fermionic
correlation function restricted to subsystem A (see Fig 1). We plot the rescaled moments
Mn/`, with ` the length of A versus vmaxt/`, vmax being the maximum velocity. Lines are
analytic results in the hydrodynamic limit `, t→∞ with their ratio fixed. We only show
results for γ− = 1 and kF = π/3. Note the linear behavior for t ≤ `/vM followed by a
saturation at t→∞.

where the correlation matrix G is restricted to subsystem A,A′ (see Fig. 1). The behavior
of Mn in the hydrodynamic limit is readily obtained from (29) by choosing F(z) = zn.
One obtains that

Mn = `

∫ kF

−kF

dk

2π

[(
1− 1

2zX
min(zX |vk|t/`, 1)

)
+

1

2zX
(1− zX |a(k)|2)n min(zX |vk|t/`, 1)

]
, zA(A′) = 1(2). (32)

The structure is the same as in (29). Mn exhibit the same qualitative behavior with a
linear decrease at short times t ≤ `/vmax, which is followed by an asymptotic saturation at
t→∞. Several remarks are in order. First, at t = 0 one has that for any n, Mn = `kF /π,
which is the initial number of fermions in the subsystem. For t → ∞ one has that the
number of fermions M1 in the subsystem is

M1
t→∞−−−→ `

∫ kF

−kF

dk

2π

(
1− |a|

2

2

)
. (33)

This means that M1 ∝ ` for t → ∞, despite the presence of dissipation. In the strong
dissipation limit γ− →∞ one has that |a|2 → 0, and M1 → `kF /π, i.e., the initial fermion
number. This is a manifestation of the quantum Zeno effect. In the limit γ− → ∞ the
dynamics of the system is arrested and the number of fermions absorbed at the origin
vanishes. Finally, it is interesting to consider Mn in the limit n → ∞. One can readily
check that 1 − z|a|2 < 1, which implies that only the first term in (32) survives. In
particular, in the limit t → ∞, from (32) one obtains that M∞ = `kF /π(1 − 1/(2zX)).
For zX = 1 (i.e., for the partition in Fig. 1 (a)) one has M∞ = `kF /(2π), which is half of
the initial number of fermions.

In Fig. 3 we show numerical predictions for Mn obtained by using (32). We consider
the case with kF = π/3 and we restrict ourselves to γ− = 1. We provide results only for
the bipartition in Fig. 1 (a). The generic behavior outlined above is clearly visible in the
figure.
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Figure 4: Entanglement entropies S(n) of a subsystem A placed next to the dissipation
source (see Fig. 1 (a)). The different lines are analytic predictions in the hydrodynamic
limit for different values of n. We plot S(n)/` versus vmaxt/`, with ` the size of A and vmax

the maximum velocity. We only show results for γ− = 1 and kF = π.

4.2 Entanglement entropies

The hydrodynamic limit of the entanglement entropies, both the von Neumann and the
Rényi entropies, is obtained from (29) by choosing

F(z) = Hn(z) =
1

1− n
ln[zn + (1− z)n]. (34)

In the limit n→ 1 one recovers the von Neumann entropy by choosing H1(z) = −z ln(z)−
(1 − z) ln(1 − z). After using (34) in (29), and after observing that for any n, F(1) = 0,
one obtains that

S(n) =
1

2zX

`

1− n

∫ kF

−kF

dk

2π
Hn(1− zX |a|2) min(zX |vk|t/`, 1). (35)

First, for γ− = 0, i.e., in the absence of dissipation, one has that S(n) = 0 for any n.
This is consistent with the fact that for a Fermi sea the entanglement entropies exhibit
the typical Conformal Field Theory (CFT) logarithmic scaling as [56]

S(n) =
c

6

(
1 +

1

n

)
ln(`) + cn, (36)

where c = 1 is the central charge of the model and cn are nonuniversal constants. The
scaling (36) cannot be captured by (35), which describes the leading volume-law behavior
S(n) ∝ `. In the strong dissipation limit γ− →∞, one has that, reflecting the Zeno effect,
S(n) vanish for any n.

Away from the limits γ− = 0 and γ− → ∞, the entanglement entropies increase
linearly at short times t ≤ `/(zXvmax), and saturate to a volume-law scaling S(n) ∝ ` at
asymptotically long times. It is interesting to consider the limit n → ∞, which gives the
so-called single-copy entanglement. From (35) it is clear that only the first term inside
the logarithm in (34) counts, and one obtains that

S(∞) = − `

2zX

∫ kF

−kF

dk

2π
ln(1− zX |a|2) min(zX |vk|t/`, 1). (37)

It is now crucial to remark that Eq. (35) gives the same qualitative behavior for the entan-
glement entropies of A and A′ (see Fig. 1 (a) and (b)). This is surprising at first because

10
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Figure 5: Steady-state entropy in the free fermion chain with localized losses. We show
results for the bipartition in Fig. 1 (a). We plot S(steady)/` versus the loss rate γ−. The
different lines in the main figure are for initial states with different Fermi momentum
kF . Note that the steady-state entropy has a maximum at γ− ≈ 1. For γ− → ∞ the
steady-state entropy vanishes as S(steady)/` ∝ ln(γ−)/γ−, as it is shown in the inset.
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Figure 6: Same as in Fig. 5 for the centered partition in Fig. 1 (b). Notice the presence
of two maxima, in contrast with Fig. 5.

no production of entanglement is expected for the centered bipartition in Fig. 1 (b). The
reason is that the reflected and the transmitted fermions, which form the entangled pairs,
are never shared between A′ and its complement. The linear growth in this case should be
attributed to the formation of a nontrivial density profile around the origin, which reflects
the creation of thermodynamic entropy. The entanglement entropies are not bona fide
entanglement measures for mixed states because they are sensitive to this thermodynamic
contribution. We anticipate that, in contrast, the logarithmic negativity is sensitive to the
genuine quantum correlation only (see section 5.2).

In Fig. 4 we report analytic predictions for the dynamics of the entanglement entropies

obtained from (35). We plot the rescaled entropies S
(n)
X /` versus vmaxt/` for several values

of n. We consider only the bipartition in Fig. 1 (a), i.e., we choose X = A in (35).
Furthermore, we show data for kF = π and γ− = 1. The qualitative behaviour discussed
above is clearly visible.

11
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4.3 Zeno death of entanglement entropy

It is interesting to investigate the steady-state value of the entanglement entropy as a
function of the dissipation rate γ−. The steady-state entanglement entropy Ssteady is
obtained from (35) as

S(steady) =
`

2zX

∫ kF

−kF

dk

2π
H1(1− zX |a|2). (38)

In Fig. 5 we plot S(steady)/` versus γ−. The results are for X = A (see Fig. 1 (a)).
In the main plot, the different curves correspond to different values of kF . Notice that
the entanglement entropy increases upon increasing kF . This is expected because the
entanglement entropy is proportional to the number of fermions that scatter with the
impurity at the origin. Interestingly, the data exhibit a maximum in the region γ− ∈
[1.5, 2]. In the strong dissipation limit γ− →∞ the entanglement entropy vanishes. This
is a consequence of the quantum Zeno effect. The decay is as S(steady) ∝ ln(γ−)/γ− (see
the inset of Fig. 5).

Finally, it is interesting to compare with the result for the centered partition in Fig. 1
(b). This is discussed in Fig. 6. A richer structure is observed. Indeed, the steady-state
entropy exhibits two maxima, one at “weak” dissipation for γ− ≈ 0.5 and one in the
“strong” dissipation regime for γ− ≈ 10. Notice also that the steady-state entropy is
generically smaller than in Fig. 5.

5 Numerical benchmarks

We now provide numerical benchmarks for the results derived in section 4. We discuss
the moments Mn (cf (32)) in section 5.1. In section 5.2 we focus on the entanglement
entropies. Importantly, we discuss the interplay between entanglement and thermody-
namic correlation by comparing the evolution of the von Neumann entropy and that of
the logarithmic negativity for the two bipartitions in Fig. 1 (a) and (b).

5.1 Moments of fermionic correlators

Our numerical results for Mn are discussed in Fig. 7. In the panel (a) and (b) we plot
M1 and M2, respectively. We focus on subsystem A (see Fig. 1 (a)). The numerical data
in the figure are obtained by using (8). We consider the situation in which the system is
initially prepared in a Fermi sea with kF = π/3. Notice that M1 is the number of fermions
in subsystem A. In the absence of dissipation M1 = `kF /π at any time. As a consequence
of the fermion loss the number of particle decreases with time. In the figure we report
results for several values of `. Clearly, M1 exhibits the qualitative behavior discussed in
Fig. 3. At short times t ≤ `/vmax, M1 decreases linearly, whereas for t→∞ it saturates.
However, the data for finite ` exhibit sizeable deviations from the hydrodynamic limit
result, which is reported as dashed-dotted line in Fig. 7. These deviations are expected.
The analytic result (32) is expected to hold only in the hydrodynamic limit t, `→∞ with
their ratio fixed. Indeed, upon increasing ` the data approach (32). Importantly, the fact
that the initial state is a Fermi sea gives rise to logarithmic corrections. This will also
happen for the entanglement entropies, as we will discuss in section 5.2. These corrections
are visible for M2 (see the inset in Fig. 7 (b)). In the figure we plot the deviation δM2

from the hydrodynamic result, which is defined as

δM2 := Mhydro
2 −M2. (39)
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Figure 7: Moments of the fermionic correlator Mn = Tr(Gn) restricted to subsystem
A (bipartition in Fig 1 (a)). We show the rescaled moments Mn/`, with ` the size of
A plotted versus vmaxt/`. Here vmax is the maximum velocity. All the results are for
γ− = 1. The two panels are for n = 1 and n = 2. Different lines denote different
subsystem size `. The dashed-dotted line is the analytic result in the hydrodynamic limit.
Sizeable finite-time and finite-size corrections are present. In (b) we show the deviation

from the hydrodynamic result at t = 0, δM2 = Mhydro
2 −M2 as a function of `. Notice the

logarithmic scale on the x-axis.
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Figure 8: Same as in Fig. 7 for the interval A′ (centered partition in Fig 1 (b)).

We consider the initial deviation at t = 0. At t = 0 one expects that in the limit `→∞,
M2 = kf/π`. The results in the inset of Fig. 7 (b) suggest the logarithmic behavior as

δM2 = a2 ln(`) + . . . , (40)

with the dots denoting subleading terms, and a2 a constant. The dashed-dotted line in the
inset of Fig. 7 (b) is obtained by fitting the constant a2 in (40). The fit gives a2 ≈ 0.101.
To our knowledge there is no analytic determination of the constant a2, although it should
be possible by using standard techniques for free-fermions systems. Moreover, although
the data in Fig. 7 (b) suggest that such logarithmic terms survive at finite time, it is
not clear a priori whether the constant a2 remains the same. Finally, we should remark
that the same logarithmic terms should be present for the centered partition in Fig. 1 (b).
Indeed, for t = 0 the system is translational invariant, and the moments Mn do not depend
on the position of the subsystem. We discuss numerical results for M2 for the centered
partition (Fig. 1 (b)) in Fig. 8. As it is clear from the figure, the qualitative behavior is
the same as for the side bipartition (see Fig. 7 (b)). Similar finite-size effects as in Fig. 7
(b) are present. Upon approaching the hydrodynamic limit t, `→∞ deviations from the
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Figure 9: Entanglement entropy S in the fermionic chain subjected to localized losses.
We consider subsystem A (bipartition in Fig. 1 (a)). The figure shows the entropy density
S/` plotted versus vmaxt/`, with ` the size of A and vmax the maximum velocity. All the
results are for fixed loss rate γ− = 1 and kF = π/3. We show results for several values of
`, and the analytic result in the hydrodynamic limit (red continuous line in the figure).

hydrodynamic limit result (red continuous line in the figure) vanish.

5.2 Entanglement entropies and logarithmic negativity

Let us now discuss the out-of-equilibrium dynamics of the entanglement entropies. We
first focus on the entanglement entropy for subsystem A next to the dissipation source (as
in Fig. 1 (a)). Our data are reported in Fig. 9. We restrict ourselves to fixed γ− = 1,
plotting the entropy density S/` versus the rescaled time vmaxt/`. We show data for
` ∈ [10, 160]. We also report the analytic result in the hydrodynamic limit (cf. (35)).
Clearly, the numerical data exhibit the expected linear growth for t ≤ `/(vmax), followed
by a saturation at infinite time. Still, one should observe the sizeable deviations from the
analytic result in the hydrodynamic limit (35). This is expected due to the finite ` and
finite time t. Upon approaching the hydrodynamic limit, however, the deviation from (35)
decrease. An important remark is that since the initial Fermi sea is a critical state, one
should expect nontrivial finite-size corrections to the linear entanglement entropy growth.
For instance, at t = 0 the entanglement entropies grow logarithmically with ` as in (36).
In Fig. 10 we subtract the CFT contribution by plotting S − 1/3 ln(`). The data are the
same as in Fig. 9. As it is clear from the figure, now the subtracted data exhibit a better
agreement with the hydrodynamic result.

We perform a similar analysis for the Rényi entropies. In Fig. 11 we show numerical
data for the second Rényi entropy S(2) plotted versus vmaxt/`. We only consider the
bipartition in Fig. 1 (a). The data are for γ− = 1 and the initial Fermi sea with kF = π/3.
As for the von Neumann entropy, we subtract the CFT contribution (cf. (36) with n = 2)
that is present at t = 0. In the Figure we only show data for vmaxt/` . 1. The agreement
with the analytic result in the hydrodynamic limit (35) is satisfactory.

Finally, it is crucial to compare the dynamics of the entanglement entropy with that of
the logarithmic negativity (see section 3). As it was stressed in section 3 the entanglement
entropies are not proper entanglement measures in the presence of dissipation because the
full system is in a mixed state. On the other hand, the fermionic negativity E (cf. (28))
should be sensitive to genuine quantum correlation only.

As it was anticipated in the introduction, genuine entanglement and statistical cor-
relations are deeply intertwined, but it is possible to distinguish them by comparing the
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Figure 10: Same data as in Fig. 9 plotting (S− 1/3 ln(`))/`, where 1/3 ln(`) is the initial
entanglement entropy. On the x-axis vmax is the maximum velocity and ` is the size of
A. Inset: The entanglement entropy at t = 0 plotted versus `. Note the logarithmic scale
on the x-axis. The dashed-dotted line is fit to the CFT prediction 1/3 ln(`) + a, with a a
fitting constant.

behavior of the von Neumann entropy and of the logarithmic negativity for the two bi-
partitions in Fig. 1 (a) and (b). Specifically, subsystem A (see Fig. 1 (a)) is entangled
with its complement because the reflected and the transmitted fermions, which form en-
tangled pairs, are shared between them. Oppositely, this is not the case for A′ because
the transmitted and the reflected fermions are never shared. This scenario implies that
the entanglement entropy of A and A′ exhibit a linear growth with time. On the other
hand, only the logarithmic negativity of A is expected to grow with time.

This is demonstrated in Fig. 12 (a) and (b). In Fig. 12 (a) we plot the rescaled
negativity E/` versus the rescaled time vmaxt/`, whereas in Fig. 12 (b) we show the rescaled
entanglement entropy. The data are for fixed γ− = 1 and kF = π/3 and subsystem’ size
` = 160. In both panels we show results for the subsystems A (see Fig. 1 (a)) and A′

(see Fig. 1 (b)). It is clear from the figure that both the negativity and the von Neumann
entropy of A increase linearly with time. For the von Neumann entropy we report the
expected slope of the linear growth in the hydrodynamic limit (dashed-dotted line in
Fig. 12 (b)), which is in perfect agreement with the finite-size numerical results. Notice
that at asymptotically long times the von Neumann entropy saturates (not shown in the
figure), as already discussed in the previous sections. This saturation happens for the
logarithmic negativity as well, as expected from the quasiparticle picture discussed above.
This is shown explicitly in the inset in Fig. 12 (a) for subsystem A of length ` = 20. As
in the main plot we show E/` versus vmaxt/`.

Let us now discuss the entanglement growth for the bipartition in Fig. 1 (b). The
negativity (see Fig. 12), does not grow with time but it remains almost constant, showing
a small decreasing trend at long times. Oppositely, the entanglement entropy exhibits a
linear growth (see Fig. 12 (b)), which, again, does not reflect entanglement production.
The slope of the linear growth (dashed-dotted line) is in agreement with (35).

6 Conclusions

We investigated the interplay between entanglement and statistical correlation in a uniform
Fermi sea subjected to localized losses. We focused on the hydrodynamic limit of long
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Figure 11: Out-of-equilibrium dynamics of the Rényi entropy S(2) of subsystem A (bi-
partition in Fig. 1) (a). We plot the subtracted entropy (S − 1/4 ln(`))/`, with 1/4 ln(`)
the Fermi sea entropy at t = 0. Data are for γ− = 1 and kF = π/3. On the x-axis vmax

is the maximum velocity and ` is the size of A. In the inset we show the entropy at t = 0
plotted versus ` to highlight the logarithmic increase.

times and the large subsystems, with their ratio fixed. In this regime the dynamics of the
entanglement entropies can be understood analytically. We showed that the logarithmic
negativity correctly diagnose the production of genuine quantum entanglement, whereas
the entanglement entropies are sensitive to both quantum as well as classical correlation.

Let us now illustrate some interesting directions for future research. First, our results
hold for the Fermi sea as initial state. It should be possible to generalize them to other
situations, such as finite-temperature states, or inhomogeneous initial states, for instance,
the domain-wall state. One should expect the linear entanglement growth to persist. An
interesting possibility is to consider the out-of-equilibrium dynamics starting from product
states. Thus, even in absence of losses the entanglement entropy grows linearly with time
due to the propagation of entangled pairs of quasiparticles. It would be interesting to
understand how this scenario is modified by localized losses. An interesting direction is to
try to generalized the hydrodynamic framework to the logarithmic negativity, for which it
should be possible to obtain a formula similar to (35).

Interestingly, our results suggest that local dissipation generically induces robust en-
tanglement production. An important direction is to try to check this scenario for other
types of local dissipation. An interesting candidate is incoherent hopping [89]. Unlike loss
dissipation, for incoherent hopping the Liouvillian describing the dynamics of the density
matrix is not quadratic. It would be interesting to understand whether the hydrodynamic
approach outlined here still applies, at least in the weak dissipation limit. Moreover, an
interesting direction would be understand the interplay between entanglement, local dis-
sipation, and criticality [90]. Finally, it is important to investigate possible experimental
verification of our results. Measuring entanglement in experiments is challenging, although
recent results with cold-atom systems are promising [91], at least for Rényi entropies. On
the other hand, the logarithmic negativity, which is a proper entanglement measure in
the presence of dissipation, is not easy to measure with the current experimental tools.
Fortunately, it is possible to detect genuine entanglement by using the moments of the
partially transposed reduced density matrix, which are accessible experimentally [92].
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Figure 12: Comparison between the logarithmic negativity E and the entanglement
entropy S for the two bipartitions in Fig. 1 (a). Panels (a) and (b) show E/` and S/`
plotted versus vmaxt/`, respectively. Here ` is the size of A and A′ (see Fig. 1) and vmax the
maximum velocity. As it is clear from (a) the negativity E of A exhibits a linear increase
with time, whereas that of A′ depends mildly on time. Oppositely, the entanglement
entropy of both A and A′ increases linearly with time (see (b)).

A Entanglement entropies in the hydrodynamic limit: Deriva-
tion of Eq. (29)

In this section we derive formula (29). We employ a similar strategy as in Ref. [93]. Let
us consider the interval A = [0, `] (see Fig. 1 (a)). The main ingredient is the correlation
matrix Gx,y (cf. (11)) restricted to A, i.e., with x, y ∈ A. First, we can rewrite (11) as

Gx,y =

∫ kF

−kF

dk

2π
Sk,xS̄k,y, (41)

where we defined

Sk,x = eikx + r(k)ei|kx|
∫ ∞
−∞

dq

2πi

ei(|vk|t−|x|)q

q − i0
, (42)

with vk the fermion group velocity (cf. (5)). The last term ensures the condition (14) and
it relies on the well-known identity∫ ∞

−∞

dq

2πi

eiqx

q + i0
= Θ(x), (43)

where i0 is a positive convergence factor. Let us define Ak,q as

Ak,q(t) :=
eit|vk|q

q − i0
r(k). (44)

To proceed we use the following identity

∑̀
z=1

eizk =
`

4

∫ 1

−1
dξw(k)ei(`ξ+`+1)k/2, withw(k) :=

k

sin(k/2)
. (45)

Let us now define
Fki,kj := F uuki,kj + F udki,kj + F duki,kj + F ddki,kj , (46)
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with

F uuki,kj :=
`

4

∫
dξw(ki − kj)ei`(ξ+1)(ki−kj)/2 (47)

F udki,kj := − `
4

∫
dξ

∫
dq

2πi
w(ki − |kj |+ q)ei`(ki−|kj |+q)(ξ+1)/2Ākj ,q (48)

F duki,kj :=
`

4

∫
dξ

∫
dq

2πi
w(|ki| − kj − q)ei`(|ki|−kj−q)(ξ+1)/2Aki,q, (49)

and

F ddki,kj := − `
4

∫
dξ

∫
dq′

2πi

∫
dq

2πi
w(|ki| − |kj | − q + q′)

× ei`(|ki|−|kj |−q+q′)(ξ+1)/2Aki,qĀkj ,q. (50)

To derive (29), it is convenient to consider the moments of the correlation matrix Mn =
Tr(Gn). For generic integer n, by using (41), (46) and (47)-(50) one obtains that

Tr(Gn) =

∫ kF

−kF

dnk

(2π)n

n∏
i=1

Fki,ki−1
. (51)

Here the variables ki are arranged in cyclic order, i.e., k0 = kn. We can rewrite Fα,βki,kj
,

with α, β = u, d (cf. (47)-(50)) as

F uuki,kj =
`

2

∫
dξei`(ξ+1)(ki−kj)/2 (52)

F udki,kj =
`

2

∫
dξei`(ki−|kj |)(ξ+1)/2r(kj)Θ(−`(ξ + 1)/2 + |vkj |t) (53)

F duki,kj =
`

2

∫
dξei`(|ki|−kj)(ξ+1)/2r(ki)Θ(−`(ξ + 1)/2 + |vki |t), (54)

and

F ddki,kj =
`

2

∫
dξei`(|ki|−|kj |)(ξ+1)/2r(ki)r(kj)

×Θ(−`(ξ + 1)/2 + |vki |t)Θ(−`(ξ + 1)/2 + |vkj |t). (55)

To obtain (52)-(55), we used that in the hydrodynamic limit `, t → ∞ with the ratio t/`
fixed the integrals in (51) are dominated by the regions with ki → kj and q → 0. This
implies that w(ki − kj)→ 1/2 (cf. (45)), and that one can perform the integration over q
and q′ in (47)-(50), which, by using (43), give the Heaviside theta functions in (52)-(55).
We can now rewrite (51) as

Tr(Gn) =
( `

2

)n ∫ kF

−kF

dnk

(2π)n

∫ 1

−1
dnξ

n∏
i=1

F̃ki,ki−1
(ξi). (56)

Here we defined F̃ki,ki−1
:= F̃ uuki,kj + F̃ udki,kj + F̃ duki,kj + F̃ ddki,kj , where F̃α,βki,kj

with α, β = u, d

are the integrands appearing in (52)-(55). To proceed, we now treat the integrals over ξi
by using the stationary phase approximation in the hydrodynamic limit. We first observe
that (56) can be rewritten as

Tr(Gn) =
( `

2

)n ∫ kF

−kF

dnk

(2π)n

∫ 1

−1
dnξ

∑
σi,τi=0,1

n∏
i=1

ei`(ξi+1)(kσi−kτi−1 )/2r̃σi(ξi, kσi)r̃
τi−1(ξi, kτi−1). (57)
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Here we defined
r̃(ξ, k) = r(k)Θ(−`(ξ + 1)/2 + |vk|t). (58)

Here we also defined

kσi =

{
ki if σi = 0
|ki| if σi = 1

(59)

The same definition as (59) holds for kτi . Eq. (57) arises directly from (56). Each term
F̃ki,kj in (56) contains a phase factor ei`(ξi+1)(ki−ki−1), where ki, ki−1 can be replaced by
|ki|, |ki−1|. Each term |ki| is accompanied by a factor r̃(ξi, ki). The sum over σi, τi in (57)
accounts for all the possible ways of distributing the terms with the absolute values |ki|.

We first focus on the situation with σi = τi = 0 for any i. Thus, within the stationary
phase approximation the integral in (57) in the large ` limit is dominated by the stationary
points of the exponent of the phase factor. By imposing stationarity with respect to the
variables ξi, one obtains that

ki = k1, ∀i. (60)

Now (57) becomes

I(n)
0 =

( `
2

)n ∫ kF

−kF

dnk

(2π)n

∫ 1

−1
dnξei`

∑n
i=1(ξi+1)(ki−ki−1)/2. (61)

Although the integral (61) can be computed exactly, it is useful to discuss the stationary
phase approximation. Let us change variables as

ζ1 := ξ1 (62)

ζi := ξi+1 − ξi, i ∈ [1, n]. (63)

The variables ξi and ζi satisfy cyclic boundary conditions. We obtain that (61) is rewritten
as

I(n)
0 =

( `
2

)n ∫ kF

−kF

dnk

(2π)n

∫
dnζe−i`

∑n
j=1 ζj(kj−k1)/2. (64)

Notice that the 1 in (ξi + 1) in (61) cancels out in the sum over i, and it would also be
irrelevant at the stationary point where ki → k1 for any i. The integrand in (64) does not
depend on ζ1. The integration domain for the variables ζ1 is given as

−1 ≤ ζ1 −
n∑
j=k

ζj ≤ 1, ∀k ∈ [2, n]. (65)

As the integrand in (64) does not depend on ζ1, one can perform the integral to obtain

I(n)
0 :=

( `
2

)∫ kF

−kF

dk1

2π
Λ

(n−1)
0 (k1) =( `

2

)n ∫ kF

−kF

dk1

2π

∫ kF

−kF

dn−1k

(2π)n−1

∫
dn−1ζe−i`

∑n
j=1 ζj(kj−k1)/2µ({ζk}), (66)

where we also isolated the integration over k1. Here µ({ζk}) is the measure of the allowed
values for ζ1, and it reads as

µ({ζk}) = max
[
0, min
k∈[2,n]

[
1−

n∑
j=k

ζj

]
+ min
k∈[2,n]

[
1 +

n∑
j=k

ζj

]]
. (67)
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We can now apply the stationary phase approximation to the integral

Λ
(n−1)
0 =

( `
2

)n−1
∫ kF

−kF

dn−1k

(2π)n−1

∫
dn−1ζe−i`

∑n
j=1 ζj(kj−k1)/2µ({ζk}). (68)

The stationary phase approximation states that for sufficiently smooth N -dimensional
functions f(x) and g(x), in the limit `→∞ one has [88]∫

Ω
dNxg(x)ei`f(x) =

(2π

`

)N/2
g(x0)|detH|−1/2ei`f(x0)+ iπσ

4 , (69)

where Ω is the integration domain, x0 is the stationary point of f(x), i.e., such that
∇f(x) = 0, H is the Hessian matrix, and σ its signature, i.e., the difference between
the number of positive and negative eigenvalues. A straightforward application of the

stationary phase gives that in the limit `→∞ the Λ
(n−1)
0 is dominated by the stationary

point as

k̄j = k1, j = 2, . . . , n, (70)

ζ̄j = 0, j = 2, . . . , n. (71)

In our case the phase in (69) vanishes and the signature of the Hessian is zero. Moreover,
detH = 2−2n+2. Putting everything together we obtain that

Λ
(n−1)
0 = 2, (72)

where we used that µ({ζk}) = 2 at the stationary point. Note that there is no dependence
on k1 in (72). Finally, we obtain that the integral (64) is given as

I(n)
0 = `

∫ kF

−kF

dk1

2π
. (73)

Let us now consider the generic integral (57). We now observe that for any pair of indices
(σi, τi) there are two possible situations that can occur. Specifically, we define (σi, τi) as
paired if σi = τi = 1, whereas we define (σi, τi) as unpaired otherwise. Notice that if (σi, τi)
are paired it means that both occurrences of momentum ki appear with the absolute value
|ki| in (57).

It is straightforward to convince oneself that the presence of a single set of unpaired
indices (σi, τi) implies that in the limit `→∞ the stationary point is given as

ki = k1 > 0, ∀i, (74)

i.e., all the momenta have to be positive to have a finite contribution in the stationary
phase. This implies that one can remove the absolute values of the momenta. Then, the
derivation of the stationary phase is similar to that for the case with σi = τi = 0,∀i.

An important difference is that for any index σi = 1 and τi = 1 there is a factor
r̃(ξi, ki). This implies that the integration over ζ1 in principle cannot be performed as
in (72). However, at the stationary point, from (71) one obtains that ξi → ξ1 = ζ1 and
ki → k1 for any i. One is left with the integral over ζ1 as∫ 1

−1
dζ1Θ(−`(ζ1 + 1)/2 + t|vk|) = 2 min(|vk|t/`, 1), with k > 0. (75)

Let us now discuss what happens when paired indices are present. It is clear that the main
consequence of the presence of paired indices σi, τi is a factor 2 because the integrands do
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not depend on the sign of the momenta. To discuss the result of the stationary phase, let
us define for the following the number of paired momenta as p, and the total number of
momenta appearing with the absolute value as na. Let us consider the case na > 0 since
the case with na = 0 was treated above. na is the number of σi = 1 and τi = 1. The
number of terms N(n,na,p) with fixed n, na, p can be obtained by elementary combinatorics
as

N(n,na,p) =

(
n

p

)(
n− p
na − 2p

)
2na−2p. (76)

Now we use take into account that for each set of paired indices there is a factor two. By
summing over the possible number of pairs p, we obtain the total number of terms N ′(n,na)
as

N ′(n,na) =

bna/2c∑
p=0

2pN(n,na,p). (77)

We now use that for each na there is term rna . Finally, it is straightforward to perform
the sum over na to obtain the total contribution as

Tr(Gn) =
( `

2

)∫ kF

−kF

dk1

2π
(Λ

(n−1)
0 + Λ(n−1)) (78)

where Λ
(n−1)
0 = 2 and

Λ(n−1) = 2 min(|vk1 |t/`, 1)
( 2n∑
na=1

N ′(n,na)r
na − 1

)
Θ(k1). (79)

We now use that
2n∑

na=1

N ′(n,na)r
na = (1 + 2r + 2r2)n − 1. (80)

where r(k1) is the reflection amplitude in (12). We can also use that

1 + 2r + 2r2 = 1− |a|2, (81)

where |a(k)|2 is the absorption coefficient. Thus, putting everything together one obtains
the final formula for Tr(GnA) as

Tr(GnA) = `

∫ kF

−kF

dk

2π

[
1− 1

2
min(|vk|t/`, 1) +

1

2
(1− |a(k)|2)n min(|vk|t/`, 1)

]
. (82)

Here we replaced k1 → k and we used the fact that the integrand is symmetric under
k → −k to remove the factor Θ(k) in (79). The subscript A in (82) is to stress that
it holds for subsystem A (see Fig. 1 (a)). Crucially, Eq. (82) depends only on the local
density of fermions 1− |a|2 that are not absorbed at the origin.

Finally, we comment on the modifications in order to generalize (82) to the case of the
bipartition in Fig. 1 (b), i.e., for the interval A′ centered around the impurity. The main
difference is that (77) has to be replaced by Ñ ′(n,na) as

Ñ ′(n,na) =
2na

4

(
2n

na

)
. (83)

A straightforward generalization of the steps leading to (82) gives

Tr(GnA′) = `

∫ kF

−kF

dk

2π

[
1− 1

4
min(2|vk|t/`, 1) +

1

4
(1− 2|a(k)|2)n min(2|vk|t/`, 1)

]
. (84)
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The factor 1/4 and the 2|vk| in the integrand in (84) reflect that the distance from the
impurity and the edges of subsystem A′ is `/2 and not ` as in (82). Furthermore, the
factor 1− 2|a|2 instead of 1− |a|2 in (82) arises because fermions are absorbed from both
sides of the impurity.

Finally, by useing (82) and (84) one can obtain the hydrodynamic behavior of

Tr(F(G)) (85)

where F(z) is smooth enough to admit a Taylor expansion around z = 0. By Taylor
expanding F(z) for z = 0 and by using (82) and (84), one obtains (29).
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R. Blatt and C. F. Roos, Probing rényi entanglement entropy via randomized mea-
surements, Science 364(6437), 260 (2019), doi:10.1126/science.aau4963, https:

//science.sciencemag.org/content/364/6437/260.full.pdf.

27

http://dx.doi.org/10.21468/SciPostPhys.8.3.036
http://dx.doi.org/10.1103/PhysRevB.103.L041405
http://dx.doi.org/10.1103/PhysRevLett.123.200603
http://dx.doi.org/10.1103/PhysRevA.102.012212
http://dx.doi.org/10.1007/BF02731351
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1103/PhysRevLett.89.080401
http://dx.doi.org/10.1103/PhysRevA.66.042327
http://dx.doi.org/10.1137/1.9780898719260
2103.02626
http://dx.doi.org/10.1126/science.aau4963
https://science.sciencemag.org/content/364/6437/260.full.pdf
https://science.sciencemag.org/content/364/6437/260.full.pdf


SciPost Physics Submission

[92] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Cal-
abrese, B. Kraus, J. Preskill, P. Zoller and B. Vermersch, Mixed-state entangle-
ment from local randomized measurements, Phys. Rev. Lett. 125, 200501 (2020),
doi:10.1103/PhysRevLett.125.200501.

[93] P. Calabrese, F. H. Essler and M. Fagotti, Quantum quench in the transverse field
ising chain: I. time evolution of order parameter correlators, Journal of Statistical
Mechanics: Theory and Experiment 2012(07), P07016 (2012).

28

http://dx.doi.org/10.1103/PhysRevLett.125.200501

	Introduction
	Localized losses in a Fermi sea
	Hydrodynamic limit of the covariance matrix

	Entanglement entropies and logarithmic negativity: Definitions
	Hydrodynamic description of entanglement entropies
	Moments of the correlation matrix
	Entanglement entropies
	Zeno death of entanglement entropy

	Numerical benchmarks
	Moments of fermionic correlators
	Entanglement entropies and logarithmic negativity

	Conclusions
	Entanglement entropies in the hydrodynamic limit: Derivation of Eq. (29)
	References

